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Comparison of the global dynamics for two chemostat-like models: random temporal variation versus spatial heterogeneity

This article is dedicated to the study and comparison of two chemostat-like competition models in a heterogeneous environment. The first model is a probabilistic model where we build a PDMP simulating the effect of the temporal heterogeneity of an environment over the species in competition. Its study uses classical tools in this field. The second model is a gradostat-like model simulating the effect of the spatial heterogeneity of an environment over the same species. Despite the fact that the nature of the two models is very different, we will see that their long time behavior is globally very similar. We define for both model quantities called invasion rates which model the growth rate of a species when it is near to extinction. We show that the signs of these invasion rates essentially determine the long time behavior for both systems. In particular, we exhibit a new type of bistability with a stable coexistence steady state and a stable semi-trivial steady state.

Introduction

The model of chemostat is a standard model of competition of several species for a single resource in an open environment. Its studies as well as that of its many variants have been widely explored since fifty years. One can read Smith and Waltman's book [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF] and recent survey [START_REF] Wade | Perspectives in mathematical modelling for microbial ecology[END_REF] which give a view over the complexity and variability of this research domain. There are numerous applications for the chemostat. For example, in population biology, the chemostat serves as a first approach for the study of natural systems . In industrial microbiology, the chemostat offers an economical production of micro-organisms.

In this article, we consider two species u and v competing for a single resource R. The evolution of these different concentrations in a simple chemostat ε is given by the equations:

     Ṙ(t) = δ r (R 0 -R(t)) -U (t)f u (R(t)) -V (t)f v (R(t)) U (t) = U (t) (f u (R(t)) -δ u ) V (t) = V (t) (f v (R(t)) -δ v ) (1)
together with the initial conditions U (0) > 0, V (0) > 0 R(0) ≥ 0.

Here, we denote U (t), V (t) and R(t) the concentrations of the species u, v and the resource R ; δ r , δ u and δ v the dilution rates of R, u and v respectivly. R 0 is the constant input concentration of the resource in the vessel. For each species w ∈ {u, v}, the map R → f w (R) is the consumption function and verifies f w (0) = 0. Thus, the per capita growth rate of the species w is f w (R) -δ w . Note that according to the models, f w can have different expressions. We assume here that f w is increasing. Under various assumptions on the dilution rates δ and the function f w , the chemostat [START_REF] Armstrong | Competitive exclusion[END_REF], is known to satisfy the principle of exclusive competition (PEC) which states that when several species compete for the same (single) resource, only one species survives, the one which makes 'best' use of the resource. The PEC has been first proven for equals dilution rates δ r = δ u = δ v and Monod's consumption function (see [START_REF] Benaïm | On the stability of planar randomly switched systems[END_REF]) in [START_REF] Hsu | A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms[END_REF]. This has been generalized for different dilution rates and Monod's function in [START_REF] Hsu | A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms[END_REF] and for any increasing function and same dilution rate in [START_REF] Armstrong | Competitive exclusion[END_REF]. It is yet unknown if the CEP holds true for general increasing functions f w if the assumption on the dilution rates is relaxed. See [START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] for one of the last advance on this topic.

Though some natural observations and laboratory experiences support the principle of exclusive competition [START_REF] Hansen | Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes[END_REF][START_REF] Codeço | Competition along a spatial gradient of resource supply: A microbial experimental model[END_REF], the observed population diversity within some natural ecosystems seems to exclude it [START_REF] Hutchinson | The paradox of the plankton[END_REF][START_REF] Roy | Towards a resolution of 'the paradox of the plankton': A brief overview of the proposed mechanisms[END_REF]. In order to take account of the biological complexity without excluding the specificity of the chemostat, various models has been introduced ( [START_REF] Loreau | Biodiversity as spatial insurance in heterogeneous landscapes[END_REF][START_REF]Some thoughts on nutrient limitation in algae[END_REF][START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF] for more examples).

The observed biodiversity could first be explained by the temporal fluctuations of the environment. This idea has been explored in the ecology literature (see for example [START_REF] Chesson | Mechanisms of Maintenance of Species Diversity[END_REF][START_REF] Chesson | Environmental Variability Promotes Coexistence in Lottery Competitive Systems[END_REF]). Applied to the chemostat, this idea gave [START_REF] Smith | Competition in the periodic gradostat[END_REF] where the authors study the general gradostat with a periodic resource input. However, temporal fluctuations of an environment are most likely random. From this assumption comes the idea of studying an environment fluctuating randomly between a finite number of environments. In [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF], the authors gives a complete study for a two-species Lotka-Volterra model of competition where the species evolve in an environment changing randomly between two environments and prove that coexistence is possible.

In order to take account of the biological complexity without excluding the specificity of the chemostat, Lovitt and Wimpenny introduced the gradostat model which consists in the concatenation of various chemostats where the adjacent vessels are connected in both directions, [START_REF] Lovitt | The gradostat: a bidirectional compound chemostat and its application in microbiological research[END_REF][START_REF] Codeço | Competition along a spatial gradient of resource supply: A microbial experimental model[END_REF]. The resource output occurs in the first and last chemostats of the chain and those in between exchange their contents.

The case where two species evolve in two interconnected chemostats is understood in various cases [START_REF] Jäger | Competition in the gradostat[END_REF][START_REF] Smith | The gradostat: A model of competition along a nutrient gradient[END_REF]. See also [START_REF] Smith | Competition in an n-vessel gradostat[END_REF][START_REF] Gaki | Complex dynamics of microbial competition in the gradostat[END_REF][START_REF] Rapaport | Effects of spatial structure and diffusion on the performances of the chemostat[END_REF][START_REF] Hofbauer | Competition in the gradostat: the global stability problem[END_REF][START_REF] Rapaport | Some non-intuitive properties of simple extensions of the chemostat model[END_REF] for more references on the general gradostat. The spatial heterogeneity has been also studies with partial differential equations models, see for instance [START_REF] Castella | Coexistence phenomena and global bifurcation structure in a chemostatlike model with species-dependent diffusion rates[END_REF][START_REF] Castella | Global behavior of N competing species with strong diffusion: diffusion leads to exclusion[END_REF][START_REF] Hsu | On a system of reaction-diffusion equations arising from competition in an unstirred chemostat[END_REF] Some other chemostat-like model has been introduced to take account of the temporal heterogeneity. See [START_REF] Lenas | Periodic, quasi-periodic, and chaotic coexistence of two competing microbial populations in a periodically operated chemostat[END_REF][START_REF] Butler | A mathematical model of the chemostat with periodic washout rate[END_REF][START_REF] Smith | Competition in the periodic gradostat[END_REF] with non autonomous deterministic model and in [START_REF] Campillo | Stochastic modeling of the chemostat[END_REF][START_REF] Wang | Ergodic property of the chemostat: A stochastic model under regime switching and with general response function[END_REF] with stochastic models. In this article, we study the effect of heterogeneity through two different chemostat ε 1 and ε 2 . For a given chemostat ε i we take the most simple model of chemostat : δ r = δ u = δ v := δ is the common dilution rate for each species and the dilution rate of the resource and we choose the most common expression for f w which is Monod's one:

f w (R) = a w R b w + R . ( 2 
)
where a w is the maximum growth rate for the species w and b w is 'half-velocity constant' of the species w. . The evolution of these different concentrations in the simple chemostat ε i is then given by the equations:

     Ṙ(t) = δ(R 0 -R(t)) -U (t)f u (R(t)) -V (t)f v (R(t)) U (t) = U (t) (f u (R(t)) -δ) V (t) = V (t) (f v (R(t)) -δ) (3)
The so-called 'break-even concentration'

R * w = bwδ aw-δ if a w > δ +∞ if a w ≤ δ,
is the concentration of resource satisfying f w (R w ) = δ (if possible). The quantity R * w can be interpreted as the minimal concentration of resource needed by the species w to have its population growing. The species which needs the less resource to survive in the environment is the best competitor.

It is well known that the simple chemostat satisfies the principle of exclusive competition : only the best competitor survives. The following theorem illustrates this statement (see [START_REF] Hsu | Limiting behavior for competing species[END_REF][START_REF] Hsu | A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms[END_REF]).

Theorem 1.1 (Competitive Exclusion Principle (CEP))

. Suppose that R * u < R 0 (u is able to survive) and R * u < R * v (u is the best competitor). The solutions of (3) satisfy:

lim t→+∞ (R(t), U (t), V (t)) = (R * u , R 0 -R * u , 0).

Remark 1.2. Let us write:

Σ(t) = R(t) + U (t) + V (t).
Considering that the dilution rate is the same for every species and the resource, it is easy to see that Σ satisfies the differential equation:

Σ(t) = δ(R 0 -Σ(t)). It comes that Σ(t) = R 0 + e -δt (Σ(0) -R 0 ) -→ t→+∞ R 0 .
Using that Σ(t) → R 0 , it is classical (see the appendix F in [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF]) that the asymptotic dynamics of the system (3) is given by the dynamics of the reducted system

U (t) = U (t) (f u (R 0 -U (t) -V (t)) -δ) V (t) = V (t) (f v (R 0 -U (t) -V (t)) -δ) (4)
Hence, the assumption that the dilution rates are the same for every species and the resource is a very strong hypothesis which allows to do the variable change R(t) = R 0 -U (t) -V (t). This is the key ingredient in [START_REF] Armstrong | Competitive exclusion[END_REF] to prove the CEP for general increasing consumption functions and same dilution rates.

In this paper, we consider two chemostats ε1 and ε2 . For j ∈ {1, 2}, the parameters of the chemostat ε j are denoted (R j 0 , δ j , a j u , a j v , b j u , b j v ). In all the article, the subscripts of a parameter or a variable make always reference to the species and the exponents make always reference to the environment. For a species w ∈ {u, v}, we set w ∈ {u, v} \ {w} the other species. With these two chemostats, we build two competition models. The first model is a probabilistic one. In this model the chemostat where the two species and the resource evolve is alternating randomly between ε 1 and ε 2 . Assuming that the species and resource lives in ε 1 at t = 0, we wait a random exponential time of parameter λ 1 before switching the chemostat to ε 2 . Then, we wait an other independent random exponential time of parameter λ 2 before switching back to ε 1 , and so on.

The goal here is to model time variations of the environment the species and resource evolve in. Mathematically, we build here a random process which study is totally different from the gradostat model. In [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF], the authors study a similar process for a Lotka-Volterra competition model and we claim that it is possible to adapt their techniques to the slightly more difficult chemostat switching competition model. The second model is a gradostat-like model where the two chemostats ε 1 and ε 2 are connected and trade their content at a certain rate λ. Mathematically, this model is a system of 3 × 2 differential equations which modelizes spatial heterogeneity in a biosystem (see [START_REF] Lovitt | The gradostat: a bidirectional compound chemostat and its application in microbiological research[END_REF] for some mathematical results on the behavior of such system). The goal of this article is to compare the long time behavior of the dynamics of these two different systems. For each model we give a mathematical definition for what we will call the invasion rate of the species, denoted Λ w for the species w in the probabilistic case 1 . Given the mathematical difference between the two models, the definition of these invasion rates is different for each model. However, we show that for each model, the signs of Λ u and Λ v essentially determine the state of the system at the equilibrium, and thus the long time dynamics. The precise results are stated in the section 2 for the probabilistic model and in the section 3 for the deterministic model.

