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We used a Contact Dynamics algorithnt to investigate some of the statistical properties of 
the contact network in quasistatically driven assemblies of rigid particles containing from 
500 to 4000 particles in two dimensions. We found that the contact network at every stage 
of deformation is composed of two complementary subnetworks: a "strong" percolating 
subnetwork of the contacts carrying a force larger than the mean force ( containing about 
40% of contacts), and a "weak" subnetwork of the contacts carrying a force lower than 
the mean force. In the strong subnetwork, all contacts are nonsliding and the probability 
distribution of forces is well fitted by an exponential decay. Almost the whole dissipation 
takes place inside the weak subnetwork, where the number of forces decays as a power­
law. The weak subnetwork contributes only to the mean pressure (about 25%), whereas 
the strong subnetwork takes over the whole deviatoric load. The strong subnetwork 
bears the primary anisotropy induced by shear with the same orientation as the stress 
tensor, but it gives rise to a secondary anisotropy inside the weak subnetwork with an 
orientation orthogonal to that of the stress tensor. 

1 Introduction 

Photoelastic visualizations provide a direct evidence for the heterogeneous distri­
bution of contact forces in dense granular systems (see Fig. 1),1 with the following 
qualitative features: 

l. Contact-to-contact fluctuations over several orders of magnitude,
2. Correlations on a scale far larger than the particle size,
3. Rapid reorganization during deformation.
Micromechanical modeling of granular materials in the dense regime involves a

quantitative characterization of both statistical distributions and spatio-temporal 
correlations of internai variables on the scale of these heterogeneities.2 The necessity 
of considering such a detailed microscopie study has been frequently observed since 
Coulomb, who introduced the first phenomenological concepts in the field.3 Recently, 
a significant effort has been made in this direction through experiments;4•5 ,

6
,
7 nu­

merical simulations�·9 •
10

,
11 and theoretical modeling.12

•
13

•
14

•
15 This effort isjustified 

regarding the fact that the statistical distributions of internai mechanical variables 
are quite large.11 This means that the mean quantities, commonly used to mode! 
the quasistatic deformation of granular media, provide only a marginal information. 

In this paper, on the basis of numerical results from simulations of a few thou­
sands of particles in two dimensions, we show that the organization of these variables 
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Figure 1: Contact forèes in· a sheared assembly of d.isks, visualized using the photoelastic effect, 
and encoded as widths of intercenter segments [Drescher and de Josselin de Jong, 1972]. 

has a basic bimodal character, which is also reflected in the structure of the stress 
tensor. We will first briefl.y introduce the simulation method. Then, we will focus 
successively on force distributions, stress tensor, induced anisotropy, and dissipa­
tion. 

2 Simulation method 

A numerical simulation of a densely-packed system has to tackle a multicontact 

problem. Every collision in such a medium is a multiple collision that cannot be 
reduced to a set of independent binary collisions since impulsions propagate through 
the contact network and may even leave the system. In the same way, the frictional 
resistance to shear is a collective phenomenon involving the mobilization of friction 
at kinematically correlated contacts. Another basic problem is that the contact laws 
are strongly nonlinear. In the approximation of perfectly rigid particles, the normal 
force at a contact is not given locally as a fonction of the relative displacement of 
two particles, but rather as a result of the global geometrical configuration of the 
whole system and the boundary conditions. Furthermore, the basic Coulomb's law 
of friction is nonsmooth in the sense that the relation between the relative tangential 
velocity and the friction force cannot be represented as a mathematical fonction. 

The Contact Dynamics (CD) method, which was used for the investigations 
reported in this paper, takes these features into account on a mathematical ha.sis 
derived from Convex Analysis.16

•
17 On one hand, the conditions of perfect rigidity

and exact Coulombian friction are implemented with no resort to any regularization. 
On the other hand, all kinematic constraints are simultaneously taken into account, 
together with the equations of dynamics, in order to determine contact forces and 
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Figure 2: Normal components of the contact forces in sample A (see text) encoded both as the 
widths of intercenter connecting segments and by the color intensity. 
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particle velocities in the system. The method is thus able to deal properly with the 

nonlocal character of the momentum transfers in the contact network. 
Let us underline here the point t.hat dynamics is an essential ingredient of 

this approach. It is well known that a granular system at static equilibrium is 
hyperstatic, i.e. for given boundary conditions there is a continuous set of possible 

contact forces. This is due both to the absence of an internai displacement field 
(because of perfect rigidity) and to the nonsmooth char acter of the friction Jaw .18 

In the CD method, the force network at static equilibrium is determined through 
the dynamic processes from which it relaxed. In other words, like in real granular 
systems, the static values of forces are reached asymptotically as the kinematic 
energy of the system is dissipated in friction and collisions. 

