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 New computation methods in granular dynamics 

J.J.Moreau 
Laboratoire de Mécanique et Génie Civil, URA CNRS 1214, Université Montpellier 11, France 

ABSTRACT : The dynamics of collections of bodies, treated as perfectly rigid, involves nonsmooth 
mathematical relations, arising from the unilaterality of impenetrability constraints, from the 
formulation of dry friction and from the velocity jumps produced by possible collisions. The 
presented numerical methods treat nonsmoothness without resorting to regularization procedures. 
The examples shown concern populations of balls contained is a vertically vibrated rectangular 
box. First, a comparison is made with some experiments pe1formed by other authors, about the 
paradoxical shape taken by the free surface when vibration is not strong enough to fluidize it. 
Other examples reveal an unexpected mechanism of size segregation. 

1 INTRODUCTION 

Numerical methods have been developed for a 
few years in our laboratory, devoted to compu­
ting the motion of mechanical systems with 
transient contacts. One is then in the presence of 
unilateral constraints : since some parts of the 
system may enter into contact or get loose from 
each other, but can never interpenetrate, the 
permitted configurations are characterized by 
inequalities (possibly an infinite set of them). In 
the configuration space, this defines a region 
with corners and edges, instead of the smooth 
submanifolds which, . in the traditional 
Analytical Dynamics, are associated with cons­
traints. In the case of contact, we take dry fric­
tion into account under its sirnplest phenomeno­
logical description, namely the law of Coulomb. 
The latter consists in a relationship between the 
sliding velocity and the contact force which as­
sumes different analytical forms, depending on 
the sliding status ; and this relationship does not 
permit to express any of the two vector va­
riables as a fonction of the other. Furthermore, 
if collisions occur, one should expect velocity 
jumps, so that the evolution cannot be governed 
as a whole by differential equations nor diffe­
rential inclusions in the classical sense. For ail 

these reasons, the investigated problems belong 
to Nonsmooth Mechanics, a domain for which 
theoretical and numerical methods have specifi­
cally been elaborated in recent years (Moreau, 
Panagiotopoulos and Strang 1988, Moreau and 
Panagiotopoulos 1988). 

Traditionally, the numerical approach to 
nonsmoothness rests on smoothing procedures, 
i.e. the investigated problems are approximated
by regular ones to which usual computation
methods are applied. For instance, impenetra­
bility is replaced by a steep repulsion potential
acting when the concerned bodies corne close to
each other. This is similar to the "penalty me­
thods" used in Constrained Optimization. The
drawback is that the need of precision leads to 
introduce very stiff repulsion laws, so the nu­
merical stability of the consequent integration
procedures requires fine time-discretization and
much computing power. Since the pioneering
work of P. A. Cundall (1971), significant re­
sults have however been obtained in that way
(most recently : Gallas, Herrmann and
Sokolowski 1992a,b, Y-h Taguchi 1992) .

In contrast, we have decided to face nons­
moothness without resorting to regularization 
procedures. This results in algorithms efficient 
enough to treat on a microcomputer the dyna-



mies of rigid body collections involving, say, 
1000 contacts. Exarnples presented in the forth­
coming have however been computed on larger 
workstations. A frontal program on Macintosh 
have been developed to prepare the data and to 
analyse the results ; in particular, this program 
can exploit the numerical files in creating suc­
cessions of bitmap images on a hard disk, to be 
displayed as movie-like animations. Cunent 
applications are not limited to granulate mate­
rials ; for instance, the dynarnical behaviour of 
pieces of stonework supported by quaking 
ground is also actively investigated. 

Ail the above methods compute motions by 
solving the equations of Dynarnics. Their aim is 
to investigate phenomena on the sarne footing as 
experiments, preferably in interaction with 
them. This places them at a different epistemo­
logical level than Monte Carlo or Cellular 
Automata simulations, the purpose of which is 
to develop and test the consequences of a priori 
conceptions. 

2 COLLISIONS 

We restrict ourselves in this communication to 
the treatment of bodies as peifectly rigid. A 
common weakness of ail numerical simulations 
developed in that framework lies in the 
difficulty of getting precise phenomenological 
information about collisions. Possible bounces 
are ascribed to some non analyzed microscopie 
elasticity. The traditional restitution coefficient 
of Newton can be experimentally identified 
only in the special case of the normal impact of 
spherical bodies. Recall that, if this coefficient 
is less that 1, bounce exhibits energy loss. A 
widespread conception is that such a dissipation 
should be the result of viscosity or plasticity 
effects localized in the vicinity of the impact 
locus. Actually, even if the colliding bodies are 
made of a perfectly elastic material, some Joss 
of kinetic energy must be expected at the 
macroscopic level. In fact, dynamical dis­
turbances emanate from the impact and are li­
kely to propagate throughout the concerned 
bodies. The amplitude of such vibrations may 
be small enough for the bodies to be described 
as rigid at the chosen level of observation, 
while, in view of the velocities involved in the 
vibration, the latter may carry nonnegligible 
energy. After the end of the collision process, 
vibration should last for a ce1tain time before 