We show (under an additional assumption for the probabilistic case) that, if Λ u Λ v > 0, then for any positive initial condition only the two following behavior can happen for the two models.

• If Λ u < 0 and Λ v < 0 there is extinction of either species u or species v This configuration will be called the exclusive bistability.

• If Λ u > 0 and Λ v > 0 there is persistence of both species (persistence means that lim inf t→+∞ U (t) > 0 and lim inf t→+∞

V (t) > 0).
In contrast, when Λ u Λ v < 0, the possibilities for the long time dynamics are not exactly the same for the two models. For instance, if Λ u > 0 and Λ v < 0. Then in the probabilistic model for any positive initial condition their is extinction of species v with probability 1, but for the deterministic model there is either

• Extinction of species v (for almost all positive initial condition).

• Extinction of species v or coexistence (depending on the initial condition). This situation is called the odd 2 bistability.

Consequently, comparing the two models will be essentially done by comparing the evolution of these invasion rates according to the parameter λ. An analytical and a numerical comparison of these invasion rates is done in section 4. In particular, we show, for the two models, that even if the two environments are favorable to the same species, then the two species may coexist or, worse, the other species is the only survivor.

For a more fluid reading , the technical proofs are postponed to section 5.

2 Random temporal variation : model and main results.

The probabilistic model : a PDMP system

As stated before, we pick two environments ε 1 and ε 2 and we model the environmental variation of a biosystem by randomly switching the chemostat the two species and the resource evolve in. This idea and its mathematical resolution has been introduced in [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF]. In this previous article, the authors exhibit counter-intuitive phenomenon on the behavior of a two-species Lotka-Volterra model of competition where the environment switches between two environments that are both favorable to the same species. Indeed, they show that coexistence of the two species or extinction of the species favored by the two environments can occur. We consider the stochastic process (R t , U t , V t ) defined by the system of differential equations:

     Ṙt = δ It (R It 0 -R t ) -U t f It u (R t ) -V t f It v (R t ) Ut = U t (f It u (R t ) -δ It ) Vt = V t (f It v (R t ) -δ It ) (5) 
where (I t ) is a continuous time Markov chain on the space of states E = {1, 2}. We note λ 1 and λ 2 the jump rates. Starting from the state j, we wait an exponential time of parameter λ j before jumping to the state j. The invariant probability measure of (

I t ) is λ 2 λ 1 +λ 2 ∆ 1 + λ 1 λ 1 +λ 2 ∆ 2
(where ∆ j is the Dirac measure in j).

Let us note the jump rates: λ 1 = sλ and λ 2 = (1 -s)λ with s ∈ (0, 1) and λ > 0. Parameter s (respectively 1 -s) can be seen as the proportion of time the jump process (I t ) spends in state 2 (respectively 1). The parameter λ will be seen as the global switch rate of (I t ).

The process

(Z t ) = (R t , U t , V t , I t
) is what we call a Piecewise Deterministic Markov Process (PDMP) as introduced by Davis in [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF].

Let us call:

K = (r, u, v) ∈ R 3 + , min(R 1 0 , R 2 0 ) 2 ≤ r + u + v ≤ 2 max(R 1 0 , R 2 0 ) , and M = K × {1, 2}.
According to remark 1.2, Z t will reach M in finite time for any initial condition Z 0 ∈ R 3 + × {1, 2} and then stays in M . We can then assume that Z 0 ∈ M and, as a consequence, M is as the state space of the process (Z t ).

We will call the extinction set of species w the set:

M 0,w = {(r, u, v, i) ∈ M , w = 0},
and the extinction set:

M 0 = M 0,u ∪ M 0,v
and the total extinction set:

M 0,u,v = M 0,u ∩ M 0,v .
It is clear that the process (Z t ) leaves invariant all the extinction sets and the interior set M \ M 0 . In order to describe the behavior of the process (Z t ) when Z 0 ∈ M \ M 0 , [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF] suggests to study the invasion rates of species w defined as:

Λ w = f 1 w (R) -δ 1 dµ w(R, 1) + f 2 w (R) -δ 2 dµ w(R, 2),
where µ w is an invariant probability measure of (Z t ) on M 0,w \ M 0,u,v .

Remark 2.1. The idea behind the definition of the invasion rate Λ u (same for Λ v ) is the following. From ( 5) comes:

Ut U t = f It u (R t ) -δ It = A(Z t ) Ut U t ds = A(Z s )ds 1 t log U t = 1 t A(Z s )ds.
Formally, the ergodic theorem allows to write:

1 t log U t → A(z)dµ(z),
where µ is an invariant probability measure for the process (Z t ). If µ v is an invariant probability measure of (Z t ) on M 0,u , we define Λ u = A(z)dµ v (z). By Feller continuity (see [START_REF] Benaïm | On the stability of planar randomly switched systems[END_REF]) it comes that Λ u can be seen as the exponential growth rate of U t when U t is close to zero. Hence, if Λ u > 0 the concentration of u tends to increase from low values and if Λ u < 0 the concentration of u tends to decrease from low values.

Dynamics of the PDMP model

We are interested in the long time behavior of the concentration of the species u and v. In [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF], the authors show that the signs of the invasion rates characterizes the long time behavior of the randomly switched Lotka-Volterra model of competition. It is expected to have the same result in the chemostat case. We expect the three following behavior for the concentration of the species u and v: Definition 2.2. (i) Species w ∈ {u, v} goes to extinction if W t → 0 almost surely for any initial condition Z 0 ∈ M \ M 0 .

(ii) We have coexistence of the two species when neither of the two species goes to extinction for any initial condition Z 0 ∈ M \ M 0 .

(iii) We have exclusive bistability if their is a probability one that one of the two species tends to zero for any initial condition Z 0 ∈ M \ M 0 .

In the case (ii) above, as in [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF], it is expected that the process (Z t ) restricted to M \ M 0 has an unique invariant probability measure Π supported by M \ M 0 and the empirical occupation measure 3 of (Z t ) converge weakly to Π.

The proof of this results use basically the fact that the process (Z t ) restricted to M 0,w is a one dimensional process which has a unique positive measure on M 0,w \ M 0,u,v . However, their is a main difference between the Lotka-Volterra model of [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF] and our chemostat model. Unlike than for the Lotka-Volterra model, it is not true here that the process restricted to M 0,w is positively invariant because it is possible that M 0,u,v is a global attractor of (Z t ) restricted to M 0,w (the species w may not be able to survive, even without competition). In this case, the only invariant probability measure on M 0,w will be supported by M 0,u,v . Hence, we first study the single species cases, which will be use by using the fact that the process (Z t ) restricted to M 0,u,v does posses a unique invariant probability measure µ 0 , that can be use to discriminate between the case when the species w may survive or not alone (see theorem 2.3).

When the two species are able to survive, everything is similar to [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF] and we may study the case of two species (see theorem 2.7). This precaution being taken, the proofs for theorem 2.3 and theorem 2.7 follow to a few details the same path as in [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF] and are then omitted. Note that these proofs uses some renewal theory arguments coupled with the analytic properties of the invasion rates.

Long time behavior when only one species is introduced

Assume that species w is not in the system (W t = 0). Then (Z t ) belongs to M 0,w and we denote again

(Z t ) = (R t , W t , I t ). (Z t ) satisfies: Ṙt = δ It (R It 0 -R t ) -W t f It w (R t ) Ẇt = W t (f It w (R t ) -δ It ) (6) 
In order to emphasize the fact that species w is absent of the system, let us define:

Λ 0 w = f 1 w (R) -δ 1 dµ 0 (R, 1) + f 2 w (R) -δ 2 dµ 0 (R, 2),
where µ 0 is the unique invariant probability measure of the process (Z t ) restricted to M 0,u,v (see theorem 4.1).

The following first result is similar to the main result in [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF] but for only one species.

Theorem 2.3. The sign of the invasion rate Λ 0 w characterizes the evolution of the species w on M 0,w : 3 Let us recall that the empirical occupation measure of (Zt) is the measure Πt given by Πt = 1 t t 0 δ Zs ds. Hence, for a borel set A, Πt(A) is the proportion of time spent by (Zs) in A up to time t.

1. If Λ 0 w < 0 species w goes to extinction: W t → 0 almost surely. In that case, the only invariant probability measure of (Z t ) restricted to M 0,w is µ 0 which is supported by M 0,u,v .

If Λ 0

w > 0 species w survives with probability one. More precisely : there exists a unique invariant probabily measure µ w of (Z t ) restricted to M 0,w \ M 0,u,v and the empirical occupation measure of (Z t ) (restricted to M 0,w ) converges weakly to µ w .

Long time behavior when two species are introduced

Assume that that Λ 0 w > 0. It follows that (Z t ) has an invariant probability measure µ w on M 0,w \ M 0,u,v . The invasion rates are then defined by:

Λ w = f 1 w (R) -δ 1 dµ w (R, 1) + f 2 w (R) -δ 2 dµ w (R, 2), Now, we assume 4 that R 1 0 = R 2 0 = R 0 . According to remark 1.2, the sum Σ t → R 0 as t → +∞.
As a consequence, the long-time behavior of (Z t ) is obtained by assuming that Σ t = R 0 in [START_REF] Butler | A mathematical model of the chemostat with periodic washout rate[END_REF].

It follows that the study of the process (Z t ) can now be reduced to the study of the process ( Z t ) = (U t , V t , I t ) where I t is like before and U t and V t satisfy the following competition system :

Ut = U t (f It u (R 0 -U t -V t ) -δ It ) Vt = V t (f It v (R 0 -U t -V t ) -δ It ). (7) 
Note that if the consumption functions are linear (which is not the case here), this system is a lotkavolterra competition system. This similarity is the reason why we make the assumption R 1 0 = R 2 0 . The strategy of the proofs for two species is then very similar to the strategy of [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF].

In order to express our main theorem, we need the additional assumption 2.5 which refers to the averaged which is defined below. Definition 2.4. Formally, let ε s = (1 -s)ε 1 + sε 2 the averaging of the two chemostats ε 1 and ε 2 . The associated differential system modelizing the behavior of the different concentrations in ε s is given by:

     Ṙ = δ(R 0 -R) -U f u (R) -V f v (R) U = U (f w (R) -δ) V = V (f w (R) -δ) (8) Where δ = (1 -s)δ 1 + sδ 2 , f w = (1 -s)f 1 w + sf 2
w and:

R 0 = (1 -s)δ 1 R 1 0 + sδ 2 R 2 0 δ .
Despite the fact that the averaged consumption functions f w are not Monod functions in general, they are increasing functions verifying f w (0) = 0. Thus the PEC holds for ε s . More precisly, we can then define the break even concentration for the averaged system : r w = f w -1 (δ). The best competitor in ε s is the species with the lowest r w . The averaged chemostat ε s is said to be unfavorable to a species w ∈ {u,

v} if w is not the best competitor in ε s , that is if W (t) → 0 as t → +∞.
Assertion 2.5. Denote (H w ) the assertion which is true if and only if one ∃s ∈ (0, 1) such that the averaged chemostat ε s is unfavorable to the species w (see the definition 2.4 for a precise definition of the averaged chemostat).