3 Force distributions 

Let us begin with the probability distribution PN of normal forces N independently 
of contact orientations. Numerical results will be presented here for three samples 

of 4012, 4025, and 4098 particles, referred to as samples A, B, and C. Particles 
are contained in a rectangular frame composed of two horizontal and two vertical 
rigid walls. Sample A is biaxially compressed by allowing the inward motion of a 
horizontal wall and by applying a confining Joad on a vertical wall free to move 

horizontally. Sample B is in relaxation towards static equilibrium under a confining 
load applied to a free wall. Sample C is in static equilibrium under confining loads. 
The acceleration of gravity and the particle-wall coefficients of friction are set to 
zero. The interparticle coefficient of friction is 0.5 in samples A and C, and 0.2 in 
sample B. In ail samples, the particle radii are uniformly distributed between 3.8 
and 7.5 mm. 

Fig. 2 displays the normal forces in sample A at an advanced stage of deforma-
tion. The force network is in very good qualitative agreement with optical images 
such as the one shown in Fig. l. Figs. 3( a) and 3(b) dis play the plot of PN on 
semilog and log-log scales in the three samples. In all cases, independently of the 

confining Joad, the normal forces lower than the mean normal force (N) have a 
power-law distribution, whereas the data for forces larger than (N) are well fitted 
by an exponential decay: 

PN oc { (�r
a 

e (J(l-N/(N)) N 

N 

< (N), 

> (N).
(1) 

Within the statistical precision, the values of exponents a and /3 depend only 
weakly on the mechanical parameters and the preparation conditions of each sample. 
In static equilibrium or in quasistatic deformation, the value of a is very close to 
zero. However, it seems that a increases with the degree of dynamics inside the 
system and decreases with the coordination number. Let us also remark that, since 

the mean value (N) separates the two parts of the distribution, a and /3 should 
be related together by the equation /32 

= (1 - a:)(2 - a), which is approximately 
satisfied in our simulations. 

As far as the distribution PT of the absolu te values of friction forces T is con-
cerned, we find a power Law decay for forces Lower than the mean friction force (T) 
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Figure 3: (a) Semilogarithmic, and (b) -log-log plots of the probability distribution PN o[ normal 
forces N. 

and a decreasing exponential fonction for friction forces higher than (T), as shown 
in Figs. 4( a) and 4(b). 

( (io} 
)-o'

e (3'(1-T/(T})

T 

T 

< (T), 

> (T).
(2) 

This distinction between the forces lower than the mean, to which we will refer 
as "weak" forces, and th ose larger than the mean, referred to as "strong" forces in 
the following, has a deep meaning, as we shall see below. Let us only mention here 
that the exponential distribution of strong forces does not seem to be a finite-size 
effect. In other words, a simple normalization of the forces with respect to the mean 
force allows the data to collapse almost on the same curve for samples of 500 to 
4000 particles.11 
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Figure 4: (a) Semilogaritlunic, and (b) log-log plots of the probability distribution PT of friction 
forces T. 

The exponential distribution of strong normal forces, has been observed in 
experiments.6•

7 Weak normal forces and friction forces at individual contacts are 
technically difficult to measure, and their distributions have not yet been observed 
experimentally. The power-law decay or the uniform distribution of weak forces, 
comprising nearly 60% of contacts, indicates that the weak forces are generat.ed 
through a self-similar branching process from strong forces. In contrast, the strong 
forces are conditionned by the level of the deviatoric Joad, which sets in effect a 
characteristic force different from the mean force. This point will become more 
clear by the study of the stress tensor. 
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Figure 5: Contributions of weak and strong contacts to the stress tensor in sample A at shear 

peak. 

4 Stress tensor 

The stress tensor is the relevant variable in transition to the continuous limit. In 
contrast to PN and PT , it in volves both the contact forces and the contact orienta­
tions according to the following classical formula!9 

(3) 

where n is the region inside the sample for which the stress tensor is calculated 
with a volume equal to V, !;° is the i-component of the force at the contact c, and d'j 
is the j-component of the intercenter vector cf. This equation allows to separate the 
contributions of weak and strong forces to the global stress tensor. The weak tensor 
<J"

w and the strong tensor <J"
s are given by the above equation when the summation 

is restricted to only weak contacts and only strong contacts, respectively. 
Among our samples, only sample A, due to its uniform stress field, provides 

enough statistics for the study of the stress tensor. Fig. 5 shows the orientations 
and the eigenvalues of <J"

w and Œ"' in sample A at shear peak, i.e. at the maximal 
value of q = �;+��, (q = 0.18), where Œ1 and Œ2 are the principal values of the 
total stress tensor <J" = <J"

w 
+ <J"

s
. We see that <J"

w is almost spherical and contributes 
no more than 3% to the deviatoric part of the total stress tensor Œ, whereas <J"

9 

represents almost the whole deviatoric load, and its major principal axis has the 
same orientation as that of the imposed deformation. 

