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1 SUMMARY
In the mechanics of systems involving dry frictional contacts it is known that the problem of 
evaluating at some instant the contact forces and the accelerations may admit a plurality of 
solutions. Starting from an elementary example of wedging one proposes, as a consistent way 
of handling information, to include the contact forces in the description of each state. This in 
fact is what popular time-stepping computation techniques do, as they make reference at each 
time-step to the constraint state calculated in the antecedent one (actually a way of treating 
Coulomb law incrementally). The Contact Dynamics technique optionally offers the alternative 
of discarding this information, exploring the consequent indeterminations and displaying the 
sets of solutions as clouds of dots. Examples arising from Granular Mechanics are presented. 
The so-called Painlevé paradox is commented. Finally, an explanation of the isostaticity of the 
equilibrium of a collection of frictionless round grains is proposed.

2 INTRODUCTION
However complex may be the phenomena which take place when two bodies touch each other, 
should sliding occur or not, the law of Coulomb provides an irreplaceable framework for ap-
proaching dry friction. In many industrial situations, the only quantitative information 
provided by technical documents about friction-affected devices is communicated in terms of 
Coulomb friction coefficients (with possible distinction between sticking and sliding values).

That the motions calculated from such a model frequently are mathematically nonsmooth re-
flects everyday observation: in the absence of lubrication, mechanisms may exhibit chattering 
motions, emit creaking noise, or jam.

Discussions have taken place for a long time about the fact that, in the dynamics of systems 
involving Coulomb friction, the initial value problem, i.e. the prediction of the motion conse-
quent to an instant at which the positions and the velocities of the system elements are given, 
may have several solution or no solution at all. In the eyes of a 19th. century scientist like 
Painlevé, impressed by the theory of differential equations and Laplace’s “determinism”, this 
was an inacceptable defect, leading him to the point of rejecting the very concept of a contact 
force. The disquieting locution of “Painlevé’s paradox” caused definite harm to mechanical 
science since engineers who had, from other parts, some reasons to be unsatisfied with the 
moderate quantitative precision of Coulomb law, tended to view this wording as a hint at some 
logical defect. The irrelevance of Painlevé’s standpoint was already pointed at in his time [5].



In our view, a physical model is nothing but aformat, in the sense of data processing, in which
one decides to record the available information concerning a certain physical situation, to treat
this information and finally to communicate conclusions. Fundamentally, the information one
may collect about the investigated situation is always incomplete, so the model through which
this information is coded cannot be expected to generate exhaustive predictions. Also, as the
system evolves, the validity limits of the model may come to be overrun.

2 ELEMENTARY EXAMPLE
The system shown on Fig.1 is contained in a vertical plane. Two fixed walls slightly converge
upward. A rigid rod, subject to gravity, is inserted between them, with Coulomb friction at the
two contact points and abandoned at zero velocity. If the configuration angles have suitable
values, compared with the friction angles at contact points, the problem of finding the conse-
quent motion visibly has two solutions: either the rod loses contact and falls freely or it remains
wedged.

The quadrilateral area filled with light gray is the intersection of the Coulomb cones drawn from
the two contact points. The triangular part aboveAB intersects the vertical of the center of
gravityG along a line segment. Any position ofI on this segment corresponds to values of the
contact forcesRA andRB compatible with the no-sliding Coulomb condition and equilibrating
the rod weight. But zero values forRA andRB are also compatible with the friction law,
yielding a downward acceleration ofG, hence the breaking of contact.

Intuitively, the outcome depends on the “intensity of wedging” of the rod. The natural measure
of such a degree precisely consists of the values of contact forces and it turns out that, in the
present case, knowing these forces allows one to predict the further motion unambiguouly.
For more complicated systems, the numerical investigations presented in the sequel show that
treating contact forces as part of the description of each state reduces ambiguity considerably.

