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U sing Contact Dynamics simulations of quasistatically driven assemblies of rigid particles we show that the contact network at every stage of deformation is composed of two complementary subnetworks: a "strong" percolating subnetwork of the contacts carrying a force larger than the mean force, and a "weak" subnetwork of the . contacts carrying a force lower than the mean force. In the strong subnetwork, all contacts are nonsliding and forces have a decreasing exponential distribution. Almost the whole dissipation takes place inside the weak subnetwodc, where the number of normal forces decays as a power-law. The strong subnetwork supports all the deviatoric load, whereas the weak subnetwork contributes only to the mean pressure. The orientation of the induced anisotropy (major principal axis of the fabric tensor) in the strong subnetwork is the same as that of the stress tensor, but the orientation of the induced anisotropy in the weak subnetwork is orthogonal.

INTRODUCTION

The internal mechanical state of a random packing of noncohesive particles is doubly heterogeneous:

1. Contact forces vary by several orders of ma gnitude on a scale far larger than the particle size [START_REF] Dantu | Proceedings of the 4th Interna tional Conference on Soil M echanics and Foun dations Engineering[END_REF][START_REF] Liu | [END_REF];

2. Frictional dissipation ( due to sliding) in qua sistatic deformation occurs only at a small fraction of contacts.

Micromechanical modeling of granular materi als involves a quantitative characterization of both statistical distributions and spatio-temporal cor relations of internal variables on the scale of these heterogeneities. In this paper, on the basis of nu merical results from simulations of a few thousands of particles in two dimensions, we show that the organization of these variables has a basic bimodal char acter, which is also reflected in the structure of the stress tensor. We will first briefly intro duce the simulation method. Then, we will focus successively on force distributions, stress tensor, induced anisotropy, and dissipation.

SIMULATION METHOD

A numerical simulation of a densely-packed system has to tackle a multicontact problem. Every colli sion in such a medium is a multiple collision that cannot be reduced to a set of independent binary collisions since impulsions propagate through the contact network and may even leave the system. In the same way, the frictional resistance to shear is a collective phenomenon involving the mobili zation of friction at kinematically correlated con tacts. Another basic problem is that the contact laws are strongly nonlinear. In the approximation of perfectly rigid particles, the normal force at a contact is not given locally as a fonction of the relative displacement of two particles, but rather as a result of the global geometrical configuration of the whole system and the boundary conditions. Furthermore, the basic Coulomb's law of friction is nonsmooth in the sense that the relation between the relative tangential velocity and the friction force cannot be represented as a mathematical fonction. The Contact Dynamics (CD) method, which was used for the investigations reported in this paper, takes these features into account on a mathematical basis derived from Convex Analysis (Moreau 1994[START_REF] Jean | M echanics of Geometrical Interfaces[END_REF]). On one hand, the con ditions of perfect rigidity and exact Coulombian friction are implemented with no resort to any regularization. On the other hand, all kinematic constraints are simultaneously taken into account, together with the equations of dynamics, in order to determine contact forces and particle velocities in the system. The method is thus able to deal properly with the nonlocal character of the mo mentum transfers in the contact network. 

FORCE DISTRIBUTIONS

Let us begin with the probability distribution P N of normal forces N independently of contact orien tations. Numerical results will be presented here for three samples of 4012, 4025, and 4098 partic les, referred to as samples A, B, and C. Particles are contained in a rectangular frame composed of two horizontal and two vertical rigid walls. Sam ple A is biaxially compressed by allowing the in ward motion of a horizontal wall and by applying a confining load on a vertical wall free to move horizontally. Sample B is in relaxation towards static equilibrium under a confining load applied to a free wall. Sample C is in static equilibrium under confining loads. The acceleration of gravity and the particle-wall coefficients of friction are set to zero. The interparticle coefficient of friction is 0.5 in samples A and C, and 0.2 in sample B. In all samples, the particle radii are uniformly distri buted between 3.8 and 7.5 mm.

Figs. 1( a) and l(b) display the plot of P N on semilog and log-log scales in the three samples. In all cases, independently of the confining load, the normal forces lower than the mean normal force (N) have a power-law distribution, whereas the data for forces larger than ( N) are well fitted by an exponential decay:

{ ( N ) -(){ P N oc ( N ) e (3(1-N/ ( N ) ) N < (N), N > (N).
(1)

Within the statistical precision, the values of exponents a and (3 depend only weakly on the me chanical parameters and the preparation conditi ons of each sample. In static equilibrium or in qua sistatic deformation, the value of a is very close to 2 zero. However, it seems that a increases with the degree of dynamics inside the system and decreases with the coordination number. Let us also remark that, since the mean value (N) separates the two parts of the distribution, a and (3 should be related � ogether by the equation /3 2 = (l-a)(2-a), which 1s approximately satisfied in our simulations.

As far as the distribution P r of the absolute values of friction forces T is concerned, we always find a power law decay f or forces lower than the mean friction force (T) and a decreasing exponen tial fonction for friction forces higher than (T), as shown in Figs. 2(a) and 2(b). This distinction between the forces lower than the mean, to which we will refer as "weak" forces, and those larger than the mean, referred to as "strong" forces in the following, has a deep meaning, as we shall see below. Let us only mention here that the expo nential distribution of strong forces does not seem to be a finite-size effect. In other words, a sim ple normalization of the forces with respect to the mean force allows the data to collapse almost on the same curve (Radjai et al. 1996).

The exponential distribution of strong normal forces, has been observed in experiments [START_REF] Liu | [END_REF], Miller et al. 1996). Weak normal forces and friction forces at individual contacts are tech nically difficult to measure, and their distributions have not yet been observed experimentally. The power-law decay or the uniform distribution of weak forces, comprising nearly 60% of contacts, in dicates that the weak forces are generated through a self-similar branching process from strong forces. In contrast, the strong forces are conditionned by the level of the deviatoric load, which sets in ef fect a characteristic force different from the mean force. This point will become more clear by the study of the stress tensor. 

