
HAL Id: hal-01824568
https://hal.science/hal-01824568

Submitted on 27 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An introduction to Unilateral Dynamics
Jean Jacques Moreau

To cite this version:
Jean Jacques Moreau. An introduction to Unilateral Dynamics. Michel Frémond; Franco Maceri.
Novel Approaches in Civil Engineering, Springer, pp.1-46, 2004, 978-3-642-07529-2. �10.1007/978-3-
540-45287-4_1�. �hal-01824568�

https://hal.science/hal-01824568
https://hal.archives-ouvertes.fr


An introduction to Unilateral Dynamics 

Jean Jacques Moreau 

Laboratoire de Mecanique et Genie Civil, 
cc 048, Universite Montpellier II, 
F-34095 Montpellier Cedex 5, France 

Abstract. The paper is devoted to mechanical systems with a finite number of 
degrees of freedom. After showing how inequality requirements in evolution prob­
lems can be handled through differential inclusions, one introduces dynamics by 
an elementary example of unilateral mechanical constraint. Then a general setting 
is constructed for multibody multicontact systems. The description of unilateral 
interaction at each possible contact point is formalized, with account of possible 
friction. This generates the numerical time-stepping policy called Contact Dynam­
ics. The treatment of collisions or other frictional catastrophes in this framework 
leads to measure-differential inclusions, an essential tool in nonsmooth dynamics. 
The energy balance of nonsmooth evolutions is discussed. Two illustrations of the 
proposed numerical methods are presented. The former concerns the mechanisms 
of collapse of a bridge arch under local forcing. In the latter, the construction of a 
conical pile of grains is simulated, in order to investigate stresses in the bulk and 
the distribution of pressure on ground. 

1 Purpose 

1.1 Computation in multibody dynamics 

The numerical dynamics of collections of bodies treated as perfectly inde­
formable, subject to the constraints of non-interpenetrability, with friction 
taken into account in the event of contact, currently is an active domain of 
research. Applications include the dynamics of machines, in particular robots, 
the dynamics of masonry works submitted to transient actions (earthquakes, 
gusts of wind or impacts), animated computer graphics and numerical sim­
ulation in granular mechanics. In all these domains, assuming the perfect 
indeformability of each part of the system leads to efficient numerical proce­
dures which, in many circumstances, satisfy the needs. Possibly, some vari­
ables are added in order to also account for a certain deformability of these 
parts [2] [37], without essentially changing the computational strategies. Of 
course, for the handling of non-interpenetrability and friction, much may be 
learned from the rich literature devoted to the treatment of contact between 
deformable media discretized through finite elements, even if in most cases 
only quasistatic evolutions are addressed (see e.g. [3][12][18][20][35] or, con­
cerning a dynamical situation [75]). 

The techniques used in multibody dynamics may be classified into the 
three following categories. 



1.2 Event-driven methods 

The methods so qualified (abbr. ED) are practical mainly when the con­
cerned time-interval equals the union of not too many subintervals, a priori 
unknown, over which the status of the various contacts remain unchanged, i.e. 
no collision which would create new contacts occurs, no contact either gets 
loose, nor any critical situation needing a change in the analytical expression 
of the Coulomb law of dry friction is met. On each of these subintervals, the 
same numerical techniques as in the investigation of machines with classical 
bilateral, possibly frictional, constraints may be used [28]. As integration pro­
ceeds, there only is to watch the evolution of some indicators. In particular, 
the contact forces will be calculated. If, after a certain instant, some of the 
values computed for these forces are found to have directions incompatible 
with the unilaterality of the non-interpenetrability constraints (here we ne­
glect adhesive, i.e. gluing effects), the programme decides that the motion has 
to be calculated otherwise. But one should keep in mind that the contacts 
which get loose after the critical instant are not necessarily those for which 
an unfeasible contact force has just been evaluated [22]. A popular approach 
to such discussions consists of reducing them to complementarity problems, 

similar to what is commonly met in constrained optimization. 
More embarrassing is the calculation of the new velocity in case the criti­

cal instant is that of a collision. Contact forces take very large values during a 
very short time-interval and only poor phenomenological information is usu­
ally available about such physical circumstances. Even in the simplest case, 
that of the collision of two otherwise free members of the system, the tradi­
tional coefficient of restitution is known to depend not only on the materials 
these bodies are made of, but also on their shapes and relative orientations 
at the collision locus [72]; only the case of spherical beads appears relatively 
comfortable [25]. Furthermore, if some of the colliding bodies belong to clus­
ters of already contacting ones, percussional reactions should be expected 
at all existing contact points. Though rigid body collisions currently are an 
active domain of research [9][13][16][27][73], computation has to rely on prag­
matic rules whose validity has to be checked in each domain of application. 

1.3 Smoothing methods 

'Nonsmoothness' is the salient feature of the problems in view. In fact, after 
the set of the possible positions of the investigated system has been para­
metrized through an element q of Rn , the geometric restriction that the 
non-interpenetrability constraints impose on q are expressed by a set of in­
equalities. Hence, instead of running in a smooth submanifold as in tradi­
tional analytical dynamics, the point q is confined in a region of Rn whose 
boundary is made of a lot of pieces of hypersurfaces ( millions or billions of 
them in current applications to granular materials): this is nonsmoothness in 

space. Furthermore, collisions are expected to induce velocity jumps: this is 



nonsmoothness in time. To end, the contact forces or 'reactions' associated 
with the non-interpenetrability constraints are governed by highly irregular 
laws. These forces vanish as soon as the corresponding contacts break while, 
if contact holds, the commonly stipulated mechanical conditions do not ex­
press them as fonctions of q. If, in addition, dry friction is taken into account 
(most usually in the form of Coulomb's law) it introduces some irregular re­
lationships between contact forces and the sliding velocities. All this may be 
called nonsmoothness in law. 

In such a state of the affairs, a natural move is to replace, approximately, 
the nonsmooth governing relationships by some regularized ones. First the 
non-interpenetrability constraints will be replaced by some stiff repulsion laws 
which take effect as soon as two members of the system corne close to each 
other. This automatically handles the possible collisions, as far as one con­
siders them as 'elastic', while the dissipativity of collisions may be accounted 
for by adding some damping actions or also by using different repulsion laws 
in the episodes of approach and of separation. Similarly, frictional contact 
may be somewhat regularized through the introduction of local elastic mi­
crodeformation and of viscosity-like effects. The dynamics of the approximate 
system is then governed by differential equations with sufficient regularity to 
be handled through standard numerical techniques. The drawback is that 
the need of precision requires the use of very stiff appproximate laws. Hence 
the time-stepping procedures applied have to resort to very small step-length 
and possibly also have to enforce numerical stability by introducing artificial 
damping or artificially increasing inertia. When treating dynamical applica­
tions, the effect of such an artificial alteration of the mechanical data may 
blur the picture. Significant simulations of loose ( collisional) flows of granular 
materials have been obtained in that way, but when dense collections of bod­
ies are concerned (pieces of masonry or compact granula tes) the method is 
mainly applied to quasi-static evolutions in which only a succession of equi­
librium states is looked for. Dynamical computation is then used only as a 
way of attaining each of these equilibrium states, a strategy referred to as 
'Dynamic Relaxation'. 

The pioneering work of P. Cundall [19] was precisely based on the regu­
larization strategy, today implemented in the majority of commercial pieces 
of software intended to handle non-interpenetrability. Because such computa­
tion techniques are close to those applied in molecular simulations, they are 
commonly referred to as 'Molecular Dynamics' methods (abbr. MD), specially 
in the domain of granular mechanics [76]. 

1.4 Contact Dynamics 

This is the technique (abbr. CD) advocated by the author, to which the 
present paper is meant to provide an introduction. It originated from [52], 
where the (unilateral) contact, possibly frictional and/or collisional, between 
rigid bodies received a formulation in terms of elementary convex analysis 



which proves suitable for computation. Mathematically, the resulting evolu­
tion problems are governed in smooth cases by differential inclusions. General 
information on the latter concept may be found in [5] [21], but the need of 
treating also non-smooth evolutions calls for its extension to that of a mea­

sure differential inclusion. The Sweeping Process introduced earlier by the 
author, with motivation in the quasi-static evolution of elastoplastic systems 
[48] [50] seems to have provided the first occurence of measure differential in­
clusions in literature. This process and some related evolution problems are
still today the objet of mathematical research; see references in [42]. ln Sect.2
of the present paper a description of the process, of purely kinematical na­
ture, has been estimated able to make a tutorial introduction to the handling
of unilaterality in mechanics.

A directing idea of the Contact Dynamics approach is that the main ob­
ject of computation is the velocity function t f---+ u E Rn . Time-stepping 
algorithms essentially have to determine the evolution of this fonction. by 
applying the principles of dynamics and the specified force laws. The po­
sition fonction t f---+ q is only to be updated at each step through adequate 
integration. Possibly, some members of u are 'pseudo-parameters' such as the 
components of the spin vector of a solid, instead of the time-derivatives of po­
sition parameters. From the geometrical standpoint, one should observe that, 
in analytical dynamics, the position q ranges in some differential manifold, 
while for each q the possible velocities are elements of the tangent space to 
the manifold at this point. The latter is a vector space relatively to which such 
concepts as linearity, convexity, etc. make sense, while no algebraic concept 
of this sort is generally available in the position manifold. 

Contact Dynamics procedures rest on drawing the balance of momentum 
of the investigated mechanical system over each time-step. No estimation 
of the acceleration is needed and the burden of calculating mathematically 
the curvatures of the involved surfaces is avoided. These curvatures are sim­
ply accounted for by the fact that, from one step to the other, the normal 
directions to the detected contacts vary. 

The method results in time-stepping schemes which, at least in what 
concerns the velocity fonction, are of the imp lici t type. For this reason, a 
single computation step is needed in particular to decide whether equ i librium 

in a given position is a possible motion. 
In principle, the Contact Dynamics algorithms are ready at each step to 

treat collisions on the same footing as persistent contacts but, of course, the 
need of physical information about such phenomena is not overcome. 

1.5 Contents of the paper 

The contents of Sect. 2 is purely kinematical, in other words it pertains to 
differential and integral calcul us in the variables of time and space. There is 
shown how inequality requirements imposed on a moving point in Rn may 
be enforced through conditions involving its velocity vector. The example of 



the Sweeping Process, which is governed by a differential inclusion of first 

order, provides an introduction to the mathematical aspects of Unilateral 

Dynamics. 

In Sect. 3 is developed the elementary example of the dynamics of a punc­

tual particle unilaterally confined by a frictionless material boundary with 

prescribed motion. The traditional aim of rational mechanics, that of elim­

inating the unknown reactions of frictionless constraints, is attained in the 

form of a differential inclusion. In this simple mechanical example, the decisive 

step leading to the Contact Dynamics method is introduced. It consists in re­

placing the familiar formulation of frictionless contact by an apparently more 

complicated relationship involving velocities. The advantage of this transfor­

mation is illustrated by its application to a time-stepping scheme for the 

numerical approximation of the motion. 