Figure 1: A rod inserted between convergent walls

A deeper insight into the present situation could be expected from the use of aricher model
than above. To this end, one may take into account a certainlongitudinal elasticityof the
rod. This involves the introduction of a “small” variables, the rod elongation counted from
some reference state. As long as contacts are effective, the value ofs is geometrically related
to the displacements of pointsA andB on the respective walls, still treated as indeformable.
Given a law of longitudinal elasticity of the rod, a differential equation with the longitudinal



components ofRA andRB as endpoint data allows one to determine the stress distribution
alongAB. For simplicity, assumeAB horizontal and all the applied forces vertical. Then
this elastic analysis simply results in a monotone relationship between the variables and the
(opposite to each other) longitudinal components ofRA andRB.

Such a model provides an understanding ofthe scenario of rod insertion and extraction. If,
after contact is established, increasing upward forces are applied, the evolution (assumed quasi-
static) consists in pointsA andB sliding upward. At every time, vectorsRA andRB have
lines of action imposed by Coulomb law in sliding regime. Thanks to the quasi-equilibrium
equations of the rod, they may be calculated from the values of the applied forces.

If, at some instant, one decides to make the upward pushing forces decrease and eventually
take downward direction, a new episode of motion begins, still assumed quasi-static. Points
A andB remain fixed so that the elastic relationship,whatever it is, makes the longitudinal
components ofRA andRB keep the values they had at the instant of reversal. At every time,
the values ofRA andRB result from the values of the applied forces and the no-slide regime
persists so long as these calculated vectors lie in the respective Coulomb cones. This allows
one to determine the value that the resultant of the downward applied forces should eventually
reach to produce detachment.

This model has the merit of making understand the processes of insertion and extraction but,
to the lay observer, it conveys no quantitatively tractable information in the absence of a mea-
suring device for microdisplacements, commonly not at hand. Since the proper elasticity law
of the rod turns out to be immaterial, one may expects that some model merely ignoring this
elasticity could be able to reproduce the above scenario. In fact, the Contact Dynamics compu-
tation method has been found to yield numerically a response of contact forces to the pushing
history which agrees with what precedes.

3 TIME-STEPPING COMPUTATION
A widespread method for the numerical simulation of multibody systems is derived from the
techniques used inMolecular Dynamics, hence referred to as MD. It consists of approximating
the impenetrability constraints, when two bodies come close to each other, by repulsion forces
steeply dependent on the mutual positions. Friction forces are similarly approximated, yielding
an evolution problem governed by differential equations smooth enough for being handled
through standard integration methods. In this way, the interaction forces are connected with
fictitious deformations passed from step to step, so that the numerical scheme complies with
the proposition made in the foregoing ofincluding these forces in the description of each state.
The drawback of the method is that, for the sake of precision, very stiff repulsion laws are
needed so that very short step-lengths have to be used in the integration of the differential
equations, usually with artificial damping introduced to prevent numerical instability. These
added features may alter significantly the behaviour of the investigated system.

Another approach entitledContact Dynamics(abbr. CD) will be preferred here in view of its
ability to explore also the plurality of solutions. It faces the essential nonsmoothness of the
impenetrability constraints and of dry friction without resorting to any regularizing alteration
of the model [6] (for a recent exposition, see [7]). The dynamics of a system withn degrees
of freedom is formulated in terms of two functions of a time-interval[0, T ] to Rn, theposition
function t 7→ q, and thevelocity functiont 7→ u. In the simplest case,q equals the time-
integral ofu; the kinematical relationship only becomes slightly more complicated when some
members ofu consist for instance in components of the spin vectors of rigid parts.



The geometric effect of non-interpenetrability is expressed by a finite set of inequalitiesfα(q) ≤
0, with equality corresponding to contact. The leading feature of the CD approach is that these
inequalities are actually handled at the velocity level: by astrainingu(t) to belong for (almost)
everyt to a certain coneK(t, q), one secures inequalities to hold throughout[0, T ] provided
they hold at initial instant.