internai dissipation progressively converts its 
energy into heat. Similarly, if a part of the in­
vestigated system collides with some fixed ex­
ternal boundary, an amount of energy is liable 
to propagate into the surrounding world. If the 
externat boundary moves, the energetic balance 
becomes still more complicated and the system 
may receive energy from the surrounding 
world. This is the case of a collection of rigid 
grains contained in a shaked vessel. 

Common observation, as well as the compu­
tations made in our laboratory with body de­
formations taken into account through the finite 
eleme.nt method, show that restitution greatly 
depends on the shape of the colliding bodies and 
on the impact location. 

Newton's restitution hypothesis involves the 
impinging and bouncing velocities only through 
their normal components. In the case of the 
oblique collision of, say, spherical bodies, fric­
tion is expected to transfer angular momentum. 
However short the collision process is, friction 
in the contact zone may evolve in a complex 
way, exhibiting microepisodes of slip and stick. 
As early as 1880, Darboux (see also Pérès 
1953) applied to rigid body collisions a multiple 
scaling method : the very short duration of the 
contact interaction is pararnetrized through a 
microtime, say "t. In applying the equations of 
rigid dynamics to the collision process, one 
treats the velocities of the involved bodies as 
unknown fonctions of "t, while positions are 
considered as constant. Coulomb law is invo­
ked, so as to relate, for every "t, the contact 
force with the sliding velocity at the contact 
point. Here again, it is implicitely assumed that 
microdeformations are concentrated in the vici­
nity of the impact locus. In our opinion, the 
probable global microdeformation of the bodies 
limits the applicability of the approach. 

Anyway, Newton's hypothesis proves inade­
quate as soon as several contacts are present at 
the time of a collision. This is demonstrated by 
the familiar example of the rocking of a slender 
rectangular block supported by a fixed horizon­
tal plane. For simplicity, assume the lower edge 
slightly concave, so that contact can only occur 
through the two lower corners. The left corner 
remains in contact for an episode during which 
the block rotates to the right, then the right 
corner collides. If at this time Newton's as­
somption was applied to the left contact, no ro­
cking could be found. 

A numerical method must be able to treat 



collisions in multicontact situations. A decisive 
test is provided by thy transmission of impulse 
across a row of contacting balls, a classical ex­
periment displayed in many scientific museums. 

Incidentally, it has long been recognized 
that, in mechanical systems involving dry fric­
tion, velocity jumps may also occur in the ab­
sence of collision as the result of a sort of lo­
clcing. Concerning such "frictional catastrophes" 
(impossible in the free dynamics of bodies as 
regular as homogeneous balls) one may refer to 
the author's contribution in Moreau & 
Panagiotopoulos 1988: 1-82. 

Our computing policy rests on a synthetic 
formulation of contact which applies to colli­
sion instants as well as to episodes of persistent 
contact. After time-discretization, this formula­
tion generates algorithms which, at every time­
step, are ready to face possible collisions or 
frictional catastrophes. 

3 FORMALIZA TION OF CONTACT LA WS 

Let the generic position of the considered sys­
tem be labelled by generalized coordinates, say 
qe R0

• The geometric effect of impenetrability
constraints are expressed by inequalities of the 
form fa(t,q)�O, the subscript a ranging in 
practice through a finite set (the presence of t in 
such inequalities pertains to the confinement of 
some parts of the system by boundaries with 
prescribed motion). Inequality holds as equality 
when contact occurs at some point, say Ma,  of 
physical space. The central object, in mathema­
tical formulations as well as in computation, is 
the velocity fonction t�u(t)e R0 from which 
the motion t�q(t) can be retrieved through 
time-integration. 