STRESS TENSOR

The stress tensor is the relevant variable in tran sition to the continuous limit and, in contrast to PN and Pr, involves both the contact forces and the contact orientations according to the follo wing classical formula (Christoffersen et al. 1981):

O"ij = V(rl) =cErl fr dj, where 0, is the region in sicl e the sample for which the stress tensor is cal culated with a volume equal to V, f { is the i component of the force at the contact c and dC. is the j-component of the intercenter v;ctor d/_ This equation allows to separate the contributions of weak and strong forces to the global stress ten sor. The weak tensor CT w and the strong tensor CT 8 are given by the above equation when the summa tion is restricted to only weak contacts and only strong contacts, respectively.

Among our samples, only sample A, due to its uniform stress field, provides enough statistics for the study of the stress tensor. Figure 3 shows the orientations and the eigenvalues of CT w and CT 8 in sample A at shear peak, i.e. at the maximal va lue of q = �! ��;, ( q = 0.18), where CT 1 and CT 2 are the principal values of the total stress tensor. We see that CT w is almost spherical and contributes no more than 3% to the deviatoric part of the total stress tensor CT = CT w + CT 5 , whereas CT 8 represents al i:n o � t the :v hole deviatoric load, and its major prmc1pal axis has the same orientation as that of the imposed deformation.

The isotropie nature of the weak stress tensor indicates that the weak contacts feel the influence o � the . deviatoric load only as an average over all directwns. The strong contacts directly support the deviatoric load, whose signature appears as a characterstic force in the exponential decay of strong forces.

INDUCED ANISOTROPY

We now consider the distribution P o of contact ori entations. The anisotropie nature of P o has been e � tensively studied in the past (Biarez & Wien d1ck 1963[START_REF] Satake | Theoretical and Applied Me chanics: 257[END_REF], Cambou & Sidoroff 1985, Rothenburg & Bathurst 1989). I-Iere, we define two separate distributions P 8 and Pô for weak and strong contacts, respectively. The polar dia grams of these distributions are shown in Figure 4 for sample A at shear peak. We see that both distributions are anisotropie, although to a lesser extent in the weak subnetwork than in the strong one. The interesting behavior observed here is that the principal direction of Pô coïncides with that of the stress tensor, whereas the principal direc tion of P 8 is orthogonal! This again confirms the bimodal nature of the force network, and clearly shows the complementarity between the two sub networks: The strong chains need "lateral ,, weak forces in order to be stabe. In a quasistatically driven system, the particle ro tations are generally frustrated, with patterns that have been partia. lly studied in the case of regular packings (Radjai & Roux 1995, Radjai et al. 1996).

The possibility of particles to roll over one another provides a very low-dissipative local mechanism of deformation, so that if each particle could roll over its neighbors, then a dense granular system would essentially beha. ve like a liquid. The question we raise here is how the positions of sliding contacts on the contact network are correlated with the con tact forces?

The distinction between weak and strong sub networks again provides a simple key to the pro blem. In Figure 5, we have shown the two subnet works with different gray levels and the positions of the sliding contacts. Almost 8% of contacts are sliding, and a rapid inspection shows that al most all of them are on the weak subnetwork. In other words, all strong contacts are nonsliding and all the dissipation takes within the weak sub network. This remarka. bly simple behavior of the sliding contacts with respect to the force subnet works shows the dynamic nature of the bimodal d;;:,tribution of forces. The strong subnetwork is completely unstable since all i ts contacts are nons-, liding. As a result, it tends to buckle un der the action of the external deviatoric load, giving rise to an orthogonal anisotropy and sliding contacts in the weak subnetwork. 

CONCLUSION

The observations briefly presented above provide a simple picture of the interna! state of a granular packing in quasistatic deformation, at least in two dimensions. The contact network is composed of two complementary subnetworks: 1. A "load-bearing" percolating subnetwork composed of strong contacts; 2. A "dissipative" subnetwork composed of weak contacts.

The strong subnetwork supports the whole de viatoric load applied on the system, although it con tains only nonsliding ( nondissipative) contacts. The whole dissipation takes place inside the weak subnetwork. This implies that the scale of hete rogeneity of a gra.nular system due to sliding and nonsliding states of contacts is the same as that of the strong subnetwork. From the point of view of the stress tensor, the weak subnetwork behaves like an intersticial liquid, whereas the strong sub network has a solid-like behavior since it takes over the whole deviatoric load and thus the stability of the system. From the point of view of the fabric tensor ( or contact orientations), the strong sub network bears the primary anisotropy induced by shear, but it gives rise to a secondary orthogonal anisotropy inside the weak subnetwork. This bimodal behavior of the force network opens new perspectives bath for microscopie and macros copie modeling of granular materials in quasistatic deformation. Let us, however, recall that the ana lysis presented here concerns a two-dimensional system. It is not obvious that it applies in the same manner to three-dimensional systems. The refore, the investigation of three-dimensional sy stems, even though their simulation is more invol ved, is crucial to the further establishment of the results presented in this paper.

  Figure 1. ( a) Semilogarithmic, and (b ) log-log plots of the probability distribution P N of normal forces -N.
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 3 Figure 2. (a) Sernilogarithmic, and (b log-log plots of the probability distribution PT of friction forces T.
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 4 Figure 4. Polar diagram of the distribution of contact ori entations in weak and strong subnetworks.
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 5 Figure 5. Network of normal forces in sample A. Forces are encoded as the widths of intercenter segments. Weak and strong subnetworks are shown with two different gray levels. The filled circles show the positions of sliding contacts.