In addition, some mechanical information about each contact should be available in terms of a
contact law, i.e. a relationship connecting, for eachα such thatfα(q) = 0, the local kinematics
with the contact forceRα whose generalized components are notedrα ∈ Rn. Coulomb law in
particular may be written in such a form.

The equations of classical (smooth) Mechanics may be viewed as a differential equation, say
du/dt = E(t, q, u, Σ rα), governing the functionu and involving the other unknownq as a
t-dependent parameter. But in the present context, thenonsmoothnessarising from contact
unilaterality and dry friction is liable to entail discontinuities for the functionu. The suitable
mathematical framework is that ofu being anRn-valued function oft with bounded variation,
so that the differential equation of the classical case is replaced by ameasure-differential equa-
tion MDE. This means that the derivativedu/dt should then be understood as anRn-valued
measure on[0, T ], with punctual atoms at the instants of possible collisions. Mechanical ac-
tions, in particular the unknown contact forces or contact percussions are also described through
such measures.

A time-stepping scheme is constructed by integrating both members of MDE on each interval
of the time grid, say[ti, tf ], with tf = ti+h. Starting from the approximantui of u(ti) delivered
by the antecedent step, the objective is to calculate an approximantuf of u(tf ). Concomitant
unknown is the contact impulsions = Σsα, i.e. the integral ofΣrα over[ti, tf ]. The discretized
MDE thus has to be complemented by some impulsional form of the contact laws, hopefully
valid to connect eachsα with some estimateUα of the local relative velocity of the contacting
bodies. If one chooses asUα the value kinematically associated with the unknownuf , the
resulting discretization scheme turns out to be of theimplicit type. Whatever is the procedure
additionally used to update the continous functionq at the end of each step, such an implicit
character secures numerical stability, allowing one to use considerably larger step-lengths than
in MD methods. The price to pay is that the core of the calculation at each time-step consists
of a highly nonlinear and nonsmooth problem.

Various techniques are available to solve the core problem [10], possibly parallelized [11].
The most commonly used is anonlinear Gauss-Seidel procedurewhich suits well the present
needs. It consists in reviewing the detected contacts cyclically again and again, solving for each
of them a single-contact problem in which the other contact forces are treated as known and
using the result to update interactions until some convergence criterium is met.

By connecting the contact impulsionssα with uf , the CD numerical scheme turns out to treat
possible collisions as perfectly inelastic. An improvement, leading to a core problem of the
same computational cost, consists in connecting eachsα with someweighted mean of the initial
and final values ofUα (possibly using different weights for normal and tangential components).
In the special case of a binary collision this trick is found equivalent to the introduction of
some Newton restitution coefficients (for spherical grains, this has been fairly well validated by
experiments in [1]), but in general it offers the advantage of handling also multicontact systems
with plausible results. Example: the rocking of a slender block on a horizontal ground [4].

The CD numerical strategy may also be applied to collections of deformable bodies, discretized



through finite elements [3].

Gauss-Seidel iterations have to be launched from someinitial guessof the termssα. This guess
may consist of zero values but, in the case of dense collections of rigid bodies, one considerably
accelerates convergence by starting from the values found for these impulsions at the antecedent
step, for the contacts which were already active.If this is done, computation does comply with
the proposition made in the foregoing of treating contact forces as state variables passed from
step to step and very little indeterminacy is observed.

Of course such a way of passing some information about the past makes sense only in time-
stepping computation. At the level of theoretical formulation, what this numerical practice
reflects is anincrementalformulation of Coulomb law.