The isotropie nature of the weak stress tensor indicates that the weak contacts 
feel the influence of the deviatoric load only as an average over ail directions. The 
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strong contacts directly support the deviatoric load, whose signature appears as a 
characterstic force in the exponential decay of strong forces. 

5 Iuduced auisotropy 

We now consider the distribution Pe of contact orientations. The anisotropie na­
ture of Pe has been extensively studied in the past.20

•
2 1

•
22

•
9

•
8 Here, we define two 

separate distributions P9 and Pê for weak and strong contacts, respectively. The 
polar diagrams of these distributions are shown in Fig. 6 for sample A at shear peak. 
We see that both distributions are anisotropie, although to a lesser extent in the 
weak subnetwork than in the strong one. The interesting behavior observed here is 
that the principal direction of Pê coïncides with that of the stress tensor, whereas 

the principal direction of P8 is orthogonal! This again confirms the bimodal na­
ture of the force network, and clearly shows the complementarity between the two 
subnetworks: The strong chains need "lateral" weak forces in order to be stabe. 
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Figure 6: Polar diagram of the distribution of contact orientations in weak and strong subnetworks. 

6 Dissipatiou 

Particle rotations constitute one of the difficult aspects of the micromechanics of 
granular materials in quasistatic deformation. The possibility of particles to roll 
over one another provides a very low-dissipative local mechanism of deformation, 
so that if each particle could roll over its neighbors, then a dense granular system 
would essentially behave like a liquid. However, in a quasistatically driven system, 
the particle rotations are generically frustrated, i.e. particles cannot move and 
rotate without sliding at some contacts in the medium. This gives rise to long­
range correlations with patterns that have been partially studied in the case of 
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Figure 7: Network of normal forces in sample A. Forces are encoded as the widths of intercenter 

segments. Weak and strong subnetworks are shown with two clifferent colors. The filled circles 
show the positions of slicling contacts. 
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regular packings.18
•

23 The question we would like to raise here is how the positions 
of sliding contacts in the contact network are correlated with the contact forces? 

The distinction between weak and strong subnetworks again provides a simple 
key to the problem. In F ig. 7, we have shown the two subnetworks with different 
colors and the positions of the sliding contacts. Only 8% of contacts are sliding, and 
a rapid inspection shows that almost all of them are on the weak subnetwork. In 
other words, ail strong contacts are nonsliding and all the dissipation takes within 
the weak subnetwork. This remarkably simple behavior of the sliding contacts 
with respect to the force subnetworks shows the dynamic nature of the bimodal 
distribution of forces. The strong subnetwork is completely unstable since ail its 
contacts are nonsliding. As a result, it tends to buckle under the action of the 
externat deviatoric load, giving rise to an orthogonal anisotropy and sliding contacts 
in the weak subnetwork. 

7 Conclusion 

The observations briefly presented above provide a consistent picture of the internai 
mechanical state of a granular packing in quasistatic deformation, at least in two 
dimensions. The contact network is composed of two complementary subnetworks: 

l. A "load-bearing" percolating subnetwork composed of strong contacts;
2. A "dissipative" subnetwork composed of weak contacts.
The strong subnetwork supports the whole deviatoric load applied on the sy­

stem, although it contains only nonsliding (nondissipative) contacts. The whole 
dissipation takes place inside the weak subnetwork. This implies that the scale of 
heterogeneity of a granular system due to sliding and nonsliding states of contacts 
is the same as that of the strong subnetwork. From the point of view of the stress 
tensor, the weak subnetwork behaves like an intersticial liquid, whereas the strong 
subnetwork has a solid-like behavior since it takes over the whole deviatoric load 
and thus the stability of the system. From the point of view of the fabric tensor (or 
contact orientations), the strong subnetwork bears the primary anisotropy induced 
by shear, but it gives rise to a secondary orthogonal anisotropy inside the weak 
subnetwork. 

This two-phase behavior of the force network opens new perspectives both for 
microscopie and macroscopic modeling of granular materials in quasistatic defor­
mation. Let us, however, recall that the analysis presented above concerns a two­
dimensional system. It is not obvious that it works in the same manner in three­
dimensional systems. In a two-dimensional packing, two oppositely-oriented arches 
of strong contacts may surround a region composed of weak contacts alone. This 
topological feature suggests a mechanism to explain the two-phase behavior in two­
dimensional systems. Nevertheless, there are reasons to believe that there is a more 
general mechanism relevant to three-dimensional systems too. 
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