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Abstract
This article is dedicated to the study and comparison of two chemostat-like competition models

in a heterogeneous environment. The first model is a probabilistic model where we build a PDMP
simulating the effect of the temporal heterogeneity of an environment over the species in competition.
Its study uses classical tools in this field. The second model is a gradostat-like model simulating the
effect of the spatial heterogeneity of an environment over the same species. Despite the fact that
the nature of the two models is very different, we will see that their long time behavior is globally
very similar. We define for both model quantities called invasion rates which model the growth rate
of a species when it is near to extinction. We show that the signs of these invasion rates essentially
determine the long time behavior for both systems. In particular, we exhibit a new example of
bistability between a coexistence steady state and a semi-trivial steady state.

1 Introduction
The model of chemostat is a standard model for the evolution and the competition of several species for
a single resource in an open environment. Its studies as well as that of its many variants has been widely
explored since fifty years. One can read Smith and Waltman’s book [31] and recent survey [35] which
give a view over the complexity and variability of this research domain. There are numerous applications
for the chemostat. For example, in population biology, the chemostat serves as a first approach for the
study of natural systems . In industrial microbiology, the chemostat offers an economical production of
micro-organisms.

Under various assumptions, the chemostat is known to satisfy the principle of exclusive competition
which states that when several species compete for the same (single) resource, only one species survives,
the one which makes “best” use of the resource ([18, 19, 37, 1]). Though some natural observations and
laboratory experiences support the principle of exclusive competition [15, 11], the observed population
diversity within some natural ecosystems seems to exclude it [20, 29]. In order to take account of
the biological complexity without excluding the specificity of the chemostat, various models has been
introduced ([23, 26, 14] for more examples).

The observed biodiversity could first be explained by the temporal fluctuations of the environment.
This idea has been explored in the ecology literature (see for example [9, 10]). Applied to the chemostat,
this idea gave [32] where the authors study the general gradostat with a periodic resource input. However,
temporal fluctuations of an environment are most likely random. From this assumption comes the idea
of studying an environment fluctuating randomly between a finite number of environments. In [2], the
authors gives a complete study for a two-species Lotka-Volterra model of competition where the species
evolve in an environment changing randomly between two environments and prove that coexistence is
possible.

In order to take account of the biological complexity without excluding the specificity of the chemostat,
Lovitt and Wimpenny introduced the gradostat model which consists in the concatenation of various
chemostats where the adjacent vessels are connected in both directions, [24, 11]. The resource output
occurs in the first and last chemostats of the chain and those in between exchange their contents.

The case where two species evolve in two interconnected chemostats is understood in various cases
[21, 30]. See also [33, 13, 28, 16, 27] for more references on the general gradostat. The spatial heterogeneity
has been also studies with partial differential equations models, see for instance [7, 8, 17]

Some other chemostat-like model has been introduced to take account of the temporal heterogeneity.
See [22, 5, 32] with non autonomous deterministic model and in [6, 36] with stochastic models.
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In this article, we consider two species u and v competing for a single resource R. In a chemostat
ε, we denote δ the common dilution rate for each species and the dilution rate of the resource, R0 the
constant input concentration of the resource in the vessel. For each species w ∈ {u, v}, let fw(R) be
the consumption function. Thus, the per capita growth rate of the species w is fw(R) − δ. Note that
according to the models, fw can have different expressions. We choose here the most common expression
for fw which is Monod’s one:

fw(R) = awR

bw +R
.

where aw is the maximum growth rate for the species w and bw is ’half-velocity constant’ of the species
w.

Note U(t), V (t) and R(t) the concentrations of the species u, v and the resource R. The evolution of
these different concentrations in the simple chemostat ε is given by the equations:

Ṙ(t) = δ(R0 −R(t))− U(t)fu(R(t))− V (t)fv(R(t))
U̇(t) = U(t) (fu(R(t))− δ)
V̇ (t) = V (t) (fv(R(t))− δ)

(1)

together with the initial conditions U(0) > 0, V (0) > 0 R(0) ≥ 0. Let

R∗w =
{

bwδ
aw−δ if aw > δ

+∞ if aw ≤ δ,

be the concentration of resource satisfying fw(Rw) = δ (if possible). This quantity R∗w can be interpreted
as the minimal concentration of resource needed by the species w to have its population growing. The
species which needs the less resource to survive in the environment is the best competitor.

It is well known that the simple chemostat satisfies the principle of exclusive competition : only the
best competitor survives. The following theorem1 illustrates this statement (see [18, 19]).

Theorem 1.1 (Competitive Exclusion Principle (CEP)). Suppose that R∗u < R0 (u is able to survive)
and R∗u < R∗v (u is the best competitor). The solutions of (1) satisfy:

lim
t→+∞

(R(t), U(t), V (t)) = (R∗u, R0 −R∗u, 0).

Remark 1.2. Let us write:
Σ(t) = R(t) + U(t) + V (t).

Considering that the dilution rate is the same for every species and the substrat, it is easy to see that Σ
satisfies the differential equation:

Σ̇(t) = δ(R0 − Σ(t)).

It comes that Σ(t) = R0 + e−δt(Σ(0)−R0) −→
t→+∞

R0.
Using that Σ(t)→ R0, it is classical (see the appendix F in [31]) that the asymptotic dynamics of the

system (1) is given by the dynamics of the reducted system{
U̇(t) = U(t) (fu(R0 − U(t)− V (t))− δ)
V̇ (t) = V (t) (fv(R0 − U(t)− V (t))− δ)

(2)

Hence, assuming that the dilution rates are the same for every species and the resource is a very strong
hypothesis allows to do the variable change R(t) = R0 − U(t)− V (t). This is the key ingredient in [1] to
prove the CEP for general increasing consumption functions and same dilution rates.

In this paper, we consider two chemostats ε1 and ε2. For j ∈ {1, 2}, the parameters of the chemostat
εj are denoted (Rj0, δj , aju, ajv, bju, bjv). In all the article, the subscripts of a parameter or a variable make
always reference to the species and the exponents make always reference to the environment. For a
species w ∈ {u, v}, we set w ∈ {u, v} \ {w} the other species. With these two chemostats, we build two
competition models.

1There exists various modification of the theorem 1.1. In particular, it is proven in [1] that the competitive exclusion
principle holds true for general increasing consumption function fw verifying fw(0) = 0 and same dilution rates. It is yet
unknown if the CEP holds true if the assumption on the dilution rates is relaxed. See [37] for one of the last advance on
this topic.
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The first model is a probabilistic one. In this model the chemostat where the two species and the
resource evolve is alternating randomly between ε1 and ε2. Assuming that the species and resource lives
in ε1 at t = 0, we wait a random exponential time of parameter λ1 before switching the chemostat to ε2.
Then, we wait an other independent random exponential time of parameter λ2 before switching back to
ε1, and so on.

The goal here is to model time variations of the environment the species and resource evolve in.
Mathematically, we build here a random process which study is totally different from the gradostat
model. In [2], the authors study a similar process for a Lotka-Volterra competition model and we claim
that it is possible to adapt their techniques to the slightly more difficult chemostat switching competition
model.

The second model is a gradostat-like model where the two chemostats ε1 and ε2 are connected and
trade their content at a certain rate λ. Mathematically, this model is a system of 3 × 2 differential
equations which modelizes spatial heterogeneity in a biosystem (see [24] for some mathematical results
on the behavior of such system).

The goal of this article is to compare the long time behavior of the dynamics of these two different
systems. For each model we give a mathematical definition for what we will call the invasion rate of the
species, noted Λw for the species w in the probabilistic case2. Given the mathematical difference between
the two models, the definition of these invasion rates is different for each model. However, we show that
for each model, the sign of Λu and Λv essentially determines the state of the system at the equilibrium,
and thus the long time dynamics. The precise results are state in the section 2 for the probabilistic model
and in the section 3 for the deterministic model.

We show (under an additional assumption for the probabilistic case) that, if ΛuΛv > 0, then for any
positive initial condition only the two following behavior can happen for the two models.

• If Λu < 0 and Λv < 0 there is extinction of either species u or species v This configuration will be
called the bi-stability.

• If Λu > 0 and Λv > 0 there is persistence of both species (persistence means that lim inf
t→+∞

U(t) > 0
and lim inf

t→+∞
V (t) > 0).

In contrast, when ΛuΛv < 0, the possibilities for the long time dynamics are not exactly the same for
the two models. For instance, if Λu > 0 and Λv < 0. Then in the probabilistic model their is always
extinction of species v but for the deterministic model there is either

• Extinction of species v (for almost all initial condition in Ω).

• Extinction of species v or coexistence (depending on the initial condition in Ω).

Consequently, comparing the two models will be essentially done by comparing the evolution of these
invasion rates according to the parameter λ. An analytical and a numerical comparison of these invasion
rates is done in section 4. In particular, we show, for the two models, that even if the two environments
are favorable to the same species, then the two species may coexist or, worse, the other species is the
only survivor.

For a more fluid reading , the technical proofs are postponed to section 5.

2 Random temporal variation : model and main results.
2.1 The probabilistic model : a PDMP system
As stated before, we pick two environments ε1 and ε2 and we model the environmental variation of a
biosystem by randomly switching the chemostat the two species and the resource evolve in. This idea
and its mathematical resolution has been introduced in [2]. In this previous article, the authors exhibit
counterintuitive phenomenon on the behavior of a two-species Lotka-Volterra model of competition where
the environment switches between two environments that are both favorable to the same species. Indeed,
they show that coexistence of the two species or extinction of the species favored by the two environments
can occur.

