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New computation methods in granular dynamics

The dynamics of collections of bodies, treated as perfectly rigid, involves nonsmooth mathematical relations, arising from the unilaterality of impenetrability constraints, from the formulation of dry friction and from the velocity jumps produced by possible collisions. The presented numerical methods treat nonsmoothness without resorting to regularization procedures. The examples shown concern populations of balls contained is a vertically vibrated rectangular box. First, a comparison is made with some experiments pe1formed by other authors, about the paradoxical shape taken by the free surface when vibration is not strong enough to fluidize it. Other examples reveal an unexpected mechanism of size segregation.

INTRODUCTION

Numerical methods have been developed for a few years in our laboratory, devoted to compu ting the motion of mechanical systems with transient contacts. One is then in the presence of unilateral constraints : since some parts of the system may enter into contact or get loose from each other, but can never interpenetrate, the permitted configurations are characterized by inequalities (possibly an infinite set of them). In the configuration space, this defines a region with corners and edges, instead of the smooth submanifolds which, . in the traditional Analytical Dynamics, are associated with cons traints. In the case of contact, we take dry fric tion into account under its sirnplest phenomeno logical description, namely the law of Coulomb. The latter consists in a relationship between the sliding velocity and the contact force which as sumes different analytical forms, depending on the sliding status ; and this relationship does not permit to express any of the two vector va riables as a fonction of the other. Furthermore, if collisions occur, one should expect velocity jumps, so that the evolution cannot be governed as a whole by differential equations nor diffe rential inclusions in the classical sense. For ail these reasons, the investigated problems belong to Nonsmooth Mechanics, a domain for which theoretical and numerical methods have specifi cally been elaborated in recent years (Moreau, Panagiotopoulos andStrang 1988, Moreau andPanagiotopoulos 1988).

Traditionally, the numerical approach to nonsmoothness rests on smoothing procedures, i.e. the investigated problems are approximated by regular ones to which usual computation methods are applied. For instance, impenetra bility is replaced by a steep repulsion potential acting when the concerned bodies corne close to each other. This is similar to the "penalty me thods" used in Constrained Optimization. The drawback is that the need of precision leads to introduce very stiff repulsion laws, so the nu merical stability of the consequent integration procedures requires fine time-discretization and much computing power. Since the pioneering work of P. A. [START_REF] Cundall | A computer model for si mulating progressive large scale movements of blocky rock systems[END_REF], significant re sults have however been obtained in that way (most recently : Gallas, Herrmann andSokolowski 1992a,b, Y-h Taguchi 1992) .

In contrast, we have decided to face nons moothness without resorting to regularization procedures. This results in algorithms efficient enough to treat on a microcomputer the dyna-mies of rigid body collections involving, say, 1000 contacts. Exarnples presented in the forth coming have however been computed on larger workstations. A frontal program on Macintosh have been developed to prepare the data and to analyse the results ; in particular, this program can exploit the numerical files in creating suc cessions of bitmap images on a hard disk, to be displayed as movie-like animations. Cunent applications are not limited to granulate mate rials ; for instance, the dynarnical behaviour of pieces of stonework supported by quaking ground is also actively investigated.

Ail the above methods compute motions by solving the equations of Dynarnics. Their aim is to investigate phenomena on the sarne footing as experiments, preferably in interaction with them. This places them at a different epistemo logical level than Monte Carlo or Cellular Automata simulations, the purpose of which is to develop and test the consequences of a priori conceptions.

COLLISIONS

We restrict ourselves in this communication to the treatment of bodies as peifectly rigid. A common weakness of ail numerical simulations developed in that framework lies in the difficulty of getting precise phenomenological information about collisions. Possible bounces are ascribed to some non analyzed microscopie elasticity. The traditional restitution coefficient of Newton can be experimentally identified only in the special case of the normal impact of spherical bodies. Recall that, if this coefficient is less that 1, bounce exhibits energy loss. A widespread conception is that such a dissipation should be the result of viscosity or plasticity effects localized in the vicinity of the impact locus. Actually, even if the colliding bodies are made of a perfectly elastic material, some Joss of kinetic energy must be expected at the macroscopic level. In fact, dynamical dis turbances emanate from the impact and are li kely to propagate throughout the concerned bodies. The amplitude of such vibrations may be small enough for the bodies to be described as rigid at the chosen level of observation, while, in view of the velocities involved in the vibration, the latter may carry nonnegligible energy. After the end of the collision process, vibration should last for a ce1tain time before internai dissipation progressively converts its energy into heat. Similarly, if a part of the in vestigated system collides with some fixed ex ternal boundary, an amount of energy is liable to propagate into the surrounding world. If the externat boundary moves, the energetic balance becomes still more complicated and the system may receive energy from the surrounding world. This is the case of a collection of rigid grains contained in a shaked vessel.