Remark 2.6. The assertion (H w ) is needed for the points 1 and 2 of the theorem 2.7. The proofs of this points need to find an explicit trajectory such that the species w goes to zero. If the assertion (H w ) is true then either :

Λ 0 w = (1 -s)f 1 w (R 0 ) -δ 1 ) + s(f 2 w (R 0 ) -δ 2 ).
(i) if s ∈ (0, 1), the species w is the best competitor at the limit λ → +∞ in a weighted average of the two chemostats

ε s = (1 -s)ε 1 + sε 2 (see the remark 2.4),
(ii) if s ∈ {0; 1}, the species w is the best competitor in a given chemostat ε s+1 (here, the average chemostat is nothing but one of the two initial chemostats).

In the case (i), an explicit trajectory consists to switch very quickly between the two chemostat, obtaining in turn an average deterministic dynamics for which W (t) → 0. In the case (ii), an explicit trajectory consists to follow the dynamics of the chemostat ε s+1 for which W (t) → 0.

In both case, an easy an explicit an easy computation can insure that (H w ) holds.

Let us finish this remark by notice that if the maps λ → Λ w (λ) are increasing then the assertion (H w ) can be dispensed, see the section 4. Unfortunately, we are not able to proof the monotony of these maps.

Once again, the signs of the invasion rates Λ u , Λ v essentially describe the long time behavior of the process:

Theorem 2.7. Assume that Λ 0 u > 0 and Λ 0 v > 0. Assume also that R 1 0 = R 2 0 .
We refer to the definition 2.2 for a precise definition of the above vocabulary.

1. If Λ u > 0 and Λ v < 0 and (H v ) is true then species v goes to extinction.

2. If Λ u < 0 and (H u ) is true and Λ v > 0 then species u goes to extinction.

3. If Λ u < 0 and Λ v < 0 then there is a probability one that one of the species goes to extinction. We say that it is a situation of exclusive bistability.

4. If Λ u > 0 and Λ v > 0 then there is coexistence of both species.

Remark 2.8. The details of the proofs of theorems 2.3 and 2.7 are given in the last chapter of the phd thesis of the first autor: [START_REF] Lagasquie | Etude du Comportement en temps long de processus de markov deterministes par morceaux[END_REF].

See section 4 for a numerical investigation over the signs of these invasion rates. We show numerically that for any couple of signs (x, y) ∈ {+, -} there exists pair of chemostats ε 1 , ε 2 such that (Sign(Λ u ), Sign(Λ v )) = (x, y).

Moreover, ε 1 and ε 2 may be chosen both favorable to u (R j u < R j v for j = 1, 2) or both favorable to v (R j u > R j v for j = 1, 2) or one favorable to u and the other to v ( (R

1 u -R 1 v )(R 2 u -R 2 v ) < 0 for j = 1, 2)
. In particular, it is possible to pick chemostats ε 1 and ε 2 both favorable to the species u such that for some values of the switching rate λ, Λ u < 0: switching between two environments favorable to species u can surprisingly make it disappear (see figure 4-a).

Spatial heterogeneity : model and main results

The deterministic model : a gradostat-like system

The gradostat model is obtained by connecting the two chemostats ε 1 and ε 2 and allowing them to trade their content. Note V j the volume of the chemostat ε j and Q the volumetric flow rate between the two vessels and U j (t) the concentration of the species u in the chemostat ε j . It comes:

(U 1 V 1 )(t) = -QU 1 (t) + QU 2 (t) (U 2 V 2 )(t) = QU 1 (t) -QU 2 (t).
Which implies the following differential equations on the concentrations:

     U 1 (t) = - Q V 1 U 1 (t) + Q V 1 U 2 (t) U 2 (t) = Q V 2 U 1 (t) - Q V 2 U 2 (t). (9) 
We will denote λ j = Q V j . Similarly, we denote V j (t) the concentration of the species v in the chemostat j and R j (t) the concentration of the resource in the chemostat j. We will also denote {j, j} = {1, 2}.

The evolution of the gradostat is described by the following system of differential equations:

       Ṙj (t) = δ j (R j 0 -R j (t)) -U j (t)f j u (R j (t)) -V j (t)f j v (R j (t)) + λ j (R j (t) -R j (t)) U j (t) = U j (t)(f j u (R j (t)) -δ j ) + λ j (U j (t) -U j (t)) V j (t) = V j (t)(f j v (R j (t)) -δ j ) + λ j (V j (t) -V j (t)). (10) 
The part with λ j in factor comes from the transfer equation ( 9) and the other part comes from the chemostat equation ( 3).

Let us write

R(t) = R 1 (t) R 2 (t) , U (t) = U 1 (t) U 2 (t) , V (t) = V 1 (t) V 2 (t) , R 0 = R 1 0 R 2 0 , δ = δ 1 δ 2 and f w (R) = f 1 w (R 1 ) f 2 w (R 2 )
. Moreover, set λ 1 = sλ and λ 2 = (1 -s)λ with λ > 0 and s ∈ (0, 1) and

K = -s s 1 -s s -1 . By convention w x y z = wy xz
. With this notations, the system (10) reads shortly:

     Ṙ(t) = δ(R 0 -R(t)) -U (t)f u (R(t)) -V (t)f v (R(t)) + λKR(t) U (t) = U (t)(f u (R(t)) -δ) + λKU (t) V (t) = V (t)(f v (R(t)) -δ) + λKV (t). ( 11 
)
The initial value belongs to the set (R *

+ × R * + ) 3 . Set Σ j (t) = R j (t) + U j (t) + V j (t). The vector Σ(t) = Σ 1 (t) Σ 2 (t)
satisfies the linear differential system:

Σ(t) = (λK -∆) Σ(t) + δR 0 , where ∆ = δ 1 0 0 δ 2 .
The matrix ∆ -λK has two real positive eigenvalues. Hence we may set Σ = Σ 1 Σ 2 := (∆ -λK) -1 (δR 0 ) and we have lim t→+∞ Σ(t) = Σ Since every trajectory is asymptotic to its omega limit set, it is important to study the system on this set.

As a consequence, in all the following our attention will be focused on the system:

U (t) = U (t)(f u (Σ -U (t) -V (t)) -δ) + λKU (t) V (t) = V (t)(f v (Σ -U (t) -V (t)) -δ) + λKV (t). ( 12 
)
With initial condition in the set (R * + × R * + ) 2 . The appendix F of [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF] shows that the long time dynamics of ( 10) is completely given by the dynamics of (12).

Dynamics of the gradostat like model

We are interested in the long time behavior of the solution of this differential system. It is proven in [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF][START_REF] Jäger | Competition in the gradostat[END_REF], using strongly the monotonicity of the system, that any solution of ( 12) converges to a stationary equilibrium when the consumption functions f j w do not depend on the vessel ε j . Their proofs are mainly based on the study of the existence and stability of stationary solutions and on general results about monotone system due to Hirsch (see the appendix B and C in [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF] and the references therein).

This strategy is still working in the case of vessel-dependent consumption function f j w , the main additional difficulty being that the structure of the stationary solutions is richer when the functions f j w do depend on j. We do a complete description of the stationary solution detailed in section 5. This description relies on the construction of different functions defined on the interval [0, R 1 0 ] which intersections in a certain domain of the plane [0, R 1 0 ]×[0, R 2 0 ] gives the existence and stability of stationary solutions for [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF].

The main idea of the construction of these functions is the following:

1. If the species w survives at the equilibrium, then 0 is the principal eigenvalue of the matrix A w (R) = f w (R) -δ + λK which implies that R = (R 1 , R 2 ) belongs to the graph of a function F w .

2. If the species w survives (without competition) then W = R 0 -R is the principal eigenfunction of A w (R) and then R = (R 1 , R 2 ) belongs to the graph of a function g w .

In section 5, it is show how the relative position of the four curves R 2 = g w (R 1 ) and R 2 = F w (R 1 ) (w ∈ {u, v}) give a graphical understanding of the existence of the steady states and their stability. See the figure 1.

Long time behavior when only one species is introduced

Assume that w is not in the system (W (t) = 0). In this particular case, it is possible to study the behavior of the system. Without competition, the differential equation describing the evolution of the system is:

Ẇ (t) = W (t)(f w (Σ -W (t)) -δ) + λKW (t) (13) 
with initial condition W (0

) ∈ R * + × R * + .
It can be proven like in [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF] that any trajectory of this previous differential equation goes to a stationary point. Let us call E 0 = (0, 0), E 0 is the trivial stationary point of the system (13) and its linear stability characterizes the dynamics of ( 13): Theorem 3.1 ([32] chapter 5 lemma 4.2 and 4.3 page 113). The global dynamics of the system (13) is as follows.

• If E 0 is linearly stable, then it is the only stationary point and any trajectory is attracted by E 0 for any initial condition in R * ,2 + .

• If E 0 is linearly unstable, then there exists a unique stationary point

E w = (W 1 , W 2 ) ∈ R * + × R * + . Moreover E w is a global attractor for the system (13) in R * + × R * + .
Note that a stationary point for equation [START_REF] Gaki | Complex dynamics of microbial competition in the gradostat[END_REF] satisfies the equation:

F w (W ) = W (f w (Σ -W ) -δ) + λKW = 0.
The Jacobian matrix of F w taken at E 0 is:

A w = f 1 w (Σ 1 ) -δ 1 -λ 1 λ 1 λ 2 f 2 w (Σ 2 ) -δ 2 -λ 2 . ( 14 
)
We define the invasion rate Γ 0 w of the species as the maximum eigenvalue of the matrix A w :

Γ 0 w = 1 2 f 1 w (Σ 1 ) -δ 1 + f 2 w (Σ 2 ) -δ 2 -λ 1 -λ 2 + (f 1 w (Σ 1 ) -δ 1 -f 2 w (Σ 2 ) + δ 2 ) 2 + 4λ 1 λ 2 (15) 
Theorem 3.1 yields:

Corollary 3.2. The sign of Γ 0 w characterizes the behavior of the system (13):

• If Γ 0 w < 0 there is extinction of the species w: lim t→+∞ W (t) = 0.
• If Γ 0 w > 0 there is persistence of the species w. More precisely:

lim t→+∞ W (t) = E w ∈ R * + × R * + .