2 In the deterministic case the invasion rate of the species w is note Γw. However, we only refer to Λw in this introduction.
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We consider the stochastic process (Rt, Ut, Vt) defined by the system of differential equations:
Ṙt = δIt(RIt0 −Rt)− Utf Itu (Rt)− Vtf Itv (Rt)
U̇t = Ut(f Itu (Rt)− δIt)
V̇t = Vt(f Itv (Rt)− δIt)

(3)

where (It) is a continuous time Markov chain on the space of states E = {1, 2}. We note λ1 and λ2 the
jump rates. Starting from the state j, we wait an exponential time of parameter λj before jumping to
the state j. The invariant measure of (It) is λ2

λ1+λ2 ∆1 + λ1

λ1+λ2 ∆2 (where ∆j is the Dirac measure in j).
Let us note the jump rates: λ1 = sλ and λ2 = (1 − s)λ with s ∈ (0, 1) and λ > 0. Parameter

s (respectively 1 − s) can be seen as the proportion of time the jump process (It) spends in state 2
(respectively 1). The parameter λ will be seen as the global switch rate of (It).

The process (Zt) = (Rt, Ut, Vt, It) is what we call a Piecewise Deterministic Markov Process (PDMP)
as introduced by Davis in [12].

Let us call:

K = {(r, u, v) ∈ R3
+ ,

min(R1
0, R

2
0)

2 ≤ r + u+ v ≤ 2 max(R1
0, R

2
0)},

and
M = K × {1, 2}.

According to remark 1.2, Zt will reach M for any initial condition Z0 ∈ Rn+1
+ × {1, 2}. We can then

assume that Z0 ∈M and, as a consequence, M is as the state space of the process (Zt).
We will call the extinction set of species w the set:

M0,w = {(r, u, v, i) ∈M , w = 0},

and the extinction set:
M0 =

⋃
w

M0,w.

It is clear that the process (Zt) leaves invariant all the extinction set and the interior set M \M0.
In order to describe the behavior of the process (Zt) when Z0 ∈ M \M0, [2] suggests to study the

invasion rates of species w defined as:

Λw =
∫ (

f1
w(R)− δ1) dµ(R, 1) +

∫ (
f2
w(R)− δ2) dµ(R, 2),

where µ is an invariant probability measure of (Zt) on M0,w.

Remark 2.1. The idea behind the definition of the invasion rate Λu (same for Λv) is the following.
From (3) comes:

U̇t
Ut

= f Itu (Rt)− δIt = A(Zt)∫
U̇t
Ut
ds =

∫
A(Zs)ds

1
t

logUt = 1
t

∫
A(Zs)ds.

Formally, the ergodic theorem allows to write:

1
t

logUt →
∫
A(z)dµ(z),

where µ is an invariant measure for the process (Zt). If µ is an invariant measure of (Zt) on M0,u, we
define Λu =

∫
A(z)dµ(z). By Feller continuity (see [3]) it comes that Λu can be seen as the exponential

growth rate of Ut when Ut is close to zero.

As stated in this previous remark, Λw can be seen as the exponential growth rate of the concentration
of the species w when its concentration is close to zero. If Λw > 0, the concentration of w tends to
increase from low values and if Λw < 0, the concentration of w tends to decrease from low values.
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2.2 Dynamics of the PDMP model
We are interested in the long time behavior of the concentration of the species u and v. In [2], the authors
show that the signs of the invasion rates characterizes the long time behavior of the randomly switched
Lotka-Volterra model of competition. It is expected to have the same result in the chemostat case. We
expect the two following behavior for the concentration of the species u and v:

• Species w ∈ {u, v} goes to extinction if Wt → 0 almost surely for any initial condition Z0 ∈M\M0.

• We have coexistence of the two species when the two species do not go to extinction for any initial
condition Z0 ∈M\M0. In this case, any invariant measure of (Zt) is supported by M\M0.

We will not give the proofs for theorem 2.2 and theorem 2.5 since it follows to a few details the same
path as in [2]. Note that these proofs uses some renewal theory arguments coupled with the analytic
properties of the invasion rates.

2.2.1 Long time behavior when only one species is introduced

Assume that species w is not in the system (Wt = 0). Then, the process Zt = (Rt,Wt, It) satisfies:{
Ṙt = δIt(RIt0 −Rt)− Utf Itu (Rt)
Ẇt = Wt(f Itw (Rt)− δIt)

(4)

In order to emphasize the fact that species w is absent of the system, let us define:

Λ0
w =

∫ (
f1
w(R)− δ1) dµ0

w(R, 1) +
∫ (

f2
w(R)− δ2) dµ0

w(R, 2),

where µ0
w will be proven (see Section 4 and 5) to be the unique invariant measure of the process (Zt)

restricted to M0,w.
The first result which is similar to the main result in [2] is the following:

Theorem 2.2. The sign of the invasion rate Λ0
w characterizes the evolution of the species w:

1. If Λ0
w < 0 species w goes to extinction: Wt → 0 almost surely.

2. If Λ0
w > 0 species w perpetuates.

2.2.2 Long time behavior when two species are introduced

Now, we assume that R1
0 = R2

0 = R0. According to remark 1.2, the sum Σt → R0 as t → +∞. As a
consequence, the long-time behavior of (Zt) is obtained by assuming that Σt = R0 in (3). Moreover,
recall that the invasion rates are defined by:

Λw =
∫ (

f1
w(R)− δ1) dµw(R, 1) +

∫ (
f2
w(R)− δ2) dµw(R, 2),

where µw is an invariant measure of (Zt) restricted to M0,w.

Assertion 2.3. Denote (Hw) the assertion which is true if and only if one of the following assertion is
true :

• (i) ∃j ∈ {1, 2} such that εj is unfavorable to the species w.

• (ii) ∃s ∈ (0, 1) such that the averaged chemostat εs is unfavorable to the species w (see the following
remark 2.4 for a precise definition of the averaged chemostat).

Remark 2.4. Formally, let εs = (1 − s)ε1 + sε2 the averaging of the two chemostats ε1 and ε2. The
associated differential system modelizing the behavior of the different concentrations in εs is given by:

Ṙ = δ(R0 −R)− Ufu(R)− V fv(R)
U̇ = U(fw(R)− δ)
V̇ = V (fw(R)− δ)

(5)
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Where δ = (1− s)δ1 + sδ2, fw = (1− s)f1
w + sf2

w and:

R0 = (1− s)δ1R1
0 + sδ2R2

0

δ
.

Despite the fact that the averaged consumption functions fw are not Monod functions in general, they
are increasing functions verifying fw(0) = 0. Thus the PEC holds for εs. In this sense we can defined
the best competitor in εs. The averaged chemostat εs is saied to be unfavorable to a species w ∈ {u, v} if
w is not the best competitor in εs, that is if W (t)→ 0 as t→ +∞.

Once again, the signs of the invasion rates Λu, Λv fully describe the long time behavior of the process:

Theorem 2.5. The sign of the invasion rates Λu, Λv characterizes the evolution of the species:

1. If Λu > 0 and Λv < 0 and (Hv) is true then species v goes to extinction.

2. If Λu < 0 and (Hu) is true and Λv > 0 then species u goes to extinction.

3. If Λu < 0 and Λv < 0 then of one the species goes to extinction. We say that it is a situation of
exclusive bistability..

4. If Λu > 0 and Λv > 0 then there is coexistence of both species.

See section 4 for a numerical investigation over the signs of these invasion rates. We show numer-
ically that for any couple of signs (x, y) ∈ {+,−} there exists pair of chemostats ε1, ε2 such that
(Sign(Λu), Sign(Λv)) = (x, y).

Moreover, ε1 and ε2 may be chosen both favorable to u (Rju < Rjv for j = 1, 2) or both favorable to v
(Rju > Rjv for j = 1, 2) or one favorable to u and the other to v ( (R1

u −R1
v)(R2

u −R2
v) < 0 for j = 1, 2).

In particular, it is possible to pick chemostats ε1 and ε2 both favorable to the species u such that for
some values of the switching rate λ, Λu < 0: switching between two environments favorable to species u
can surprisingly make it disappear (see figure 4-a).

3 Spatial heterogeneity : model and main results
3.1 The deterministic model : a gradostat-like system
The gradostat model is obtained by connecting the two chemostats ε1 and ε2 and allowing them to trade
their content.

Note Vj the volume of the chemostat εj and Q the volumetric flow rate between the two vessels and
U j(t) the concentration of the species u in the chemostat εj . It comes:{ ˙(U1V1)(t) = −QU1(t) +QU2(t)

˙(U2V2)(t) = QU1(t)−QU2(t).

Which implies the following differential equations on the concentrations:
U̇1(t) = − Q

V1U
1(t) + Q

V1U
2(t)

U̇2(t) = Q

V2U
1(t)− Q

V2U
2(t).

(6)

We will denote λj = Q
Vj . Similarly, we denote V j(t) the concentration of the species v in the chemostat

j and Rj(t) the concentration of the resource in the chemostat j. We will also denote {j, j} = {1, 2}.
The evolution of the gradostat is described by the following system of differential equations:

Ṙj(t) = δj(Rj0 −Rj(t))− U j(t)f ju(Rj(t))− V j(t)f jv (Rj(t)) + λj(Rj(t)−Rj(t))

U̇ j(t) = U j(t)(f ju(Rj(t))− δj) + λj(U j(t)− U j(t))

V̇ j(t) = V j(t)(f jv (Rj(t))− δj) + λj(V j(t)− V j(t)).