Common observation, as well as the compu tations made in our laboratory with body de formations taken into account through the finite eleme. nt method, show that restitution greatly depends on the shape of the colliding bodies and on the impact location.

Newton's restitution hypothesis involves the impinging and bouncing velocities only through their normal components. In the case of the oblique collision of, say, spherical bodies, fric tion is expected to transfer angular momentum. However short the collision process is, friction in the contact zone may evolve in a complex way, exhibiting microepisodes of slip and stick. As early as 1880, Darboux (see also [START_REF] Pérès | Mécanique Générale[END_REF] applied to rigid body collisions a multiple scaling method : the very short duration of the contact interaction is pararnetrized through a microtime, say "t. In applying the equations of rigid dynamics to the collision process, one treats the velocities of the involved bodies as unknown fonctions of "t, while positions are considered as constant. Coulomb law is invo ked, so as to relate, for every "t, the contact force with the sliding velocity at the contact point. Here again, it is implicitely assumed that microdeformations are concentrated in the vici nity of the impact locus. In our opinion, the probable global microdeformation of the bodies limits the applicability of the approach.

Anyway, Newton's hypothesis proves inade quate as soon as several contacts are present at the time of a collision. This is demonstrated by the familiar example of the rocking of a slender rectangular block supported by a fixed horizon tal plane. For simplicity, assume the lower edge slightly concave, so that contact can only occur through the two lower corners. The left corner remains in contact for an episode during which the block rotates to the right, then the right corner collides. If at this time Newton's as somption was applied to the left contact, no ro cking could be found.

A numerical method must be able to treat Our computing policy rests on a synthetic formulation of contact which applies to colli sion instants as well as to episodes of persistent contact. After time-discretization, this formula tion generates algorithms which, at every time step, are ready to face possible collisions or frictional catastrophes.

FORMALIZA TION OF CONTACT LA WS

Let the generic position of the considered sys tem be labelled by generalized coordinates, say qe R 0 • The geometric effect of impenetrability constraints are expressed by inequalities of the form fa(t,q)�O, the subscript a ranging in practice through a finite set (the presence of t in such inequalities pertains to the confinement of some parts of the system by boundaries with prescribed motion). Inequality holds as equality when contact occurs at some point, say Ma, of physical space. The central object, in mathema tical formulations as well as in computation, is the velocity fonction t�u(t)e R 0 from which the motion t�q(t) can be retrieved through time-integration.

Since we are to face collisions, the fonction u should not be expected continuous. The most natural setting consists in assuming that it has bounded variation from the investigated time interval I to R 0 (for theoretical arguments sup porting this assumption, see [START_REF] Moreau | An expression of classical dynamics[END_REF]. Then, at every te I, the fonction is sure to pos sess a left-limit u-(t) and a right-limit u + Let us say that a contact law is complete if it involves the three following implications fa(t,q) < 0 ::::} '!{_a= O. fa(t,q) � 0::::} na. 'U � �o na.'U� > 0::::} '!{_a = O. If all possible contacts are governed by laws agreeing with this definition, one easily esta blishes (see the author's contribution in Moreau & Panagiotopoulos 1988: 1-82) that the calcula ted motion satisfies fa(t,q(t))�O for every a, . and every tE I, provided this is true at the initial instant to.

Assuming a complete contact law readily secures the implication which, in view of the definition of 'U�, becomes

In the event �:t:O, this allows one to identifie P a with Newton's restitution coefficient, but not for �=0 ; such is the key to a consistent treatment of collisions in the case of multiple contacts.

