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FACING THE PLURALITY OF SOLUTIONS IN NONSMOOTH MECHANICS

J. J. MOREAU
Laboratoire de Mécaniquet Génie Civil,
Université Montpelliedl, 34095 Montpelliercedexs, France
E-mail: moreau@Imgc.univ-montp2.fr

1 SUMMARY

In the mechanicof systemsanvolving dry frictional contactsit is known that the problemof
evaluatingat someinstantthe contactforcesand the accelerationgnay admit a plurality of
solutions. Startingfrom an elementaryexampleof wedgingoneproposesasa consistenwvay
of handlinginformation, to includethe contactforcesin the descriptionof eachstate. This in
factis what populartime-steppingcomputationtechniquesio, asthey makereferenceat each
time-stepto the constraintstatecalculatedin the antecedenbne (actually a way of treating
Coulomblaw incrementally). The ContactDynamicstechniqueoptionally offersthealternative
of discardingthis information, exploring the consequenindeterminationsand displayingthe
setsof solutionsascloudsof dots. Examplesarisingfrom GranularMechanicsare presented.
The so-calledPainleveparadoxis commentedFinally, an explanatiorof the isostaticityof the
equilibriumof a collectionof frictionlessround grains is proposed.

2 INTRODUCTION

Howevercomplexmay be the phenomenavhich takeplacewhentwo bodiestoucheachother,
shouldsliding occuror not, the law of Coulombprovidesanirreplaceabldrameworkfor ap-
proaching dry friction. In many industrial situations,the only quantitative information
providedby technicaldocumentsaboutfriction-affecteddevicesis communicatedn termsof
Coulomb frictioncoefficients(with possible distinctioletween stickingnd sliding values).

That the motionscalculatedirom sucha modelfrequentlyare mathematicallynonsmoottre-
flectseverydayobservationin the absencef lubrication,mechanismsnay exhibit chattering
motions, emitcreakingnoise, or jam.

Discussionshavetakenplacefor a long time aboutthe fact that, in the dynamicsof systems
involving Coulombfriction, theinitial value problem,i.e. the predictionof the motion conse-
guentto aninstantat which the positionsandthe velocitiesof the systemelementsaregiven,
may have severalsolution or no solutionat all. In the eyesof a 19th. centuryscientistlike
Painlevé,impressedy the theory of differential equationsand Laplace’s“determinism”,this
wasaninacceptablalefect,leadinghim to the point of rejectingthe very conceptof a contact
force. The disquietinglocution of “Painlevé’s paradox” causeddefinite harm to mechanical
sciencesince engineersvho had, from other parts,somereasongo be unsatisfiedwith the
moderateguantitativeprecisionof Coulomblaw, tendedto view this wordingasa hint at some
logical defect.The irrelevancef Painlevé’s standpointas alreadyointedat in his time[5].



In our view, a physical model is nothing but@mat, in the sense of data processing, in which

one decides to record the available information concerning a certain physical situation, to treat
this information and finally to communicate conclusions. Fundamentally, the information one
may collect about the investigated situation is always incomplete, so the model through which
this information is coded cannot be expected to generate exhaustive predictions. Also, as the
system evolves, the validity limits of the model may come to be overrun.

2 ELEMENTARY EXAMPLE

The system shown on Fig.1 is contained in a vertical plane. Two fixed walls slightly converge
upward. A rigid rod, subject to gravity, is inserted between them, with Coulomb friction at the
two contact points and abandoned at zero velocity. If the configuration angles have suitable
values, compared with the friction angles at contact points, the problem of finding the conse-
guent motion visibly has two solutions: either the rod loses contact and falls freely or it remains
wedged.

The quadrilateral area filled with light gray is the intersection of the Coulomb cones drawn from
the two contact points. The triangular part aboVB intersects the vertical of the center of
gravity G along a line segment. Any position 6on this segment corresponds to values of the
contact forced? , and Rz compatible with the no-sliding Coulomb condition and equilibrating
the rod weight. But zero values fd®4, and Rz are also compatible with the friction law,
yielding a downward acceleration 6f, hence the breaking of contact.