Long time behavior when two species are introduced

For sake of comparison with the probabilistic case, we set R 0 = R 1 0 = R 2 0 even if computations are possible when these two quantities are different. The system [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF] being strongly monotone (see proposition 3.7), the theorem C.9 from Hirsch [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF] implies that for almost all initial condition, the solutions tends to a stationary point. Thus, the study of the existence and stability of the steady states is crucial in the understanding of the dynamics of [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF].

From R 1 0 = R 2 0 = R 0 , we have Σ = R 0 R 0
and a stationary solution of [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF] satisfyies:

H(U, V ) = 0 ⇔ U (f u (R 0 -U -V ) -δ) + λKU = 0 V (f v (R 0 -U -V ) -δ) + λKV = 0. ( 16 
)
E 0 := (0, 0, 0, 0) is the trivial stationary equilibrium. The Jacobian matrix of H at E 0 reads:

dH(E 0 ) = A u 0 0 A v
where A w is defined in [START_REF] Haegeman | How flocculation can explain coexistence in the chemostat[END_REF].

If both A u and A v have negative eigenvalues then E 0 is a locally attractive stationary point. with w = u and σ = (R 0 , R 0 ) T . The consumption functions f j w being increasing, the solution (U, V ) of ( 12) are controlled5 by the solution U and V of the single species system [START_REF] Gaki | Complex dynamics of microbial competition in the gradostat[END_REF]. From corollary 3.2 we infer that 0 ≤ W (t) ≤ W (t) → 0 if γ w < 0. It follows that E 0 is a global attractor in R 4 + and in particular, their is no other non negative steady state.

If A u has at least one positive eigenvalue, then E 0 is not locally attractive. As a consequence, theorem 3.1 from the previous subsection gives the existence of a unique semi-trivial stationary equilibrium E u = (U, 0). Likewise, if A v has at least one positive eigenvalue, we define E v = (0, V ) as the other semitrivial stationary equilibrium.

Moreover, arguments similar to the ones in [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF] chapter 5 yield Proposition 3.3.

• If E u and E v does not exists, then E 0 is a global attractor.

• Let {w, w} = {u, v}. If E w exists and E w does not exists, then E w is a global attractor.

Hence, the most interesting case holds when both E u and E v exists. In that case, it is possible to have coexistence stationary solutions which may be stable or unstable.

Define the following matrix:

M w (R w ) = f 1 w (R 1 w ) -δ 1 -λ 1 λ 1 λ 2 f 2 w (R 2 w ) -δ 2 -λ 2 . ( 17 
)
We show in section 5.2.1 that the stability of the semi-trivial equilibrium E w is given by the sign of the eigenvalues of M w (R w ).

Definition 3.4. Let Γ w be the maximum eigenvalue of the matrix M w (R w ). We call Γ w the invasion rates of the species w.

Remark 3.5. Let us explain the designation "invasion rate" for Γ u . If Γ u > 0, it means that the semitrivial equilibrium E u = (U 1 , U 2 , 0, 0) is unstable. Consequently, according to previous remark, it means that (0, 0) is un unstable equilibrium for the differential system:

V (t) = V (t) (f v (R 0 -U -V (t)) -δ) + λKV (t).
Hence, if V (0) is small enough, then t → V (t) is increasing on (0, τ ) at an exponential speed Γ u . In other words, v invade the environment. At the contrary, if Γ u < 0, the semi-trivial equilibrium E u is stable and from a small initial value V (0), we have V (t) ≤ Ce tΓu for some constant C > 0. In particular V (t) → (0, 0).

The signs of the invasion rates Γ w give the stability of the semi-trivial equilibrium E w but determine also the existence and stability for coexistence stationary equilibrium. In section 5.2.1 we give a full characterization of the stationary solution and their stability.

Moreover, following [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF] appendix B, we can show that the system (12) has a monotonic structure.

Definition 3.6. Let ≤ K be an order in R 4 defined by (x 1 , x 2 , x 3 , x 4 ) ≤ K (y 1 , y 2 , y 3 , y 4 ) if and only if x 1 ≤ y 1 , x 2 ≤ y 2 and x 3 ≥ y 3 , x 4 ≥ y 4 . We defined < K by replacing all the signs ≤ by the sign <.

Consider the smooth differential system in R 4 : (E)

x i = f i (x 1 , x 2 , x 3 , x 4 ), i = 1, 2, 3, 4.
recall that the flow φ t : R 4 → R 4 of this system is defined by φ(x 0 ) = x(t) where x(t) = (x i (t)) i is the solution of (E) such that x(0) = x 0 .

The system (E) is be monotone with respect to the order

≤ K if x ≤ k y implies φ t (x) ≤ K φ t (y) for any t ≥ 0.
It is strongly monotone with respect to ≤ K if f x ≤ k y and x = y implies φ t (x) < K φ t (y) for any t ≥ 0.

It is classical that such a competition system is monotone.

Proposition 3.7 ([32] corollay B.5. p 265). The system [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF] is strongly monotone with respect to ≤ K .

Proof. for {i, j} = {1, 2} and w ∈ {u, v}, define

F i w (u 1 , u 2 , v 1 , v 2 ) = W i (f w (R 0 -u i -v i )-δ i )+λ i (w j -w i )
. Following [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF], the system is monotone because This monotonic structure is a very strong property which reduces the possibilities for the global dynamics of the system. In particular, for almost every initial condition, the trajectory of the solutions of ( 12) goes to a stationary equilibrium (see [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF], appendix C). Hence, using the result from the section 5 and the same arguments that the ones stated in [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF] page 143, we obtain theorem 3.8 which describes the possible dynamics of [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF]. Theorem 3.8. Assume that the two semi-trivial stationary equilibrium E u and E v exist.

∀(i, j) ∈ {1,
1. If Γ v > 0 and Γ u > 0, then the solutions of (12) go to the unique coexistence equilibrium E * which is linearly stable for almost every initial condition.

2. If Γ v < 0 and Γ u < 0, then there exists an unstable coexistence solution E cu . Moreover, the solutions of (12) go either to E u or to E v (for almost every initial condition) depending on the location of the initial value according to the basin of attraction of the two semi-trivial equilibrium. We say that it is a situation of exclusive bistability.

3. Let {w, w} = {u, v} and suppose that Γ w < 0 and Γ w > 0. Then either :

(a) There is not coexistence stationary equilibrium. In that case, any solution of [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF] converges to E w for almost every initial condition.

(b) There exist two coexistence stationary equilibrium : one stable E cs and one unstable E cu . Any trajectory of (12) go either to E cs or to E w (for almost every initial condition) depending on the location of the initial value according to the basin of attraction of the two stable equilibria. We say that it is a situation of odd bistability.

Remark 3.9. As it is proven in [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF], the cases 2. and 3.b are impossible if the consumption functions does not depend on the vessels ε j . We show in figure 1 that every cases may happen in general.

Comparison of the invasion rates between the two models

In section 2, a definition for the invasion rates in the probabilistic case is given and it is proven that the signs of the invasion rates characterize the long time behavior of the probabilistic model. Recall that in this case, we defined the invasion rates by :

Λ w = f 1 w (R) -δ 1 dµ w (R, 1) + f 2 w (R) -δ 2 dµ w (R, 2),
where µ w is the invariant probability measure of (Z t ) on M 0,w \ M 0,u,v . In section 3, the invasion rates Γ w in the gradostat model are defined as the maximum eigenvalue of a two dimensional matrix and the theorem 3.8 shows that the sign of these invasion rates characterize (essentially) the behavior of the solutions of the gradostat model.

In this section, we aim to give a qualitative comparison of the two definition of the invasion rates in order to discuss the similarities and the differences of the two models we considered. a -Typical coexistence case. R c is associated b -Typical bi-stable case. R c is associated to to a globally stable coexistence stationary an unstable coexistence stationary equilibrium. E u and E v are unstable.

equilibrium. E u and E v are stable.

c -Typical extinction case. E v is stable, d -Rare bi-stable case. R cs is associated E u is unstable and there is no coexistence to a stable equilibrium. R cu is associated to steady state. Species u goes to extinction.

an unstable equilibrium. E u is stable, E v is unstable.

Figure 1: The graph of the functions F w and g w , w ∈ {u, v} are sufficient to describe the global dynamics of [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF]. The precise definitions of the functions F w and g w a are given in section 5 as well than the proofs of their interpretations. A semitrivial solution

E u = (R u , U, 0) ∈ R 2 × R 2 × R 2 corresponds to an intersection R 2 u = F u (R 1 u ) = g u (R 1 u ) with 0 < R j u < R 0 for j = 1, 2. Moreover, E u is asymptotically stable if F u (R 1 u ) < F v (R 1 u ). Similar conditions hold for E v = (R v , 0, V ). A coexistence solution E c = (R c , U c , V c ) corresponds to an intersection R 2 c = F u (R 1 c ) = F v (R 1 c ) which verifies the inequalities R 1 w < R 1 c < R 2 w and R 2 w < R 2 c < R 2
w for {w, w} = {u, v}. Depending on the relative position of F u and F v , there may be zero coexistence steady state (figure (c)), one (figures (a) and (b)) or even two (figure d). If the (graph of the) function F w are never tangent, the stability of the steady states switch when we count them starting from the top left to the upper right. For example on figure (a), E u is unstable, E c is stable and E v is unstable.

Comparison of the invasion rates in the one species case

Let us first look at the one species case. The following theorem deals with the probabilistic definition of the invasion rate of species w. Theorem 4.1. Let us assume that R 1 0 < R 2 0 and set γ j = λ j δ j . The process (Z t ) has a unique invariant probability measure µ 0 when it is restricted to M 0,u,v . The invasion rate of species w is given by:

Λ 0 w = γ 1 + γ 2 λ 1 + λ 2 E [Φ(B)] .
Where B is a random variable following a Beta law of parameters (γ 1 , γ 2 ) and:

Φ(x) = δ 2 (1 -x) f 1 (R 2 0 -R 1 0 )x + R 1 0 -δ 1 + δ 1 x f 2 (R 2 0 -R 1 0 )x + R 1 0 -δ 2 .
The uniqueness of the invariant probability measure is fairly obvious given the definition of the process (Z t ) restricted to M 0,u,v . Its explicit expression allows to obtain the announced expression for the invasion rate Λ 0 w . The computation of the invariant probability measure is postponed to the last section 5.1.1 of this article.

Recall that the jump rates of the Markov process (I t ) on the state space {1, 2} are given by: λ 1 = sλ and λ 2 = (1 -s)λ with λ ∈ R and s ∈ (0, 1). )] is monotone according to the variable λ. Once again the proof of this statement requires heavy computation and is postponed to section 5.1.2. This analytical property on the invasion rate is used in the proof of theorem 2.3.

Proposition 4.2. The invasion rate Λ

0 w = s δ 1 + 1-s δ 2 E [Φ(B
An explicit expression of the invasion rate in the deterministic case is given in [START_REF] Hansen | Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes[END_REF]. We compute the limits as λ → 0 and λ → +∞ of these invasion rates.

