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ABSTRACT: U sing Contact Dynamics simulations of quasistatically driven assemblies of rigid particles 
we show that the contact network at every stage of deformation is composed of two complementary 
subnetworks: a "strong" percolating subnetwork of the contacts carrying a force larger than the mean 
force, and a "weak" subnetwork of the. contacts carrying a force lower than the mean force. In the strong 
subnetwork, all contacts are nonsliding and forces have a decreasing exponential distribution. Almost 
the whole dissipation takes place inside the weak subnetwodc, where the number of normal forces decays 
as a power-law. The strong subnetwork supports all the deviatoric load, whereas the weak subnetwork 
contributes only to the mean pressure. The orientation of the induced anisotropy (major principal axis 
of the fabric tensor) in the strong subnetwork is the same as that of the stress tensor, but the orientation 
of the induced anisotropy in the weak subnetwork is orthogonal. 

1 INTRODUCTION 

The internal mechanical state of a random packing 
of noncohesive particles is doubly heterogeneous: 

1. Contact forces vary by several orders of ma­
gnitude on a scale far larger than the particle size 
(Dantu 1957, Liu et al. 1995); 

2. Frictional dissipation ( due to sliding) in qua­
sistatic deformation occurs only at a small fraction 
of contacts. 

Micromechanical modeling of granular materi­
als involves a quantitative characterization of both 
statistical distributions and spatio-temporal cor­
relations of internal variables on the scale of these 
heterogeneities. In this paper, on the basis of nu­
merical results from simulations of a few thousands 
of particles in two dimensions, we show that the 
organization of these variables has a basic bimodal 
char acter, which is also reflected in the structure 
of the stress tensor. We will first briefly intro­
duce the simulation method. Then, we will focus 
successively on force distributions, stress tensor, 
induced anisotropy, and dissipation. 

2 SIMULATION METHOD 

A numerical simulation of a densely-packed system 
has to tackle a multicontact problem. Every colli­
sion in such a medium is a multiple collision that 

cannot be reduced to a set of independent binary 
collisions since impulsions propagate through the 
contact network and may even leave the system. 
In the same way, the frictional resistance to shear 
is a collective phenomenon involving the mobili­
zation of friction at kinematically correlated con­
tacts. Another basic problem is that the contact 
laws are strongly nonlinear. In the approximation 
of perfectly rigid particles, the normal force at a 
contact is not given locally as a fonction of the 
relative displacement of two particles, but rather 
as a result of the global geometrical configuration 
of the whole system and the boundary conditions. 
Furthermore, the basic Coulomb's law of friction is 
nonsmooth in the sense that the relation between 
the relative tangential velocity and the friction 
force cannot be represented as a mathematical 
fonction. The Contact Dynamics (CD) method, 
which was used for the investigations reported in 
this paper, takes these features into account on a 
mathematical basis derived from Convex Analysis 
(Moreau 1994, Jean 1995). On one hand, the con­
ditions of perfect rigidity and exact Coulombian 
friction are implemented with no resort to any 
regularization. On the other hand, all kinematic 
constraints are simultaneously taken into account, 
together with the equations of dynamics, in order 
to determine contact forces and particle velocities 
in the system. The method is thus able to deal 
properly with the nonlocal character of the mo­
mentum transfers in the contact network. 
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Figure 1. ( a) Semilogarithmic, and (b

) 

log-log plots of the 
probability distribution PN of normal forces -N. 

3 FORCE DISTRIBUTIONS 

Let us begin with the probability distribution PN 

of normal forces N independently of contact orien­
tations. Numerical results will be presented here 
for three samples of 4012, 4025, and 4098 partic­
les, referred to as samples A, B, and C. Particles 
are contained in a rectangular frame composed of 
two horizontal and two vertical rigid walls. Sam­
ple A is biaxially compressed by allowing the in­
ward motion of a horizontal wall and by applying 
a confining load on a vertical wall free to move 
horizontally. Sample B is in relaxation towards 
static equilibrium under a confining load applied 
to a free wall. Sample C is in static equilibrium 
under confining loads. The acceleration of gravity 
and the particle-wall coefficients of friction are set 
to zero. The interparticle coefficient of friction is 
0.5 in samples A and C, and 0.2 in sample B. In 
all samples, the particle radii are uniformly distri­
buted between 3.8 and 7.5 mm. 