Intuitively, the outcome depends on the “intensity of wedging” of the rod. The natural measure
of such a degree precisely consists of the values of contact forces and it turns out that, in the
present case, knowing these forces allows one to predict the further motion unambiguouly.
For more complicated systems, the numerical investigations presented in the sequel show that
treating contact forces as part of the description of each state reduces ambiguity considerably.

Figure 1: A rod inserted between convergent walls

A deeper insight into the present situation could be expected from the useobiea model
than above. To this end, one may take into account a celdamitudinal elasticityof the
rod. This involves the introduction of a “small” variabde the rod elongation counted from
some reference state. As long as contacts are effective, the valus géometrically related

to the displacements of points and B on the respective walls, still treated as indeformable.
Given a law of longitudinal elasticity of the rod, a differential equation with the longitudinal



components ofR4 and Rz as endpoint data allows one to determine the stress distribution
along AB. For simplicity, assumelB horizontal and all the applied forces vertical. Then
this elastic analysis simply results in a monotone relationship between the variabtethe
(opposite to each other) longitudinal componentdafand R g.

Such a model provides an understandingha scenario of rod insertion and extractioff,

after contact is established, increasing upward forces are applied, the evolution (assumed quasi-
static) consists in pointsl and B sliding upward. At every time, vectolR, and Rz have

lines of action imposed by Coulomb law in sliding regime. Thanks to the quasi-equilibrium
equations of the rod, they may be calculated from the values of the applied forces.

If, at some instant, one decides to make the upward pushing forces decrease and eventually
take downward direction, a new episode of motion begins, still assumed quasi-static. Points
A and B remain fixed so that the elastic relationshighatever it is makes the longitudinal
components oR, and R keep the values they had at the instant of reversal. At every time,
the values ofR 4, and R result from the values of the applied forces and the no-slide regime
persists so long as these calculated vectors lie in the respective Coulomb cones. This allows
one to determine the value that the resultant of the downward applied forces should eventually
reach to produce detachment.

This model has the merit of making understand the processes of insertion and extraction but,
to the lay observer, it conveys no quantitatively tractable information in the absence of a mea-
suring device for microdisplacements, commonly not at hand. Since the proper elasticity law
of the rod turns out to be immaterial, one may expects that some model merely ignoring this
elasticity could be able to reproduce the above scenario. In fact, the Contact Dynamics compu-
tation method has been found to yield numerically a response of contact forces to the pushing
history which agrees with what precedes.

3 TIME-STEPPING COMPUTATION

A widespread method for the numerical simulation of multibody systems is derived from the
techniques used iMolecular Dynamicshence referred to as MD. It consists of approximating

the impenetrability constraints, when two bodies come close to each other, by repulsion forces
steeply dependent on the mutual positions. Friction forces are similarly approximated, yielding
an evolution problem governed by differential equations smooth enough for being handled
through standard integration methods. In this way, the interaction forces are connected with
fictitious deformations passed from step to step, so that the numerical scheme complies with
the proposition made in the foregoingiotluding these forces in the description of each state
The drawback of the method is that, for the sake of precision, very stiff repulsion laws are
needed so that very short step-lengths have to be used in the integration of the differential
equations, usually with artificial damping introduced to prevent numerical instability. These
added features may alter significantly the behaviour of the investigated system.

Another approach entitle@ontact Dynamicgabbr. CD) will be preferred here in view of its
ability to explore also the plurality of solutions. It faces the essential nonsmoothness of the
impenetrability constraints and of dry friction without resorting to any regularizing alteration
of the model [6] (for a recent exposition, see [7]). The dynamics of a systemmdttgrees

of freedom is formulated in terms of two functions of a time-intefval’] to R™, theposition
functiont — ¢, and thevelocity functiont — . In the simplest case; equals the time-
integral ofu; the kinematical relationship only becomes slightly more complicated when some
members of: consist for instance in components of the spin vectors of rigid parts.



