
HAL Id: hal-01825009
https://hal.science/hal-01825009v2

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Invariant cone and synchronization state stability of the
mean field models

W. Oukil, Ph. Thieullen, A. Kessi

To cite this version:
W. Oukil, Ph. Thieullen, A. Kessi. Invariant cone and synchronization state stability of the mean
field models. Dynamical Systems, 2018, 34 (3), pp.422-433. �10.1080/14689367.2018.1547683�. �hal-
01825009v2�

https://hal.science/hal-01825009v2
https://hal.archives-ouvertes.fr


Invariant cone and synchronization state stability of

the mean field models

W. Oukil1, Ph. Thieullen2 and A. Kessi3

1. Department of Mathematics and Computer Science, Médéa University,
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Abstract

In this article we prove the stability of some mean field systems
similar to the Winfree model in the synchronized state. The model is
governed by the coupling strength parameter κ and the natural fre-
quency of each oscillator. The stability is proved independently of the
number of oscillators and the distribution of the natural frequencies.
The main result is proved using the positive invariant cone method for
the linearized system. This method can be applied to other mean field
models as in the Kuramoto model.

Keywords: Stability, coupled oscillators, mean field, interconnected sys-
tems, synchronization, Winfree model.

1 Introduction and Main result

In 1967 Winfree [8] proposed a mean field model describing the synchroniza-
tion of a population of organisms or oscillators that interact simultaneously
[1, 7]. The mean field models are used, for example, in the Neurosciences to
study of neuronal synchronization in the brain [2, 3]. The Winfree model is
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given by the following differential equation














ẋi = ωi − κσ(x)R(xi), t ≥ 0, x = (x1, . . . , xn),

σ(x) := 1
n

∑n
j=1 P (xj), ∀x = (x1, . . . , xn) ∈ R

n,

supx∈RP (x)R(x) > 0, P,R ∈ C2(R) are 2π-periodic,

(1)

where n ≥ 1 is the number of oscillators, σ(x) is the mean field interaction,
xi(t) is the phase of the i-th oscillator, and x(t) = (x1(t), . . . , xn(t)) is the
global state of the system. We assume that the natural frequencies are
chosen indifferently in some interval about ω = 1,

ωi ∈ (1− γ, 1 + γ), where γ ∈ (0, 1). (2)

The coupling strength κ is taken in the interval (0, 1). Let

M := 16max{‖P (i)‖∞‖R(j)‖∞ : 0 ≤ i, j ≤ 2}, (3)

be a constant used explicitly in some estimates measuring the size of the
mean field.

We first define the notions of invariance and stability. Let n ∈ N
∗ and

F : R
n → R

n be a C1 vector field. Denote DF its Jacobian and assume

max{ sup
z∈Rn

∥

∥F (z)
∥

∥ , sup
z∈Rn

∥

∥DF (z)
∥

∥} < ∞.

where ‖.‖ is the usual matrix norm. Let φt : R
n → R

n be the flow of the
autonomous system

ẋ = F (x), t ≥ 0. (4)

Definition 1 (Invariance). Let C ⊂ R
n be an open set. We say that C is

φt-positively invariant for the system (4), if φt(C) ⊂ C for all t ≥ 0.

Definition 2 (Stability). Let C ⊂ R
n be an open set. We say that the

system(4) is φt-positively stable on C, if C is φt-positively invariant and

∃λ > 0, ∀x ∈ C, ∃δ > 0, ∀y ∈ C :

‖x− y‖ < δ =⇒ ‖φt(x)− φt(y)‖ ≤ λ‖x− y‖ , ∀t ≥ 0.

Let Φt be the flow of the Winfree model (1). The existence of a synchro-
nization state in the Winfree model is proved in [5] for every number n
of oscillators and every choice of natural frequencies. We recall the main
synchronization hypothesis used in [5],

∫ 2π

0

P (s)R′(s)

1− κP (s)R(s)
ds > 0, ∀κ ∈ (0, κ∗), (H)
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where κ∗ is the locking bifurcation critical parameter κ∗ defined by

κ∗ :=
(

sup
x∈R

P (x)R(x)
)−1

. (5)

We proved in [5] there exists an open set

U ⊂
{

(γ, κ) ∈ (0, 1) × (0, κ∗) : 1− γ −
κ

κ∗
> 0

}

containing in its closure {0} × [0, κ∗], such that for every n ≥ 1 and every
parameter (γ, κ) ∈ U there exist two constants D ∈ (0, 1) and α(γ, κ,D),