The framework for treating multibody multicontact systems is constructed 

in Sect. 4. This starts, as usual, with the parametrization of the system posi­

tions by means of an element q of Rn, after what the geometrical conditions of 

non-interpenetration of the system members and their possible confinement 

by external obstacles are assumed expressed by a finite set of inequalities. A 

contact corresponds to one of these inequalities being satisfied as equality. At 

every instant such that the derivative dq/dt = u E Rn exists, every possible 

contact involves a vector U of local relative velocity of the contacting abjects 

which, generically, is expressed as an affine fonction of u. As far as the contact 

actions consist of a simple force R, calculating the element r of Rn made of 

its generalized components is only the matter of matrix transposition. If the 

traditional assumption of differentiability of t f----t u is made, the equations of 

the system dynamics may be written clown through Lagrange's formalism or 

any other method of stereodynamics. 

Exploiting these equations requires some information about the possible 

contact forces. Such an information receives a codified form in Sect. 5 under 

the name of a contact law, generically a relationship between R and U, usually 

depending on the actual configuration attained by the system. Here again, 

the special case of frictionless contact is taken as an introduction. It allows 

one to stress the importance of the concept of a 'prospective' contact law. 

Roughly speaking such a law, rather than connecting the actual values of R 

and U, pertains to their limits on the right of the concerned instant. The 

Coulomb law of dry friction receives an adaptation to such a formalism. 

Then cornes in Sect. 6 the application of the preceding to the construc­

tion of a time-stepping numerical scheme for the numerical approximation 

of solutions, first developed in the traditional framework of smooth motions, 

i.e. the unknown fonction t f----t u is assumed locally absolutely continuous.

This scheme is of the implicit type with regard to u. Due to the form given

to contact laws and to their discretized forms, this time-stepping procedure

automatically secures the preservation of the non-interpenetration conditions

and manages the possibility of contact breaking.



In contrast, the event of the sudden introduction of new contacts, i.e. 
collisions, leads in Sect. 7 to giving up the framework of smooth dynamics, 
since u is expected to exhibit jumps. Henceforth, the fonction u is assumed 
to be of (locally) bounded variation on the considered time-interval. With 
such a fonction, there classically is associated an Rn-valued measure du on 
the time-interval, which may be called the differential measure of u. Smooth 
dynamics is retrieved as the special case where du possesses a density fonction 
with regard to the Lebesgue measure dt.

The measure du presents an atom at every instant of discontinuity of u, 

but this fonctional framework may also accomodate other sorts of frictional 
catastrophes, as referred to in 7.1. Instead of a classical differential equation, 
dynamics is now governed by a measure-differential equation. Contact actions 
are not necessarily represented as time-dependent forces but as impulsion 
measures. Their integrals on a time-interval constitute impulsions, a familiar 
concept in traditional dynamics. 

Since the time-stepping numerical procedure of Sect. 6 consists of drawing 
the balance of impulsions on each time-step, it remains formally applicable 
to non-smooth evolutions. There does not seem objectionable to apply the 
precedingly identified contact laws so long as the measure du is diffuse, i.e. 
u continuous. The case of a collision occuring at some instant te is more em­
barrassing since each contact-impulsion throughout the system is liable to 
possess an atom at point te. The weight of such an atom is nothing but the 
vector traditionally called a percussion, say P. In 7.5 an efficient computation 
trick is introduced, by which P is connected, through Coulomb's law in the 
prospective form, with some weighted mean of the pre- and post-collision val­
ues of the local velocity U. The resulting calculation is definitely richer than 
the traditional laws of restitution in that all contacts present in the system 
at instant t

e are collectively taken into account, but its phenomenological 
validity has to be tested in each application context. 

N onsmooth dynamics does not allow one to draw energy balances as pre­
cise as those traditionally available for smooth evolutions. The reason is that 
some rules of the differential and integral calculus have to be replaced by a 
calculus of differential measures, shortly presented in Sect. 8. The thermody­
namic correctness of collision models requires dissipativity, a property which 
is not always confirmed by energy balances, as drawn there. 

As final illustrations, two examples of the numerical application of the 
foregoing are presented. 

In Sect. 9 a two-dimensional model of a stone bridge is used to show how 
the collapse mechanism under some localized forcing depends on the value 
admitted for the interblock friction coefficient. 

Section 10 is devoted to the numerical simulation of the construction of a 
conical pile of grains. Eager controversy took place in recent years about the 
experimental finding of a local minimum of ground pressure at the vertical of 
the pile apex. The numerical exploration of stress in a numerical simulation 



conducted by the CD method appears to remove any paradoxical features
from this subject.

2 The differential handling of inequality conditions 

2.1 Expressing viability in terms of velocity 

Let us understand by a moving point a mapping q of a ( time) interval I intoRn . We want q(t) to comply for every t in I with some inequality 
f(t,q(t)) s 0, (1)

where f : I x Rn --+ R denotes a C 1 real fonction. In other words, q(t) isrequired to belong for every t to tf>(t) := {x E Rn I f(t,x) S O}. 
It is assumed that, fort in I and x in Rn , the gradient Vf(t,x) :=( â f / âx1

, . . .  , â f / âxn ) is a nonzero n-vector. Let some t be such that the right-side derivative q'+ ( t), called the right­
side velocity of the moving point, exists. Through the chain rule, the realfonction T r-+ f ( T, q( T)) is found to possess at T = t a right-side derivativeequal to ff ( t, q( t)) + q'+ (t). V f (t, q( t) ). This derivative should be S O if (1),assumed to hold everywhere in I, is satisfied at t as equality. In contrast, ifinequality holds strictly at t, no sign condition cornes to restrain right-side 
derivatives. 

For t in I and x in Rn, put
I'(t x) := { {v E Rn I ff�t,x) +v.Vf(t,x) S O} if f(t,x);::: 0' Rn otherw1se.

so that the above observation means q'+(t) E I'(t, q(t)).
What follows may be viewed as providing a converse. Suppose that the interval I, nonnecessarily compact, contains its origin

t0 and that q is locally absolutely continuous on I. Equivalently, the (two­
side) derivative dq/dt exists almost everywhere in I and equals a fonction
u : I --+ Rn, the velocity function, which is locally integrable with regard tothe Lebesgue measure on I; notation : u E .CfojI; Rn), meaning that u is
Lebesgue-integrable over every compact subinterval of I. And, for every t in
I, one has

q(t) = q(to) + l
t 

u(s) ds. 
to 

(2) 

The following is established in [58]:
Viability Lemma. Assume that q is locally absolutely continuous on I and 
that the inclusion 

dq 
dt 

E I'(t, q(t)) (3)



holds for almost every t in I. If inequality ( 1) is verified at the initial instant 
t0 , it is verified for every subsequent t. 

The term viability is used in system theory and control, in particular 
when economic systems are concerned, to express that the trajectory of a 
process should remain in a specified set (one may refer to [4], a book actually 
developed in a too sophisticated topological context for such an elementary 
statement as the above Lemma to find place in it). 

2.2 Selectors 

A condition of the form (3) is called a differential inclusion [5][21]. Since the 
right-hand sicle is set-valued, uniqueness is a priori not expected to hold for 
the solutions (if any) to initial value problems. By a selector of the 'multifonc­
tion' (t, x) H I'(t, x), one means a single-valued fonction, say (t, x) H ,(t, x), 
such that ,(t, x) E I'(t, x) for every t and x. Then 

dq 

dt 
= ,(t, q(t)) (4) 

is a differential equation whose (locally absolutely continuous) solutions, if 
any, consequent to some initial condition verifying (1), meet the assumptions 
of the Viability Lemma, making q(t) belong to <I>(t) for every subsequent t. 

A basic example is provided by taking as I the 'lazy selector' of I', i.e. by 
defining ,(t, x) as the element of I'(t, x) with minimal Euclidean norm. When 
f ( t, x) < 0, i.e. when x belongs to the interior of <I>( t), the set I' ( t, x) consists 
of the whole of Rn , so that 1( t, x) equals 0, the zero of Rn . Otherwise, 
I'(t, x) equals a half-space which contains O if ff (t, x) s; 0, in which case 

1 = 0 again. If JI(t,x) > 0, one finds 1 = -(ff/llv'fll 2 )v'f, a vector oriented 
in the direction of decreasing f, normal at x to the hypersurface f(t, .) = 

Const drawn through this point. 
For such a choice of 1, a solution to ( 4) consequent to some initial position 

q(t0) in <I>(t0) may be described as follows. The point q(t) belongs for every t 
to the moving region <I>(t). As long as it lies in the interior of <I>(t), q stays at 
rest. It is only when the boundary of <I>(t), i.e. the hypersurface with equation 
J(t, .) = 0, moves inward and reaches q that the point takes on a velocity in 
inward normal direction, so as to go on belonging to <I>(t). The magnitude of 
the velocity vector equals the 'normal speed' of the hypersurface. 

We have proposed to call Sweeping Process the above kinematical associ­
ation of point motions to the given motion of a set (in Rn or in a real Hilbert 
space). See [42][59] for references and recent developments of the subject. 

2.3 Characterizing the process by a differential inclusion 

If, at time t, a point x lies on the hypersurface f(t, .) = 0, the vector v' J(t, x) 
( we have assumed it nonzero) normal to this hypersurface is directed outward 



of the region <I>( t). The half-line emanating from the origin of Rn, generated 
by v'f(t,x), is said to constitute the (outward) normal cane to <I>(t) at point 
x; notation: NP(t)(x). The definition of a normal cone for less regular sets 
than <I> is a vast subject; some other cases will be met in the sequel. For x 
in the interior of <I>(t), it proves consistent to view NP(t)(x) as reduced to 
the zero of Rn , while the cone shall be defined as empty if x (/. <I>( t). By 
discussing the various cases occuring in the calculation of the lazy selector, 
one sees that if 1( t, x) equals this selector, every solution q to the differential 
equation ( 4) verifies, for almost every t, the differential inclusion 

dq 
- dt E NP(t)(q(t)). (5)

Unexpectedly the converse is true, i.e.(5) in spite of its multivalued right­
hand side actually is equivalent to the differential equation ( 4), as far as 
locally absolutely continuous solution are concerned. 

In fact let q : I -+ Rn, be such a solution to (5). For almost every t, the 
two-side derivative q' = dq/dt exists, so that the right-hand member is non­
empty and therefore q(t) E <I>(t); the same is true for every t, by continuity. 
For t such that q( t) happens to lie in the interior of <I>( t), ( 5) implies q' = 0, 
which makes that (4) is also satisfied. Otherwise, suppose that q(t) belongs 
to the boundary, i.e. the fonction T r--+ f ( T, q( T)) vanishes at T = t. Then 
the right-derivative Jf(t,q(t)) + q'+(t).v'f(t,q(t)), if it exists, is :S O while, 
symmetrically, the left-derivative is 2:: O. Therefore q' ( t), when it exists, sat­
isfies Jf (t, q(t)) + q'(t).v' f(t, q(t)) = 0, i.e. it belongs to the boundary of the 
half-space I'(t, q(t)). Furthermore, (5) entails that q'(t) is directed along the 
inward normal to the half-space. All this elementarily characterizes q' ( t) as 
the proximal point to Oin I'(t,q(t)), namely 1(t,q(t)). 