Figs. 1( a) and l(b) display the plot of PN on 
semilog and log-log scales in the three samples. In 
all cases, independently of the confining load, the 
normal forces lower than the mean normal force 
(N) have a power-law distribution, whereas the
data for forces larger than ( N) are well fitted by
an exponential decay:

{ ( N )-
(){

PN oc (N) 
e (3(1-N/(N)) 

N < (N), 

N > (N). 
(1) 

Within the statistical precision, the values of 
exponents a and (3 depend only weakly on the me­
chanical parameters and the preparation conditi­
ons of each sample. In static equilibrium or in qua­
sistatic deformation, the value of a is very close to 
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zero. However, it seems that a increases with the 
degree of dynamics inside the system and decreases 
with the coordination number. Let us also remark 
that, since the mean value (N) separates the two 
parts of the distribution, a and (3 should be related 
�ogether by the equation /32 = (l-a)(2-a), which 
1s approximately satisfied in our simulations. 

As far as the distribution Pr of the absolute 
values of friction forces T is concerned, we always 
find a power law decay for forces lower than the 
mean friction force (T) and a decreasing exponen­
tial fonction for friction forces higher than (T), 
as shown in Figs. 2(a) and 2(b). This distinction 
between the forces lower than the mean, to which 
we will refer as "weak" forces, and those larger 
than the mean, referred to as "strong" forces in 
the following, has a deep meaning, as we shall see 
below. Let us only mention here that the expo­
nential distribution of strong forces does not seem 
to be a finite-size effect. In other words, a sim­
ple normalization of the forces with respect to the 
mean force allows the data to collapse almost on 
the same curve (Radjai et al. 1996). 

The exponential distribution of strong normal 
forces, has been observed in experiments (Liu et 
al. 1995, Miller et al. 1996). Weak normal forces 
and friction forces at individual contacts are tech­
nically difficult to measure, and their distributions 
have not yet been observed experimentally. The 
power-law decay or the uniform distribution of 
weak forces, comprising nearly 60% of contacts, in­
dicates that the weak forces are generated through 
a self-similar branching process from strong forces. 
In contrast, the strong forces are conditionned by 
the level of the deviatoric load, which sets in ef­
fect a characteristic force different from the mean 
force. This point will become more clear by the 
study of the stress tensor. 
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Figure 2. (a) Sernilogarithmic, and (b log-log plots of the 
probability distribution PT of friction forces T.
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Figure 3. Contributions of weak and strong contacts to the 

stress tensor in sample A at shear peak. 

4 STRESS TENSOR 

The stress tensor is the relevant variable in tran­
sition to the continuous limit and, in contrast to 
PN and Pr, involves both the contact forces and 
the contact orientations according to the follo­
wing classical formula (Christoffersen et al. 1981): 
O"ij = V(rl) =cErl fr dj, where 0, is the region in­
sicle the sample for which the stress tensor is cal­
culated with a volume equal to V, f{ is the i­
component of the force at the contact c and dC. 
is the j-component of the intercenter v;ctor d/_
This equation allows to separate the contributions 
of weak and strong forces to the global stress ten­
sor. The weak tensor CT

w and the strong tensor CT
8 

are given by the above equation when the summa­
tion is restricted to only weak contacts and only 
strong contacts, respectively. 

Among our samples, only sample A, due to its 
uniform stress field, provides enough statistics for 
the study of the stress tensor. Figure 3 shows the 
orientations and the eigenvalues of CT

w and CT
8 in 

sample A at shear peak, i.e. at the maximal va­
lue of q = �! ��;, ( q = 0.18), where CT1 and CT2 are 
the principal values of the total stress tensor. We 
see that CT

w is almost spherical and contributes no 
more than 3% to the deviatoric part of the total 
stress tensor CT = CT

w + CT
5

, whereas CT
8 represents 

al
i:n

o�t the :vhole deviatoric load, and its major 
prmc1pal axis has the same orientation as that of 
the imposed deformation. 

The isotropie nature of the weak stress tensor 
indicates that the weak contacts feel the influence 
o� the. deviatoric load only as an average over all
directwns. The strong contacts directly support
the deviatoric load, whose signature appears as 
a characterstic force in the exponential decay of 
strong forces. 