In contrast, given a time-step, if the information about antecedent contact forces is disregarded
the Gauss-Seidel procedure allows one to explore the plurality of the solutions to the core
problem. One possibility for this exploration is to execute a large number of runs of the cyclic
iteration process, each time with initial guess drawn at random from some plausible range.
Any solution then has a chance to be approached. Alternatively, one may launch all runs from
zero initial guess while choosing at random, for each run, the ordering of the cyclic review of
contacts. The limit of a run depends on this ordering. Withκ contacts, the number of solutions
attained in the latter way equals at most(κ− 1)! which has been found sufficient to generate a
significant outline of the solution set, as illustrated in Sect.4 below.

To determine whether a given position is anequilibrium, a single computation step is enough:
starting withui = 0, one checks whetheruf = 0. The values found for the contact impulsions
sα yield the respective contact forces asrα = sα/h.

4 AN EQUILIBRIUM
Fig.2 presents a detail of a collection ofN = 28 frictional circular bodies in equilibrium under
gravity. The number of contact points being denoted byκ, the problem is to calculate the
elementr of R2κ consisting of the components of the contact forces.

The3N independent equations of equilibrium restrainr in an affine submanifoldA of R2κ with
dimension2κ−3N . Coulomb law requires of each contact force, sayrα, to belong to an angular
regionCα of the corresponding two-dimensional factor subspace ofR2κ. This is equivalent to
r belonging to a polyhedral coneC in R2κ, the Cartesian product of regionsCα. The set of
equilibrium solutions thus equals the intersectionA ∩ C, a convex hyperpolyhedron. Coming
back to an individual contact, the set of the possible values of the associated contact force equals
the Cartesian projection ofA∩C onto the corresponding two-dimensional factor subspace. The
two procedures described in the preceding Section are applied to their exploration.

For a specified contact point in the assembly, each run of the Gauss-Seidel algorithm allows one
to draw a dot at the extremity of the computed contact force. By repetition, one obtains clouds
outlining the investigated sets; of course, they are included in the angular regions imposed by
Coulomb law.

For grain 1, simply supported by two underlying ones, clouds reduce to rectilinear segments
parallel to the undetermined “wedging components” acting alongAB and the situation is sim-
ilar for grain 2. In contrast, grain 3 is involved in a more complicated pattern of interactions
resulting in extended indetermination clouds.

A surprise is the appearance inside these clouds of some ghost images of edges and vertices of
the high-dimensional polyhedronA ∩ C, not the same for both procedures.



For a similar collection of discs in equilibrium, an investigation of force indeterminacy insta-
tistical spirit is reported in [15].

Figure 2: Contact force indeterminacy

5 GRANULAR FLOW ON A SLOPE
Fig.3 shows a detail of the two-dimensional flow on the groundy = 0 of a layer ofN = 355
rigid disks, with gravity data corresponding to ground sloping down to the right by24◦.

Figure 3: Dispersion of acceleration vectors at t = .00044

Periodic boundary conditions are ap-
plied, i.e. calculation is performed
on disks with centers in the mas-
ter band−a ≤ x < a. Disks
in the vicinity of x = ±a may in-
teract through contact with the im-
ages of other ones under translations
(±2a, 0); if they come to exit the
master band they are removed from
computation while some images of
them are entered instead.

Grain-to-grain friction: 0.3; ground
friction: 0.5; restitution of possible
collisions:0.

Flow is not in stationary regime but, starting from rest, it accelerates as the effect of gravity.
Some results of computation are displayed on Fig.4 (11 computation steps after start) and Fig.5



(121 steps after start) both produced by repeated runs of the Gauss-Seidel procedure at zero
initial guess, each run using a reviewing order selected at random.

An extended cloud at the first instant, the indeterminacy figure becomes a simple line and,
as time grows, eventually shrinks to the size of numerical incertainty. For instance, att =
0.0444, the acceleration vector of some typical grain has a magnitude of about520, while the
indetermination range of its components is found to reduce to0.007.