The geometric effect of non-interpenetrability is expressed by a finite set of inequAlitigs<

0, with equality corresponding to contact. The leading feature of the CD approach is that these
inequalities are actually handled at the velocity level: by astrainingto belong for (almost)
everyt to a certain coné((t, q), one secures inequalities to hold through@uf’| provided

they hold at initial instant.

In addition, some mechanical information about each contact should be available in terms of a
contact law i.e. a relationship connecting, for eaelsuch thatf,(¢) = 0, the local kinematics

with the contact forc&,, whose generalized components are neted R™. Coulomb law in
particular may be written in such a form.

The equations of classical (smooth) Mechanics may be viewed as a differential equation, say
du/dt = E(t,q,u,>r,), governing the function: and involving the other unknowa as a
t-dependent parameter. But in the present contextntresmoothnesarising from contact
unilaterality and dry friction is liable to entail discontinuities for the functionThe suitable
mathematical framework is that afbeing anR™-valued function ot with bounded variation,

so that the differential equation of the classical case is replacedr®aaure-differential equa-

tion MDE. This means that the derivativk:/dt should then be understood as Rfi+valued
measure on0, 7], with punctual atoms at the instants of possible collisions. Mechanical ac-
tions, in particular the unknown contact forces or contact percussions are also described through
such measures.

A time-stepping scheme is constructed by integrating both members of MDE on each interval
of the time grid, sayt;, t¢], witht; = t,4h. Starting from the approximant of u(¢;) delivered

by the antecedent step, the objective is to calculate an approximaritu(t,;). Concomitant
unknown is the contact impulsion= Xs,,, i.e. the integral okr,, over|t;, t;]. The discretized

MDE thus has to be complemented by some impulsional form of the contact laws, hopefully
valid to connect each, with some estimat&(, of the local relative velocity of the contacting
bodies. If one chooses a8, the value kinematically associated with the unknown the
resulting discretization scheme turns out to be ofithglicit type. Whatever is the procedure
additionally used to update the continous functjoat the end of each step, such an implicit
character secures numerical stability, allowing one to use considerably larger step-lengths than
in MD methods. The price to pay is that the core of the calculation at each time-step consists
of a highly nonlinear and nonsmooth problem.

Various techniques are available to solve the core problem [10], possibly parallelized [11].
The most commonly used isreonlinear Gauss-Seidel procedumhich suits well the present
needs. It consists in reviewing the detected contacts cyclically again and again, solving for each
of them a single-contact problem in which the other contact forces are treated as known and
using the result to update interactions until some convergence criterium is met.

By connecting the contact impulsioss with u, the CD numerical scheme turns out to treat
possible collisions as perfectly inelastic. An improvement, leading to a core problem of the
same computational cost, consists in connecting eahth someweighted mean of the initial

and final values ot(,, (possibly using different weights for normal and tangential components).
In the special case of a binary collision this trick is found equivalent to the introduction of
some Newton restitution coefficients (for spherical grains, this has been fairly well validated by
experiments in [1]), but in general it offers the advantage of handling also multicontact systems
with plausible results. Example: the rocking of a slender block on a horizontal ground [4].

The CD numerical strategy may also be applied to collections of deformable bodies, discretized



through finite elements [3].

Gauss-Seidel iterations have to be launched from soiti@ guessof the termss,,. This guess

may consist of zero values but, in the case of dense collections of rigid bodies, one considerably
accelerates convergence by starting from the values found for these impulsions at the antecedent
step, for the contacts which were already acti¥éhis is done, computation does comply with

the proposition made in the foregoing of treating contact forces as state variables passed from
step to step and very little indeterminacy is observed

Of course such a way of passing some information about the past makes sense only in time-
stepping computation. At the level of theoretical formulation, what this numerical practice
reflects is anncrementaformulation of Coulomb law.