It was under the formulation (5) that the Sweeping Process was primi­
tively introduced [47][50], with <I>(t) denoting a nonempty closed convex sub­
set of a real Hilbert space H. The motivation then was in the quasi-static 
evolution of elastoplastic systems [48][49]. The convexity assumption allows 
one to establish the existence of solutions under rather mild conditions con­
cerning the evolution of <I>(t), even discontinuous. Another consequence of 
this convexity is that the multifonction x r--+ NP(t)(x) is monotone in the 
following sense (see e.g. [8]) : whichever are x1,x2 in H, Y1 in NP(t)(x1), 
Y2 in NP(t)(x2), one has (x1 - x2).(y1 - y2) 2:: 0, with the dot denoting the 
scalar product of H. By elementary calculation, this inequality entails that, if 
t r--+ q1(t) and t r--+ q2(t) are two solutions to (5), the Hilbert distance llq1 -q2II 
is a non-increasing fonction of t. From this non expansion property, it follows 
that at most one solution to (5) can agree with some initial position q(t0 ).

Another source of interest of the formulation (5) is to render evident that 
the successive positions of the point q are connected with those of the given 
region <I> in a rate-independent way. In fact, because the right-hand member is 
a cone, the differential inclusion is found invariant under any non-decreasing 
differentiable change of variable. 



2.4 lmplicit versus explicit time-stepping 

Coming to the numerical approximation of solutions through time-stepping 
schemes, let us denote by [ti, tf], with length h, a time-step ('i' as in initial,
'f' as in final). From an estimate qi of q(ti), obtained as the result of the 
antecedent time-step, computation has to deliver an estima te qr of q( tr). 

The formulation ( 4) naturally leads to take ui = 1( ti, qi) as an estima te of 
the velocity throughout the time-step, generating the prediction qr = qi +hui. 
This is a computation scheme of the explicit type. 

If ( 5) is discretized by viewing ( qr -qi) / h as a representative of the velocity, 
a strategy of the explicit type would not allow one to express qr, since the 
right-hand member is multivalued. In contrast, the implicit strategy consists 
in invoking the value that this right-hand member would take at the unknown 
point, so one has to solve 

(6) 

(the positive factor h has been dropped since N<l>(t
f
) is a cone). This qualifies 

qr as an orthogonal projection of qi onto <I>( tr). In the case where <I>( tr) is 
convex, the projection is unique and this characterizes qr as the nearest point 
to qi in <I>( tr). In particular qr = qi when qi happens to belong to <I>( tr). We 
have proposed to call this procedure the catching-up algorithm [50]. 

2.5 Complementarity 

From the description made of the Sweeping Process in 2.2 it is clear that 
velocity may be discontinuous. As for the explicit prediction qr = qi + hui, 
it only requires of Ui to be the derivative of the fonction q on the right of 
ti . The following observation makes an introduction to analogous, but more 
complicated, situations we are to meet in Dynamics. 

Let q, associated with u through (2), verify (5) almost everywhere in /. 
Let t1 E / and assume that the fonction u possesses a limit on the right of t1 , 

say ut; in view of (2) this limit also provides the right derivative cj+(t1 ). As 
a stronger assertion than ( 4), which pertained to bilateral derivative and was 
only declared to hold almost everywhere, let us prove that ut= 1(t1 ,q(ti )). 

Trivially, both members of this equality are O if fi ·- f(t1 ,q(ti )) < O. 
Otherwise, i.e. when fi = 0, it was seen that 

(7) 

Inclusion (5) means the existence of a fonction t H ,\(t) :s; 0 such that 
u(t) = >-(t)Vf(t,q(t)). Since Vf is continuous and nonzero, the assumed 
existence of ut secures that of the right-limit >-t and 

ut= >-tVJ(t1,q(ti)). (8)



If i: < 0, instant t 1 is followed by an interval throughout which f < O. 
This has been observed to imply u = 0, so that À vanishes on this interval 
and consequently also its right-limit .Xt. Summing up, one has 

f. + < 0 \ + < 0 1·1+ \ +1 = 0, 1 - , "1 - , A (9) 

a system of complementarity conditions. This is a popular formalism in many 
research domains where inequality requirements are faced. Solving (8) (9), 
with Ïi defined as in (7), constitutes a linear complementarity problem.

Through arguments from Convex Analysis, such problems are shown to be 
equivalent to finding the critical points of some quadratic fonctions over poly­
hedral convex sets. In the present setting, where inequality CJ.i � 0 simply ex­
presses that ut belongs to the half-space I'( ti , q( t1)), one readily checks that 
the above system of conditions characterizes ut as the minimizing point of 
the fonction x H llxll2 /2 over I'(ti, q(t1)), namely 1(t1, q(ti )) as announced. 

2.6 A hydromechanical illustration 

Assume that n = 2 and that t, x1 , x2 are Cartesian coordinates in physical 
space, with the t-axis vertical and directed downward. Picture the region 
f (t, x1 , x2 ) � 0 as an underground cavity and the curve x1 

= q1 (t), x2 
= q2(t) 

as a stationary waterstream dripping down into it. 
The differential equation ( 4), on account of the diverse circumstances met 

in the definition of the lazy selector, expresses that: i) any part of this stream 
which happens to be detached from the cavity wall is rectilinear and vertical; 
ii) when water runs on the wall, it follows a line of steepest descent (this
agrees with hydrodynamics under the simplifying assumption that inertia
effects are negligible with regard to gravity and to liquid/wall friction); iii)
the dependence of I on the sign of f f makes that the stream can run only 
on a part of the wall exposed upward: when it reaches the rim of a possible 
overhang, water gets loose and falls vertically down as described in i). 

In this example, under the complication typically added by unilaterality, 
the comparison of ( 4) and ( 5) merely reflects the classical equivalence between 
the two standard properties of the lines of steepest descent in a surface: at 
each point on such a line i) the slope is maximal; ii) the direction is orthogonal 
to the level curve of the surface. 

3 Frictionless confinement of a particle 

3.1 Primary formulation 

Notations are the same as in Sect.2, with n = 3. The element q := (q1 , q2 , q3 )

now consists of the orthonormal coordinates of a material point Q, with 
mass m, moving under the action of a given force field (t, x) H X(t, x) and 
constrained in the region '1>( t) by the impenetrability of its boundary, assumed 



to be realized as a material surface with imposed motion. This is the occasion 
of recalling that, in Mechanics, the description of a constraint never reduces 
� as it does, for instance, in Optimization or in Abstract System Theory � to 
imposing a geometrical restriction on positions. Sorne information is needed 
about the mechanical process through which this restriction is enforced. For 
instance, using some se rvomechanism in order to secure (1) could result in 
quite different motions than those obtained under the present assumption of 
confinement by the contact action of a given material boundary. 

On a time interval I throughout which the motion is smooth enough 
for the velocity function u in (2) to be locally absolutely continuous ( this 
precludes collisions, events to which we shall corne back later), the motion of 
the particle Q obeys, almost everywhere in I, 

du 
m dt 

= X(t, q(t)) + r(t), (10) 

where the force r := (r 1
, r2

, r3 ) denotes the unknown reaction possibly ex­
erted by the confining boundary. In this Section, the confinement process is 
assumed to comply at every instant with the following model: 

• this is a contact process

f(t,q)<O =} r=O, (11) 

• the possible contact is frictionless

f(t,q)=O =} :3>..ER:r=>..VJ(t,q), (12) 

• without adhesion

>..«;O. (13) 

If compared with the definition given in 2.3 for the normal cone NP (t) (x)
at a point x, the above system of three conditions is found equivalent to 

-r E NP(t)(q). (14) 

Therefore, the traditional aim of Analytical Dynamics, namely the elimina­
tion of the unknown reactions of the so-called perfect constraints is attained 
by rapproaching conditions (10) and (14) 

du 
X(t,q(t)) - m dt 

E NP(t)(q(t)), (15) 

an integro-differential inclusion, as the unknown fonctions q and u are es­
sentially connected by (2). Formally, this inclusion implies q(t) E <P(t) for
almost every t in I, since otherwise the right-hand member would be empty.
By continuity q( t) E <P( t) holds for every t. 



3.2 The 'Contact Dynamics' approach 

Ftom the theoretical standpoint as well as in the elaboration of approximation 
schemes, the differential inclusion (15) proves difficult to handle (see however 
[64], under the assumption of convexity for the function f). In what concerns 
the position function q, the problem at hand is of differential order 2, as 
expected in a dynamical context, while in the purely kinematical setting of 
Sect. 2, q was the unknown of a differential problem of order 1. However, some 
of the arguments used then will be transposed in what follows. 

Let I' be defined as in 2.1. Provided the initial position q( t0 ) lie in <P( t0 ),
the solutions of (15) are the same as those of

du 
X(t, q(t)) - m dt 

E Nr(t ,q(t))
(u(t)). (16) 

In fact (16), assumed to hold for almost every t in I, implies u(t) E 
I'(t, q(t)). Since q(t0 ) E <I>(t0), the Viability Lemma secures q(t) E <I>(t) for 
every t in I. The definition of I' then makes that the normal cone Nr(t ,q(t))(u) 
is contained in NP(t)(q(t)) whatever is u, so that (15) is a fortiori satisfied. 

Conversely, let q be a solution to (15), hence q(t) E tf>(t) for every t in I.
When f(t,q(t)) < 0, the set NP(t)(q(t)) reduces to the singleton {O} and the 
same is true for the right-hand member of (16). In contrast, for t such that 
f(t,q(t)) = 0, the set I'(t,q(t)) is a half-space and the argument used in 2.3 
proves that the element u(t) = u+(t) = u-(t) belongs to its boundary plane. 
Consequently, Nr(t ,q(t)) ( u) consists of the cone generated by v7 f (t, q(t)) hence 
equals NP(t)(q(t)). 

3.3 First example of a CD numerical scheme 

As before, let us denote by [t;, trl, with length h, a time-step. Ftom the ap­
proximate values q;, u; obtained for q and u at t;, one has to calculate qr, ur, 
pertaining to tr. The given force field X is assumed to depend smoothly on its 
arguments, so that one chooses to approximate it throughout the time-step 
by the value it takes at tm := t; + h/2 and qm := q; + hu;/2. It is also at 
the point (tm, qm) that f is calculated, in order to decide whether boundary 
contact is in effect or not and to determine the set I' accordingly. Depending 
on the sign of f(tm, qm), the latter equals the whole of R3 or a half-space 
with v7 f(tm , qm ) as normal vector. Inclusion (16) is thus discretized in the 
form 

i.e. in view of the right-hand member being a cone,

h 
U; + -X(tm, qm) - Uf E Nr(t q i(ur). 

m 
m, m 

(17)



This classically characterizes ur as the proximal point to the known element 
Ui + hX(tm, qm)/m in I'(tm, qm)- One finishes the calculation with 

This algorithm automatically handles the possible breaking of contact 
this happens if Ui + hX(tm, qm)/m falls into the interior of I'(tm, qm). 