Figure 4: Acceleration vector indeterminacy at t = .00044 Figure 5: Acceleration vector indeterminacy at t = .00484

We have no explanation to propose for such a decrease of indeterminacy as the flow gains
speed. One might think of the number of contacts involved in calculation and of the proportion
of sticking ones as determinant parameters. Actually, at the instant of Fig.4, the number of
contacts in the flow domain equals556, among which75% have zero sliding. At the instant
of Fig.5, the number of contacts equals544, with 70% of zero sliding ones. At the instant of
negligible indetermination referred to above, the number of contacts is still as hight as506,
with 57% of zero sliding ones.

6 PAINLEVE STATE AND FRICTIONAL PAROXYSM
In his criticism of the dry friction model, Painlevé invoked the very simple example of the
motion of a rigid rod in a vertical plane, the extremityA of which slides with Coulomb friction
on a fixed horizontal ground. Initial data consist of the angleθ of the rod with ground and of
the velocity parameters (compatible withA remaining on ground). The problem of “incepting
motion” is that of applying the equations of Dynamics in order to calculate the acceleration
parameters at this instant. This is merely solving an algebraic system of linear equations and,
if the friction coefficient is large enough, it turns out that, for a specific couple of values ofθ
andθ̇ = dθ/dt, no solution exists because a certain determinant vanishes (this may also lead to
indeterminacy if some other quantity vanishes).

Today, one is not surprised to see a model refusing certain values of the parameters. A more
interesting issue was recently addressed: may an episode of regular motion lead to such a
Painlev́e state? The answer is found “yes” through the elementary reduction of the system of
second order differential equations to a single first order equation in the variablesθ, θ̇. The
qualitative and numerical investigations of the integral lines reveal that the Painlevé state cor-
responds to some singular point in the(θ, θ̇)-plane. All the integral lines emanating from a
certain basin in this plane terminate at this very point and (with the exception of one of them)
the corresponding angular accelerationθ̈ = θ̇(dθ̇/dθ) tends to±∞. Consequently, the magni-
tude of the force exerted by the rod upon the ground tends to infinity; we propose to call that a



frictional paroxysm. A detailed mathematical analysis [2] confirms these graphical findings.

What could the motion be after the paroxystic instant depends on the mechanical assumptions
one accepts about the friction phenomenon when contact forces tend to infinity. This is some-
what similar to a collision and the locution “tangential shock” is sometimes used. A model
yielding a one-parameter indeterminacy in the after-paroxysm velocities is developed in [6]; it
is automatically handled by CD time-stepping.

A definition of the concept of solution and an existence theorem (uniqueness not asserted)
covering this case may be found in [14].

7 STATICS OF FRICTIONLESS ROUND RIGID BODIES
In contrast with the precedings we turn now to the statics offrictionlessrigid body collec-
tions. Authors in [9][12] have asserted that, if a collection ofspherical bodies(circular ones
in 2D settings) contained in a fixed vessel is submitted to such external forces as gravity, then
“generically” or “with probability 1”, the configurations taken by this system at equilibrium are
isostatic. In the traditional context of frictionless systems involving only equality constraints,
discussing isostaticity or more generally assessing the degree of hyperstaticity of an equilibrium
amounts to evaluate the dimensions of the kernels or ranges of some linear mappings. In the
presentunilateralsetting, equilibria are not characterized by equalities but bycomplementarity
conditions, so that the discussion does not reduce to evaluating dimensions anymore.

Repeated numerical simulations have confirmed the assertion, but we are not fully convinced
by the arguments of the authors, so we suggest below a novel approach to the question.

First observe that, in the statics of a frictionless collection ofn spherical balls, the relevant posi-
tion parameters merely are the coordinates of the respective centers. Use as abstract parameter
the elementq of RN , N = 3n, consisting of all these Cartesian coordinates.