In contrast, given a time-step, if the information about antecedent contact forces is disregarded
the Gauss-Seidel procedure allows one to explore the plurality of the solutions to the core
problem. One possibility for this exploration is to execute a large number of runs of the cyclic
iteration process, each time with initial guess drawn at random from some plausible range.
Any solution then has a chance to be approached. Alternatively, one may launch all runs from
zero initial guess while choosing at random, for each run, the ordering of the cyclic review of
contacts. The limit of a run depends on this ordering. Wittontacts, the number of solutions
attained in the latter way equals at mést— 1)! which has been found sufficient to generate a
significant outline of the solution set, as illustrated in Sect.4 below.

To determine whether a given position iseguilibrium, a single computation step is enough:
starting withu, = 0, one checks whether; = 0. The values found for the contact impulsions
s, Yield the respective contact forcesras= s, /h.

4 AN EQUILIBRIUM

Fig.2 presents a detail of a collection df= 28 frictional circular bodies in equilibrium under
gravity. The number of contact points being denotedxbyhe problem is to calculate the
elementr of R?* consisting of the components of the contact forces.

The3N independent equations of equilibrium restrain an affine submanifoldl of R~ with
dimensiorzk—3N. Coulomb law requires of each contact force, sayto belong to an angular
regionC, of the corresponding two-dimensional factor subspad@?sf This is equivalent to

r belonging to a polyhedral cor@in R?®, the Cartesian product of regiofs,. The set of
equilibrium solutions thus equals the intersectbm C, a convex hyperpolyhedron. Coming

back to an individual contact, the set of the possible values of the associated contact force equals
the Cartesian projection gt N C onto the corresponding two-dimensional factor subspace. The
two procedures described in the preceding Section are applied to their exploration.

For a specified contact point in the assembly, each run of the Gauss-Seidel algorithm allows one
to draw a dot at the extremity of the computed contact force. By repetition, one obtains clouds
outlining the investigated sets; of course, they are included in the angular regions imposed by
Coulomb law.

For grain 1, simply supported by two underlying ones, clouds reduce to rectilinear segments
parallel to the undetermined “wedging components” acting aldéBgand the situation is sim-

ilar for grain 2. In contrast, grain 3 is involved in a more complicated pattern of interactions
resulting in extended indetermination clouds.

A surprise is the appearance inside these clouds of some ghost images of edges and vertices of
the high-dimensional polyhedrofin €, not the same for both procedures.



For a similar collection of discs in equilibrium, an investigation of force indeterminasyain
tistical spirit is reported in [15].

/ Grain 1 \\ Friction: 0.3
P

. \\ —//_,7—- 2 e . ;'/ S e E R *-x\_\ -’J Grain 2’

Figure 2: Contact force indeterminacy

5 GRANULAR FLOW ON A SLOPE

Fig.3 shows a detail of the two-dimensional flow on the groynd 0 of a layer of NV = 355
rigid disks, with gravity data corresponding to ground sloping down to the rightihy
Periodic boundary conditions are ap-
plied, i.e. calculation is performed
on disks with centers in the mas-
ter band—a < z < a. Disks

in the vicinity of x = +a may in-
teract through contact with the im-
ages of other ones under translations
(£2a,0); if they come to exit the
master band they are removed from
computation while some images of
them are entered instead.

Grain-to-grain friction: 0.3; ground
friction: 0.5; restitution of possible
collisions:0.

Figure 3: Dispersion of acceleration vectors at ¢ = .00044

Flow is not in stationary regime but, starting from rest, it accelerates as the effect of gravity.
Some results of computation are displayed on Figjldpmputation steps after start) and Fig.5



(121 steps after start) both produced by repeated runs of the Gauss-Seidel procedure at zero
initial guess, each run using a reviewing order selected at random.

An extended cloud at the first instant, the indeterminacy figure becomes a simple line and,
as time grows, eventually shrinks to the size of numerical incertainty. For instantes at
0.0444, the acceleration vector of some typical grain has a magnitude of &bouivhile the
indetermination range of its components is found to redu®e0ty.