Since we are to face collisions, the fonction 
u should not be expected continuous. The most 
natural setting consists in assuming that it has 
bounded variation from the investigated time­
interval I to R0 (for theoretical arguments sup­
porting this assumption, see Moreau 1989). 
Then, at every te I, the fonction is sure to pos­
sess a left-limit u-(t) and a right-limit u+(t) (by 
convention u-(to)=u(to) if to equals the begin­
ning of 1). With such a fonction, a R0-valued 
measure on the interval I is classically associa­
ted, called the differential measure or Stieltjes 
measure of u, possibly denoted by du. If u is 
discontinuous at some point t of I, the measure 
du possesses an atom at this point, namely the 

R0-valued Dirac measure whose value equals
the jump u+(t)-u-(t). In contrast, on any subin­
terval throughout which u admits a (Lebesgue­
integrable) derivative u', one has du=u'dt, 
whith dt denoting the Lebesgue measure (for a 
systematic exposition of such mathematical 
technicalities, the reader may refer to the au­
thor's contribution in Moreau, Panagiotopoulos 
& Strang 1988: 1-74). The equations of dy­
namics may then be written as an equality of 
R 0-valued measures on the interval 1. This 
readily generates integration schemes : on every 
interval, say (ti,ti+t), of the time-discretization,
the measure equality is replaced by the equality 
of the corresponding integraïs. Then u(ti+l) 
plays the role of u+ and u(lj) the role of u-. In 
this formulation, forces and percussions are 
treated on the same footing : classical forces are 
the densities relative to dt of diffuse impulsions, 
while percussions arising from collisions appear 
through their actual values (or equivalently 
through their densities relative to some atomic 
base measures). 

At the heart of the problem lies the 
formulation of laws governing contact effects at 
any instant where some of the inequalities fa�O 
hold as equalities. The geometrical inspection of 
the parametrization (q) allows one to express 
the relative velocity 'UaE R3 of the contacting 
bodies at point Ma as a q-dependent linear fonc­
tion of ue R0 ; in the case of a velocity jump, 
the same expression applies to the left- and 
right-limits. Since one is in want of phenome­
nological relations representing the whole colli­
sion process approximately, it proves expedient 
to construct some formai velocity 'U� as a 
weighted mean of the left- and right-limits. We 
choose to apply different weight coefficients 
when treating normal and tangential compo­
nents, namely 

Clearly 'U� equals 'Ua whenever the latter is 
continuous. By a contact law we mean a relation 
between 'll� and the corresponding contact 
force or percussion denoted by !f?..a. Let na 
denote the normal unit vector to the contacting 
bodies at point Ma, with such a direction that 
na. '7..1

0
>0 corresponds to separation. Strictly 



speaking, na makes sense only for fa=O ; by 
convention, its definition is extended to 
neighbouring configurations. 

Let us say that a contact law is complete if it 
involves the three following implications 

fa(t,q) < 0 ::::} '!{_a= O. 

fa(t,q) � 0::::} na. 'U � �o 

na.'U� > 0::::} '!{_a= O. 

If all possible contacts are governed by laws 
agreeing with this definition, one easily esta­
blishes (see the author's contribution in Moreau 
& Panagiotopoulos 1988: 1-82) that the calcula­
ted motion satisfies fa(t,q(t))�O for every a, . 
and every tE I, provided this is true at the initial 
instant to. 

Assuming a complete contact law readily 
secures the implication 

which, in view of the definition of 'U�, becomes 

In the event �:t:O, this allows one to identifie 

Pa with Newton's restitution coefficient, but 
not for �=0 ; such is the key to a consistent 
treatment of collisions in the case of multiple 
contacts. 

In view of this, we respectively caHpa and 
'ta the normal and the tangential restitution co­
efficient of contact a. 

Coulomb's law of dry friction may easily be 
progranuned in the form of a complete contact 
law. It will then be applied at every time-step of 
the algorithm, for every contact detected as ac­
tive in this time step. The problem of determi­
ning the corresponding values of the contact 
impulsions � and, consequently, an estimate 
value of the velocity fonction at the end of the 
interval, is solved by an iteration procedure. 
Uniqueness of solution is not guaranteed. The 
reader may refer to Jean & Moreau 1992 for 
more detail. 

4 COMPARISON WITH EXPERIMENTS 

The first occasion of comparing directly our 
computations with observations was provided 
by the experiments made by M. Raous (1993) 

on the rocking of rectangular blocks supported 
by a horizontal table which performs sinusoïdal 
horizontal oscillation. Satisfactory agreement 
with the simulation is obtained in this case by 
taking the normal restitution coefficient equal 
to zero. This conclusion also agrees with the 
findings of A. Ageno and A. Sinopoli (1993) in 
experiments motivated by the dynamics of dry 
stone buildings (ancient Greek monuments) 
under earthquakes. 

In the proper domain of granular dynarnics, 
the currently continued experiments of E. 
Clement, J. Duran and J. Rajchenbach (1992) 
permit well controlled comparison. 