Proposition 4.3. The behavior of the two model is the same when λ is large enough.

lim λ→+∞ Λ 0 w = lim λ→+∞ Γ 0 w = (1 -s) f 1 w (R ∞ ) -δ 1 + s f 2 w (R ∞ ) -δ 2 where R ∞ = (1-s)δ 1 R 1 0 +sδ 2 R 2 0 (1-s)δ 1 +sδ 2
. The behavior of the two model is not the same the same when λ is small enough.

lim λ→0 Λ 0 w = (1 -s) f 1 w (R 1 0 ) -δ 1 + s f 2 w (R 2 0 ) -δ 2 , lim λ→0 Γ 0 w = max f 1 w (R 1 0 ) -δ 1 , f 2 w (R 2 0 ) -δ 2 .
Remark 4.4. Though these results are easily obtained by a simple computation, the fact that the limits of the invasion rates are the same when λ goes to +∞ is the consequence of some already known results on the averaging of vector fields. Under some condition over the switching vector fields, it is proven in [START_REF] Strickler | Random switching between vector fields having a common zero[END_REF] that a process built from switching between the different vector fields converges in law to the deterministic solution of the aggregated system of the vector fields defined in 2.4.

We see that the behavior of the two models is very different for small λ and very similar for large λ.

• If λ → +∞, then in both model, the system is well mixed and can be approximate by the averaged chemostat which is homogeneous and satisfy the PEC (see definition 2.4). The invasion rate in the homogeneous case is easy to compute and is exactly the limit of both Λ 0 w and Γ 0 w . • If λ = 0 then the for both models, the system corresponds to two unconnected chemostats and the invasion rate in a chemosta ε j is given by f j w (R j 0 ) -δ j . But when λ → 0, the limits of the invasion rates keep a trace of the way the two chemostats exchange information. It is then more accurate two think about the case of very small positive λ.

-In the deterministic model, the essential of the dynamics occurs simultaneously in the two chemostat and there is a very small exchange between the two chemostat. It is enough that the species survive in one of the two chemostat to be presents in the domain (at a very small concentration in the other chemostat). It is why the limit is given by a max. In particular, for the species w to go to extinction, it is necessary that both chemostat are unfavorable to w. -By contrast, in the PDMP model the dynamics occurs in each chemostat one after another and stay a long time on each of them. Hence, there is then an average of the invasion rate in both chemostat weighted by the proportion of time s and 1 -s the dynamics is given by ε 1 or by ε 2 . This is why the limit is a weighted average. In particular, for the species w to go to extinction, it is sufficient that one of the two chemostat ε j is unfavorable to w if the dynamics follows more likely ε j .

Numerical simulations are presented in 2 for two sets of data Π 1 and Π 2 defined in the table 1.

Π 1 Π 2 (a 1 , a 2 ) = (1.1, 2) (a 1 , a 2 ) = (1.1, 2) (b 1 , b 2 ) = (0.4, 4) (b 1 , b 2 ) = (0.05, 2) (δ 1 , δ 2 ) = (1, 1) (δ 1 , δ 2 ) = (1, 1) (R 1 0 , R 2 0 ) = (10, 1) (R 1 0 , R 2 0 ) = (0.55, 2.1)
Table 1: Set of data used in figure 2. The set Π 1 correspond to a case where ε 1 is favorable to the species (

a 1 R 1 0 b 1 +R 1 0 -δ 1 > 0)
and ε 2 is unfavorable to the species (

a 2 R 2 0 b 2 +R 2 0 -δ 2 < 0)
. Π 2 correspond to a case where both ε 1 and ε 2 are favorable to the species.

Figure 2: Comparisons of the zero level lines for Γ 0 and Λ 0 for the two sets of data Π 1 and Π 2 . The color blue makes reference to Λ 0 (probabilistic invasion rate) and the red color makes reference to Γ 0 (deterministic invasion rate). In each zone of this figure, the sign of the pair (Λ 0 , Γ 0 ) is constant and is plainly indicated by a pair of signs. Note that in the case Π 1 , the map λ → Γ 0 w (λ, s) may not be monotonous. For s = 0.5 for instance, γ 0 w (λ, 0) is positive for a small lambda, then positive for λ ≈ 1 and then positive again for large λ. Such a phenomena is impossible for the probabilistic model for the invasion rate being monotonous. Note that in the case Π 2 , both chemostat are favorable to the species but if s is neither to small nor to large, and λ large enough, then the species goes to extinction. Finally, note that in both case we have the embedding {(λ, s), Γ 0 w (λ, s) > 0} ⊂ {(λ, s), Λ 0 w (λ, s) > 0}. This seems to shows that the species survives more likely in the deterministic model than in the probabilistic one.

Comparison of the invasion rates in the two species case

We now have a qualitative discussion on the behavior of the invasion rates when two species are introduced in our models. Recall that it is assumed here that R 1 0 = R 2 0 . Theorem 4.5. Let w ∈ {u, v} and assume that Λ 0 w > 0. There exists a unique invariant probability measure µ w of (Z t ) restricted to M 0,w \ M 0,u,v . The invasion rates Λ w is computable and its explicit expression is given by: Λ w = h w (x)g w (x)e λH w (x) dx g w (x)e λH w (x) dx .

Where:

h w (x) = (f 2 w (R 0 -x) -δ 2 )|f 1 w (R 0 -x) -δ 1 | + (f 1 w (R 0 -x) -δ 1 )|f 2 w (R 0 -x) -δ 2 | |f 1 w (R 0 -x) -δ 1 | + |f 2 w (R 0 -x) -δ 2 | g w(x) = |f 1 w(R 0 -x) -δ 1 | + |f 2 w(R 0 -x) -δ 2 | |f 1 w(R 0 -x) -δ 1 ||f 2 w(R 0 -x) -δ 2 | x and H w(x) = -(ν 1 wβ 1 w + ν 2 wβ 2 w) log(x) + ω 1 wα 1 w log (b 1 w + R 0 -x)|f 1 w(R 0 -x) -δ 1 | + ω 2 wα 2 w log (b 2 w + R 0 -x)|f 2 w(R 0 -x) -δ 2 | .
The constants are defined by:

α j w = a j w a j w -δ j , β j w = 1 + R 0 b j w , ν 1 w = s δ 1 R 1 w R 0 -R 1 w , ν 2 w = 1 -s δ 2 R 2 w R 0 -R 2 w .
The proof of this theorem is very computational and follows closely the proof of theorem 4.1. We will omit it. A complète proof may be find in [START_REF] Lagasquie | Etude du Comportement en temps long de processus de markov deterministes par morceaux[END_REF]. This expression for the probabilistic invasion rate is rather heavy but allows us to do some simulations.

For the deterministic case, the invasion rates Γ w is defined in 3.4 as the maximal eigenvalue of the matrix M w (R w ) which is defined in [START_REF] Hsu | On a system of reaction-diffusion equations arising from competition in an unstirred chemostat[END_REF] and where R w is the resource concentration at E w . Though R w verifies a second degree polynomial, and can be explicitly expressed (see section 5.2.1), the complexity of its expressions does not make it interesting to give it formally. However its explicit expressions is used in the numerical simulations.

Proposition 4.6. The behavior of the two models is the same for λ large enough.

lim λ→+∞ Λ w = lim λ→+∞ Γ w = (1 -s) f 1 w (R ∞ w ) -δ 1 + s f 2 w (R ∞ w ) -δ 2 .
where R ∞ w is the unique positive solution of the equation:

(1 -s) f 1 w (R) -δ 1 + s f 2 w (R) -δ 2 = 0.
The behavior of the two models is not the same for λ small enough:

lim λ→0 Λ w = (1 -s) f 1 w (R 1, * w ) -δ 1 + s f 2 w (R 2, * w ) -δ 2 , lim λ→0 Γ w = max f 1 w (R 1, * w ) -δ 1 , f 2 w (R 2, * w ) -δ 2 .
where

R j, * w = b j w δ j a j w -δ j is the solution of the equation f j w (R) -δ j = 0,
that is the break even concentration of the species w on the chemostat j.

Let us now compare the probabilistic and the deterministic dependance of the invasion rates with respect to λ and s within the two models on particular example. In all the following figures, the blue color is associated to the species u whereas the red color is associated to the species v. The different couple of signs give the couple of signs of the invasion rates (Λ u , Λ v ) in the probabilistic case and (Γ u , Γ v ) in the deterministic case. 

Vessel 2

Figure 3: Both species is the best competor in one vessels. The middle plots represents f w in both vessels. a -An appropriate averaged ratio between the vessels leads coexistence (a 5, 5, 0.5, 0.5), (δ 1 , δ 2 ) = (1.9, 1.5) and R 0 = 8. b -The role of species are reversed between the vessels. For the probabilistic model, there is either exclusion or bistability. The same holds for the deterministic case, exept that small diffusion permits coexistence. (a 8.75, 0.125, 1.125, 3.75), (δ 1 , δ 2 ) = (1, 2) and R 0 = 7. b -A situation like in figure 3-a with an odd bistable area in the deterministic model (the probabilistic model behaves like the one figure 3-a). The left plots represents f w in both vessels. We show only the deterministic model and make a zoom on the odd bistable area in a (+, -) area. This zone corresponds to the case 3-(b) in the theorem 3.8.

1 u , a 2 u , a 1 v , a 2 v ) = (4.2, 4, 2.1, 2), (b 1 u , b 2 u , b 1 v , b 2 v ) = (
1 u , a 2 u , a 1 v , a 2 v ) = (4.2, 2, 2.1, 4), (b 1 u , b 2 u , b 1 v , b 2 v ) = (5, 0.5, 0.5, 5), (δ 1 , δ 2 ) = (1.7, 1.5) 
(a 1 u , a 2 u , a 1 v , a 2 v ) = (3.5, 2.5, 1.25, 7), (b 1 u , b 2 u , b 1 v , b 2 v ) = (
(a 1 u , a 2 u , a 1 v , a 2 v ) = (3.7, 3.6, 4.4, 2.5), (b 1 u , b 2 u , b 1 v , b 2 v ) = (1.
55, 3.55, 3.6, 0.4), (δ 1 , δ 2 ) = (2.5, 1.1) and R 0 = 20.

Remark 4.7. In all the figure, the zeros level sets of Γ u , Γ v , Λ u and λ v have the same vertical asymptotes since the two models are described by the same averaged chemostat ε s as λ → +∞ and that ε s satisfy the PEC.

Remark 4.8. Numerically, the invasion rates Λ w seem to have a monotonous behavior according to λ just like in the case n = 1. Sadly the complexity of their expressions does not allow us to prove it. We will conjecture it. Under this conjecture, we do not need the assumption H w in the theorem 2.7.

Ours numerical examples shows that this is not the cases for the deterministic model, even for n = 1 (see figure 2-a, 3-b and 4-b).

Concluding remarks

Let us conclude on the similarities and differences between the two models we studied in this chapter.