1− γ −MκD − κ/κ∗ > 0,

α(γ, κ,D) :=
2γ +MκD2

1− κ/κ∗
+

(2γ +MκD2 +MκD)(γ +MκD)

(1− γ −MκD − κ/κ∗)(1 − κ/κ∗)
,

(6)

and a C2 2π-periodic function ∆γ,κ : R → (0,D) solution of

d

ds
∆γ,κ(s) = −

κP (s)R′(s)

1− κP (s)R(s)
∆γ,κ(s) + α(γ, κ,D), (7)

and a Φt-positively invariant open set Cn
γ,κ independent of choice of the

natural frequencies (ωi)
n
i=1,

Cn
γ,κ :=

{

x = (xi)
n
i=1 ∈ R

n : max
i,j

|xj − xi| < ∆γ,κ

( 1

n

n
∑

i=1

xi

)}

. (8)

The following main result asserts that Cn
γ,κ is positively stable.

Main result. Consider the Winfree model (1) and assume that hypothesis

(H) is satisfied. Then for every parameter (γ, κ) ∈ U , for every n ≥ 1 and

every choice of natural frequencies (ωi)
n
i=1 as in (2), the Winfree model (1)

is Φt-positively stable on Cn
γ,κ.

Using a more refined version of Theorem 2 in Saito, see [4, 6], one can
prove the existence of a uniform rotation vector ρ ∈ R

n such that for every
initial condition x ∈ Cn

γ,κ

Φt(x) = ρt+ px(t), ∀t ≥ 0

where px(t) is an almost periodic function.



4 W. Oukil, Ph. Thieullen and A. Kessi

2 Invariant cone and stability

We study in this section the stability of a system of the form (4) using
the positive invariant cone method for the linearized equation. Propositions
5 and 7 are the two main ingredients that guarantee the stability of the
Winfree model. We actually consider more generally a parametrized linear
system of the form,

ẏ = A(x, t)y, t ≥ 0, x ∈ C, (9)

where C is an open set and A(x, t) is a continuous n×n matrix function on
C × R

+. Let Ψt
x be the fundamental matrix of (9) parametrized by x ∈ C.

The fundamental matrix cocycle of the system (9) is denoted by

Ψt,t′

x (z) := Ψt
x

(

Ψt′

x

)−1
(z), ∀z ∈ R

n, ∀t ≥ t′ ≥ 0.

Let V+ be the positive cone defined by

V+ := {(z1, . . . , zn) ∈ R
n : zi ≥ 0, ∀i = 1, . . . , n}. (10)

Definition 3. Consider the linear system (9). We say that the cone V+ is
Ψt

x-positively invariant uniformly in x ∈ C if

∃δ > 0, ∀x ∈ C, ∃tx ∈ [0, δ] : Ψt,tx
x (V+) ⊂ V+, ∀t ≥ tx.

Definition 4. Consider the linear system (9). Let Ψt
x be its fundamental

matrix. We say that (9) is Ψt
x-positively stable uniformly in C if

∃λ > 0, ∀x ∈ C, ∀t ≥ 0,
∥

∥

∥
Ψt

x

∥

∥

∥
≤ λ.

We study in the next proposition the stability of some classes of nonlinear
systems using the positive invariant cone method.

Proposition 5. Consider the system (4). Let be F := (f1, . . . , fn). Suppose
that there exists a φt-positively invariant open set C ⊂ R

n and there exists

α > 0 such that

fi(φ
t(x)) ≥ α, ∀x ∈ C, ∀t ≥ 0, ∀i ∈ {1, . . . , n}.

Let x ∈ C and Ψt
x be the fundamental matrix of the linearized system

ẏ = DF (φt(x))y, t ≥ 0. (11)

Suppose that V+ as in (10) is Ψt
x-positively invariant uniformly in C, then

(4) is φt-positively stable on C.
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To prove Proposition 5 we use the next Lemma which gives a sufficient
condition of the stability of the system (4) as defined in Definition 2.

Lemma 6. Consider the system (4). Suppose that there exists a φt-

positively invariant open set C ⊂ R
n such that the linear system

ẏ = DF (φt(x))y, ∀t ≥ 0, ∀x ∈ C, (12)

is Ψt
x-positively stable uniformly in C. Then (4) is φt-positively stable on

C.