Initial state 

Figure 1 

A collection of spherical beads with the 
same diameter (usually 1.5 mm) is placed in a 
rectangular cell with two parallel vertical glass 
walls of slightly greater spacing, allowing one 
to observe two-dimensional granular motion. 
The cell is given a vertical sinusoïdal vibration 
with frequency in the range 10-30 hertz. 
Amplitude is adjusted in such a way that the 
maximal acceleration aw2 little exceeds gravity 
(for instance l .l g  to l .Sg). ln view of their 



uniform diameter, beads arrange themselves 
into a cristal-like hexagonal packing. For 
aluminium beads, whose normal restitution 
coefficient is estimated at 0.7, no fluidization 
occurs in the top layers. Because of surface 
oxidization, the friction coefficient between 
beads is as high a 0.8. The following phe­
nomenon is observed. The top of the pack, ini­
tially a horizontal straight line due to prepara­
tory shaking, progressively builds a heap. The 
process emanates from the two lateral bounda­
ries whose average effect appears to drag the 
contacting beads downward. If aro2 has values 
of order 1.lg to 1.3g, this effect is localized in 
the two upper corners. Randomly in time, vor­
tices appear in these corners, heaving some 
fragments of the bead pack into small heaps. As 
they grow, these two lateral heaps eventually 
merge into a single one, with maximal height at 
center. 

When aro2 is made greater, the downward 
drag exerted by lateral walls extends lower. 
This is precisely what happens in our simulation 
presented on fig.1, which corresponds to a col­
lection of 1650 beads with aro2=I.63g. The 
downward currents affecting the two lateral 
boundary layers attain. the cell bottom. Sorne 
beads are consequently forced into the bulk, ge­
nerating rectilinear dislocations and the upsurge 
of central fragments of the hexagonal packing. 

5 SIZE SEGREGATION IN VIBRATED 
PARTICULATE MATERIAL 

We have applied the same program to various 
examples of two-dimensional collections of cir­
cular objects with non uniform sizes, contained 
in a vertically shaked box. In all the examples 
shown below, the box motion is the same : fre­

quency 20 hertz, aro2=2g. Contact between 
objects has friction 0.8, normal restitution 0.9, 
tangential restitution O. Contact of objects with 
walls has friction 0.8, normal restitution 0.6, 
tangential restitution O. Computation is aimed at 
exhibiting the upward segregation of larger ob­
jects immersed in a population with diameters 
uniformly distributed between 1.5 mm and 0.75 
mm. Such a dispersion of sizes prevents the
formation of a cristal-like packing but here
again, due to the large value of aro 2, the
downward flow localized in boundary layers is
very apparent.

Figure 2 

Figure 2 shows a single large immersed ob­
ject with diameter 5 mm. For each of the 500 
objects in presence, the total displacement of its 
center over some time interval, covering 16 vi­
bration periods, is drawn as a st.raight line star­
ting from the center of the initial position. This 
clearly displays a circulatory flow of the whole 
population. The large object takes part in this 
flow, without any visible tendency to go up 
faster than its surroundings. Animations created 
by the program show it reach the fluidized top 
region and then drift to one of the upper cor­
ners where it remains indefinitely. Apparently, 
the boundary layer is too thin to recycle it 
down, while the rest of the population continues 
to take part in circulatory currents. The motion 
is also affected by random fluctuations of 
various scales. 

For comparison, figure 3 shows the compu­
tation results when boundary friction is made 
equal to zero, ail other data keeping the same 
values as above. No current now appears along 
the vertical walls, no general convective flow 
affects the bulk and the large object stays at 
bottom. 

The case of several large objects yields 
similar results. 

On the other hand, one may make the box 



Figure 3 

wider while increasing the total number of ob­
jects proportionnally so as to obtain the same 
height of granulate material. If boundary fric­
tion is nonzero the same downward boundary 
currents as in the preceding are visible, but the 
upward convective flow induced in the rest of 
the box is naturally slower. 

In view of such simulations, one may sus­
pect that some experiments made in the past, 
with a view to produce size segregation, ac­
tually consisted in non segregating upward con­
vection while the downward boundary currents 
acted as filters. Experimental evidences howe­
ver seem to exist of segregation occmTing in 
the bulk of a granulate material. We expect to 
attain situations of this sort by suitably adjusting 
the computation data. 

6 CONCLUSION 

The numerical methods presented above work 
in three-dimensional situations as well. They 
today appear sufficiently validated to be used in 
the exploration of granular dynamics, including 
some slow shearing motions of compact granu­
late materials, not presented here. In our view, 
their major utility lies in joint use with experi­
ments. The three parameters of the assumed 
contact laws, namely the friction coefficient and 
the two restitution coefficients, have to be ad­
justed so that the computed results match as 
well as possible some feasible measurements of 
the experimental set-up. Then computation al-

lows one to estimate the values of experimen­
tally inaccessible quantities, which may be of 
great help for understanding phenomena. 
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