Remark 1. - Provided q(to) E <f>(t0), inclusion (16) has been precedingly ob­
served to secure f(t,q(t)):::; 0 at every consequent t. But, in the above time­
stepping procedure, it is only ur which, at each step, is constructed as an 
element of I'(tm, qm), so that the Viability Lemma is just involved through 
time-discretization. One thus may fear that some violation of the inequal­
ity would build up from step to step. Actually, if the step-length is not too 
large, numerical experiments show some self-corrective effect which, on the 
contrary, tends to reduce violations. This effect seems related to <f>(t) possess­
ing a nonempty interior. In contrast, in industrial softwares devoted to the 
dynamics of machines, some bilateral constraints are commonly introduced, 
leaving a set of feasible positions with empty interior. Their treatment in 
terms of velocities [28] then requires corrective procedures to prevent cumu­
lative errors. 

Remark 2. - The calculation of ur from ui is based on mechanical elements 
evaluated at the mid-position qm ; in turn, ur is used to calculate from qm 

the final position of the current step and, from there, the mid-position of 
the subsequent time-step. This interleaving makes the above time-stepping 
procedure resemble the policy called 'leapfrog' in Molecular Dynamics simu­
lations. In order to figure out how it improves precision, compared with an 
ordinary Euler explicit time-stepping scheme, one may apply it to calculating 
the parabolic unconstrained motion of a particle in a uniform gravity field. 
If h is constant, the values found for q at the successive steps coïncide with 
the exact solution, while the Euler scheme generates cumulative errors. Of 
course, when an algorithm of the above sort is implemented with constant h, 

one may calculate each qm from the antecedent one by a single incrementa­
tion. The proper output of the computation, namely qr, may not be needed 
at each step. 

Remark 3. - In contrast with the approach of the motion of a point in a 
surface through the traditional methods of dynamics, the above time-stepping 
procedure does not require calculating the curvature of the boundary. This 
curvature is implicitely accounted for by the fact that the direction of v' f 

evolves from one step to the other. The question of existence of solutions to 
(15) or (16) is not addressed in this paper; one naturally expects that f has
to be twice dfferentiable.



4 Multicontact systems 

4.1 Parametrization 

Let the possible configurations of a body collection be parametrized (at least 
locally) through generalized coordinates, say q := (q 1

, . . .  , qn). For the sake 
of reducing the number n, this parametrization may be constructed with ac­
count of possible permanent, frictionless linkages imposed on the members 
of the system. After that, the constraints of non-interpenetrability are addi­
tionally considered. The geometric restriction consequently imparted on the 
system positions is assumed expressed by a finite set of inequalities 

fc,(t, q) S:. 0, a E {l, ... , 1î:}, (18) 

where fi, ... , f"' are given fonctions. Through the presence of t as an argu­
ment off a, provision is made for the inequality to describe the confinement 
of a member of the system by some external obstacle or boundary with pre­
scribed motion. U nder this parametrization, a motion of the system consists 
of a mapping t E / H q(t) E Rn and, as in the foregoing, this mapping is 
assumed locally absolutely continuous, i.e. there exists a locally integrable 
velocity fonction u : I -+ Rn from which q may be retrieved in the form (2). 

As an example, one may consider a pair of members of the system whose 
positions in a chosen reference frame are well located as soon as the value of 
the element q of Rn is known (together with the time t in case of a time­
dependent parametrization). Then, one may take as fa the expression, as 
a fonction of (t, q), of some measure of the overlap of the two bodies. This 
overlap should be understood as a directed quantity, so that it becomes neg­
ative in case the bodies lie apart from each other. The convention applied in 
(18) of characterizing the permitted configurations through the Sc O inequal­
ity, cornes from Convex Optimization theory, where such a sign convention
offers technical advantages. No convexity hypothesis is made here concerning
the fonctions f

a
: since such an assumption would not be preserved under a

change of parametrization, it cannot in general have any mechanical mean­
ing. If one prefers to deal with the � 0 symbol, there only is to consider,
instead of the overlap the opposite quantity, usually called the gap between
the considered bodies.

The above formalism is not limited to collections of strictly rigid bodies, 
since q may also include parameters accounting for a finite-freedom approxi­
mation of deformability. Such additional parameters possibly arise from some 
modal representation of the deformation dynamics or from the Fini te Element 
discretization of deformable parts [37]. 

4.2 Contact kinematics 

Suppose that inequality fa S:. 0 expresses the local non-interpenetration of 
some pair of members of the system, say B and B ', so that equality f

a =



0 corresponds to these bodies touching each other at some point of space 
denoted by Ma. This we shall assume here to be an isolated contact point, 
but other contacts, associated with different values of a, may also be in effect 
between the same bodies at the same instant. For every imagined motion 
t H q( t) bringing the system through the considered contacting position for 
some t, with a definite value of u = dq/dt E Rn, the velocity vectors Va and 
V�, relative to the chosen reference frame, of the respective particles of B 
and B' passing at point Ma let themselves be expressed as affine fonctions 
of u. The same is thus true for the relative velocity Ua = V a - V � of body B
with respect to body B' at this point, say 

(19) 

where Ga : Rn -+ E3 (the space of the vectors of physical space) denotes 
a linear mapping, depending on t and q. No attention is paid at this stage 
to the imagined motion preserving contact or not. The term Wa E E3

, a 
known fonction of t and q, vanishes in the familiar case of a time-independent 
parametrization. 

Similar formula holds if inequality fa ::; 0 expresses the confinement of a 
member B of the system by some external material boundary with prescribed 
motion. Assume that equality fa = 0 corresponds to contact taking place at 
some point, here again denoted by Ma . The local velocity, at this point, of 
body B with respect to the boundary has the same form as Ua in (19), where 
Wa now reflects the known velocity of the boundary (for a time-independent 
parametrization, W

a 
equals the negative of this velocity vector). 

At the contact point Ma, we assume that a common tangent plane to 
the respective surfaces of the concerned bodies has been defined. This does 
not require of both surfaces to be smooth; for instance, contact may take 
place between a smooth body and some corner point or sharp asperity of the 
other. Let na denote the unit vector normal to this plane, directed toward 
B. In computation, as well as in existential studies, it proves usefol that
the definition of the above elements would be conventionally extended to a
neighbourhood of the concerned value of (t, q) in R x Rn. This allows one to
express as a fonction of (t,q) the normal gap, say ga(t,q), between B and B',
counted as negative in the case of overlap. Classically, the derivative of the
fonction t H ga(t,q(t)) is found equal to Ua .n°', the normal component of
the relative velocity of the contacting bodies at point Ma .

Sometimes, in Computation literature, the second time-derivative of the 
gap is improperly referred to as the 'normal relative acceleration'. Actually, 
since the material particles involved in the definition of Ua are not the same 
from an instant to the other, this second derivative has in general nothing to 
do with the relative acceleration vector. As an example, one may consider a 
body of circular or spherical shape: a variety of rotations may be imparted 
to such a body without altering its overall location, so yielding the same gap 
while the normal acceleration is changed. 



Remark. - The representation of non-interpenetration through of a finite
set of inequalities is operative in most practical situations. However, non­
interpenetration cannot be described in that way in the neighbourhood of a 
configuration where two sharp asperities or corners corne into contact by their 
points. This is evidenced by the fact that, in this case, the set of the values of 
the local right-velocity U;; which are compatible with non-interpenetration 
is not a convex cone anymore. In contexts where the probability of such an 
event cannot be treated as negligible, numerical techniques have to resort 
to adequate procedures (possibly involving Ua ) for the identification of a 
mechanically plausible contact plane. 

4.3 Contact forces 

Assume that the contact actions that body B experiences at point Ma from
body B' are described as a simple force na (there would be no conceptual 
difficulty in adding to this description some local torque, accounting for a 
resistance to rolling). Then B' experiences from B the force -Rn . The stan­
dard machinery of Analytical Dynamics needs a representation of this pair of 
forces, in regard to the chosen parametrization, through its covariant compo­
nents ( or 'generalized components'), namely the element rn of Rn expressed
as 

(20) 

with a; : E3 -+ Rn denoting the transpose of Ga .
The convention of implicit summation will never be applied to Greek in­

dices.
If inequality f n :s; 0, expresses the confinement of a member B of the 

system by some external obstacle with prescribed motion, (19) still holds 
with Un denoting the local velocity of B relative to this obstacle. Then it is 
found that rn in (20) consist of the covariant components of the force Rn 

alone, acting on B at the contact point. Its counterpart, exerted by B upon 
the obstacle, is not in this case a force experienced by the system. Incidentally 
observe that the term Wn does not appear in (20). 

4.4 The equation of Dynamics 

As before, the context here is that of standard dynamics, involving the second 
derivative of the fonction t H q(t). Therefore the velocity fonction t H u(t)
is required to be locally absolutely continuous. Using Lagrange's technique 
or any other tools from classical solid dynamics, one obtains a differential 
equation, to be read as an equality of elements of Rn 

A(t,q)�� = F(t,q,u) + I)n, (21) 
a 



where A denotes the n x n inertia matrix. The expression F comprises cer­
tain standard terms (commonly referred to as 'centrifogal' and 'gyroscopic') 
and also the covariant components of some applied forces, supposed given as 
fonctions of time, the position of the system and its velocity. The elements 
,a, a E {1, 2, ... , ,.,, }, are made of the covariant components of the respective 
contact forces, as expressed in (20). 

The same formalism remains more generally valid with q related to some 
velocity fonction u by other kinematical relations than (2). For instance, when 
dealing with 3-dimensional rigid bodies, it is usual to attach to each of them 
a frame of principal axes of inertia emanating from its center of mass. Then 
one may choose to enter, among the constituents of the Rn-valued fonction 
u, the three components relative to these axes of the spin vector of the rigid 
body, instead of the time-derivatives of some directional parameters. This of­
fers the considerable advantage of generating a contribution in the matrix A
which is diagonal and constant with regard to t and q. Retrieving from these 
spin components the evolution of some directional parameters of the con­
cerned body is only the matter of integrating adequate kinematical formulas. 
Correlatively, if forces are applied to the rigid body, the total moments of 
these forces about the same axes should be entered as covariant components 
into the corresponding lines of the right-hand side of (21 ). 

Since contact forces vanish when contact is not in effect. the summation 
in the right-hand side of (21) may be restricted to the values of a belonging 
to 

J(t,q) := {a E {l, ... ,,.,,} 1 fa (t,q) 2: O}. (22) 

The geometric conditions (18) of non-interpenetrability, joined to the dif­
ferential equation of dynamics (21), clearly are not enough for determining 
the motion consequent to initial data. Sorne phenomenological information 
should be added, concerning the contact forces. Since the contact phenom­
enon takes place in physical space, this information is expected to involve 
the vectors R"', Ua, as well as the values of t and q specifying the actual 
configuration of the system. Hence, for every a labelling a possible contact, 
a relationship of the form 

lawa (t,q, Ua, R"' ) = true, (23) 

called a contact law, should be available. 