Proof. The system (4) can be written as

d

dt
Dφt(x) = DF (φt(x))Dφt(x) with Ψt

x = Dφt(x).

Since the system (12) is Ψt
x-positively stable uniformly in C, we have

∃λ > 0, ∀x ∈ C, ∀t ≥ 0,
∥

∥

∥
Dφt(x)

∥

∥

∥
≤ λ. (13)

Let (z1, z2) ∈ C × C such that z(s) := (1 − s)z2 + sz1 ∈ C for all s ∈ [0, 1].
Then

∥

∥

∥
φt(z1)− φt(z2)

∥

∥

∥
=

∥

∥

∥

∥

∥

∫ 1

0

d

ds
φt(z(s))ds

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∫ 1

0
Dφt(z(s))

dz(s)

ds
ds

∥

∥

∥

∥

∥

,

=

∥

∥

∥

∥

∥

∫ 1

0
Dφt(z(s))(z1 − z2) ds

∥

∥

∥

∥

∥

≤ sup
s∈[0,1]

∥

∥

∥
Dφt(z(s))(z1 − z2)

∥

∥

∥
.

Finally, use the fact z(s) ∈ C and use equation (13) to obtain

∥

∥

∥
φt(z1)− φt(z2)

∥

∥

∥
≤ λ‖z1 − z2‖ , ∀t ≥ 0,

which implies that the (4) is φt-positively stable on C.

Proof of Proposition 5. Since V+ is Ψt
x-positively invariant uniformly in C,

∃δ > 0, ∀x ∈ C, ∃tx ∈ [0, δ] : z ∈ V+ =⇒ Ψt,tx
x (z) ∈ V+, ∀t ≥ tx.

Let be η := α−1, x ∈ C, y ∈ R
n, and denote

z+ := η‖y‖F (φtx(x)) + y and z− := η‖y‖F (φtx(x))− y.
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On the one hand, z+ := (z+1 , . . . , z
+
n ) ∈ V+ and z− := (z−1 , . . . , z

−
n ) ∈ V+,

min
1≤i≤n

{z−i , z
+
i } ≥ η‖y‖ min

1≤i≤n

{

inf
x∈C

fi(φ
tx(x))

}

−‖y‖ ≥ (ηα− 1)‖y‖ = 0.

On the other hand, F (φt(x)) is solution of the linearized system (11)

d

ds
F (φs(x)) = DF (φs(x))F (φs(x)),

F (φt(x)) = Ψt,t∗
x F (φt∗(x)).

Since V+ is Ψt
x-positively invariant uniformly in C, we obtain

η‖y‖F (φt(x)) + Ψt,tx
x (y) = Ψt,tx

x (z+) ∈ V+, ∀t ≥ tx,

η‖y‖F (φt(x))−Ψt,tx
x (y) = Ψt,tx

x (z−) ∈ V+, ∀t ≥ tx.

Put r := max{
∥

∥F (φt(x))
∥

∥ ,
∥

∥DF (φt(x))
∥

∥} < +∞ we obtain

∥

∥

∥
Ψt,tx

x (y)
∥

∥

∥
≤ ηr‖y‖ , ∀t ≥ δ,

∥

∥

∥
Ψt

x

∥

∥

∥
≤ exp(rδ), ∀t ∈ [0, δ],

∥

∥

∥
Ψt

x(y)
∥

∥

∥
≤ λ‖y‖ , ∀x ∈ C, ∀t ≥ 0,

where λ := ηr exp(rδ). The linearized system (11) is Ψt
x-positively stable

uniformly in C. Lemma 6 implies that (4) is φt-positively stable on C.

We give in the following proposition a sufficient condition for the invari-
ance of the cone V+ .

Proposition 7. Let p, q : R → R be continuous 2π-periodic functions, and

gi, hi,j : [0,+∞) → R, 1 ≤ i, j ≤ n, be continuous functions. Consider the

linear non-autonomous ODE

dzi
ds

= gi(s)zi +
1

n

n
∑

j=1

(

p(s) + hi,j(s)
)

zj , ∀s ≥ 0, ∀1 ≤ i ≤ n. (14)

Assume there exists a constant D > 0 and a continuous 2π-periodic function

δ : R → (0,D) such that

•

∫ 2π

0
p(s) ds > 0,

•
dδ

ds
= −p(s)δ + q(s), ∀s ≥ 0,
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• 0 ≤ gi(s) ≤
q(s)

4D
, |hi,j(s)| ≤

q(s)

8D
, ∀s ≥ 0.