A

of
o

N N N

Figure 4: Acceleration vector indeterminacy at ¢ = .00044 Figure 5: Acceleration vector indeterminacy at ¢t = .00484

We have no explanation to propose for such a decrease of indeterminacy as the flow gains
speed. One might think of the number of contacts involved in calculation and of the proportion
of sticking ones as determinant parameters. Actually, at the instant of Fig.4, the number of
contacts in the flow domain equdals6, among which75% have zero sliding. At the instant

of Fig.5, the number of contacts equélst, with 70% of zero sliding ones. At the instant of
negligible indetermination referred to above, the number of contacts is still as hightas

with 57% of zero sliding ones.

6 PAINLEVE STATE AND FRICTIONAL PAROXYSM

In his criticism of the dry friction model, Painlévinvoked the very simple example of the
motion of a rigid rod in a vertical plane, the extremiyof which slides with Coulomb friction

on a fixed horizontal ground. Initial data consist of the arggéé the rod with ground and of

the velocity parameters (compatible withremaining on ground). The problem of “incepting
motion” is that of applying the equations of Dynamics in order to calculate the acceleration
parameters at this instant. This is merely solving an algebraic system of linear equations and,
if the friction coefficient is large enough, it turns out that, for a specific couple of valués of
andd = db /dt, no solution exists because a certain determinant vanishes (this may also lead to
indeterminacy if some other quantity vanishes).

Today, one is not surprised to see a model refusing certain values of the parameters. A more
interesting issue was recently addressed: may an episode of regular motion lead to such a
Painle\é stat® The answer is found “yes” through the elementary reduction of the system of
second order differential equations to a single first order equation in the variale§he
qualitative and numerical investigations of the integral lines reveal that the Rastite cor-
responds to some singular point in tfe é)-plane. All the integral lines emanating from a
certain basin in this plane terminate at this very point and (with the exception of one of them)
the corresponding angular acceleratios: 9(dé/d0) tends to+oo. Consequently, the magni-

tude of the force exerted by the rod upon the ground tends to infinity; we propose to call that a



frictional paroxysm A detailed mathematical analysis [2] confirms these graphical findings.

What could the motion be after the paroxystic instant depends on the mechanical assumptions
one accepts about the friction phenomenon when contact forces tend to infinity. This is some-
what similar to a collision and the locution “tangential shock” is sometimes used. A model
yielding a one-parameter indeterminacy in the after-paroxysm velocities is developed in [6]; it
is automatically handled by CD time-stepping.

A definition of the concept of solution and an existence theorem (uniqueness not asserted)
covering this case may be found in [14].

7 STATICS OF FRICTIONLESS ROUND RIGID BODIES

In contrast with the precedings we turn now to the static§iofionlessrigid body collec-

tions. Authors in [9][12] have asserted that, if a collectiorspherical bodiegcircular ones

in 2D settings) contained in a fixed vessel is submitted to such external forces as gravity, then
“generically” or “with probability 1”7, the configurations taken by this system at equilibrium are
isostatic In the traditional context of frictionless systems involving only equality constraints,
discussing isostaticity or more generally assessing the degree of hyperstaticity of an equilibrium
amounts to evaluate the dimensions of the kernels or ranges of some linear mappings. In the
presenunilateral setting, equilibria are not characterized by equalities butdmgplementarity
conditions so that the discussion does not reduce to evaluating dimensions anymore.

Repeated numerical simulations have confirmed the assertion, but we are not fully convinced
by the arguments of the authors, so we suggest below a novel approach to the question.

First observe that, in the statics of a frictionless collection spherical balls, the relevant posi-
tion parameters merely are the coordinates of the respective centers. Use as abstract parameter
the element of RY, N = 3n, consisting of all these Cartesian coordinates.