In view of this, we respectively caHpa and 'ta the normal and the tangential restitution co efficient of contact a.

Coulomb's law of dry friction may easily be progranuned in the form of a complete contact law. It will then be applied at every time-step of the algorithm, for every contact detected as ac tive in this time step. The problem of determi ning the corresponding values of the contact impulsions � and, consequently, an estimate value of the velocity fonction at the end of the interval, is solved by an iteration procedure. Uniqueness of solution is not guaranteed. The reader may refer to Jean & Moreau 1992 for more detail.

COMPARISON WITH EXPERIMENTS

The first occasion of comparing directly our computations with observations was provided by the experiments made by M. [START_REF] Raous | Experimental analysis of the rocking of a rigid block[END_REF] on the rocking of rectangular blocks supported by a horizontal table which performs sinusoïdal horizontal oscillation. Satisfactory agreement with the simulation is obtained in this case by taking the normal restitution coefficient equal to zero. This conclusion also agrees with the findings of A. Ageno and A. Sinopoli (1993) in experiments motivated by the dynamics of dry stone buildings (ancient Greek monuments) under earthquakes.

In the proper domain of granular dynarnics, the currently continued experiments of E. Clement, J. Duran and J. Rajchenbach (1992) permit well controlled comparison.

Initial state

Figure 1 A collection of spherical beads with the same diameter (usually 1.5 mm) is placed in a rectangular cell with two parallel vertical glass walls of slightly greater spacing, allowing one to observe two-dimensional granular motion. The cell is given a vertical sinusoïdal vibration with frequency in the range 10-30 hertz. Amplitude is adjusted in such a way that the maximal acceleration aw 2 little exceeds gravity (for instance l.lg to l.Sg). ln view of their uniform diameter, beads arrange themselves into a cristal-like hexagonal packing. For aluminium beads, whose normal restitution coefficient is estimated at 0.7, no fluidization occurs in the top layers. Because of surface oxidization, the friction coefficient between beads is as high a 0.8. The following phe nomenon is observed. The top of the pack, ini tially a horizontal straight line due to prepara tory shaking, progressively builds a heap. The process emanates from the two lateral bounda ries whose average effect appears to drag the contacting beads downward. If aro 2 has values of order 1.lg to 1.3g, this effect is localized in the two upper corners. Randomly in time, vor tices appear in these corners, heaving some fragments of the bead pack into small heaps. As they grow, these two lateral heaps eventually merge into a single one, with maximal height at center.

When aro 2 is made greater, the downward drag exerted by lateral walls extends lower. This is precisely what happens in our simulation presented on fig. 1, which corresponds to a col lection of 1650 beads with aro 2 =I.63g. The downward currents affecting the two lateral boundary layers attain. the cell bottom. Sorne beads are consequently forced into the bulk, ge nerating rectilinear dislocations and the upsurge of central fragments of the hexagonal packing.

SIZE SEGREGATION IN VIBRATED PARTICULATE MATERIAL

We have applied the same program to various examples of two-dimensional collections of cir cular objects with non uniform sizes, contained in a vertically shaked box. In all the examples shown below, the box motion is the same : f r e quency 20 hertz, aro 2 =2g. Contact between objects has friction 0.8, normal restitution 0.9, tangential restitution O. Contact of objects with walls has friction 0.8, normal restitution 0.6, tangential restitution O. Computation is aimed at exhibiting the upward segregation of larger ob jects immersed in a population with diameters uniformly distributed between 1.5 mm and 0.75 mm. Such a dispersion of sizes prevents the formation of a cristal-like packing but here again, due to the large value of aro 2 , the downward flow localized in boundary layers is very apparent. Figure 2 shows a single large immersed ob ject with diameter 5 mm. For each of the 500 objects in presence, the total displacement of its center over some time interval, covering 16 vi bration periods, is drawn as a st. raight line star ting from the center of the initial position. This clearly displays a circulatory flow of the whole population. The large object takes part in this flow, without any visible tendency to go up faster than its surroundings. Animations created by the program show it reach the fluidized top region and then drift to one of the upper cor ners where it remains indefinitely. Apparently, the boundary layer is too thin to recycle it down, while the rest of the population continues to take part in circulatory currents. The motion is also affected by random fluctuations of various scales.