For each models we gave a definition of the invasion rates of the introduced species which depend only on the parameters of the systems. Despite the differences of their mathematical nature, theorem 2.7 and 3.8 show that the long-time behaviors of the two models essentially depend on the signs of the invasion rates. Hence, we compared the two models by comparing the behavior of the invasion rates according to the parameters (s, λ) (where λ 1 = sλ and λ 2 = (1 -s)λ). In the probabilistic case, (λ 1 , λ 2 ) are the parameters of the Markov chain governing the switching between the environments whereas in the deterministic case, (λ 1 , λ 2 ) are the exchange parameters between the two vessels.

From the previous theorems and numerical simulations come the following similarities between the two models:

• When the invasion rates are positive (resp. negative) for u and v, the probabilistic system and the deterministic system are in a coexistence state (resp. bistable state). Moreover, we proved numerically that it is possible to have bistability with two introduced species and two vessels. This numerical result is similar to the result of [START_REF] Hofbauer | Competition in the gradostat: the global stability problem[END_REF] where they proved in their particular case (dilutions rates and consumption functions not depending on the vessel, two introduced species) that at least three vessels are needed for the existence of an unstable coexistence equilibrium.

• The limits of the invasion rates when λ goes to infinity are the same for both models. We saw that the reason behind this result is the averaging phenomenon occurring when λ is large enough implying that both systems behave like the averaged chemostat ε s . Graphically, we see that the zero contour lines of the invasion rates are really alike for λ large enough and have the same asymptote when λ goes to infinity.

The main differences between our competition models are the following:

• In the probabilistic model, when the invasion rates have opposite signs, only one species survives, the one with the positive invasion rate. However, in the deterministic model, when the invasion rates have opposite signs, it is possible for the system to be in an "odd" bistable state where one of the stable stationary equilibrium is a coexistence equilibrium an the other a semi-trivial solution.

• The most important difference between the two models occurs when λ is close to zero because the limits of the invasion rates when λ goes to zero are different. We can interpret this difference by the difference of nature between the two models when λ is very small. For the probabilistic model, λ very small implies that the process follows for a very long time the flow of each chemostat ε 1 and ε 2 and the invasion rates measures the averaging of the behavior of each flows. But in the deterministic case, when λ is very small, there are almost no exchanges between the two vessels implying that the system almost behaves like two isolated chemostats with a very small diffusion between them.

We give here a little discussion over the parameter restrictions we did on our models. First, note that the most important parameters involved in the heterogeneity of our two models are the quantities R j w which are the minimum resource quantities needed by species w to survive in the vessel j (when the vessels are isolated). Recall that R j w is solution of the equation:

f j w (R) -δ j w = 0
where f j w are the consumption functions and δ j w the dilution rates. As a consequence, allowing the consumption functions or the dilution rates to depend on w and j is the easiest way to allow the parameters R j w to be different according to w and j.

Note that in the probabilistic model we had to assume that the resource entries R j 0 are equal in order to reduce the system and do some computations. But this hypothesis is not necessary in the deterministic model where we claim that the computations are still possible. In fact, in [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF], the authors model the environment heterogeneity with a different resource input for each vessel, and thanks to this heterogeneity, a coexistence stationary equilibrium may appear. In our case, we model the environment heterogeneity by taking vessel dependent consumption functions and dilution rates.

In this paper, we decided that only the consumption functions will depend on w and j while the dilution rates only depend on the vessel j. This hypothesis is crucial because it allows us to reduce the systems of differential equations (thanks to the variable Σ) into a monotone system, ultimately leading to the long-time behavior theorems. However, it was not a natural choice in the deterministic model because in the gradostat applications, the consumption functions do not depend on the vessels but only on the species. As a consequence, this hypothesis took us away from the gradostat context (and its application in the industry for example) to bring us in a more theoretical ecological study of the spatial heterogeneity.

Nonetheless, the approach with the functions F w and g w might lead to the proof of the existence and stability of the stationary equilibria of the gradostat-like model when the dilution rates also depend on the species and can be the subject of some future work.

Mathematical proofs

Computation of the invariant probability measures in the probabilistic case

We show in this subsection how to compute the invariant probability measures announced in theorem 4.1 and 4.5.

Proof of the theorem 4.1

Proof. Recall that only one species is introduced in our system. The invasion rate Λ 0 w is defined by:

Λ 0 w = f 1 w (R) -δ 1 dµ 0 (R, 1) + f 2 w (R) -δ 2 dµ 0 (R, 2)
where µ 0 is an invariant probability measure of the process (Z t ) restricted M 0,u,v . On M 0,u,v , (Z t ) = (R t , 0) satisfies:

Ṙt = δ It (R It 0 -R t )
. Its infinitesimal generator is given for any good functions φ by:

Lφ(r, i) = δ i (R i 0 -r)φ (r, i) + λ 1 (φ(r, i) -φ(r, i)). It is clear that for t large enough, (R t ) belongs to [R 1 0 , R 2 0 ]
. By compacity, there exists an invariant probability measure for (R t ) and it is unique because the process is recurrent.

The unique invariant probability measure µ 0 satisfies:

∀φ, Lφ(r, i)dµ 0 = 0. ( 18 
)
We search µ 0 of the shape µ 0 (dR, j) = ρ j (R)1 j dR. It gives in [START_REF] Hsu | Limiting behavior for competing species[END_REF]:

R 2 0 R 1 0 δ 1 (R 1 0 -R)φ (R) + λ 1 (φ(R, 2) -φ(R, 1)) ρ 1 (R)dR+ R 2 0 R 1 0 δ 2 (R 2 0 -R)φ (R) + λ 2 (φ(R, 1) -φ(R, 2)) ρ 2 (R)dR = 0. ( 19 
)
Assume that φ(x, j) = φ(x). It gives in [START_REF] Hsu | A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms[END_REF]:

R 2 0 R 1 0 δ 1 (R 1 0 -R)φ (R) ρ 1 (R)dR + R 2 0 R 1 0 δ 2 (R 2 0 -R)φ (R) ρ 2 (R)dR = 0.
An integration by parts gives:

δ 1 (R 1 0 -R)φ (R)ρ 1 (R) R 2 0 R 1 0 + δ 2 (R 2 0 -R)φ (R)ρ 2 (R) R 2 0 R 1 0 - R 2 0 R 1 0 φ(x) (δ 1 (R 1 0 -R)ρ 1 (R)) + (δ 2 (R 2 0 -R)ρ 2 (R)) dR = 0.
It seems "natural" that ρ j (R j 0 ) = 0 according to the dynamics of the process (R t , I t ). Assuming this, a classic density argument gives:

δ 1 (R 1 0 -R)ρ 1 (R) + δ 2 (R 2 -R)ρ 2 (R) = K.
From ρ j (R j 0 ) = 0 we have K = 0 which yields:

δ 1 (R 1 0 -R)ρ 1 (R) + δ 2 (R 2 -R)ρ 2 (R) = 0. ( 20 
)
Now, assume that φ(R, 1) = φ(R) and φ(R, 2) = 0. Plugging this in [START_REF] Hsu | A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms[END_REF] and integrate by parts yields

R 2 0 R 1 0 φ(R) -(δ 1 (R 1 0 -R)ρ 1 (R)) -λ 1 ρ 1 (R) + λ 2 ρ 2 (R) dR.
By the same density argument as before, we obtain [START_REF] Hutchinson | The paradox of the plankton[END_REF] gives:

-(δ 1 (R 1 0 -R)ρ 1 (R)) -λ 1 ρ 1 (R) + λ 2 ρ 2 (R) = 0 that is -δ 1 (R 1 0 -R)ρ 1 (R) + δ 1 ρ 1 (R) -λ 1 ρ 1 (R) + λ 2 ρ 2 (R) = 0. Equation
ρ 2 (R) = δ 1 (R -R 1 0 ) δ 2 (R 2 -R) ρ 1 (R).
As a consequence, ρ 1 satisfies the differential equation:

ρ 1 (R) + ρ 1 (R) 1 R -R 1 0 - λ 1 δ 1 (R -R 1 0 ) + λ 2 δ 2 (R 2 0 -R) = 0. (21) 
Solving [START_REF] Jäger | Competition in the gradostat[END_REF] gives the explicit expression for ρ 1 :

ρ 1 (R) = C(R -R 1 0 ) λ 1 δ 1 -1 (R 2 0 -R) λ 2 δ 2 .
Hence,

ρ 2 (R) = C δ 1 δ 2 (R -R 1 0 ) λ 1 δ 1 (R 2 0 -R) λ 2 δ 2 -1 ,
where C is a constant. The value of C is determined by the fact that µ 0 is a probability measure:

R 2 0 R 1 0 ρ 1 (R)dR + R 2 0 R 1 0 ρ 2 (R)dR = 1.
As a consequence:

C R 2 0 R 1 0 (R -R 1 0 ) λ 1 δ 1 -1 (R 2 0 -R) λ 2 δ 2 + δ 1 δ 2 (R -R 1 0 ) λ 1 δ 1 (R 2 0 -R) λ 2 δ 2 -1 dR = 1.
This explicit expression of µ 0 allows us to compute Λ 0 w :

Λ 0 w = Cδ 2 R 2 0 R 1 0 (f 1 w (R)-δ 1 )(R-R 1 0 ) λ 1 δ 1 -1 (R 2 0 -R) λ 2 δ 2 dR+Cδ 1 R 2 0 R 1 0 (f 2 w (R)-δ 2 )(R-R 1 0 ) λ 1 δ 1 (R 2 0 -R) λ 2 δ 2 -1 dR Set x = R-R 1 0 R 2 0 -R 1 0 , γ j = λ j δ j and g j w (x) = f j w ((R 2 0 -R 1 0 )x + R 1 0 ), we obtain Λ 0 w = C(R 2 0 -R 1 0 ) γ 1 +γ 2 1 0 δ 2 (g 1 w (x) -δ 1 )(1 -x) + δ 1 (g 2 w (x) -δ 2 )x x γ 1 -1 (1 -x) γ 2 -1 dx
One can recognize a part of the density of the Beta law of parameters (γ 1 , γ 2 ). Using the same variable change for the expression of C and some classical properties of the beta function (like B(x, y) = B(y, x) and B(x, y + 1) = y x+y B(x, y)), the expression of Λ becomes:

Λ 0 w = γ 1 + γ 2 λ 1 + λ 2 1 0 δ 2 (g 1 w (x) -δ 1 )(1 -x) + δ 1 (g 2 w (x) -δ 2 )x x γ 1 -1 (1 -x) γ 2 -1 B(γ 1 , γ 2 ) dx Set Φ(x) = δ 2 (g 1 w (x) -δ 1 )(1 -x) + δ 1 (g 2 w (x) -δ 2 )x, then: Λ 0 w = γ 1 + γ 2 λ 1 + λ 2 E [Φ(B)] ( 22 
)
where B is a random variable following a Beta law of parameter (γ 1 , γ 2 ).