(7)

The part with λj in factor comes from the transfer equation (6) and the other part comes from the
chemostat equation (1).
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Let us write R(t) =
(
R1(t)
R2(t)

)
, U(t) =

(
U1(t)
U2(t)

)
, V (t) =

(
V 1(t)
V 2(t)

)
, R0 =

(
R1

0
R2

0

)
, δ =

(
δ1

δ2

)
and

fw(R) =
(
f1
w(R1)
f2
w(R2)

)
. Moreover, set λ1 = sλ and λ2 = (1 − s)λ with λ > 0 and s ∈ (0, 1) and K =(

−s s
1− s s− 1

)
. By convention

(
w
x

)(
y
z

)
=
(
wy
xz

)
. With this notations, the system (7) reads shortly:


Ṙ(t) = δ(R0 −R(t))− U(t)fu(R(t)) + λKR(t)
U̇(t) = U(t)(fu(R(t))− δ) + λKU(t)
V̇ (t) = V (t)(fv(R(t))− δ) + λKV (t).

(8)

We consider initial value will be taken in the set (R∗+ × R∗+)3.

Set Σj(t) = Rj(t) +U j(t) + V j(t). The vector Σ(t) =
(

Σ1(t)
Σ2(t)

)
satisfies the linear differential system:

Σ̇(t) = (λK −∆) Σ(t) + δR0,

where ∆ =
(
δ1 0
0 δ2

)
.

The matrix λK − ∆ has two real negative eigenvalues. Hence we may set Σ =
(

Σ1

Σ2

)
:= (∆ −

λK)−1(δR0) and we have

lim
t→+∞

Σ(t) = Σ

Since every trajectory is asymptotic to its omega limit set, it is important to study the system on this
set.

As a consequence, in all the following our attention will be focused on the system:{
U̇(t) = U(t)(fu(Σ− U(t)− V (t))− δ) + λKU(t)
V̇ (t) = V (t)(fv(Σ− U(t)− V (t))− δ) + λKV (t).

(9)

With initial condition in the set (R∗+×R∗+)2. The appendix F of [31] shows that the long time dynamics
of (7) is completly given by the dynamics of (9).

3.2 Dynamics of the gradostat like model
We are interested in the long time behavior of the solution of this differential system. It is proven in
[31, 21], using strongly the monotonicity of the system, that any solution of (9) converges to a stationary
equilibrium when the consumption functions f jw do not depend on the vessel εj . Their proofs are mainly
based on the study of the existence and stability of stationary solutions and on general results about
monotone system due to Hirsch (see the appendix B and C in [31] and the references therein).

This strategy is still working in the case of vessel-dependent consumption function f jw, the main
additional difficulty being that the structure of the stationary solutions is richer when the functions
f jw do depend on j. We do a complete description of the stationary solution detailled in section 5.
This description relies on the construction of different functions defined on the interval [0, R1

0] which
intersections in a certain domain of the plane [0, R1

0]×[0, R2
0] gives the existence and stability of stationary

solutions for (9).
The main idea of the construction of these functions is the following:

1. If the species w survives at the equilibrium, then 0 is the principal eigenvalue of the matrix Aw(R) =
fw(R)− δ + λK which implies that R = (R1, R2) belongs to the graph of a function Fw.

2. If the species w survives (without competition) then W = R0 −R is the principal eigenfunction of
Aw(R) and then R = (R1, R2) belongs to the graph of a function gw.

In section 5, it is show how the relative position of the four curves R2 = gw(R1) and R2 = Fw(R1)
(w ∈ {u, v}) give a graphical understanding of the existence of the steady states and their stability. See
the figure 1.
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3.2.1 Long time behavior when only one species is introduced

Assume that w is not in the system (W (t) = 0). In this particular case, it is possible to study the behavior
of the system. Without competition, the differential equation describing the evolution of the system is:

Ẇ (t) = W (t)(fw(Σ−W (t))− δ) + λKW (t) (10)

with initial conditionW (0) ∈ R∗+ × R∗+.
It can be proven like in [31] that any trajectory of this previous differential equation goes to a stationary

point. Let us call E0 = (0, 0), E0 is the trivial stationary point of the system (10) and its linear stability
gives the characterizes of the solutions of (10):

Theorem 3.1. The global dynamics of the system (10) is as follows.

• If E0 is linearly stable, then it is the only stationary point and any trajectory is attracted by E0 for
any initial condition in R∗,2+ .

• If E0 is linearly unstable, then there exists a unique stationary point Ew = (W 1,W 2) ∈ R∗+ × R∗+.
Moreover Ew is a global attractor for the system (10) in R∗+ × R∗+.

Note that a stationary point for equation (10) satisfies the equation:

Fw(W ) = W (fw(Σ−W )− δ) + λKW = 0.

The jacobian matrix of Fw taken at E0 is:

Aw =
(
f1
w(Σ1)− δ1 − λ1 λ1

λ2 f2
w(Σ2)− δ2 − λ2

)
. (11)

We define the invasion rate Γ0
w of the species as the maximum eigenvalue of the matrix Aw:

Γ0
w = 1

2

(
f1
w(Σ1)− δ1 + f2

w(Σ2)− δ2 − λ1 − λ2 +
√

(f1
w(Σ1)− δ1 − f2

w(Σ2) + δ2)2 + 4λ1λ2
)

(12)

Theorem 3.1 yields:

Corollary 3.2. The sign of Γ0
w characterizes the behavior of the system (10):

• If Γ0
w < 0 there is extinction of the species w: lim

t→+∞
W (t) = 0.

• If Γ0
w > 0 there is persistence of the species w. More precisly: lim

t→+∞
W (t) = Ew ∈ R∗+ × R∗+.

3.2.2 Long time behavior when two species are introduced

For sake of comparison with the probabilistic case, we set R0 = R1
0 = R2

0 even if computations are possible
when these two quantities are different. The system (9) being strongly monotone, the theorem C.9 from
Hirsch [31] implies that for almost all initial condition, the solutions tends to a stationary point. Thus,
the study of the existence and stability of these solutions is crucial in the understanding of the long-time
behavior of the solutions of

From R1
0 = R2

0, a stationary solution of (9) satisfyies:

H(U, V ) = 0⇔
{
U(fu(R0 − U − V )− δ) + λKU = 0
V (fv(R0 − U − V )− δ) + λKV = 0.

(13)

Set E0 = (0, 0, 0, 0). E0 is the trivial stationary equilibrium. The jacobian matrix of H at E0 reads:

dH(E0) =
(
Au 0
0 Av

)
where Aw is defined in (11).

If both Au and Av have negative eigenvalues then E0 is a locally attractive stationary point, and there
are no other stationary equilibrium points.

If Au has at least one positive eigenvalue, then E0 is not locally attractive. As a consequence,
theorem 3.1 from the previous subsection gives the existence of a unique semi-trivial stationary equilibrium
Eu = (U, 0). Likewise, if Av has at least one positive eigenvalue, we define Ev = (0, V ) as the other semi-
trivial stationary equilibrium.

Moreover, arguments similar to the ones in [31] yield
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Proposition 3.3. • If Eu and Ev does not exists, then E0 is a global attractor.

• Let {w,w} = {u, v}. If Ew exists and Ew does not exists, then Ew is a global attractor.

Hence, the most interesting case holds when both Eu and Ev exists. In that case, it is possible to
have coexistence stationary solutions which may be stable or unstable.

Define the following matrix:

Mw(Rw) =
(
f1
w(R1

w)− δ1 − λ1 λ1

λ2 f2
w(R2

w)− δ2 − λ2

)
. (14)

We show in section 5.2.1 that the stability of the semi-trivial equilibrium Ew is given by the sign of the
eigenvalues of Mw(Rw).

Definition 3.4. Let Γw be the maximum eigenvalue of the matrix Mw(Rw). We call Γw the invasion
rates of the species w.

Remark 3.5. Let us explain the designation “invasion rate” for Γu. If Γu > 0, it means that the semi-
trivial equilibrium Eu = (U1, U2, 0, 0) is unstable. Consequently, according to previous remark, it means
that (0, 0) is un unstable equilibrium for the differential system:

V̇ (t) = V (t) (fv(R0 − U − V (t))− δ) + λKV (t).

Hence, if V (0) is small enough, then t 7→ V (t) is increasing on (0, τ). In other words, v invade the
environment. At the contrary, if Γu < 0, the semi-trivial equilibrium Eu is stable and from a small initial
value V (0), V (t)→ (0, 0).

The signs of the invasion rates Γw give the stability of the semi-trivial equilibrium Ew but determine
also the existence and stability for coexistence stationary equilibrium. In section 5.2.1 we give a full
characterization of the stationary solution and their stability.

Moreover, we can checked (see [31] appendix B), that the system (9) has a monotonic structure3. This
monotonic structure is a very strong property which reduces the possibilities for the global dynamics of
the system. In particular, for almost every initial condition, the trajectory of the solutions of (9) goes to
a stationary equilibrium (see [31], appendix C). Hence, using the result from the section 5 and the same
arguments that the ones stated in [31], we obtain theorem 3.6 which describes the possible dynamics of
(9).

Theorem 3.6. Assume that the two semi-trivial stationary equilibrium Eu and Ev exist.

1. If Γv > 0 and Γu > 0, then the solutions of (9) go to the unique coexistence equilibrium E∗ which
is linearly stable for almost every initial condition.

2. If Γv < 0 and Γu < 0, then there exists an unstable coexistence solution Ecu. Moreover, the solutions
of (9) go either to Eu of to Ev (for almost every initial condition) depending on the location of the
initial value according to the basin of attraction of the two semi-trivial equilibrium. We say that it
is a situation of exclusive bistability.

3. Let {w,w} = {u, v} and suppose that Γw < 0 and Γw > 0. Then either :

(a) There is not coexistence stationary equilibrium. In that case, any solution of (9) converges to
Ew for almost every initial condition.

(b) There exist two coexistence stationary equilibrium : one stable Ecs and one unstable Ecu. Any
trajectory of (9) go either to Ecs or to Ew (for almost every initial condition) depending on
the location of the initial value according to the basin of attraction of the two stable equilibria.
We say that it is a situation of odd bistability.