5 Contact laws 

5.1 Frictionless contact 

Under the present notations we are to meet the same circumstances as in 
Sect. 3. If the contact labelled a concerns two bodies denoted by B and B ', 



with common normal unit n"' directed toward B, the assumptions of no­
friction an no-adhesion mean :3p"' ;:::: 0 : 'R,"' 

= Pan"' . lt has been agreed in 
the foregoing to extend the definition of n"', at least in a neighbourhood of 
the concerned values of t and q, to cases where ga, the normal gap, takes 
nonzero values and to state R"'=O if g"' > O. Define 

K (t ) ·= {{VE E3 
1 V.n"' ;:::: O} if ga(t,q) :S 0

"' ' q · E3 otherwise. 

This is the set of the values of the local right-velocity of B relatively to B' ( the 
latter may be a member of the system or an external obstacle with prescribed 
motion) which are compatible with non-interpenetration. In the first line, Ka 

equals a half-space, hence the normal cone Nx:
,,

, evaluated at the origin 0 
of E3

, equals the half-line generated in this vector space by -n"'. Otherwise 
Ka = E3, so that the cone Nx:,, (0) reduces to the set {0}. 

Therefore, at time t, the no-friction and no-gluing assumptions (including 
the case of no-contact) are equivalent to assert 

(24) 

The move made in Sect.3 of replacing inclusion (15) by inclusion (16) admits 
as a counterpart here the replacement of inclusion (24) by 

(25) 

In fact, in this context where u is continuous, the same argument as in 2.3 
shows that Ua belongs to the boundary plane of the half-space Ka, hence 
Nx;

,,
(Ua) = Nx;

,,
(O), while in case of no-contact Nx:

,,
(Ua) = {O} whatever 

is Ua. In short, (25) contains all the stipulations implied when a contact is 
declared frictionless. 

But, in addition, (25) entails Ua E Ka(t, q), since otherwise Nx:
,, 

( Ua) 
would be empty. If ga(t, q) > 0 this actually imparts no restriction on Ua 

while if ga (t,q) :S 0, i.e. a E J(t,q), this implies Ua .n"' ;:::: O. It has been 
precedingly recalled that Ua.n"' equals the derivative of the fonction t r-+ 
ga(t, q(t)). This allows one to invoke the Viability Lemma (2.1), with f =

-ga, in order to prove that the assumption of (25) being verified for almost
every t in I entails : non-interpenetration holds for every t > t0 , provided it
holds at to.

The latter statement applies more generally to any contact law which, 
among other phenomenological stipulations, secures the following 

• in all cases Ua E Ka ,
• if Ua E interior Ka, then R"' 

= O.

In other words, one has the implications 

(26)



(27) 

We propose to say that a package of information, concerning the possi­
ble contact labelled o:, if it possesses these two properties, is a contact law 

of prospective type (or, in the terminology precedingly used by the author 
[58][59], a complete contact law). The underlying idea is that such a law does 
not properly govern the values of Ua and na at the actual instant, but their 
limits on the right of this instant, assumed to exist. In fact, if U:x .na > 0, 
the concerned instant is followed by a contactless time-interval. Since na 

vanishes over this interval, the same is true for its right-limit. 

5.2 Multicontact frictionless Dynamics 

We are now to see how the observations made in Sect.3 let themselves be 
transposed into the present setting. Even the simple case then considered, of 
a particle confined by a frictionless material boundary, may exhibit multicon­
tact features if the boundary consists of several parts with smooth equations, 
each of them enforcing an inequality of the form (18). If two of these smooth 
surfaces meet to form an edge, the particle, when lying on this edge, expe­
riences contact forces from bath parts, the resultant of which may take any 
value in the convex cane generated by the respective inward normals. There­
fore, the writing in (14) remains valid provided N.i;(t) (q) is defined as the 
convex cane generated by the outward normals to the surfaces which form 
the edge. 

When coming to general multicontact systems, one has to connect nor­
mality in the linear Euclidean space E3 of the vectors of physical space with 
normality in the space Rn of the abstract components. The following rela­
tionship is found to hold [52] between the element V fa of Rn and the normal 
unit vector na at point Ma to the contacting bodies, directed toward B 

(28) 

The proof of this rests on a unilateral version of the algebraic theorem of 
Lagrange multipliers, known in Convex Analysis as Farkas' lemma [69]. 

In all the sequel, we shall assume that the mapping Ga is surjective of 
Rn onto E3

; equivalently, its transpose c; is injective of E3 into Rn . Then 
Àa in (28) is nonzero. Sorne special positions of a multibody system may give 
rise to 'wedging' effects which contradict this assumption. 

In view of (19) and (20) this allows one to replace the laws of frictionless 
contact, either (24) or (25), by equivalent relationships involving only the 
abstract components u and ra instead of Ua and na . Under the definition 
(22) of J, put

W(t,q) := {v E Rn /Va: E J(t,q) Ôfta 

+ v.Vfa::; O}, (29)



a polyhedral closed convex set. One then finds [59] that a value r of the sum 

La r<> is compatible with the contact law (25) holding for allo:, if and only if 
-r E N w ( t ,q) ( u). Consequently, the elimination of frictionless reactions from
the dynamical equation (21) is achieved in the writing

du 
F(t,q,u) -A(t,q) dt E Nw(t,q)(u). (30) 

This allows one to derive a time-stepping scheme for the numerical approx­
imation of solutions quite similar to the one presented in 3.3. The occurrence 
of the matrix A in (30) at the place occupied in (16) by the scalar factor m 
does not constitute an essential complication. It only means that, instead of 
the standard Euclidean metric of R 3, one is using in Rn the Euclidean metric 
defined by the positive definite matrix A. 

5.3 Handling inequality conditions in terms of acceleration 

The differential inclusion (30) formally resembles (5) which has been found to 
characterize the Sweeping Process. In fact, in the special case where F = 0 
and A = 1, (30) makes the fonction t H u appear as a solution to the 
Sweeping Process by the moving (closed, convex) set t H W(t, q(t)). Of 
course, the latter is not given, since it depends on q which itself is connected to 
u by (2), but one may infer from this analogy that, similarly to the equivalence 
of (5) to (4), the inclusion (30) could be replaced by a differential equation 
whith right-hand member defined by a minimization property. This is the 
object of the forthcoming. 

A time-stepping scheme of the implicit type, rests on predicting the veloc­
ity whithout resorting to any expression of the acceleration. In contrast, what 
follows is aimed at determining the right-acceleration u+ , which is needed 
when a scheme of the explicit type is being planned, as well as an Event 
Driven calculation [1][65]. 

Let ti denote an instant preceded by some time-interval throughout which 
the motion, with absolutely continuous u, satisfies (30). Assume that u re­
mains continuous at instant t 1 , i.e. no collision occurs. Non-interpenetration 
entails that, for every a in J(t1 , q(t 1 )), the right-derivative of the fonction 
t H f a(t, q( t)) at t i is :S: 0, while the left-derivative is ?: O. Hence this fonction 
has zero derivative of order one at t1 . 

Let us assume in this Su bsection that the fonctions fa are C2
. The 

investigation of the motion by explicit time-stepping or by an ED policy 
rests on the assumption that t i is followed by a nonzero interval through­
out which (30) is verified again. It just may happen that some contacts 
break at ti, inducing a change of J(t,q). If u possesses a derivative on the 
right of t1, the fonction t H fa(t,q(t)) possesses a second derivative on the 
right of t1, expressed through the chain rule with a certain aa, in the form 
aa(t1, QI, u1) + ü"t.'Vfa(t1, q1). Since the fonction is zero at t1, as well as its 



first derivative, non-interpenetration requires of this second derivative to be 
:S O. If it is strictly negative, fa ( t, q( t)) becomes strictly negative on a sub­
sequent interval, making the corresponding quantities ra 

= µa '\7 fa vanish 
on this interval, as well as their limits for t .J, t1, assumed to exist. One thus 
obtains a set of complementarity conditions 

By joining them to the equation of dynamics 

Œ 

one reduces the determination of ut and of the multipliers µa to a L inear 

Complementarity Problem in standard form. 
Because the matrix A is positive definite, such a problem is classically 

equivalent to minimizing a convex quadratic fonction in a closed convex poly­
hedral subset of Rn . lt has been shown in [45][46] that this extrema! charac­
terization of the acceleration may be viewed as extending Gauss' Principle of 

the Least Deviation to mechanical systems subject to unilateral frictionless 
constraints. Sorne dual minimization property is also found to characterize 
the contact forces. 

5.4 Coulomb friction 

The presence of dry friction, governed by the law of Coulomb, at the pos­
sible contact with label a, is expressed by a relationship of the form (23). 
Traditionally, the law of Coulomb is only invoked for persistent contact, but 
when devising numerical schemes, making it meaningful for Ua .na � 0 and 
securing that a contact law of the prospective type is so stated, is just the 
matter of writing the code adequately. 

Apart from the numerical success, the consistency of the concept of pros­
pective type is illustrated by the following feature. 

Dropping the label a for brevity, one defines the (non adhesive) Coulomb 
friction at some contact point by giving the Coulomb cane C, a closed con­
vex conical region of E3 to which the contact force R exerted by B' upon 
B should belong in any circumstance. ln the standard case, C is rotationally 
symmetric about the normal vector n and contains it, but more general situ­
ations, accounting for anisotropie friction, are possible. The law consists in a 
relationship between the force R and the local velocity U of B relative to B' 
which resembles a plasticity law in that the values of R lying in the interior 
of C are compatible with U = 0 only. But the 'flow rule' which characterizes 
the values of U compatible with a value of R lying on the boundary of C 
does not involve the normality of U to this boundary. In short, this is not an 
'associated' flow rule ( except in the case of zero friction coefficient). 



The concept of bipotential has been introduced by De Saxcé and Feng
[23] as a tool for handling non-associated force/velocity (or stress/strain-rate)
laws, from the theoretical standpoint, as well as in numerical techniques. Hereis the aspect this concept takes in the case of Coulomb friction. 

As usual, one decomposes the vectors R and U into their normal and
tangential components. Let T denote the subspace of the vectors in E3 whichare orthogonal to n. 

R = RT + RN n, RT E T, RN E R,

U =UT +UNn, UT ET, UNE R.

Classically, if the Coulomb law is restricted to situations where RN is known,say RN = 1, the law turns out to reduce to a relationship between RT and UT of the associated type. Let D1 := {RT ET I RT + n E C} (the 'unit section'
of the cone C) and define in T the real fonction (the 'dissipation fonction' ofthe said restricted law) 

TET H cp1(T) := sup{S.T ISE -Di}.
In the traditional case of isotropie friction with coefficient ,, one simply has
cp1(T) = ,IITII-Similarly to 5.1, define

/C(t ) ·= { {V E E3 1 V.n � O} in case of contact or overlap'q · E3 in case of no-contact. 
The Coulomb cone depends ont and q; put C = {O} in case of no-contact.
Using arguments from Convex Analysis, one establishes that the relationbetween the elements U and R of E3 consisting of the system of conditions 

U E /C, RE C, -U.R = cp1(UT)RN (31)
is a contact law of the prospective type which, in the standard situation,reduces to the law of Coulomb. Furthermore, one may prove 

\f V in /C, \f S in C : V. S + 'Pl ( VT ) SN � 0
so that (31) expresses that the real fonction (V, S) H V.S + cp1 ( VT )SN,separately convex with regard to V and S, attains at point (U, R) its minimal
value relative to the product set /C x C and that this minimal value is zero.