Remark 5.1. The proof for theorem 4.5 uses the same idea except that it requires more heavy computations. We omit it for the sake of readability of this article. See [START_REF] Lagasquie | Etude du Comportement en temps long de processus de markov deterministes par morceaux[END_REF] chapter 3 for details.

Proof of the proposition 4.2

Our expression of the invasion rate is similar to the one the authors of [START_REF] Malrieu | On the persistence regime for lotka-volterra in randomly fluctuating environments[END_REF] obtained for the invasion rates defined in the Lotka-Volterra switching system introduced in [START_REF] Benaïm | Lotka-Volterra with randomly fluctuating environments or "How switching between beneficial environments can make survival harder[END_REF]. In order to study the invasion rate they use the following property: 

φ: E[φ(X )] ≤ E[φ(X)].
We will use this proposition in order to prove the following proposition:

Proposition 5.3. The invasion rate Λ 0 w is monotone according to the variable λ. Proof. We proved that:

Λ 0 w = γ 1 + γ 2 λ 1 + λ 2 E [Φ(B)] .
Recall that γ 1 (s, λ) = sλ δ 1 and γ 2 (s, λ) = (1-s)λ δ 2 . Proposition 5.2 ensures that if B and B are random variables following Beta law of parameters (γ 1 (s, λ), γ 2 (s, λ)) and (γ 1 (s, λ ), γ 2 (s, λ )) with λ < λ then for any convex function φ:

E[φ(B )] ≤ E[φ(B)
]. As a consequence, establishing the convexity (or concavity) of the function Φ can give the monotonicity of Λ according to the global switching rate λ.

Recall that:

Φ(x) = δ 2 (1 -x) f 1 w (R 2 0 -R 1 0 )x + R 1 0 -δ 1 + δ 1 x f 2 w (R 2 0 -R 1 0 )x + R 1 0 -δ 2 .
Here the convexity (or concavity) of Φ is not clear and will be checked by straight computation. Set

α j = a j w δ j , β j = b j w R 2 0 -R 1 0 and r = R 1 0 R 2 0 -R 1 0 . It comes: Φ(x) = δ 1 δ 2 (1 -x) α 1 (x + r) β 1 + x + r -1 + x α 2 (x + r) β 2 + x + r -1 . Set t = x + r (t ∈ [r, 1 + r]). It comes: g(t) = Φ(t) δ 1 δ 2 = (1 + r -t) α 1 t β 1 + t -1 + (t -r) α 2 t β 2 + t -1 .
A straight forward computation gives the derivatives of g:

g (t) = (1 + r -t) α 1 β 1 (t + β 1 ) 2 - α 1 t β 1 + t + (t -r) α 2 β 2 (t + β 2 ) 2 + α 2 t β 2 + t and g (t) 2 = -α 1 β 1 (1 + r + β 1 )(t + β 1 ) 3 + α 2 β 2 (r + β 2 )(t + β 1 ) 3 (t + β 1 ) 3 (t + β 2 ) 3 . Set L 1 = α 1 β 1 (1 + r + β 1 ) and L 2 = α 2 β 2 . It comes: h(t) = g (t) 2 (t + β 1 ) 3 (t + β 2 ) 3 = (L 2 -L 1 )t 3 + 3 β 1 L 2 -β 2 L 1 t 2 + 3 (β 1 ) 2 L 2 -(β 2 ) 2 L 1 t + (β 1 ) 3 L 2 -(β 2 ) 3 L 1 . Set L = L 2 L 1 and β = β 1 β 2 , it comes: h(t) = (β 2 ) 3 (L -1) t β 3 + 3(Lβ -1) t β 2 + 3(L(β) 2 -1) t β + L(β) 3 -1 .
The study of the polynomial P = (L -1)X 3 + 3(Lβ -1)X 2 + 3(L(β) 2 -1)X + L(β) 3 -1 will give the sign of the second derivative of Φ.

Lemma 5.4. P has a unique root on R and its expression is:

X 0 = β -1 L -1 -L 1 3 -L 2 3 - Lβ -1 L -1 .
Moreover, X 0 < 0.

Proof. This result is proven by a computation of the roots of the polynomial P . It comes that P has a unique root and it is negative.

It comes from this previous lemma that the second derivative of Φ has a constant sign on [0, 1] implying that Φ is either convex or concave on [0, 1]. So Λ 0 w is monotonous according to 5.2.

Proof of the results for the deterministic model

A graphical characterization of the equilibria and their stability

In this section, we construct a graphical approach in the plan (R 1 , R 2 ) which contains all the information about the non negative stationary solution and their stability. This approach is based on the construction of four functions F w and g w , w ∈ {u, v} described below.

For the sake of simplicity we set

X j w (R j ) = f j w (R j ) -δ j . ( 23 
)
Any non-negative stationary equilibrium (U, V ) of the differential equation ( 12) are solution of the system [START_REF] Hofbauer | Competition in the gradostat: the global stability problem[END_REF]:

A u (R)U = 0 A v (R)V = 0 (24) 
where, according to remark 1.2, we have R = R 0 -U -V ∈ [0, R 0 ] and the matrices A w (R) are defined by

A w (R) = X 1 w (R) -λ 1 λ 1 λ 2 X 2 w (R) -λ 2 .
Recall that for any w ∈ {u, v}, we denote W ∈ {U, V } the concentration of the species w. If W = 0 0 in [START_REF] Loreau | Biodiversity as spatial insurance in heterogeneous landscapes[END_REF], it implies that det (A w (R)) = 0 which reads explicitly:

X 1 w (R 1 ) -λ 1 X 2 w (R 2 ) -λ 2 = λ 1 λ 2 . ( 25 
)
It follows that the set of points (R 1 , R 2 ) for which the species w may survive is a one dimensional curve. It appears that this curve is the graph of a decreasing function F w defined on a domain D w :

(R 1 , R 2 ) verifies (25) ⇔ R 1 ∈ D w and R 2 = F w (R 1 ).

Moreover, these functions F w may be explicitly computed as it is stated in the proposition 5.5.

Proposition 5.5. Let w ∈ {u, v} and g : x → g(x) = λ 2 + λ 1 λ 2 x-λ 1 . Define:

D w = {r ∈ [0, R 0 ], X 1 w (r) -λ 1 < 0} and F w = X 2 w -1 • g • X 1 w .
Now, suppose that there exists a non-negative solution (U, V ) of [START_REF] Loreau | Biodiversity as spatial insurance in heterogeneous landscapes[END_REF] such that W ∈ {U, V } is non zero. Then R 1 ∈ D w and R 2 = F w (R 1 )

Remark 5.6. The functions X j w being increasing and the function g being decreasing, the identity X 2 w • F w = g • X 1 w implies that the functions F w are strictly decreasing on their definition set. Moreover it exists (m 1 w , m 2 w , m 3 w , m 4 w ) ∈ R 4 such that:

F w (x) = m 1 w x + m 2 w m 3 w x + m 4 w .
The explicit formula of these parameters is useful in order to obtain numerical examples but it is not needed in the theoretical purpose, hence, we then omit it.

Proof. First, assume that there exists a non-negative stationary equilibrium (U, V ). The resource concentration is given by R = R 0 -U -V . Then, for W ∈ {U, V } non zero we have:

A w (R)W = 0. ( 26 
)
With this notation, (26) reads

X 1 w (R 1 ) -λ 1 W 1 + λ 1 W 2 = 0 λ 2 W 1 + X 2 w (R 2 ) -λ 2 W 2 = 0. ( 27 
)
Since W 1 ≥ 0 and W 2 ≥ 0, we obtain W 1 > 0 and W 2 > 0 which yields:

X 1 w (R 1 u ) -λ 1 < 0.
Moreover, [START_REF]Some thoughts on nutrient limitation in algae[END_REF] implies that 0 is an eigenvalue of A w (R) implying that det (A w (R)) = 0 which reads explicitly:

X 1 w (R 1 ) -λ 1 X 2 w (R 2 ) -λ 2 = λ 1 λ 2 (28) 
Finally, we define D w = {r > 0, X 1 w (r) -λ 1 < 0} and the function F w such that:

X 1 w (R 1 ) -λ 1 X 2 w (F w (R 1 )) -λ 2 = λ 1 λ 2
The function X 2 w being injective, the function F w reads shortly :

F w = X 2 w -1 • g • X 1
w wherein we have set the function g as:

g(x) = λ 2 + λ 1 λ 2 x -λ 1 .
At this step, we see that it is necessary that R = (R 1 , R 2 ) belongs to the graph C w = {(r, F w (r)), r ∈ D w } for the species w ∈ {u, v} to survive. But this is not a sufficient condition. Indeed, the definition of the functions F w correspond to the fact that 0 is an eigenvalue6 of the matrix A w (R).

The analysis of the corresponding eigenvector will give us sufficient conditions for a point of the curve to be a semi-trivial equilibrium (proposition 5.8) or a coexistence equilibrium (proposition 5.10).

For instance, assume that (U, V ) is a non-negative equilibrium of [START_REF] Loreau | Biodiversity as spatial insurance in heterogeneous landscapes[END_REF]. If W ∈ {U, V }) is non zero, then R = (R 1 , R 2 ) ∈ C w and W is a positive eigenvector of the matrix A w (R) for the eigenvalue 0. It follows that there exists some scalar µ w > 0 such that:

W = µ w λ 1 -(X 1 w (R 1 ) -λ 1 ) . ( 29 
)
In the case of the semi-trivial solution, we have R 1 R 2 = R = R 0 -W and it comes that:

R 2 = R 0 + 1 λ 1 (R 0 -R 1 ) X 1 w (R 1 ) -λ 1 .
This lead us to define, for w ∈ {u, v}, the functions g w (defined on D w ) by: Proof. The fact that g w (R 1 w ) = R 2 w follows from the very definition of g w . A direct computation gives

g w (r) = R 0 + 1 λ 1 (R 0 -r) X 1 u (r) -λ 1 .
g w (r) = - X 1 w (r) -λ 1 λ 1 + (R 0 -r) X 1 w (r) λ 1 .
Since X 1 w (r) -λ 1 < 0 for r ∈ D w , it comes that g w is increasing D w .

We can now state the graphical characterization of the semi-trivial solution.

Proposition 5.8. Let w ∈ {u, v}. The semi-trivial solution E w exists if and only if there exists R 1 w ∈ D w such that F w (R 1 w ) = g w (R 1 w ) := R 2 w . In that case E w is unique and the resource concentration at E w is R w = (R 1 w , R 2 w ).

Proof. The characterization of R w is a direct consequence of the proposition 5.5 and the lemma 5.7. The uniqueness follows from the fact that r → g w -F w is increasing on D w . Now, let us study the case of the coexistence stationary equilibrium. From the proposition 5.5, if there exists a coexistence solution, that is a positive solution (U c , V c ) to [START_REF] Loreau | Biodiversity as spatial insurance in heterogeneous landscapes[END_REF], then there exists

R 1 c ∈ D u ∩ D v such that F u (R 1 c ) = F v (R 1 c ) = R 2 c .
According to remark 5.6, we obtain the following lemma. Lemma 5.9. Suppose that F u = F v . Then there are at most two coexistence stationary equilibrium for the gradostat.