Remark 3.7. As it is proven in [31], the cases 2. and 3.b are impossible if the consumption functions
does not depend on the vessels εj. We show in figure 1 that every cases may happen in general.

3 with respect to the order (x1, x2, x3, x4) ≤K (y1, y2, y3, y4) iff x1 ≤ y1, x2 ≤ y2 and x3 ≥ y3, x4 ≥ y4, see [31]).
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a - Typical coexistence case. Rc is associated b - Typical bi-stable case. Rc is associated to
to a globally stable coexistence an unstable coexistence stationary

stationary equilibrium. equilibrium. Eu and Ev are stable.

d - Rare bi-stable case. Rcs is associated
to a stable equilibrium. Rcu is associated to

c - Typical extinction case. Species u an unstable equilbrium. Eu is stable,
goes to extinction. Ev is unstable.

Figure 1: The graph of the functions Fw and gw, w ∈ {u, v} are sufficient to describe the global dynamics
of (9). The precise definitions of the function Fw and gw are given in section 5.
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4 Comparison of the invasion rates between the two models
In section 2, a definition for the invasion rates in the probabilistic case is given (equat and it is proven
that the signs of the invasion rates characterize the long time behavior of the probabilistic model. Recall
that in this case, we defined the invasion rates by :

Λw =
∫ (

f1
w(R)− δ1) dµw(R, 1) +

∫ (
f2
w(R)− δ2) dµw(R, 2),

where µ is an invariant probability measure of (Zt) on M0,w.
In section 3, the invasion rates Γw in the gradostat model are defined as the maximum eigenvalue

of certain two dimensional matrices and the theorem 3.6 shows that the sign of these invasion rates
characterize (essentially) the behavior of the solutions of the gradostat model.

In this section, we aim to give a qualitative comparison of the two definition of the invasion rates in
order to discuss the similarities and the differences of the two models we considered.

4.1 Comparison of the invasion rates in the one species case
Let us first look at the one species case. The following theorem deals with the probabilistic definition of
the invasion rate of species w.

Theorem 4.1. Let us assume that R1
0 < R2

0 and set γj = λj

δj . The process (Zt) has a unique invariant
measure when it is restricted to M0,w. The invasion rate of species w is given by:

Λ0
w = γ1 + γ2

λ1 + λ2E [Φ(B)] .

Where B is a random variable following a Beta law of parameters (γ1, γ2) and:

Φ(x) = δ2(1− x)
(
f1 ((R2

0 −R1
0)x+R1

0
)
− δ1)+ δ1x

(
f2 ((R2

0 −R1
0)x+R1

0
)
− δ2) .

The unicity of the measure invariant is fairly obvious given the definition of the process (Zt) restricted
to M0,w. Its explicit expression allows to obtain the announced expression for the invasion rate Λ0

w. The
computation of the invariant measure is postponed to the last section 5.1.1 of this article.

Recall that the jump rates of the Markov process (It) on the state space {1, 2} are given by: λ1 = sλ
and λ21 = (1− s)λ with λ ∈ R and s ∈ (0, 1).

Proposition 4.2. The invasion rate Λ0
w =

(
s
δ1 + 1−s

δ2

)
E [Φ(B)] is monotone acording to the variable λ.

Once again the proof of this statement requires heavy computation and is postponed to section 5.1.2.
This analytical property on the invasion rate is used in the proof of theorem 2.2.

An explicit expression of the invasion rate in the deterministic case is given in (12). We compute the
limits as λ→ 0 and λ→ +∞ of these invasion rates.

Proposition 4.3. The behavior of the two model is the same when λ is large enough.

lim
λ→+∞

Λ0
w = lim

λ→+∞
Γ0
w = (1− s)

(
f1
w(R∞)− δ1)+ s

(
f2
w(R∞)− δ2)

where R∞ = (1−s)δ1R1
0+sδ2R2

0
(1−s)δ1+sδ2 .

The behavior of the two model is not the same the same when λ is small enough.

lim
λ→0

Λ0
w = (1− s)

(
f1
w(R1

0)− δ1)+ s
(
f2
w(R2

0)− δ2) ,
lim
λ→0

Γ0
w = max

(
f1
w(R1

0)− δ1, f2
w(R2

0)− δ2) .
Remark 4.4. Though these results are easily obtained by a simple computation, the fact that the limits of
the invasion rates are the same when λ goes to +∞ is the consequence of some already known results on
the averaging of vector fields. Under some condition over the switching vector fields, it is proven in [34]
that a process built from switching between the different vector fields converges in law to the deterministic
solution of the aggregated system of the vector fields defined in 2.4.

Numerical simulations are presented in 2 for two sets of data Π1 and Π2 defined in the table 1.
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Π1 Π2
(a1, a2) = (1.1, 2) (a1, a2) = (1.1, 2)
(b1, b2) = (0.4, 4) (b1, b2) = (0.05, 2)
(δ1, δ2) = (1, 1) (δ1, δ2) = (1, 1)

(R1
0, R

2
0) = (10, 1) (R1

0, R
2
0) = (0.55, 2.1)

Table 1: Set of data used in figure 2.

Figure 2: Comparisons of the zero level lines for Γ0 and Λ0 for the two sets of data Π1 and Π2. The
color blue makes reference to Λ0 (probabilistic invasion rate) and the red color makes reference to Λ0

(deterministic invasion rate). In each zone of this figure, the sign of the pair (Λ0,Γ0) is constant and is
plainly indicated by a pair of signs.

4.2 Comparison of the invasion rates in the two species case
We now have a qualitative discussion on the behavior of the invasion rates when two species are introduced
in our models. Recall that it is assumed here that R1

0 = R2
0.

Theorem 4.5. The invariant measure µw of (Zt) restricted to M0,w is unique. The invasion rates Λu
and Λv are computable and there explicit expressions are given by:

Λw =
∫
hw(x)gw(x)eλHw(x)dx∫
gw(x)eλHw(x)dx

.

Where:

hw(x) = (f2
w(R0 − x)− δ2)|f1

w(R0 − x)− δ1|+ (f1
w(R0 − x)− δ1)|f2

w(R0 − x)− δ2|
|f1
w(R0 − x)− δ1|+ |f2

w(R0 − x)− δ2|

gw(x) =
(
|f1
w(R0 − x)− δ1|+ |f2

w(R0 − x)− δ2|
) |f1

w(R0 − x)− δ1||f2
w(R0 − x)− δ2|

x

and

Hw(x) = −(ω1
wβ

1
w + ω2

wβ
2
w) log(x) + ω1

wα
1
w log

(
(b1
w +R0 − x)|f1

w(R0 − x)− δ1|
)

+ ω2
wα

2
w log

(
(b2
w +R0 − x)|f2

w(R0 − x)− δ2|
)
.

The constants are defined by:

γjw = λj

δj
Rjw

R0 −Rjw
, αjw = ajw

ajw − δj
, βjw = 1 + R0

bjw
, ω1

w = s

δj
R1
w

R0 −R1
w

, ω2
w = 1− s

δ2
Rjw

R0 −R2
w

.

Like for the theorem 4.1, the proof of this theorem is very computational and is postponed to the
last section. This expression for the probabilistic invasion rate is rather heavy but allows us to do some
simulations.

for the deterministic case, the invasion rates Γw is defined in 3.4 as the maximal eigenvalue of the
matrix Mw(Rw) which is defined in (14) and where Rw is the resource concentration at Ew. Though it is
possible to compute Rw (see section 5.2.1), the complexity of its expressions does not make it interesting
to give it formally. However its explicit expressions is used in the numerical simulations.
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Proposition 4.6. The behavior of the two models is the same for λ large enough.

lim
λ→+∞

Λw = lim
λ→+∞

Γw = (1− s)
(
f1
w(R∞w )− δ1)+ s

(
f2
w(R∞w )− δ2) .

where R∞w is the unique positive solution of the equation:

(1− s)
(
f1
w(R)− δ1)+ s

(
f2
w(R)− δ2) = 0.

The behavior of the two models is not same for λ small enough:

lim
λ→0

Λw = (1− s)
(
f1
w(R1,∗

w )− δ1
)

+ s
(
f2
w(R2,∗

w )− δ2
)
,

lim
λ→0

Γw = max
(
f1
w(R1,∗

w )− δ1, f2
w(R2,∗

w )− δ2
)
.

where

Rj,∗w =
bjwδ

j

ajw − δj
is the solution of the equation f jw(R)− δj = 0.

Let us now compare the probabilistic and the deterministic dependance of the invasion rates with
respect to λ and s within the two models on particular example. In all the following figures, the blue
color is associated to the species u whereas the red color is associated to the species v. The different
couple of signs give the couple of signs of the invasion rates (Λu,Λv) in the probabilistic case and (Γu,Γv)
in the deterministic case.

Remark 4.7. In all the figure, the zeros level sets of Γw and Λw have the same vertical asymptotes since
the two models are described by the same averaged chemostat εs as λ→ +∞ and that εs satisfy the PEC.

a - Typical coexistence situation. b - Typical bistability sitation.