6 Time-stepping 

6.1 Numerical dynamics of multicontact systems 

As before, denote by [ti, tr], with length h, a time-step. From the approximatevalues qi, ui obtained for q and u at ti as the result of antecedent computation,
one has to calcula te qr, ur, corresponding to tr. 



The inertia matrix A(t, q) is assumed to depend smoothly ont and q, so 
that one chooses to approximate it throughout the time-step by the value Am 

it takes at the 'midpoint' tm := ti + h/2, qm := qi + hui/2. Similarly, the term 
F(t, q, u) in (21) is assumed to vary slowly enough for allowing one to replace 
it by the value Fm it takes at t = tm , q = qm , while the value Ui of u is used. 
Thereby it is understood that the force fields or pull-back actions which, 
among other terms, are compounded into the fonction F, do not depend on 
q in too steep a way. If such is not the case, a trick to overcome this difficulty 
is presented in [36]; it results in replacing A by an artificial inertia matrix in 
the construction of which the possible stiff elasticity coefficients are entered. 

It is also at the point ( tm , qm ) that the fonctions f o. are calculated, in order 
to decide which contacts are to be treated as effective. The set J(t, q(t)) is 
thus estimated to equal Jm := J(tm, qm ) throughout the time-step. 

The dynamical equation (21) is then discretized in the form 

Am (ur - ui) = hFm + L P
o. , (32) 

aEJrn 

where the element p°' of Rn is made of the covariant components of the 
impulsion at contact a, i.e. the integral P" over [ti, tr] of the contact force 
no. . Throughout the time-step, one ascribes to the linear mapping G� of (20) 
its value computed at (tm , qm), hence 

(33) 

One does the same with the linear mapping Go. and with the rheonomic 
term Wo. of (19). Since a discretization scheme of the implicit type is being 
planned, the final velocity ur is invoked, so as to calculate 

(34) 

In the exact problem, the contact law with label a should connect Ua 

to the contact force R°' at every instant. Our approximation scheme of the 
implicit type consists in connecting, through the same relationship, the final 
value Ua .f of Ua to the average of this force, namely pa / h. In usual situations 
such as the no-friction case described by (25) or also the case of Coulomb 
friction, the contact law happens to be positively homogeneous with degree 
zero relatively to the contact force, so the discretized law reads 

lawa (tm , qm,Ua ,f, Po.)= true. (35) 

6.2 Nonlinear Gauss-Seidel iterations 

Solving the system of conditions (32) to (35) is the hard part of the compu­
tation. From (32) and (33), one obtains 



ur = ur +A;;;1 � G�Pf3 , (36) 
(]EJm 

where Ur := Ui + hA;;;1 Fm may be called the relaxed velocity. Here is an 
iteration technique à la Gauss-Seidel which amounts to treating a succession 
of single-contact problems. 

Let an estimated solution ( u;:sti , P!tJ, (3 running through Jm , be ob­
tained with (36) satisfied. One expects to obtain a corrected estimate, say 
( uf°rr, Pforr), by selecting a label a and altering only P°' , i.e. by making 
Pf0rr = P!ti for (3 i- a. The new estimate is astrained to verify (36); equiva­
lently, since the old estimate satisfies the same, 

ucorr =Uesti + A-le* (P°' - P°' ·) f f m a corr esti 
(37) 

and to satisfy the discretized contact law (35). By applying Gn to both mem­
bers of (37), one gives to (35) the form 

where Hn := GnA;;;1 G� is a symmetric positive definite 3 x 3 matrix. 
Solving (38) in the unknown P::"orr is easy in some significant cases [52], 

such as two-dimensional Coulomb contact or the case where Hn is axissym­
metric about n°' . Generally, some iterative procedures may be applied, in 
which the normal and tangential components of the contact force are alter­
natively treated as known. Anyway, when a solver has been devised, the above 
procedure of correcting successive estimates is iterated, with a ranging cycli­
cally in Jm· The decision of stopping iterations may be made on observing 
the magnitude of the vector P::Orr - P::'s,ti ; this actually is equivalent to check­
ing the precision at which each pair ( u;:stï , P::'s,ti) satisfies the corresponding 
contact law. 

Observe that, provided such a numerical convergence check is made, the 
linear operator Hn in (38) may be replaced by any other mapping of E3 

into itself with zero limit at the origin, with the possible advantage of mak­
ing resolution easier. This replacement is also used in tricks for accelerating 
convergence. 

The mathematical convergence of algorithms of this sort, in the case of 
Coulomb contact, as well as the very existence of solutions to the problems 
addressed, has only been established in special situations [44][40]; uniqueness 
cannot be expected in general. 

If all the contact laws invoked are of the prospective type, one sees that, for 
each a, the final relative velocity Unr belongs to Kn (tm , qm)- Similarly to 3.3, 
Remark 1, this ensures non-interpenetration with a welcome self-corrective 



effect if the step-length is not too large. Contact laws of the prospective 
type also manage automatically the possible breaking of contacts, without 
resorting to any analysis of complementarity conditions. 

To start iterations, one needs an estimate ( uj'sti , P!
t
J verifying (36). One 

may take uj'8ti = Ur and ail P!
ti equal to zero. In cases where the set Jm 

of the active contacts does not change much from one step to the other, it 
could be much more efficient to take as first guess for the P!

ti 
the values 

calculated at the antecedent time-step for the contacts already present and 
to adjust urti by means of (36). 

Anyway, iterations do not require the handling of large matrices since, 
in the representation of each Go. for a rigid body, only a 3 x 6 submatrix is 
nonzero (2 x 3 in the case of a two-dimensional multibody system). 

Also observe that, due to the computation being of the implicit type 
relative to velocity, a single computation step is needed to check whether a 
given position of the system is that of a possible equilibrium. One just have 
to launch iterations with ui = 0 ; if Uf is found zero, the corresponding set 
of computed values for the contact forces is compatible with equilibrium. ln 
this sort of application, the inertia matrix A only provides the backbone of 
the computation and its value may be chosen so as to ease convergence. 

7 N onsmooth dynamics and collisions 

7.1 Discontinuous velocity functions 

The preceding Sections were developed in the context of usual 'smooth' dy­
namics, in which the velocity fonction u is assumed locally absolutely con­
tinuous on the time interval J. The properly 'unilateral' feature was only the 
possibility offered to contacts of breaking at any instant. 

In contrast, the sudden occurrence at some instant te of a new contact, 
i.e. a collision is expected to generate a velocity jump. Even without such an
event, the presence of dry friction at a contact point has long been known,
in some cases, to forbid the existence of a smooth solution beyond some
catastrophic instant, on the left of which the contact force, as well as the
derivative u', may become unbounded [24]. This is a dynamic analogue to the
locking situations familiarly met in the statics of frictional systems. Around
year 1900, such a lack of smooth solution for an apparently well set problem
seemed inadmissible to P. Painlevé and induced him to question the very
concept of a contact force. Hence the inadequate denomination of 'Painlevé's
paradox' which has been given to the observation. Today, one is accustomed
to see models reaching the limits of their validity domain. Such is the case for
smooth dynamics at a catastrophic instant of any sort, so that one is induced
to enlarge the fonction space where u is looked for [52][71].

In order to develop Nonsmooth Dynamics, the widely accepted extension 
of the fonctional framework is that of Rn -valued fonctions with bounded



variation. More precisely, since the time interval J has not been supposed 
compact, we consider the linear space of the fonctions with locally bounded 
variation, i.e. they have bounded variation over every compact subinterval ; 
notation lbv(J, Rn). Any u in this space is locally Lebesgue-integrable, so that 
(2) remains meaningfol. The classical property of a fonction with bounded
variation to possess a derivative almost everywhere has no relevance in the
present situation, for such a pointwise defined derivative of u (generating
values for the accelerations of the system elements in physical space) does
not allow one to retrieve the fonction through integration. In fact, the possible
discontinuity points of u, which make at most a countable, hence Lebesgue­
negligible, subset of J may be responsible in an essential way for the evolution
of this fonction. For instance, a step-fonction possesses almost everywhere a
derivative equal to zero without having to be a constant.

The role of the fonction u' is now played by an Rn-valued measure on I, 
called the Stieltjes measure or differential measure of u, that we shall denote 
by du. In the smooth case, where u is locally absolutely continuous, one has 
du = u' dt , with dt denoting the Lebesgue measure (this is nothing but the 
differential measure of the real fonction t H t). 

Classically, a fonction u in lbv(J, Rn) possesses a left- and a right-limit at 
every point t of I, say u-(t) and u+ (t) (with the convention u-(t0 ) = u(t0 ) 
and symmetrically at the possible other end of J) and one has for every 
compact subinterval [a, T] of J

In particular, the integral of du over the singleton {a} equals the possible 
jump of u at point a. 

7.2 A measure-differential equation 

Since one cannot rely on the second derivative of the fonction t H q(t) 
anymore, the accelerations of the elements of the system in physical space 
are also missing, as well as forces. The latter have to be replaced by E3

-

valued measures, the integrals of which over every compact subinterval of J
constitute impulsions. In smooth dynamics, the impulsion measures admit, 
relatively to dt , some density functions whose values, at a given instant, 
are properly forces, so that impulsions, in accordance with the traditional 
definition, equal their time-integrals. 

In particular, instead of a contact force Ra , there will more generally 
be invoked a contact impulsion, an E3-valued measure on the time interval 
I. For the homogeneity of notations, let us denote by dS

a this measure,
without having to pay attention to any fonction sa admitting it as differential
measure. The covariant components of dS,, , relative to the parametrization



in use, are Rn-valued measure on I, say ds0 , which, similarly to (20), are 
defined as 

(39) 

This expression makes sense if the linear mapping G� depends continuously 
ont and q, an assumption usually verified in multibody dynamics. 

The differential equation of dynamics (21) has then to be replaced by 

A(t,q)du = F(t,q,u)dt+ Lds°', (40) 
a 

an equality of Rn-valued measures on I, called a measure-differential equa­
tion. 

Concerning the connexion of this writing with a general formulation of 
classical dynamics, refer to [54]. It may be asked why (40) is given the re­
stricted form of an equality of measures, instead of an equality of distributions 
of arbitrary order on the interval J. Our answer, in the present context, is 
that nonsmoothness cornes from the contact actions which, due to unilater­
ality are subject to inequality requirements ( even in the more general case 
of adhesive contact [26][68]). This is a basic fact that distributions verifying 
inequalities are necessarily measures. 

Such an equality of measures may equivalently be exploited as an equality 
of fonctions, thanks to the following observation. Given a finite collection of 
R-valued or Rn-valued measures, such are dt, du and ds°' above, there exists
(non uniquely) a nonnegative real measure on I, say dµ, relatively to which
these measures respectively admit density fonctions t� E Cf

oc
(J, dµ; R), u� E

Cf0
c
(I, dµ; Rn ), (s°')� E Cfo

c
(J, dµ; Rn ). Then (40) is equivalent to the equal­

ity of Rn-valued fonctions

A(t, q) u� = F(t, q, u) t� + L(s°' )�, ( 41) 
a 

holding dµ-almost everywhere in J. Replacing the base measure dµ by another 
admissible one amounts to multiply densities by positive real fonctions [53]. 