The geometric effect of the non-interpenetrability of the balls and of their confinement by the
vessel (one may assumed it polyhedral for simplicity) is expressed by inequalities

fale) >0, a € {1,... v}, (1)

with real functionsf,, convex and smooth. This defineslii’ the feasible region®, equiva-
lently the complement of the union of the smooth convex sets defined by replacirgsta-

bols by <. The boundary: of ® may thus be viewed as a “quilted” hypersurface constructed
by piecing together some portions of the boundafigsy € {1,...,v} of v smooth convex
sets with nonempty interiors. The, are smooth hypersurfaces which meet along hyperedges.
In particular, hyperedges of dimension zero constipitin .

For everya € A(q) = {« : f.(q) = 0}, the configuratiory involves a contact, which im-
parts on the system some contact forces with generalized compofiest®”. Through the
standard machinery of Analytical Mechanics [6], the assumption that confactiisnlessand
adhesionlesss equivalently transformed into

Fpa > 0: 7% = paV fu(q) (2)

(if all balls have nonzero radii, one may check that\élf,(¢) are nonzero element @&";
furthermore no pair of them have a common direction).

Let the applied forces consist of the action of gravity upon the respective balls; their generalized
components make a vectdt € R”, independant of,. Provided gravity doesn’t lie in an



unboundedness directions of the vessel, the system possesses equilibrium positions belonging
to ¥ and, in view of the above description of the feasible region, it is only in pits that such
equilibria may be stable.

Let ¢, located in some pit of}, denote an equilibrium configuration under for€gin view of
(2) this means that F' equals a nonnegative combination of the elem&hfs(q), « € A. We
claim that “generically” these elements make a bage’inhence the expected uniqueness.

f3=c3 \

Regular case : —F admits a unique decom-
position into a nonnegative combination of

Viil@,i=1,2,3
This happens almost always

Singular case : —F admits an infinity of
decompositions into nonnegative
combinations of Vf;i(¢),i=1,2,3,4

This may happen only for an exceptional
set of values of the ¢;

Figure 6: An illustration in R3

Figure 6 illustrates withV' = 3 the proposed argumentation. After fixingreal numbers

ci,...,c,, consider inRY thev hypersurfaceg; = c; (herev > N). We assert that generically
no more thanV of them can pass through a specified point and that the correspo¥ding
evaluated at this point are linearly independent. Here is an intuitive explanation.

Let N of the above hypersurfaces pass through some pginEffecting if necessary some
arbitrarily small alterations (e.g. altering some of thg one may obtain that two of them
intersectransversallyalong a regular manifold/, _; containing a poinp; arbitrarily close to

po. Again after a possible alteration, a third surface may be made to intérsect transver-
sally along a manifold//y _, containing a poinp, close to the preceding ones. The procedure
has to be repeated, finally yieldidg hypersurfaces which intersect in the expected regular way
at some isolated pointy close top,. And it would be “exceptional” that another hypersurface

of the collection pass through this point.

The essential issue is the meaning that one gives to the concggneficity A mathematical

object depending on a parametee R™ will be said to possess some propeRygenerically

if P holds for everyp in a subset oR”™ whose complement is viewed as an exceptional set. A
choice has to be made about the class of sets to be considered as exceptional, similarly to what

is done in theTheory of Transversality

e One may declare exceptional the subset®6fwith zero Lebesgue measurThis choice
opens the way tprobabilisticstatements by viewing as a random variable. If the probability
distribution ofp admits a density relative to Lebesgue measure, an exceptional set then has
probability zero. The reader willing to develop the argument in this direction may take inspi-



ration from [13], a paper devoted to similar questions of genericity in nonlinear programming.
The central analytic tool iSard’s theoremit requires a high order of differentiability for the
concerned functions, in fact secured in the present context.

¢ In a different approach, the property will be declared generic if holds for evepyin a
dense open subs@tof R™. In other words, if a point doesn’t belong g an arbitray small
displacement is enough to bring it iffband, since? is open, property’ is then secured in a
“stable” way. Actually, results in this line need a slightly more complicated construction: the
exceptional sets shall be tBaire sets of first categorfalso called meagre sets).
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