0 1

s

0

2

4

6

8

10

λ

(− , + )

( + , + )

( + , − )

Probabilistic model

0 1

s

0

2

4

6

8

10

(− , + )

λ

( + , − )

( + , + )

Deterministic model

0 5 10 15 20
0

δ 1

Vessel 1

0 5 10 15 20

R

0

δ 2

Vessel 2

0 1

s

10

20

30

40

50

60

λ

( + , − )(− , + )

(− , − )

Probabilistic model

0 1

s

10

20

30

40

50

60

( + , − )(− , + )
λ

(− , − )

( + , + )

Deterministic model

0 5 10 15 20
0

δ 1

Vessel 1

0 5 10 15 20

R

0

δ 2

Vessel 2

Figure 3: Both species is the best competor in one vessels. a - An appropriate averaged ratio between
the vessels leads coexistence (a1

u, a
2
u, a

1
v, a

2
v) = (4.2, 4, 2.1, 2), (b1

u, b
2
u, b

1
v, b

2
v) = (5, 5, 0.5, 0.5), (δ1, δ2) =

(1.9, 1.5) and R0 = 8. b - The role of species are reversed between the vessels. For the probabilistic model,
there is either exclusion or bistability. The same holds for the deterministic case, exept that small diffusion
permits coexistence. (a1

u, a
2
u, a

1
v, a

2
v) = (4.2, 2, 2.1, 4), (b1

u, b
2
u, b

1
v, b

2
v) = (5, 0.5, 0.5, 5), (δ1, δ2) = (1.7, 1.5)

and R0 = 8.

Remark 4.8. Numerically, the invasion rates Λw seem to have a monotonous behavior according to λ
just like in the case n = 1. Sadly the complexity of their expressions does not allow us to prove it. We
will conjecture it. Under this conjecture, we do not need the assumption Hw in the theorem 2.5.
Ours numerical examples shows that this is not the cases for the deterministic model, even for n = 1 (see
figure 2-a, 3-b and 4-b).
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a - Two vessels favorable to the species u. b -Odd bistability in the deterministic model.
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Figure 4: Two interesting situations. a - The two vessels are favorable to the same species. Depending on λ
and s, each situation may occurs for both models (extinction of u or v, exclusive bistability or coexistence).
(a1
u, a

2
u, a

1
v, a

2
v) = (3.5, 2.5, 1.25, 7), (b1

u, b
2
u, b

1
v, b

2
v) = (8.75, 0.125, 1.125, 3.75), (δ1, δ2) = (1, 2) and R0 = 7.

b - A situation like in figure 3-a with an odd bistable area in the deterministic model (the probabilistic
model behaves like the one figure 3-a). We show only the deterministic model and make a zoom on
the odd bistable area in a (+,−) area. This zone corresponds to the case 3-(b) in the theorem 3.6.
(a1
u, a

2
u, a

1
v, a

2
v) = (3.7, 3.6, 4.4, 2.5), (b1

u, b
2
u, b

1
v, b

2
v) = (1.55, 3.55, 3.6, 0.4), (δ1, δ2) = (2.5, 1.1) and R0 = 20.

4.3 Concluding remarks
Let us conclude on the similarities and differencies between the two models we studied in this chapter.
For each models we gave a definition of the invasion rates of the introduced species which depend only
on the parameters of the systems. Despite the differences of their mathematical nature, theorem 2.5 and
3.6 show that the long-time behaviors of the two models essentially depend on the signs of the invasion
rates. Hence, we compared the two models by comparing the behavior of the invasion rates according
to the parameters (s, λ) (where λ1 = sλ and λ2 = (1 − s)λ). In the probabilistic case, (λ1, λ2) are
the parameters of the Markov chain governing the switching between the environments whereas in the
deterministic case, (λ1, λ2) are the exchange parameters between the two vessels.

From the previous theorems and numerical simulations come the following similarities between the
two models:

• When the invasion rates are positive (resp. negative) for u and v, the probabilistic system and
the deterministic system are in a coexistence state (resp. bistable state). Moreover, we proved
numerically that it is possible to have bistability with two introduced species and two vessels. This
numerical result is similar to the result of [16] where they proved in their particular case (dilutions
rates and consumption functions not depending on the vessel, two introduced species) that at least
three vessels are needed for the existence of an unstable coexistence equilbrium.

• The limits of the invasion rates when λ goes to infinity are the same for both models. We saw that
the reason behind this result is the averaging phenomenon occuring when λ is large enough implying
that both systems behave like the averaged chemostat εs. Graphically, we see that the zero contour
lines of the invasion rates are really alike for λ large enough and have the same asymptote when λ
goes to infinity.

The main differences between our competition models are the following:

• In the probabilistic model, when the invasion rates have opposite signs, only one species survives,
the one with the positive invasion rate. However, in the deterministic model, when the invasion
rates have opposite signs, it is possible for the system to be in an “odd” bistable state where one of
the stable stationary equilibrium is a coexistence equilibrium an the other a semi-trivial solution.

14



• The most important difference between the two models occurs when λ is close to zero because the
limits of the invasion rates when λ goes to zero are different. We can interpret this difference by
the difference of nature between the two models when λ is very small. For the probabilistic model,
λ very small implies that the process follows for a very long time the flow of each chemostat ε1

and ε2 and the invasion rates measures the averaging of the behavior of each flows. But in the
deterministic case, when λ is very small, there are almost no exchanges between the two vessels
implying that the system almost behaves like two isolated chemostats with a very small diffusion
between them.

We give here a little discussion over the parameter restrictions we did on our models. First, note
that the most important parameters involved in the heterogenity of our two models are the quantities
Rjw which are the minimum resource quantities needed by species w to survive in the vessel j (when the
vessels are isolated). Recall that Rjw is solution of the equation:

f jw(R)− δjw = 0

where f jw are the consumption functions and δjw the dilution rates. As a consequence, allowing the
consumption functions or the dilution rates to depend on w and j is the easiest way to allow the parameters
Rjw to be different according to w and j.

Note that in the probabilistic model we had to assume that the ressource entries Rj0 are equal in
order to reduce the system and do some computations. But this hypothesis is not necessary in the
deterministic model where we claim that the computations are still possible. In fact, in [31], the authors
model the environment heterogeneity with a different resource input for each vessel, and thanks to this
heterogeneity, a coexistence stationary equilibrium may appear. In our case, we model the environment
heterogeneity by taking vessel dependant consumption functions and dilution rates.

In this paper, we decided that only the consumption functions will depend on w and j while the
dilution rates only depend on the vessel j. This hypothesis is crucial because it allows us to reduce the
systems of differential equations (thanks to the variable Σ) into a monotonous system, ultimately leading
to the long-time behavior theorems. However, it was not a natural choice in the deterministic model
because in the gradostat applications, the consumption functions do not depend on the vessels but only
on the species. As a consequence, this hypothesis took us away from the gradostat context (and its
application in the industry for example) to bring us in a more theoretical ecological study of the spatial
heterogeneity.

Nonetheless, the approach with the functions Fw and gw might lead to the obtention of the existence
and stability of the stationary equilibria of the gradostat-like model when the dilution rates also depend
on the species and can be the subject of some future work.

5 Mathematical proofs
5.1 Computation of the invariant measures in the probabilistic case
We show in this subsection how to compute the invariant measures announced in theorem 4.1 and 4.5.

5.1.1 Proof of the theorem 4.1

Proof. Recall that only one species is introduced in our system. The invasion rate Λ0
w is defined by:

Λ0
w =

∫ (
f1
w(R)− δ1) dµ0

w(R, 1) +
∫ (

f2
w(R)− δ2) dµ0

w(R, 2)

where µ0
w is an invariante measure of the process (Zt) restricted M0,w. On M0,w, (Zt) = (Rt, 0) satisfies:

Ṙt = δIt(RIt0 −Rt).

Its infinitesimal generator is given for any good functions f by:

Lf(r, i) = δi(Ri0 − r)f ′(r, i) + λ1(f(r, i)− f(r, i)).

It is clear that for t large enough, (Rt) belongs to [R1
0, R

2
0]. By compacity, there exists an invariant

measure for (Rt) and it is unique because the process is recurrent.
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The unique invariant measure µ0
w satisfies:

∀f,
∫
Lf(r, i)dµ0

w = 0. (15)

We search µ0
w of the shape µ0

w(dR, j) = ρj(R)1jdR. It gives in 15:∫ R2
0

R1
0

(
δ1(R1

0 −R)f ′(R) + λ1(f(R, 2)− f(R, 1))
)
ρ1(R)dR+

∫ R2
0

R1
0

(
δ2(R2

0 −R)f ′(R) + λ2(f(R, 1)− f(R, 2))
)
ρ2(R)dR = 0.

(16)

Assume that f(x, j) = f(x). It gives in 16:∫ R2
0

R1
0

(
δ1(R1

0 −R)f ′(R)
)
ρ1(R)dR+

∫ R2
0

R1
0

(
δ2(R2

0 −R)f ′(R)
)
ρ2(R)dR = 0.

An integration by parts gives:[
δ1(R1

0 −R)f ′(R)ρ1(R)
]R2

0
R1

0
+
[
δ2(R2

0 −R)f ′(R)ρ2(R)
]R2

0
R1

0

−
∫ R2

0

R1
0

f(x)
(
(δ1(R1

0 −R)ρ1(R))′ + (δ2(R2
0 −R)ρ2(R))′

)
dR = 0.

it seems “natural” that ρj(Rj0) = 0 according to the dynamics of the process (Rt, It). Assuming this, a
classic density argument gives:

δ1(R1
0 −R)ρ1(R) + δ2(R2 −R)ρ2(R) = K.

From ρj(Rj0) = 0 we have K = 0 which yields:

δ1(R1
0 −R)ρ1(R) + δ2(R2 −R)ρ2(R) = 0. (17)

Now, assume that f(R, 1) = f(R) and f(R, 2) = 0. Plugging this in 16 gives after an integration by
parts: ∫ R2

0

R1
0

f(R)
(
−(δ1(R1

0 −R)ρ1(R))′ − λ1ρ1(R) + λ2ρ2(R)
)
dR.