There remains to precise how contact laws may be entered into this for­
malism. As observed before, in the case of Coulomb friction as well as in 
the no-friction case, contact laws in the form (23) are conic, i.e. positively 
homogeneous of degree zero with regard to the argument R/'. If the density 
of contact impulsion (S°')� is introduced at the place of R°' in the contact 
law, the relationship so stated between the contact impulsion measure and 
the local velocity fonction U

0 
is thus indifferent to the change of the base 

measure. Such a policy does not seem questionable as long as the measure 
dµ and, consequently, the measure dS°' are diffuse on the considered time­
interval. In this case u is continuous, so that the local velocity U0 is well 
defined for every t.



7.3 Collisions 

In contrast, assume that, at some instant te , a velocity jump occurs as the 
result of a collision. 

The measure du then presents an atom at the point te of I and the same 
should be expected from the other measures involved in the calculation. Nec­
essarily the base measure dµ in use presents an atom at te and dµ may be ad­
justed in such a way that this atom has unit mass, i.e. the said atom is a Dirac 
measure located at te . With dµ so specified, the value P0 

= (S0 )�(te ) of the 
density of contact impulsion for the contact labelled a, is nothing else than 
the vector called percussion in the traditional formalization of shocks. Conse­
quently, the measure equation ( 40) readily applies to the standard question of 
determining the post-collision velocity u+ (te), knowing the pre-collision value 
u -(te ), provided some information is available about contact impulsions. 

An information of this sort is implicitely included in the various pragmatic 
approaches proposed in the form of collision laws, since the very times of 
Descartes or Newton. These laws usually involve empirical parameters meant 
to account for the 'bounciness' of the collision ( coefficients ofrestitution) and 
for the possible role of friction during the process. It is today recognized that 
such parameters can only be identified in narrowly delimited situations [72] 
such as the collision of two, otherwise free, spherical beads. The coefficients 
possibly determined for a pair of free bodies are not valid anymore if any of 
them is subject to additional constraints [32]. It should be kept in mind that 
if one of the bodies involved in a collision is part of a cluster of contacting 
objects, nonzero contact percussions should be expected at all contacts in the 
cluster. 

Viewing a collision as a strictly instantaneous process is a schematic 
model, pertaining to the dynamics of strictly indeformable bodies. In con­
trast, if some slight deformability of the colliding bodies is evoked, a nonzero 
time-interval, say [te, te + 8], should be ascribed to the interaction. Large 
values of the contact forces are expected, the time-integral of which over 
this interval makes the contact percussion vector, but at this scale smooth 
dynamics remains applicable. 

Studies of the latter sort are usually developed through a multiple scaling 
approach : a micro-time is introduced, in order to investigate the variation of 
the velocity fonction, while the variation of the position q is neglected. The 
direction of the sliding velocity U0 at some of the involved contacts may be 
found to exhibit large variations as a fonction of the micro-time, preventing 
the identification of any representative value which could, phenomenologi­
cally, be connected with the total impulsion pa . The situation is better if Ua 

remains zero : because the Coulomb cone, closed and convex, is constant with 
regard to the micro-time (see however the discussion in 8.1), the condition of 
n

a belonging to it commutes with the integration invoked in defining P0
• 

Deeper investigation of collision processes has also been conducted, by 
taking into account the whole deformation of the interacting bodies, either 



analytically [43] or numerically thanks to the finite element representation 
of deformability [76]. This also cornes to confirm that collision laws can only 
roughly approximate the complexity of the process. 

7.4 Frictionless inelastic collision 

In the time-stepping scheme of Sect. 6, contact forces were involved only 
through their total impulsions on each time-interval, so that it remains ap­
plicable to problems formulated in the nonsmooth framework. This numerical 
procedure handles collisions in an automatic way. It only happens that, in 
the course of computation, a time-step exhibits some contacts not detected 
at the preceding step. Since the velocity ur has to comply with some non­
interpenetration conditions from which ui is exempt, the contact impulsions 
pa involved in (32) are expected to take values of larger magnitude than 
in the case of constant Jm , But calculation remains the same and delivers 
kinematically admissible post-collision velocities. In short, because the con­
tact laws (35) have been assumed positively homogeneous with degree zero in 
their last arguments, the algorithm treats collisions on the same footing as 
permanent contacts. 

There remains to precise which collision model the algorithm turns out 
to approximate. Assume for simplicity that a single contact has corne to 
increment lm , i.e. there occured a single impact at some unknown instant te 

of [ti, tr]. The endpoint values Uï and Uf are viewed as approximating u-(te) 
and u+ (te ) respectively. 

We first have a look at the calculation to be made in the special frictionless 
setting of 5.2. The polyhedral set W defined in (29), namely the set of the 
values of u+ compatible with all non-interpenetration conditions, including 
the new one, is approximated by 

As in 6.2, one constructs the relaxed velocity Ur := Uï + hA;;-,1 Fm . If the 
positive definite matrix Am is used to define in Rn a Euclidean metric, the 
core of the computation simply consists in constructing ur as the nearest point 
ta Ur in W m· By imagining the step-length h arbitrarily close to zero, one 
sees that the calculation approximates the following collision law : 

The post-collision velocity u+ (te) equals, in the sense of the kinetic me tric 
A(tc,q(tc)), the nearest point ta u-(tc) in W(tc,q(te)). 

Let us refer now to the contact locus, in the notations of 5.1. The above 
calculation amounts to admit that, for each a, the contact impulsion pa is 
connected, through the law offrictionless contact (25), with the post-collision 
velocity u:;. Due to this law being of prospective type, the implication pa =/= 
0 =? u:;. na 

= 0 holds, meaning that, if the contact labelled a takes an 
effective part in the nonsmooth process, it exhibits the feature traditionally 



formulated by saying that the Newton restitution coefficient is zero. But, 
depending on the circumstances met in constructing the projection, one may 
also have P°' 

= 0, with U;t. n°' only astrained to be nonnegative. 
The present model (it was introduced in [51] under the name of Standard 

Inelastic Shock) is somewhat more realistic than the traditional Newton state­
ment, in that all the contacts present at instant te are treated collectively. This 
produces plausible results for instance in the case, popular in the Earthquake 
Engineering literature, of a rectangular block rocking on a horizontal plane: 
if the traditional formulation, with zero restitution coefficients, was applied 
to all contacts, no rocking could be found. In contrast, the above collision law 
allows one to discuss the outcome with regard to the aspect ratio of the block. 
A slender block presents a succession of oscillations, progressively damped by 
the inelasticity of collisions, while, below some critical aspect ratio, a single 
episode of motion leads to permanent contact. 

7.5 A three-parameter collision law 

In the same line, there remains to show how non-zero friction and non-zero 
restitution can be entered into a computationally efficient collision model. 
At an instant where the system experiences a velocity jump we propose, 
for every contact a, to relate through the Coulomb law of friction (stated in 
prospective form) with friction coefficient 'Ya , the contact percussion P°' with 
some average value ui of the local velocity. This artificial value is defined as a 
weighted mean of the (known) pre-collision velocity U;;_ and of the (unknown) 
post-collision velocities U;t. Introducing as before the normal and tangential 
components of the concerned vectors, put 

ua

= �u- +-
1
-u+ 

aN 1 + Po: 
aN 1 + Po: 

o:N 

ua

= --2:::_ u- + -
1
- u+ 

.

o:T 1 + Ta aT 1 + Ta 
aT 

(43) 

(44) 

The empirical parameters Po: and Ta: will be called the normal coefficient of 
restitution and the tangential coefficient of restitution at the contact labelled 
a, denominations justified by what follows. 

Since the invoked contact law is of the prospective type, implications (26) 
and (27) show that P°' can be nonzero only if ui

N 
= 0, i.e. u-;+;

N 
= -p0 U;:

N
, 

which formally is Newton's restitution law. But the present formulation is 
richer than stipulating a normal restitution law separately for each contact ; 
it also allows po: 

= 0, in which case only the inequality U�N � 0 happens 
to be asserted. It is the global calculation, involving all the contacts together 
through the equation of dynamics, which decides between these two alterna­
tives. 



Similarly, the global calculation, if friction is large enough, may end in 
the zero sliding case of Coulomb's law at contact a. Then u-:;

T 
= -Ta u;;

T
, 

which is a law of tangential restitution.

The construction of the average velocity may readily be incorporated into 
the time-stepping computation scheme of Sect.6, so that the algorithm is 
ready to face possible collisions at every instant. At the price of a few extra 
lines of code at each time-step before launching the Gauss-Seidel iterations, 
no computation cost at all is added to the iterations themselves 

Of course the same collision model may be used in conjonction with other 
solvers [38][39]. 

The time-stepping scheme also yields plausible results when some of the 
frictional catastrophes referred to in 7.1 are met [52]. 

It should however be admitted that relating the percussions pa to the 
respective average velocities U:1;, is nothing but a pragmatic trick, generating 
a collision law of the sort which precisely was criticized in 7.3. Before relying 
on it in a specific context, one has to check its practical value against any 
available experimental measurement. 

In the simplest case of all, that of the collision of two otherwise free 
spherical beads, the resulting law turns out to be mathematically equivalent 
to another three-parameter collision model anteriorly proposed on the basis 
of quite different arguments [76] and which, experimentally, has been found 
in fairly good agreement with reality [25]. 

The various circumstances met when a ball bounces against a fixed plane 
are also convincingly reproduced, in particular the exotic behaviour of a 'su­
perball' [55] [56]. 

The rocking of a slender block supported by an oscillating table has pro­
vided another occasion of testing the model. Sorne sensitive features of the 
rocking regimes have been correctly predicted by CD computation [66]. 

It is in the domain of the numerical simulation of granular materials that 
the computational simplicity of the procedure proves invaluable. In fact, one 
may then have several ten thousands of contacts to investigate at each time­
step. 

Sorne satisfactory comparisons of computation with experiments are pre­
sented in [55] [56], pertaining in particular to the circulatory currents observed 
in shaken granular samples and their connection with the segregation of grain 
sizes [41]. 

The study of the flow of grains over a rough incline has also benefited 
from joining experimental investigation with CD numerical simulations [14]. 

The efficiency of the method in the dynamics of granular materials mainly 
stems from that, once a time-discretization has been chosen, all the collisions 
which have been detected as occurring on a given time-step are treated to­
gether. This of course entails some trade-offs which have to be assessed. It 
does not seem to matter that the ordering of collisions, which mechanically 
should be successive, is only internal to the algorithm. In fact the problems 



in view are physically undeterministic, since a slight change in the initial con­
ditions is liable to generate after a short time a completely different sequence 
of positions and collisions. A more critical issue is that each contact point is 
only counted once in the analysis. An accumulation of bounces, such as those 
of a ping-pong ball coming to rest, is thus viewed as a single collision as soon 
as the successive bounces are all comprised in the time-step. This could result 
in underestimating the total energy loss arising from inelastic collisions. This 
source of error may be checked by repeating computation with step-length 
reduced to half: if no appreciable change is found in the energy versus time 
curve, one may conclude that no harm was done. 