For comparison, figure 3 shows the compu tation results when boundary f r iction is made equal to zero, ail other data keeping the same values as above. No current now appears along the vertical walls, no general convective flow affects the bulk and the large object stays at bottom.

The case of several large objects yields similar results.

On the other hand, one may make the box

wider while increasing the total number of ob jects proportionnally so as to obtain the same height of granulate material. If boundary f r ic tion is nonzero the same downward boundary currents as in the preceding are visible, but the upward convective flow induced in the rest of the box is naturally slower.

In view of such simulations, one may sus pect that some experiments made in the past, with a view to produce size segregation, ac tually consisted in non segregating upward con vection while the downward boundary currents acted as filters. Experimental evidences howe ver seem to exist of segregation occmTing in the bulk of a granulate material. We expect to attain situations of this sort by suitably adjusting the computation data.

CONCLUSION

The numerical methods presented above work in three-dimensional situations as well. They today appear sufficiently validated to be used in the exploration of granular dynamics, including some slow shearing motions of compact granu late materials, not presented here. In our view, their major utility lies in joint use with experi ments. The three parameters of the assumed contact laws, namely the f r iction coefficient and the two restitution coefficients, have to be ad justed so that the computed results match as well as possible some feasible measurements of the experimental set-up. Then computation al-lows one to estimate the values of experimen tally inaccessible quantities, which may be of great help for understanding phenomena.

  collisions in multicontact situations. A decisive test is provided by thy transmission of impulse across a row of contacting balls, a classical ex periment displayed in many scientific museums.Incidentally, it has long been recognized that, in mechanical systems involving dry fric tion, velocity jumps may also occur in the ab sence of collision as the result of a sort of lo clcing. Concerning such "frictional catastrophes" (impossible in the free dynamics of bodies as regular as homogeneous balls) one may refer to the author's contribution in Moreau & Panagiotopoulos 1988: 1-82.

  such a fonction, a R 0 -valued measure on the interval I is classically associa ted, called the differential measure or Stieltjes measure of u, possibly denoted by du. If u is discontinuous at some point t of I, the measure du possesses an atom at this point, namely the R 0 -valued Dirac measure whose value equals the jump u + (t)-u-(t). In contrast, on any subin terval throughout which u admits a (Lebesgue integrable) derivative u', one has du=u'dt, whith dt denoting the Lebesgue measure (for a systematic exposition of such mathematical technicalities, the reader may refer to the au thor's contribution in Moreau, Panagiotopoulos & Strang 1988: 1-74). The equations of dy namics may then be written as an equality of R 0 -valued measures on the interval 1. This readily generates integration schemes : on every interval, say (ti,ti+t), of the time-discretization, the measure equality is replaced by the equality of the corresponding integraïs. Then u(t i+l ) plays the role of u + and u(lj) the role of u-. In this formulation, forces and percussions are treated on the same footing : classical forces are the densities relative to dt of diffuse impulsions, while percussions arising from collisions appear through their actual values (or equivalently through their densities relative to some atomic base measures). At the heart of the problem lies the formulation of laws governing contact effects at any instant where some of the inequalities fa�O hold as equalities. The geometrical inspection of the parametrization (q) allows one to express the relative velocity 'UaE R 3 of the contacting bodies at point Ma as a q-dependent linear fonc tion of ue R 0 ; in the case of a velocity jump, the same expression applies to the left-and right-limits. Since one is in want of phenome nological relations representing the whole colli sion process approximately, it proves expedient to construct some formai velocity 'U� as a weighted mean of the left-and right-limits. We choose to apply different weight coefficients when treating normal and tangential compo nents, namely Clearly 'U� equals 'U a whenever the latter is continuous. By a contact law we mean a relation between 'll� and the corresponding contact force or percussion denoted by !f?..a. Let na denote the normal unit vector to the contacting bodies at point Ma, with such a direction that na. '7.. 1 0 >0 corresponds to separation. Strictly speaking, na makes sense only for fa=O ; by convention, its definition is extended to neighbouring configurations.
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