By the same density argument as before, we obtain

−(δ1(R1
0 −R)ρ1(R))′ − λ1ρ1(R) + λ2ρ2(R) = 0

that is
−δ1(R1

0 −R)ρ′1(R) + δ1ρ1(R)− λ1ρ1(R) + λ2ρ2(R) = 0.

Equation 17 gives:

ρ2(R) = δ1(R−R1
0)

δ2(R2 −R)ρ
1(R).

As a consequence, ρ1 satisfies the differential equation:

ρ′1(R) + ρ1(R)
(

1
R−R1

0
− λ1

δ1(R−R1
0) + λ2

δ2(R2
0 −R)

)
= 0. (18)

Solving 18 gives the explicit expression for ρ1:

ρ1(R) = C(R−R1
0)

λ1
δ1 −1(R2

0 −R)
λ2
δ2 .

Hence,

ρ2(R) = C
δ1

δ2 (R−R1
0)

λ1
δ1 (R2

0 −R)
λ2
δ2 −1,

16



where C is a constant. The value of C is determined by the fact that µ is a probability measure:∫ R2
0

R1
0

ρ1(R)dR+
∫ R2

0

R1
0

ρ2(R)dR = 1.

As a consequence:

C

∫ R2
0

R1
0

(
(R−R1

0)
λ1
δ1 −1(R2

0 −R)
λ2
δ2 + δ1

δ2 (R−R1
0)

λ1
δ1 (R2

0 −R)
λ2
δ2 −1

)
dR = 1.

This explicit expression of µ0
w allows us to compute Λ0

w:

Λ0
w = Cδ2

∫ R2
0

R1
0

(f1
w(R)−δ1)(R−R1

0)
λ1
δ1 −1(R2

0−R)
λ2
δ2 dR+Cδ1

∫ R2
0

R1
0

(f2
w(R)−δ2)(R−R1

0)
λ1
δ1 (R2

0−R)
λ2
δ2 −1dR

Set x = R−R1
0

R2
0−R1

0
, γj = λj

δj and gjw(x) = f jw((R2
0 −R1

0)x+R1
0), we obtain

Λ0
w = C(R2

0 −R1
0)γ

1+γ2
∫ 1

0

[
δ2(g1

w(x)− δ1)(1− x) + δ1(g2
w(x)− δ2)x

]
xγ

1−1(1− x)γ
2−1dx

One can recognize a part of the density of the Beta law of parameters (γ1, γ2). Using the same variable
change for the expression of C and some classical properties of the beta function (like B(x, y) = B(y, x)
and B(x, y + 1) = y

x+yB(x, y)), the expression of Λ becomes:

Λ0
w = γ1 + γ2

λ1 + λ2

∫ 1

0

[
δ2(g1

w(x)− δ1)(1− x) + δ1(g2
w(x)− δ2)x

] xγ1−1(1− x)γ2−1

B(γ1, γ2) dx

Set Φ(x) = δ2(g1
w(x)− δ1)(1− x) + δ1(g2

w(x)− δ2)x, then:

Λ0
w = γ1 + γ2

λ1 + λ2E [Φ(B)] (19)

where B is a random variable following a Beta law of parameter (γ1, γ2).

Remark 5.1. The proof for theorem 4.5 uses the same idea except that it requires more heavy computa-
tions. We omit it for the sake of readability of this article.

5.1.2 Proof of the proposition 4.2

Our expression of the invasion rate is similar to the one the authors of [25] obtained for the invasion rates
defined in the Lotka-Volterra switching system introduced in [2]. In order to study the invasion rate they
use the following property:

Proposition 5.2. (Convex order between Beta laws). Assume that X and X ′ are two random variables
following Beta laws of parameters (a, b) and (a′, b′). If a < a′, b < b′ and a

a+b = a′

a′+b′ then for any convex
function φ:

E[φ(X ′)] ≤ E[φ(X)].

We will use this proposition in order to prove the following proposition:

Proposition 5.3. The invasion rate Λ0
w is monotone acording to the variable λ.

Proof. We proved that:

Λ0
w = γ1 + γ2

λ1 + λ2E [Φ(B)] .

Recall that γ1(s, λ) = sλ
δ1 and γ2(s, λ) = (1−s)λ

δ2 . Proposition 5.2 ensures that if B and B′ are random
variables following Beta law of parameters (γ1(s, λ), γ2(s, λ)) and (γ1(s, λ′), γ2(s, λ′)) with λ < λ′ then
for any convex function φ:

E[φ(B′)] ≤ E[φ(B)].

17



As a consequence, establishing the convexity (or concavity) of the function Φ can give the monotonicity
of Λ according to the global switching rate λ.

Recall that:

Φ(x) = δ2(1− x)
(
f1
w

(
(R2

0 −R1
0)x+R1

0
)
− δ1)+ δ1x

(
f2
w

(
(R2

0 −R1
0)x+R1

0
)
− δ2) .

Here the convexity (or concavity) of Φ is not clear and will be checked by straight computation. Set
αj = ajw

δj , β
j = bjw

R2
0−R1

0
and r = R1

0
R2

0−R1
0
. It comes:

Φ(x) = δ1δ2
(

(1− x)
(
α1(x+ r)
β1 + x+ r

− 1
)

+ x

(
α2(x+ r)
β2 + x+ r

− 1
))

.

Set t = x+ r (t ∈ [r, 1 + r]). It comes:

g(t) = Φ(t)
δ1δ2 = (1 + r − t)

(
α1t

β1 + t
− 1
)

+ (t− r)
(

α2t

β2 + t
− 1
)
.

A straight forward computation gives the derivatives of g:

g′(t) = (1 + r − t) α1β1

(t+ β1)2 −
α1t

β1 + t
+ (t− r) α2β2

(t+ β2)2 + α2t

β2 + t

and
g′′(t)

2 = −α
1β1(1 + r + β1)(t+ β1)3 + α2β2(r + β2)(t+ β1)3

(t+ β1)3(t+ β2)3 .

Set L1 = α1β1(1 + r + β1) and L2 = α2β2. It comes:

h(t) = g′′(t)
2 (t+ β1)3(t+ β2)3

= (L2 − L1)t3 + 3
(
β1L2 − β2L1) t2 + 3

(
(β1)2L2 − (β2)2L1) t+ (β1)3L2 − (β2)3L1.

Set L = L2

L1 and β = β1

β2 , it comes:

h(t) = (β2)3

(
(L− 1)

(
t

β

)3
+ 3(Lβ − 1)

(
t

β

)2
+ 3(L(β)2 − 1)

(
t

β

)
+ L(β)3 − 1

)
.

The study of the polynomial P = (L − 1)X3 + 3(Lβ − 1)X2 + 3(L(β)2 − 1)X + L(β)3 − 1 will give the
sign of the second derivative of Φ.

Lemma 5.4. P has a unique root on R and its expression is:

X0 =
∣∣∣∣β − 1
L− 1

∣∣∣∣ (−L 1
3 − L 2

3

)
− Lβ − 1

L− 1 .

Moreover, X0 < 0.

Proof. This result is proven by a computation of the roots of the polynomial P . It comes that P has a
unique root and it is negative.

It comes from this previous lemma that the second derivative of Φ has a constant sign on [0, 1] implying
that Φ is either convex or concave on [0, 1]. So Λ0

w is monotonous according to 5.2.

5.2 Proof of the results for the deterministic model
5.2.1 A graphical caracterisation of the equilibria and their stability

In this section, we construct a graphical approach in the plan (R1, R2) which contains all the information
about the non negative stationary solution and their stability. This approach is based on the construction
of four functions Fw and gw, w ∈ {u, v} described below.

For the sake of simplicity we set

Xj
w(Rj) = f jw(Rj)− δj . (20)

18



Any non-negative stationary equilibrium (U, V ) of the differential equation (9) are solution of the
system (13): {

Au(R)U = 0
Av(R)V = 0

(21)

where, according to remark 1.2, we have R = R0 − U − V ∈ [0, R0] and the matrices Aw(R) are defined
by

Aw(R) =
(
X1
w(R)− λ1 λ1

λ2 X2
w(R)− λ2

)
.

Recall that for any w ∈ {u, v}, we note W ∈ {U, V } the concentration of the species w. If W 6=
(

0
0

)
in (21), it implies that det (Aw(R)) = 0 which reads explicitly:(

X1
w(R1)− λ1) (X2

w(R2)− λ2) = λ1λ2. (22)

It follows that the set of points (R1, R2) for which the species w may survive is a one dimensional curve.
It appears that this curve is the graph of a decreasing function Fw defined on a domain Dw:

(R1, R2) verifies (22) ⇔ R1 ∈ Dw and R2 = Fw(R1).

Moreover, these functions Fw may be explicitly computed as it is stated in the proposition 5.5.

Proposition 5.5. Let w ∈ {u, v} and g : x 7→ g(x) = λ2 + λ1λ2

x−λ1 . Define:

Dw = {r ∈ [0, R0], X1
w(r)− λ1 < 0} and Fw =

(
X2
w

)−1 ◦ g ◦X1
w.

Now, suppose that there exists a non-negative solution (U, V ) of (21) such that W ∈ {U, V } is non
zero. Then

R1 ∈ Dw and R2 = Fw(R1)

Remark 5.6. The functions Xj
w being increasing and the function g being decreasing, the identity X2

w ◦
Fw = g ◦ X1

w implies that the functions Fw are strictly decreasing on their definition set. Moreover it
exists (m1

w,m
2
w,m

3
w,m

4
w) ∈ R4 such that:

Fw(x) = m1
wx+m2

w

m3
wx+m4

w

.

The explicit formula of these parameters is useful in order to obtain numerical examples but it is not
needed in the theoretical purpose, hence, we then omit it.