The geometric effect of the non-interpenetrability of the balls and of their confinement by the
vessel (one may assumed it polyhedral for simplicity) is expressed by inequalities

fα(q) ≥ 0, α ∈ {1, . . . , ν}, (1)

with real functionsfα convex and smooth. This defines inRN the feasible regionΦ, equiva-
lently the complement of the union of the smooth convex sets defined by replacing the≥ sym-
bols by<. The boundaryΣ of Φ may thus be viewed as a “quilted” hypersurface constructed
by piecing together some portions of the boundariesSα, α ∈ {1, . . . , ν} of ν smooth convex
sets with nonempty interiors. TheSα are smooth hypersurfaces which meet along hyperedges.
In particular, hyperedges of dimension zero constitutepits in Σ.

For everyα ∈ A(q) = {α : fα(q) = 0}, the configurationq involves a contact, which im-
parts on the system some contact forces with generalized componentsrα ∈ RN . Through the
standard machinery of Analytical Mechanics [6], the assumption that contact isfrictionlessand
adhesionlessis equivalently transformed into

∃ρα ≥ 0 : rα = ρα∇fα(q) (2)

(if all balls have nonzero radii, one may check that all∇fα(q) are nonzero element ofRN ;
furthermore no pair of them have a common direction).

Let the applied forces consist of the action of gravity upon the respective balls; their generalized
components make a vectorF ∈ RN , independant ofq. Provided gravity doesn’t lie in an



unboundedness directions of the vessel, the system possesses equilibrium positions belonging
to Σ and, in view of the above description of the feasible region, it is only in pits that such
equilibria may be stable.

Let q, located in some pit ofΣ, denote an equilibrium configuration under forceF ; in view of
(2) this means that−F equals a nonnegative combination of the elements∇fα(q), α ∈ A. We
claim that “generically” these elements make a base inRN , hence the expected uniqueness.

Figure 6: An illustration in R3

Figure 6 illustrates withN = 3 the proposed argumentation. After fixingν real numbers
c1, . . . , cν , consider inRN theν hypersurfacesfi = ci (hereν ≥ N ). We assert that generically
no more thanN of them can pass through a specified point and that the corresponding∇fi

evaluated at this point are linearly independent. Here is an intuitive explanation.

Let N of the above hypersurfaces pass through some pointp0. Effecting if necessary some
arbitrarily small alterations (e.g. altering some of theci), one may obtain that two of them
intersecttransversallyalong a regular manifoldMN−1 containing a pointp1 arbitrarily close to
p0. Again after a possible alteration, a third surface may be made to intersectMN−1 transver-
sally along a manifoldMN−2 containing a pointp2 close to the preceding ones. The procedure
has to be repeated, finally yieldingN hypersurfaces which intersect in the expected regular way
at some isolated pointpN close top0. And it would be “exceptional” that another hypersurface
of the collection pass through this point.

The essential issue is the meaning that one gives to the concept ofgenericity. A mathematical
object depending on a parameterp ∈ Rm will be said to possess some propertyP generically
if P holds for everyp in a subset ofRm whose complement is viewed as an exceptional set. A
choice has to be made about the class of sets to be considered as exceptional, similarly to what
is done in theTheory of Transversality.

• One may declare exceptional the subsets ofRm with zero Lebesgue measure. This choice
opens the way toprobabilisticstatements by viewingp as a random variable. If the probability
distribution ofp admits a density relative to Lebesgue measure, an exceptional set then has
probability zero. The reader willing to develop the argument in this direction may take inspi-



ration from [13], a paper devoted to similar questions of genericity in nonlinear programming.
The central analytic tool isSard’s theorem; it requires a high order of differentiability for the
concerned functions, in fact secured in the present context.

• In a different approach, the propertyP will be declared generic if holds for everyp in a
dense open subsetΩ of Rm. In other words, if a point doesn’t belong toΩ, an arbitray small
displacement is enough to bring it intoΩ and, sinceΩ is open, propertyP is then secured in a
“stable” way. Actually, results in this line need a slightly more complicated construction: the
exceptional sets shall be theBaire sets of first category(also called meagre sets).
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