Let Ψs,s′ be the fundamental matrix of (14). Then there exists s∗ ∈ [0, 2π]
such that Ψs,s∗(V+) ⊂ V+ for all s ≥ s∗.

Proof. Let be s∗ ∈ [0, 2π] satisfying

max
s∈[0,2π]

δ(s) = δ(s∗). (15)

Let Ψs,s′ = (Ψs,s′

1 , . . . ,Ψs,s′

n ) be the fundamental matrix cocycle of (14). Let
V̊+ be the interior of the set V+, z∗ ∈ V̊+ fixed, and z(s) = Ψs,s∗(z∗). By
continuity,

∃s1 > s∗ : z(s) ∈ V̊+, ∀s ∈ [s∗, s1).

Define

S := sup
{

s > s∗ : z(s′) ∈ V̊+, ∀s′ ∈ [s∗, s)
}

.

The proposition is proved if we show S = +∞. By contradiction, suppose
that S < +∞, then

z(S) /∈ V̊+. (16)

Define

µ(s) :=
1

n

n
∑

i=1

zi(s).

By uniqueness of solutions µ(s) > 0, ∀s ∈ [s∗, S]. Then for all s ∈ [s∗, S],

dzi
ds

= gi(s)zi + (p(s) + hi(s))µ(s),

where

hi(s) :=

∑n
j=1 hi,j(s)zj(s)
∑n

j=1 zj(s)
.

Define

g(s) :=

∑n
i=1 gi(s)zi(s)
∑n

i=1 zi(s)
, and h(s) :=

1

n

n
∑

i=1

hi(s).

Then

0 ≤ g(s) ≤
q(s)

4D
, |hi(s)| ≤

q(s)

8D
, |h(s)| ≤

q(s)

8D
.

Define

a(s) := g(s) + p(s) + h(s), ∀s ≥ s∗.
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Then
dµ

ds
= a(s)µ, µ(s) = µ(s∗) exp

(

∫ s

s∗

a(ζ) dζ
)

.

Since |p(s) + hi(s)− a(s)| = | − g(s) + hi(s)− h(s)| ≤ q(s)/(2D), we have

dzi
ds

≥ (p(s) + hi(s))µ(s),

≥ (p(s) + hi(s))µ(s∗) exp
(

∫ s

s∗

a(ζ) dζ
)

,

zi(s)− zi(s∗)

µ(s∗)
≥

∫ s

s∗

(

p(s′) + hi(s
′)− a(s′)

)

exp
(

∫ s′

s∗

a(ζ) dζ
)

ds′

+

∫ s

s∗

a(s′) exp
(

∫ s′

s∗

a(ζ) dζ
)

ds′

≥ exp
(

∫ s

s∗

a(ζ) dζ
)

− 1−

∫ s

s∗

q(s′)

2D
exp

(

∫ s′

s∗

a(ζ) dζ
)

ds′.

Multiplying by δ(s∗) exp
(

−
∫ s

s∗
a(ζ) dζ

)

and using δ(s∗) < D, we get

δ(s∗)zi(s)

µ(s)
≥ δ(s∗)− δ(s∗) exp

(

−

∫ s

s∗

a(ζ) dζ
)

−

∫ s

s∗

q(s′)

2
exp

(

−

∫ s

s′
a(ζ) dζ

)

ds′.

Let δ̃(s) be the unique solution of

dδ̃

ds
= −a(s)δ̃ +

q(s)

2
, ∀s ∈ [s∗, S], δ̃(s∗) = δ(s∗).

Then

δ̃(s) =δ(s∗) exp
(

−

∫ s

s∗

a(ζ) dζ
)

∫ s

s∗

q(s′)

2
exp

(

−

∫ s

s′
a(ζ) dζ

)

ds′,

δ(s∗)zi(s)

µ(s)
≥ δ(s∗)− δ̃(s), ∀s ∈ [s∗, S]. (17)

Notice that

a(s) = g(s) + p(s) + h(s) ≥ p(s)−
q(s)

2D
, ∀s ∈ [s∗, S].
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Then
dδ̃

ds
≤ −p(s)δ̃ +

q(s)

2

(

1 +
δ̃

D

)

, ∀s ∈ [s∗, S].