There are at most two intersections between the curves of F 1 and F 2 but these intersections are not necessarily associated to a positive solution of [START_REF] Loreau | Biodiversity as spatial insurance in heterogeneous landscapes[END_REF]. Indeed, if F u (R 1 ) = F v (R 1 ) then the coefficients of the eigenvectors are not necessarily of the same signs.

The following proposition gives a good location for an intersection between the curves of F u and F v to be associated with an admissible stationary equilibrium solution of [START_REF] Loreau | Biodiversity as spatial insurance in heterogeneous landscapes[END_REF]. Proposition 5.10. Let R c be an intersection between the curves of F u and F v . R c is associated to an admissible coexistence stationary equilibrium if and only if:

R 1 u -R 1 v R 2 u -R 2 v < 0,
and R c is in the rectangle K defined as:

K = [min(R 1 u , R 2 v ), max(R 1 u , R 1 v )] × [min(R 2 u , R 1 v ), max(R 1 u , R 2 v )].
Proof. Let us define, for each semi-trivial equilibrium the following sets of [0, R 0 ] 2 :

K w = {(R 1 , R 2 ) ∈ [0, R 0 ] 2 , R 1 w -R 1 R 2 w -R 2 < 0}.
We first prove that any intersection R c between the curves of F u and F v is in K u ∩ K v . Recall that R w is the associated resource concentration for the stationary equilibrium E w . According to [START_REF] Malrieu | On the persistence regime for lotka-volterra in randomly fluctuating environments[END_REF], R c is

  2} 2 and {w, w} = {u, v}, ∂F i w ∂ wk ≤ 0 ∀{i, j} = {1, 2} and w ∈ {u, v}, ∂F i w∂w j ≥ 0. The strong monotonicity is due to the fact that the Jacobian matrix at every point (U, V ) is irreducible.

  Figure3: Both species is the best competor in one vessels. The middle plots represents f w in both vessels. a -An appropriate averaged ratio between the vessels leads coexistence (a1 u , a 2 u , a 1 v , a 2 v ) = (4.2, 4, 2.1, 2), (b 1 u , b 2 u , b 1 v , b 2 v ) = (5, 5, 0.5, 0.5), (δ 1 , δ 2 ) = (1.9, 1.5) and R 0 = 8. b -The role of species are reversed between the vessels. For the probabilistic model, there is either exclusion or bistability. The same holds for the deterministic case, exept that small diffusion permits coexistence. (a1 u , a 2 u , a 1 v , a 2 v ) = (4.2, 2, 2.1, 4), (b 1 u , b 2 u , b 1 v , b 2 v ) = (5, 0.5, 0.5, 5), (δ 1 , δ 2 ) = (1.7, 1.5) and R 0 = 8. a -Two vessels favorable to the species u. b -Odd bistability in the deterministic model.
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 24 Figure 4: Two interesting situations. a -The two vessels are favorable to the same species. The middle plots represents f w in both vessels. Depending on λ and s, each situation may occurs for both models (extinction of u or v, exclusive bistability or coexistence).(a 1 u , a 2 u , a 1 v , a 2 v ) = (3.5, 2.5, 1.25, 7), (b 1 u , b 2 u , b 1 v , b 2 v ) = (8.75, 0.125, 1.125, 3.75), (δ 1 , δ 2 ) = (1, 2) and R 0 = 7. b -A situation like in figure3-a with an odd bistable area in the deterministic model (the probabilistic model behaves like the one figure3-a). The left plots represents f w in both vessels. We show only the deterministic model and make a zoom on the odd bistable area in a (+, -) area. This zone corresponds to the case 3-(b) in the theorem 3.8. (a 1 u , a 2 u , a 1 v , a 2 v ) = (3.7, 3.6, 4.4, 2.5), (b 1 u , b 2 u , b 1 v , b 2 v ) = (1.55, 3.55, 3.6, 0.4), (δ 1 , δ 2 ) = (2.5, 1.1) and R 0 = 20.
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 52 (Convex order between Beta laws). Assume that X and X are two random variables following Beta laws of parameters (a, b) and (a , b ). If a < a , b < b and a a+b = a a +b then for any convex function
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 5712 Let w ∈ {u, v}. The function g w is increasing on the set D w . Moreover, if the semi-trivial stationary equilibrium E w exists then the resource concentration R w = R associated to E w satisfies g w (R 1 w ) = R 2 w .

In the deterministic case the invasion rate of the species w is note Γw. However, we only refer to Λw in this introduction.

We choose this term since this situation is ounter intuitive and is difficult to see in numerical simulations.

Under this assumption, one has (see section

[START_REF] Butler | A mathematical model of the chemostat with periodic washout rate[END_REF].1) the simple expression dµ 0 (R, j) = (1 -s)∆ (R 0 ,1) + s∆ (R 0 ,2) (where ∆ R 0 is the dirac function at R 0 ) which yields the simple formula :

For instance, let U verifying the system[START_REF] Gaki | Complex dynamics of microbial competition in the gradostat[END_REF] we have fu(R 0 -U -V ) ≤ fu(R 0 -U ) for any V ∈ R 2 + . Let (U, V ) be a solution of[START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF] with U (0) = U (0). By comparison, it follows that U (t) ≤ U (t). From the corollary 3.2, we have U (t) → 0 and then U (t) → 0. The same argument shows that V (t) → 0.

Indeed, on Dw the eigenvalue 0 is the principal eigenvalue of Aw(R), and by the Perron-Frobenius theorem, it is associated to a positive eigenvector which is nothing but W .
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associated to a stationary coexistence equilibrium only if det(A u (R c )) = 0 and det(A v (R c )) = 0. But we also know that det(A u (R u )) = 0 and det(A v (R v )) = 0 which finally implies that:

The fact that the functions X j w (R j ) -λ j are increasing gives us that necessarily R c ∈ K u ∩ K v . From the equation [START_REF] Rapaport | Effects of spatial structure and diffusion on the performances of the chemostat[END_REF] coupled to the fact that R c = R 0 -U c -V c , it comes that the values of the concentration (U c , V c ) associated to R c are given by:

and

where the coefficients µ u and µ v are given by:

We know that X 1 w (R 1 c ) -λ 1 < 0 for each i. As a consequence, (U c , V c ) is an admissible coexistence stationary equilibrium if and only if µ u > 0 and µ v > 0. Hence, if R c is associated to an admissible coexistence stationary equilbrium, we have:

Consequently, R c is associated to an admissible equilibrium if and only if,

Recall that the functions g w are defined by:

We just saw that if R c is associated to an admissible coexistence stationary equilibrium, then R c ∈ Θ (it is the condition [START_REF] Smith | The gradostat: A model of competition along a nutrient gradient[END_REF]). Consequently, properties on the functions g w allows the following statements:

where K is the rectangle defined by:

Corollary 5.11. Assume that R c is associated to an admissible coexistence stationary equilibrium. Then:

In the proof of the proposition 5.10, we calculated the coexistence stationary equilibrium associated to R c and found out that U c and V c satisfy [START_REF] Rapaport | Effects of spatial structure and diffusion on the performances of the chemostat[END_REF] where

Since U c > 0 and V c > 0, we have µ u > 0 and

To summarize, we can tell if an intersection R c between the curves of F u and F v is associated to an admissible coexistence stationary equilibrium. Now, we state a criteria for the existence of coexistence stationary equilibrium according to the stability of the semi-trivial equilibrium E u and E v .

Proposition 5.12. The semi-trivial equilibrium E w is stable if and only if

Proof. The stability of E w can be read on the Jacobian of H evaluated in E w . For sake of simplicity we give the proof for E u . A straightforward computation gives:

where, 

x-λ 1 ).

Proof of the theorem 3.8

Proof. Let us assume that R 1 u < R 1 v . The existence of coexistence stationary equilibrium is a simple consequence of proposition 5.12 and the intermediate value theorem. Let us prove it if E u and E v are both stable, then according to proposition 5.12,

Hence, the intermediate value theorem implies that F u and F v have an odd number of intersections. According to proposition 5.9, there are at most two intersections between the curves of F u and F v . As a consequence there exists a unique

. Hence, proposition 5.10 implies that R c is associated to an admissible coexistence stationary equilibrium. Figure 1 comes as an illustration for this statement.

The stability of the coexistence stationary equilibrium is more difficult to obtain. The Jacobian matrix of H evaluated in (U c , V c ) reads:

where:

) is an irreducible matrix and it can be written:

where A and D are irreducible square matrices with positive off diagonal elements and B and C are diagonal matrix with negative diagonal elements. Let s(DH(U c , V c )) be the maximum real part of the eigenvalues of DH(U c , V c ). Following [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF], we now use a very strong following property dealing with these kind of matrices (which can be found in [START_REF] Berman | Nonnegative Matrices in the Mathematical Sciences[END_REF]): Defined

As a consequence, the signs of d 1 , d 2 , d 3 and d 4 characterize the stability of DH(U c , V c ). Firstly, we have

Next, we have:

An other straightforward computation gives:

Obtaining the sign of d 4 requires heavy computations. A straight computation, similar to the one in [START_REF] Smith | The Theory of the Chemostat Dynamics of Microbial Competition[END_REF] gives: Lemma 5.13.

Proof. A straightforward computation gives:

Where,

and,

By making good use of the relation (X 1 w -λ 1 )(X 2 w -λ 2 ) = λ 1 λ 2 , one can check that:

). According to proposition 30,

. and the coefficients µ w are positive. From this relation comes that:

For the sake of simplicity we will note f j w for f j w (R j c ). It comes:

Using once again the relation (X 1 w -λ 1 )(X 2 w -λ 2 ) = λ 1 λ 2 gives:

We are going to express the derivatives of the functions f j w using the functions F w . It starts from a realtion we already proved:

) it comes that:

Hence,

As a direct consequence, the sign of d 4 is given by the sign of the quantity:

Moreover corollary 5.11 gives us a better understanding of this sign:

Let us assume that R 1 v -R 1 u > 0 (the proof is the same if we suppose that R 1 v -R 1 u < 0). We will now show how the stability of the semi-trivial equilibrium E u and E v influence the stability of the coexistence stationary equilibrium when it exists.

If E u and E v are stable, then according to proposition 5.12, we have:

And we already know that there exists a unique intersection between the curves of F u and F v in the interval [R 1 u , R 1 v ]. A simple analytic consequence of these facts is that F v (R 1 c ) < F u (R 1 c ) and since the functions F w are decreasing it comes that:

Thus d 4 < 0 which implies that the unique coexistence equilibrium is unstable. This reasoning also proves the stability property of the coexistence stationary equilibrium in the other cases which concludes the proof.