Proof. First, assume that there exists a non-negative stationary equilibrium (U, V ). The resource con-
centration is given by R = R0 − U − V . Then, for W ∈ {U, V } non zero we have:

Aw(R)W = 0. (23)

With this notation, (23) reads {(
X1
w(R1)− λ1)W 1 + λ1W 2 = 0

λ2W 1 +
(
X2
w(R2)− λ2)W 2 = 0.

(24)

Since W 1 ≥ 0 and W 2 ≥ 0, we obtain W 1 > 0 and W 2 > 0 which yields:(
X1
w(R1

u)− λ1) < 0.

Moreover, (24) implies that 0 is an eigenvalue of Aw(R) implying that det (Aw(R)) = 0 which reads
explicitly: (

X1
w(R1)− λ1) (X2

w(R2)− λ2) = λ1λ2 (25)

Finally, we define
Dw = {r > 0, X1

w(r)− λ1 < 0}
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and the function Fw such that:(
X1
w(R1)− λ1) (X2

w(Fw(R1))− λ2) = λ1λ2

The function X2
w being injective, the function Fw reads shortly :

Fw =
(
X2
w

)−1 ◦ g ◦X1
w

wherein we have set the function g as:

g(x) = λ2 + λ1λ2

x− λ1 .

At this step, we see that it is necessary that R = (R1, R2) belongs to the graph Cw = {(r, Fw(r)), r ∈
Dw} for the species w ∈ {u, v} to survive. But this is not a sufficient condition. Indeed, the definition of
the functions Fw correspond to the fact that 0 is an eigenvalue4 of the matrix Aw(R).

The analysis of the corresponding eigenvector will give us sufficient conditions for a point of the curve
to be a semi-trivial equilibrium (proposition 5.8) or a coexistence equilibrium (proposition 5.10).

For instance, assume that (U, V ) is a non-negative equilibrium of (21). If W ∈ {U, V }) is non zero,
then R = (R1, R2) ∈ Cw and W is a positive eigenvectors of the matrix Aw(R) for the eigenvalue 0. It
follows that there exists some scalar µw > 0 such that:

W = µw

(
λ1

−(X1
w(R1)− λ1)

)
. (26)

In the case of the semi-trivial solution, we have
(
R1

R2

)
= R = R0 −W and it comes that:

R2 = R0 + 1
λ1 (R0 −R1)

(
X1
w(R1)− λ1) .

This leadd us to define, for w ∈ {u, v}, the functions gw (defined on Dw) by:

gw(r) = R0 + 1
λ1 (R0 − r)

(
X1
u(r)− λ1) .

Lemma 5.7. Let w ∈ {u, v}. The function gw is increasing on the set Dw. Moreover, if the semi-trivial

stationary equilibrium Ew exists then the resource concentration Rw =
(
R1
w

R2
w

)
associated to Ew satisfies

gw(R1
w) = R2

w.

Proof. The fact that gw(R1
w) = R2

w follows from the very definition of gw. A direct computation gives

g′w(r) = −X
1
w(r)− λ1

λ1 + (R0 − r)
X1′
w (r)
λ1 .

Since X1
w(r)− λ1 < 0 for r ∈ Dw, it comes that gw is increasing on Dw.

We can now state the graphical characterization of the semi-trivial solution.

Proposition 5.8. Let w ∈ {u, v}. The semi-trivial solution Ew exists if and only if there exists R1
w ∈ Dw

such that Fw(R1
w) = gw(R1

w) := R2
w. In that case Ew is unique and the resource concentration at Ew is

Rw = (R1
w, R

2
w).

Proof. The characterization of Rw is a direct consequence of the proposition 5.5 and the lemma 5.7. The
uniqueness follows from the fact that r 7→ gw − Fw is increasing on Dw.

4Indeed, on Dw the eigenvalue 0 is the principal eigenvalue of Aw(R), and by the Perron-Frobenius theorem, it is
associated to a positive eigenvector which is nothing but U .

20



Now, let us study the case of the coexistence stationary equilibrium. From the proposition 5.5, if there
exists a coexistence solution, that is a positive solution (Uc, Vc) to (21), then there exists R1

c ∈ Du ∩Dv

such that
Fu(R1

c) = Fv(R1
c) = R2

c .

According to remark 5.6, we obtain the following lemma.

Lemma 5.9. Suppose that Fu 6= Fv. Then there are at most two coexistence stationary equilibrium for
the gradostat.

There are at most two intersections between the curves of F1 and F2 but these intersections are not
necessarily associated to a positive solution of (21). Indeed, if Fu(R1) = Fv(R1) then the coefficients of
the eigenvectors are not necessarily of the same signs.

The following proposition gives a good location for an intersection between the curves of Fu and Fv
to be associated with an admissible stationary equilibrium solution of (21).

Proposition 5.10. Let Rc be an intersection between the curves of Fu and Fv. Rc is associated to an
admissible coexistence stationary equilibrium if and only if:(

R1
u −R1

v

) (
R2
u −R2

v

)
< 0,

and Rc is in the rectangle K defined as:

K = [min(R1
u, R

2
v),max(R1

u, R
1
v)]× [min(R2

u, R
1
v),max(R1

u, R
2
v)].

Proof. Let us define, for each semi-trivial equilibrium the following sets of [0, R0]2:

Kw = {(R1, R2) ∈ [0, R0]2,
(
R1
w −R1) (R2

w −R2) < 0}.

We first prove that any intersection Rc between the curves of Fu and Fv is in Ku ∩Kv. Recall that
Rw is the associated resource concentration for the stationary equilibrium Ew. According to (23), Rc is
associated to a stationary coexistence equilibrium only if det(Au(Rc)) = 0 and det(Av(Rc)) = 0. But we
also know that det(Au(Ru)) = 0 and det(Av(Rv)) = 0 which finally implies that:(

X1
u(R1

c)− λ1) (X2
u(R2

c)− λ2) =
(
X1
u(R1

u)− λ1) (X2
u(R2

u)− λ2) ,(
X1
v (R1

c)− λ1) (X2
v (R2

c)− λ2) =
(
X1
v (R1

v)− λ1) (X2
v (R2

v)− λ2) .
The fact that the functions Xj

w(Rj)− λj are increasing gives us that necessarily Rc ∈ Ku ∩Kv.
From the equation (26) coupled to the fact that Rc = R0 − Uc − Vc, it comes that the values of the

concentration (Uc, Vc) associated to Rc are given by:

Uc = µu

(
λ1

−(X1
u(R1

c)− λ1)

)
and Vc = µv

(
λ1

−(X1
v (R1

c)− λ1)

)
(27)

where the coefficients µu and µv are given by:

µw = 1
X1
w(R1

c)−X1
w(R1

c)
(
gw(R1

c)−R2
c

)
.

We know that X1
w(R1

c) − λ1 < 0 for each i. As a consequence, (Uc, Vc) is an admissible coexistence
stationary equilibrium if and only if µu > 0 and µv > 0. Hence, if Rc is associated to an admissible
coexistence stationary equilbrium, we have:

min
(
gu(R1

c), gv(R1
c)
)
≤ R2

c ≤ max
(
gu(R1

c), gv(R1
c)
)
.

Consequently, Rc is associated to an admissible equilibrium if and only if,

Rc ∈ Θ = Ku ∩Kv ∩
{

(R1, R2) ∈ [0, R0]2, min
(
gu(R1), gv(R1)

)
≤ R2 ≤ max

(
gu(R1), gv(R1)

)}
(28)

Recall that the functions gw are defined by:

gw(R) = R0 + (R0 −R)X
1
w(R)− λ1

λ1 .
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We just saw that if Rc is associated to an admissible coexistence stationary equilibrium, then Rc ∈ Θ (it
is the condition (28)). Consequently, properties on the functions gw allows the following statements:

If
(
R1
u −R1

v

) (
R2
u −R2

v

)
> 0, it can be checked that Θ = ∅, implying that Rc does not exist.

If
(
R1
u −R1

v

) (
R2
u −R2

v

)
< 0, then Θ ⊂ K where K is the rectangle defined by:

K = [min(R1
u, R

2
v),max(R1

u, R
1
v)]× [min(R2

u, R
1
v),max(R1

u, R
2
v)].

Corollary 5.11. Assume that Rc is associated to an admissible coexistence stationary equilibrium. Then:

R1
u < R1

v ⇔ X1
u(R1

c) > X1
v (R1

c).

Proof. Assume that R1
u < R2

v. Proposition 5.10 implies that R2
u > R2

v. The functions gw are increasing
on the set [R1

u, R
2
v] and gu(R1

1) > gv(R1
2) because gw(R1

w) = R2
w. As a consequence,

gv(R1
c) < R2

c < gu(R1
c).

In the proof of the proposition 5.10, we calculated the coexistence stationary equilibrium associated to
Rc and found out that Uc and Vc satisfy (26) where

µw = 1
X1
w(R1

c)−X1
w(R1

c)
(
gw(R1

c)−R2
c

)
.

Since Uc > 0 and Vc > 0, we have µu > 0 and µv > 0 which yields X1
u(R1

c) > X1
v (R1

c).

To summarize, we can tell if an intersection Rc between the curves of Fu and Fv is associated to an
admissible coexistence stationary equilibrium. Now, we state a criteria for the existence of coexistence
stationary equilibrium according to the stability of the semi-trivial equilibrium Eu and Ev.

Proposition 5.12. The semi-trivial equilibrium Ew is stable if and only if Fw(R1
w) > R2

w.

Proof. The stability of Ew can be read on the Jacobian of H evaluated in Ew. For sake of simplicity we
give the proof for Eu. A straightforward computation gives:

DH(U, 0) =
(
A B
0 C

)
where,

A =
(
X1
u(R1

u)− λ1 − U1f1′
u (R1

u) λ1

λ2 X2
u(R2

u)− λ2 − U2f2′
u (R2

u)

)
and

C =
(
X1
v (R1

u)− λ1 λ1

λ2 X2
v (R2

u)− λ2

)
.