To obtain z(S) ∈ V̊+ and get a contradiction with (16), it is sufficient to
prove that δ̃(s) ≤ δ(s), ∀s ∈ (s∗, S]. For that, we use the comparison
principle of differential equations. Since 0 < δ̃(s∗) = δ(s∗) < D and

dδ̃

ds
(s∗) < −p(s∗)δ̃(s∗) + q(s∗) =

dδ

ds
(s∗)

there exists ǫ > 0 such that δ̃(s) < δ(s) for all s ∈ (s∗, s∗ + ǫ). Define

S̃ := sup
{

s ∈ [s∗, S] : δ̃(s
′) < δ(s′), ∀s′ ∈ (s∗, s]

}

.

We show that that S̃ = S. By contradiction, if S̃ < S, then δ̃(S̃) = δ(S̃),

dδ̃

ds
(S̃) < −p(S̃)δ̃(S̃) + q(S̃) =

dδ

ds
(S̃),

and we could find s < S̃ close enough to S̃ such that δ̃(s) > δ(s). We have
obtained a contradiction. Then S̃ = S and δ̃(S̃) < δ(S̃) ≤ δ(s∗). Equation
(17) implies z(S) ∈ V̊+, which is a contradiction with (16). We have obtained
z(s) ∈ V̊+ for all s ≥ s∗. By continuity of the fundamental matrix cocycle,
we have proved that z(s) ∈ V+ for all z(s∗) ∈ V+ and all s ≥ s∗.

3 Proof of the Main result

We prove in this Section the Main result of Section 1. We consider the
Winfree model (1) and its associated flow Φt. We recall that the Winfree
model satisfies the hypothesis (H). The linearized Winfree model is given by























dy

dt
= DW(Φt(x))y, t ≥ 0, y = (y1, . . . , yn),

Wi(x) := ωi − κσ(x)R(xi), x = (x1, . . . , xn) ∈ R
n,

∂Wi

∂xj
= −κ

[

σ(x)R′(xi)δi,j +
R(xi)P

′(xj)

n

]

.

(18)

We fix (γ, κ) ∈ U and an initial condition x∗ ∈ Cn
γ,κ defined in (8). We

denote by Ψt
x∗

the fundamental matrix of (18). Let x(t) = Φt(x∗) be the
solution of (1) starting at x∗, and

µ(t) :=
1

n

n
∑

i=1

xi(t), ∀t ≥ 0.
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The main idea of the proof is to rewrite the linearized Winfree model by
making a change of time t ↔ s and a linear change of the tangent vectors
y ↔ z. We first notice that the velocity of µ is strictly positive,

dµ

dt
=

1

n

n
∑

i=1

ωi − κσ(x)
1

n

n
∑

i=1

R(xi),

≥
(

1− κσ(µ)R(µ)
)

−
(

γ + κMD
)

≥ 1− κ/κ∗ − γ − κMD > 0.

The first inequality uses the definition of the constantM in (3), the estimates
(2) on the natural frequencies, the fact that Cn

γ,κ is positively invariant, that
∆γ,κ defined in (7) is bounded from above by D, and the simple estimate,

|xi − µ| ≤ ∆γ,κ(µ) ≤ D, ∀1 ≤ i ≤ n,

∣

∣

∣
σ(µ)R(µ)−

1

n

n
∑

i=1

σ(x)R(xi)
∣

∣

∣
≤

M

n

n
∑

i=1

|xi − µ| ≤ MD.

The second inequality uses the definition of κ∗ in (5) and the third inequality
uses the bound from below (6). Let be s∗ := µ(0). The map

t ∈ [0,+∞) 7→ µ(t) ∈ [s∗,+∞)

is a smooth diffeomorphism admitting as inverse map

s ∈ [s∗,+∞) 7→ τ(s) ∈ [0,+∞).

Define for t = τ(s) ⇔ s = µ(t),

v(s) :=
dµ

dt
(t),

fi(s) :=
κσ(x(t))R′(xi(t))

v(s)

f(s) := max
1≤i≤n

fi(s),

zi(s) := yi(t) exp
(

∫ s

s∗

f(u) du
)

,

gi(s) := f(s)− fi(s),

p(s) := −
κP ′(s)R(s)

1− κP (s)R(s)
,

q(s) :=
(1− κ/κ∗)α(γ, κ,D)

1− κP (s)R(s)
,

hi,j(s) := −
κR(xi(t))P

′(xj(t))

v(s)
+

κP ′(s)R(s)

1− κP (s)R(s)
.
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Lemma 8. Then

1.
dzi
ds

= gi(s)zi +
1

n

n
∑

j=1

(

p(s) + hi,j(s)
)

zj , ∀s ≥ 0, ∀1 ≤ i ≤ n,

2.