5 INDUCED ANISOTROPY 

We now consider the distribution Po of contact ori­
entations. The anisotropie nature of Po has been 

e�tensively studied in the past (Biarez & Wien­
d1ck 1963, Satake 1978, Cambou & Sidoroff 1985, 
Rothenburg & Bathurst 1989). I-Iere, we define 
two separate distributions P8 and Pô for weak 
and strong contacts, respectively. The polar dia­
grams of these distributions are shown in Figure 4 
for sample A at shear peak. We see that both 
distributions are anisotropie, although to a lesser 
extent in the weak subnetwork than in the strong 
one. The interesting behavior observed here is that 
the principal direction of Pô coïncides with that 
of the stress tensor, whereas the principal direc­
tion of P8 is orthogonal! This again confirms the 
bimodal nature of the force network, and clearly 
shows the complementarity between the two sub­
networks: The strong chains need "lateral,, weak
forces in order to be stabe. 
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Figure 4. Polar diagram of the distribution of contact ori­

entations in weak and strong subnetworks. 
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6 DISSIPATION 

In a quasistatically driven system, the particle ro­
tations are generally frustrated, with patterns that 
have been partia.lly studied in the case of regular 
packings (Radjai & Roux 1995, Radjai et al. 1996). 
The possibility of particles to roll over one another 
provides a very low-dissipative local mechanism of 
deformation, so that if each particle could roll over 
its neighbors, then a dense granular system would 
essentially beha.ve like a liquid. The question we 
raise here is how the positions of sliding contacts 
on the contact network are correlated with the con­
tact forces? 

The distinction between weak and strong sub­
networks again provides a simple key to the pro­
blem. In Figure 5, we have shown the two subnet­
works with different gray levels and the positions 
of the sliding contacts. Almost 8% of contacts 
are sliding, and a rapid inspection shows that al­
most all of them are on the weak subnetwork. 
In other words, all strong contacts are nonsliding 
and all the dissipation takes within the weak sub­
network. This remarka.bly simple behavior of the 
sliding contacts with respect to the force subnet­
works shows the dynamic nature of the bimodal 



d;;:,tribution of forces. The strong subnetwork is 
completely unstable since all i ts contacts are nons-

, liding. As a result, it tends to buckle un der the 
action of the external deviatoric load, giving rise 
to an orthogonal anisotropy and sliding contacts 
in the weak subnetwork. 

Figure 5. Network of normal forces in sample A. Forces are 

encoded as the widths of intercenter segments. Weak and 

strong subnetworks are shown with two different gray levels. 

The filled circles show the positions of sliding contacts. 

7 CONCLUSION 

The observations briefly presented above provide 
a simple picture of the interna! state of a granular 
packing in quasistatic deformation, at least in two 
dimensions. The contact network is composed of 
two complementary subnetworks: 

1. A "load-bearing" percolating subnetwork
composed of strong contacts; 

2. A "dissipative" subnetwork composed of
weak contacts. 

The strong subnetwork supports the whole de­
viatoric load applied on the system, although it 
con tains only nonsliding ( nondissipative) contacts. 
The whole dissipation takes place inside the weak 
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subnetwork. This implies that the scale of hete­
rogeneity of a gra.nular system due to sliding and 
nonsliding states of contacts is the same as that 
of the strong subnetwork. From the point of view 
of the stress tensor, the weak subnetwork behaves 
like an intersticial liquid, whereas the strong sub­
network has a solid-like behavior since it takes over 
the whole deviatoric load and thus the stability of 
the system. From the point of view of the fabric 
tensor ( or contact orientations), the strong sub­
network bears the primary anisotropy induced by 
shear, but it gives rise to a secondary orthogonal 
anisotropy inside the weak subnetwork. 
This bimodal behavior of the force network opens 
new perspectives bath for microscopie and macros­
copie modeling of granular materials in quasistatic 
deformation. Let us, however, recall that the ana­
lysis presented here concerns a two-dimensional 
system. It is not obvious that it applies in the 
same manner to three-dimensional systems. The­
refore, the investigation of three-dimensional sy­
stems, even though their simulation is more invol­
ved, is crucial to the further establishment of the 
results presented in this paper. 
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