Using the facts that (
X1
u(R1

u)− λ1) (X2
u(R2

u)− λ2) = λ1λ2,

and Xi
u(Riu)−λi < 0, a simple computation shows that the real part of the eigenvectors of A are negative.

As a consequence, Eu is stable if and only if the eigenvectors of C have negative real part which gives
the announced inequality (recall that Fv = (X2

v )−1 ◦ g ◦X1
v and g(x) = λ2 + λ1λ2x

x−λ1 ).

5.2.2 Proof of the theorem 3.6

Proof. Let us assume that R1
u < R1

v. The existence of coexistence stationary equilibrium is a simple
consequence of proposition 5.12 and the intermediate value theorem. Let us prove it if Eu and Ev are
both stable, then according to proposition 5.12, Fw(R1

w) > R2
w for each i. Since R2

w = Fw(R1
w), it comes

that:
Fu(R1

v)− Fv(R1
v) > 0 and Fv(R1

u)− Fu(R1
u) > 0.

Hence, the intermediate value theorem implies that Fu and Fv have an odd number of intersections.
According to proposition 5.9, there are at most two intersections between the curves of Fu and Fv. As a
consequence there exists a unique R1

c ∈ [R1
u, R

1
v] such that Fu(R1

c) = Fv(R1
c). Since the functions Fw are

decreasing, one can check that R2
u > R2

v and that R2
c ∈ [R2

v, R
2
u]. Hence, proposition 5.10 implies that
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Rc is associated to an admissible coexistence stationary equilibrium. Figure 1 comes as an illustration
for this statement.

The stability of the coexistence stationary equilibrium is more difficult to obtain. The jacobian of H
evaluated in (Uc, Vc) reads:

DH(Uc, Vc) =


X1
u − λ1 − β1

u λ1 −β1
u 0

λ2 X2
u − λ2 − β2

u 0 −β2
u

−β1
v 0 X1

v − λ1 − β1
v λ1

0 −β2
v λ2 X2

v − λ2 − β2
v


where:

Xj
w = f jw(Rjc)− δj < 0 and βjw = U j,cw f j′w (Rjc) > 0.

Note that DH(Uc, Vc) is an irreducible matrix and it can be written:

DH(Uc, Vc) =
(
A B
C D

)
,

where A and D are irreducible square matrices with positive off diagonal elements and B and C are
diagonal matrix with negative diagonal elements.

Let s(DH(Uc, Vc)) be the maximum real part of the eigenvalues of DH(Uc, Vc). Following [31], we
now use a very strong following property dealing with these kind of matrices (which can be found in [4]):
Defined

DH(Uc, Vc) =
(
A −B
−C D

)
.

Then s(DH(Uc, Vc)) < 0 if and only if (−1)kdk > 0 for k ∈ {1, 2, 3, 4}, where di is the i-th principal
minor of DH(Uc, Vc).

As a consequence, the signs of d1, d2, d3 and d4 characterize the stability of DH(Uc, Vc). Firstly, we
have d1 = X1

u − λ1 − β1
u < 0. Next, we have:

d2 =
∣∣∣∣X1

u − λ1 − β1
u λ1

λ2 X2
u − λ2 − β2

u

∣∣∣∣ = −β1
u(X2

u − λ2)− β2
u(X1

u − λ1) + β1
uβ

2
u > 0.

An other straightforward computation gives:

d3 =

∣∣∣∣∣∣
X1
u − λ1 − β1

u λ1 β1
u

λ2 X2
u − λ2 − β2

u 0
β1
v 0 X1

v − λ1 − β1
v

∣∣∣∣∣∣
= −β1

uβ
1
v(X2

u − λ2 − β2
u) + (X1

v − β1
v − λ1)d2

= −β1
u(X2

u − λ2)(X1
v − λ1)− β2

u(X1
u − λ1)(X1

v − λ1) + β1
uβ

2
u(X1

v − λ1) + β2
uβ

1
v(X1

u − λ1) < 0

Obtaining the sign of d4 requires heavy computations. A straight computation, similar to the one in
[31] gives:

Lemma 5.13.
d4 = µuµvλ

1λ2f2′
u f

1′
v

X1
u − λ1

X1
v − λ1

(
X2
u −X1

v

)(F ′u(R1
c)

F ′v(R1
c)
− 1
)
.

Proof. A straightforward computation gives:

d4 =

∣∣∣∣∣∣∣∣
X1
u − λ1 − β1

u λ1 β1
u 0

λ2 X2
u − λ2 − β2

u 0 β2
u

β1
v 0 X1

v − λ1 − β1
v λ1

0 β2
v λ2 X2

v − λ2 − β2
v

∣∣∣∣∣∣∣∣
= β2

vD1 − λ2D2 + (X2
v − λ2 − β2

v)d3

Where,

D1 =

∣∣∣∣∣∣
X1
u − λ1 − β1

u β1
u 0

λ2 0 β2
u

β1
v X1

v − λ1 − β1
v λ1

∣∣∣∣∣∣
= −β2

u(X1
u − λ1)(X1

v − λ1) + β2
uβ

1
u(X1

v − λ1) + β2
uβ

1
v(X1

u − λ1)− β11λ1λ2
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and,

D2 =

∣∣∣∣∣∣
X1
u − λ1 − β1

u λ1 0
λ2 X2

u − λ2 − β2
u β2

u

β1
v 0 λ1

∣∣∣∣∣∣
= −λ1β1

u(X2
u − λ2)− λ1β2

u(X1
u − λ1) + λ1β1

uβ
2
u + λ1β2

uβ
1
v .

By making good use of the relation (X1
w − λ1)(X2

w − λ2) = λ1λ2, one can check that:

d4 = β1
uβ

2
v

[(
X2
u − λ2) (X1

v − λ1)− λ1λ2]+ β2
uβ

1
v

[(
X1
u − λ1) (X2

v − λ2)− λ1λ2] .
From (X1

w − λ1)(X2
w − λ2) = λ1λ2, we infer

d4 =
(
X1
v −X1

u

) (
β1
uβ

2
v

(
X2
u − λ2)− β2

uβ
1
v

(
X2
v − λ2)) .

Recall that βjw = U j,cw f j′w (Rjc). According to proposition 27,

Wc = µw

(
λ1

−(X1
w − λ1)

)
.

and the coefficients µw are positive. From this relation comes that:

β1
uβ

2
v = −µuµv(X1

v − λ1)f1′
u (R1

c)f2′
v (R2

c) and β2
uβ

1
v = −µuµv(X1

u − λ1)f2′
u (R2

c)f1′
v (R1

c).

For the sake of simplicity we will note f j′w for f j′w (Rjc). It comes:

d4 = µuµv(X1
u −X1

v )
(
f1′
u f

2′
v

(
X2
u − λ2) (X1

v − λ1)− f2′
u f

1′
v

(
X1
u − λ1) (X2

v − λ2)) .
Using once again the relation (X1

w − λ1)(X2
w − λ2) = λ1λ2 gives:

d4 = µuµvλ
1λ2X

1
v − λ1

X1
u − λ1 f

2′
u f

1′
v

(
X2
u −X1

v

)(f1′
u f

2′
v

f2′
u f

1′
v

−
(
X1
u − λ1

X1
v − λ1

)2)
.

We are going to express the derivatives of the functions f jw using the functions Fw. It starts from a
realtion we already proved:

(X1
w(R1)− λ1)(X2

w(R2)− λ2) = λ1λ2 ⇔ R2 = Fw(R1).

It comes that:
(X1

w(R1)− λ1)(X2
w(F (R1))− λ2) = λ1λ2.

Derivating by R1 gives:
f1′
w (R1)

f j′w (Fw(R1))
= −F ′w(R1) X1

w(R1)− λ1

X2
w(Fw(R1))− λ2 .

Since R2
c = F1(R1

c) = F2(R1
c) it comes that:

f1′
u f

2′
v

f2′
u f

1′
v

= F ′1(R1
c)

F ′2(R1
c)

(
X1
u − λ1

X1
v − λ1

)2

.

Hence,

d4 = µuµvλ
1λ2f2′

u f
1′
v

X1
u − λ1

X1
v − λ1

(
X2
u −X1

v

)(F ′u(R1
c)

F ′v(R1
c)
− 1
)
.

As a direct consequence, the sign of d4 is given by the sign of the quantity:

sign(d4) =
(
X2
u −X1

v

)(F ′u(R1
c)

F ′v(R1
c)
− 1
)
.

Moreover corollary 5.11 gives us a better understanding of this sign:

sign(d4) =
(
R1
v −R1

u

)(F ′u(R1
c)

F ′v(R1
c)
− 1
)
.
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Let us assume that R1
v − R1

u > 0 (the proof is the same if we suppose that R1
v − R1

u < 0). We will now
show how the stability of the semi-trivial equilibrium Eu and Ev influence the stability of the coexistence
stationary equilibrium when it exists.

If Eu and Ev are stable, then according to proposition 5.12, we have:

Fu(R1
v)− Fv(R1

v) > 0 and Fv(R1
u)− Fu(R1

u) > 0.

And we already know that there exists a unique intersection between the curves of Fu and Fv in the
interval [R1

u, R
1
v]. A simple analytic consequence of these facts is that F ′v(R1

c) < F ′u(R1
c) and since the

functions Fw are decreasing it comes that:

F ′u(R1
c)

F ′v(R1
c)
− 1 < 0.

Thus d4 < 0 which implies that the unique coexistence equilibrium is unstable.
This reasoning also proves the stability property of the coexistence stationary equilibrium in the other

cases which concludes the proof.
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