∫ 2π

0
p(s) ds > 0,

3. p, q : R → R are continuous and 2π-periodic,

4. 0 ≤ gi(s) ≤
q(s)

4D
, |hi,j(s)| ≤

q(s)

8D
.

Proof. Using the change of variable z̃i(s) = yi ◦ τ(s), x̃i(s) = xi ◦ τ(s),
equation (18) becomes, v(s) := d

dt
µ ◦ τ(s),

dz̃i
ds

(s) =
1

v(s)

dyi
dt

(t) = −
κ

v(s)

(

σ(x̃)R′(x̃i)z̃i +
1

n

n
∑

j=1

R(x̃i)P
′(x̃j)z̃j

)

,

= −fi(s)z̃i +
1

n

n
∑

j=1

(

p(s) + hi,j(s)
)

z̃j

Making the scaling zi(s) := z̃i(s) exp(
∫ s

s∗
f(u) du), one obtains item 1. Item

2 is a consequence of hypothesis (H) and

d

ds
log

( 1

1− κP (s)R(s)

)

= p(s)−
κP (s)R′(s)

1− κP (s)R(s)
,

∫ 2π

0
p(s) ds =

∫ 2π

0

κP (s)R′(s)

1− κP (s)R(s)
ds > 0.

Item 3 is true by definition of p and q. Using |x̃i(s)− s| ≤ D, the estimate
on hi,j is given by

|hi,j(s)| ≤
κ|R(s)P ′(s)−R(x̃i)P

′(x̃i)|

1− κP (s)R(s)

+
κ|R(x̃i)| |P

′(x̃i)| |v(s)− (1− κP (s)R(s))|

v(s)(1 − κP (s)R(s))

≤
κM

8(1 − κP (s)R(s))

[

D +
γ + κMD

1− κ/κ∗ − γ − κMD

]

≤
α(γ, κ,D)

8D

1− κ/κ∗
1− κP (s)R(s)

=
q(s)

8D
.
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The estimate on gi is given by

gi(s) ≤ max
1≤i,j≤n

κ|σ(x̃)| |R′(x̃i)−R′(x̃j)|

v(s)

≤
κMD

4(1− κP (s)R(s))
+

κMD(1− κP (s)R(s)− v(s))

4v(s)(1 − κP (s)R(s))

≤
κMD

4(1− κP (s)R(s))

[

1 +
γ + κMD

1− κ/κ∗ − γ − κMD

]

≤
q(s)

4D
.

We now conclude the proof of the main results: we will show that V+ is
Ψt

x-positively invariant uniformly in Cn
γ,κ; proposition 5 will imply that the

Winfree model is Φt-positively stable uniformly on Cn
γ,κ.

The fact that V+ is positively invariant is a direct consequence of propo-
sition 7 applied to the linearized Winfree model written in terms of the
new variables z(s) = (z1(s), . . . , zn(s)). Part of the hypotheses of proposi-
tion 7 have been proved in lemma 8. We prove in the following lemma the
remaining hypothesis.

Lemma 9. There exists a continuous 2π-periodic function δ : R → (0,D)
such that

dδ

ds
= −p(s)δ + q(s), ∀s ≥ 0.

Proof. Let ∆γ,κ(s) be the positive 2π−periodic function as in (7). Define

δ(s) :=
1− κ/κ∗

1− κP (s)R(s)
∆γ,κ(s).

Then δ ≤ ∆γ,κ < D, and

dδ

ds
=

(1− κ/κ∗)κ(P
′(s)R(s) + P (s)R′(s))

(1− κP (s)R(s))2
∆γ,κ +

1− κ/κ∗
1− κP (s)R(s)

d∆γ,κ

ds
,

=
κP ′(s)R(s)

1− κP (s)R(s)
δ +

(1− κ/κ∗)α(γ, κ,D)

1− κP (s)R(s)
= −p(s)δ + q(s).

4 Conclusion

We studied the stability of the Winfree model in its synchronized state. The
proof is based on the positive invariant cone method. The main synchro-
nization hypothesis used in [5] is again a critical hypothesis for the linear
stability.
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