It has been stressed in the foregoing that, in compact assemblies, the bod­
ies involved in a collision may be part of clusters of already contacting objects, 
between which percussions are likely to be induced. The described procedure 
of global dynamical calculation does take this into account. Physically how­
ever, the transmission of impulses in clusters should involve elasticities in 
a way analogous to sound propagation, an effect which cannot be analyzed 
through the present model of strictly rigid objects. 

Anticipating on the question of energy balance, to be studied in the next 
Section, one may finally rise another objection. Like other popular collision 
laws, the trick of average velocities offers no security against the possible 
violation of the laws of Thermodynamics. In fact, for colliding objects of not 
too usual shapes, the calculated outcome may entail some energy creation. 
This is a physically inacceptable conclusion, except of course for artificially 
boosted collisions as in electric billiard games. A systematic thermodynamic 
formalism has been proposed by M. Frémond [27], securing that the empirical 
collision laws one may insert in it are dissipative [15][16]. 

8 Energy balance and calculus for differential measures 

8.1 Departing from smooth dynamics 

Drawing the energy balance of a dynamical evolution is essentially relevant to 
the case where the external obstacles or boundaries are fixed in the (Galilean) 
reference frame in use. ln the smooth dynamical context of Sect.4 it was al­
luded to the possibility of constructing the parametrization (q) with account 
of linkages or permanent hinges through which members of the system would 
be connected with some external supports. Also these external supports have 
to be assumed fixed, in order to obtain a 'scleronomic', i.e. time-independent 
parametrization. This makes the inertia matrix A(t, q) constant with regard 
to its first argument and gives to the kinetic energy of the system an ex­
pression which, for every q, is a positive definite quadratic form in u, namely 
Ek = Aijuiui /2. ln this framework of smooth dynamics, one classically es­
tablishes that the time-derivative of Ek equals the total power of the forces 
experienced by the system, including the contact forces between members 
and the possible action of external supports. If contacts are frictionless as 



well as the (fixed) possible external hinges the corresponding terms in the 
power vanish. In the familiar case where, additionally, the other forces in 
presence derive from a potential energy, the integration of derivatives yields 
the well known property of energy conservation. 

In contrast, the elementary example of a particle hitting 'inelastically' a 
fixed frictionless plane shows that, in nonsmooth situations, the absence of 

friction does not secure energy conservation anymore. Mathematically, the 
reason is that the formula for the time-derivative of a product of (locally ab­
solutely continuous) fonctions, used in establishing the energy balance in the 
smooth case, has to be replaced by Jess precise relationships to be presented 
in 8.2 below. The physical background needs some comments. 

The discussion sketched in 7.3, in which a nonzero time-interval [te, tc +B] 
was, at least qualitatively, assigned to the process, makes one understand 
that the small deformations that the contacting bodies undergo during the 
collision may generate values of the local velocity vector Ua disagreeing with 
condition Ua .na = 0, while the vector na itself may exhibit transient varia­
tions. The instant power of contact forces can then be nonzero, yielding for 
their total work over the time-interval a nonzero, commonly negative, value. 
The same remark applies to the external linkages asserted to connect the 
system with fixed supports : even frictionless, they may transmit work to 
the outside world. This induces one to question, when nonsmooth circum­
stances are met, the legitimity of involving these linkages in the construction 
of the parametrization : the fact that such linkages are perfect in the sense of 
the traditional smooth dynamics does not secure that the percussions they 
impart in a collisional situation should have zero generalized components. 

8.2 Nonsmooth differential calculus 

Sorne rules of a calculus for l.b.v. vector fonctions of a real variable t are 
established in [53]. ln particular, one finds expressions for the differential 
measures of fonctions constructed from elements of l.b.v. through multilinear 
operations. For instance one has 

( 45) 

and various similar formulas where left- and right-velocities are differently 
combined. If the scalar product in Rn is denoted by a dot, this yields 

( 46) 

Furthermore, thanks to the quadratic form u ,-+ u.u = llull2 being nonnega­
tive, one establishes the following inequality, in the sense of the ordering of 
real measures on I

( 47)



This holds true, more generally, in any Euclidean or real Hilbert linear 
space. 

By integrating the concerned measures on the singleton {te }, one may 
derive from these rules of extended differential calculus a formula for the 
jump of kinetic energy at the instant of a possible collision 

(48) 
This result, sometimes called Kelvin's theorem, actually is of purely algebraic 
nature and one may recognize in it the elementary identity (a+ b).(a - b) =

llall2 
- llbll2 applied to the Euclidean metric associated with the inertia matrix 

A = A(q(tc)). If (40) is used here to express A(u+ - u-) (recall that the 
measure dt has zero integral on a singleton), this yields 

1 1 E;t - t:; = 

2
(é + u-).A(u+ - u-) = 

2
(u+ 

+ u-). I>a· (49) 
a 

where pa 
= G� pa is the n-vector made of the generalized component of the 

percussion pa occurring at the contact labelled a. The right-hand member 
equivalently writes down as 

� L(u+ 
+ u-).c: pa 

= L �(Ga u+ + Gau-).Pa 

a a 

" l (_ +) a 
= � 2 

Ua + Ua .P . 
a 

(50) 

Therefrom the jump of [k is expressed as a sum of terms corresponding to 
the respective contacts effective in physical space. Mathematically, it may be 
convenient to view each of these terms as defining the energy or work of the 
corresponding percussion. But one should keep in mind that nothing in this 
analysis can justify the conception that such terms could, each for its part, 
express a separate energy balance for some physical phenomenon occurring 
at the corresponding contact locus. 

As an illustration, one may corne back to the frictionless collisions pre­
sented in 7.4. Since each percussion pa was then assumed connected with 
the corresponding U-;+: through the law of frictionless contact (25), one has 
u-;+:. pa 

= O. From the right-side inequality in ( 4 7), one concludes that such 
collisions essentially involve some energy loss. In contrast, one might stipu­
late that the same law of frictionless contact should hold between pa and the 
arithmetic mean (U;; + U-;+;)/2. Then (50) would entail energy preservation. 
Note that if some of the contacts involved take place between a member of 
the system and some external obstacle, the latter must be fixed. 

When invoked in the space Rn of the parameters, the norm and scalar 
product should be understood in the sense of the kinetic metric. More gen­
erally than in the above investigation of an instant phenomenon, the energy 



balance of the possibly nonsmooth motion of the system over a time inter­
val may be stated as an equality of measures, in which the evolution of the 
matrix Ais taken into account [52][53]. 

9 Behaviour of a masonry structure 

The dynamics of block assemblies has been submitted to CD computation, in 
order to simulate their response to seismic actions [34]. In this domain of ap­
plication, it may be necessary to take also into account a slight deformability 
of the blocks and the presence of mortar joints [2]. 

Fig. 1. Friction coefficient 0.6 

Fig. 2. Friction coefficient 0.3 

N umerical simulation is applied here to a two-dimensional mode! of stone 
bridge in order to display its collapse under some localized forcing. The pur-



pose is pedagogical, with a view to make clear that the ruin is not the result 
of the crushing strength of stone beeing exceded, but has to be discussed 
in terms of geometry and of the unilaterality of non-interpenetrability con­
straints [29][30]. If mortar joints are present between stones, their strength is 
neglected and the contact described as obeying the Coulomb law of friction. 
Coulomb himself, when investigating this issue, observed that, in practical 
instances, the friction coefficient was large enough for no sliding to occur 
between archstones so that the evolution toward collapse consisted of the 
opening of some joints through the relative rotation of the corresponding 
archstones about hinge points. 

The structure, initially in equilibrium under its own weight, is submitted 
to the action of an external object with imposed motion, forcing the central 
archstone clown. Computation of the subsequent motion is performed twice, 
with the respective values of 0.6 and 0.3 for the friction coefficient at all 
contacts. 

10 Stress distribution in a conical grain pile 

10.1 Constructing a pile 

N umerical simulation is a popular mode of investigation in granular mechan­
ics. In particular, dry cohesionless granular materials are naturally modelled 
as collections of bodies which internet by contacts affected with Coulomb fric­
tion. Provided the model is sufficiently validated by comparing some measure­
ments, feasible in laboratory on physical experiments, with the correspond­
ing numerical results, computer simulation may bring precious informations 
about intimate mechanisms and quantities otherwise inaccessible. 

The following observation has, in recent years, started a lot of speculation 
and controversy [11][70]. If a conical pile is created by pouring grains from 
a point source onto a rough rigid horizontal ground, some experimentalists 
have been surprised to find that the distribution of pressure at various ground 
contact points was not proportional to the height of the material above and 
even that some local minimum of ground pressure could be present at the 
vertical of the apex. 

The distribution of stress in a granular material not only depends on 
the forces actually exerted on it, but strongly also on the way the granular 
mass has been prepared. Numerical simulation thus has to reproduce the 
preparation process. 

Figure 3 displays a view of the following numerical experiment [61], per­
formed with the Contact Dynamics algorithm of Sect. 6. A pile of about 
14000 spherical grains is constructed by depositing grains, one by one, at the 
contact of already existing ones. Grains diameters are distributed at random, 
uniformly from 0.25 cm to 0.5 cm. The fixed horizontal ground roughness 
is simulated by a random pavement of grains with the same distribution of 



Fig. 3. View of the pile 

sizes. Friction coefficient : 0.4 everywhere. Restitution coefficients : O. Grav­
ity : 981 cm/s2

• The vertical of a grain center at the time of its deposition is 
chosen at random in the neighbourhood of the Oz axis at a maximal distance 
of 0.8 cm. Deposition frequency : 200 per second. 

A large part of the deposited grains run down the pile slope before stop­
ping, sometimes triggering avalanches. The velocity of running grains may 
reach 24 cm/s. For sufficient precision in calculating these motions, including 
the avalanches, the step length is fixed at 2 x 10-4 s. The duration of the simu­
lated phenomenon equals 72 s, so that 360 000 steps have been needed. In the 
final stages the number of contact points is about 33 000. The Gauss-Seidel 
procedure remains practical on a microcomputer (but a matter of weeks) for 
a system of such a size because the largest part of the pile stays in quasi­
equilibrium : the contact impulsions calculated in the antecedent time-step 
for the contacts already effective are used as first guess in iterations. 

Figure 4 shows, in four stages of the pile building, a slice 2 cm thick 
containing Oz. The grains deposited between t = 15.5 and t = 18.7 and 
which, at the considered stage, have their centers in this slice are represented 
in black. One observes that a noticable proportion of the deposited grains do 
not run out on the slopes, but accumulate in the central region so as to cause 
some plastic deformation of the existing granular mass. This deformation 
may be assessed by visualizing the distribution of these black grains at the 
successive stages. Let us call a fossile layersuch a collection of grains observed 
at a certain date and deposited during a specified anterior period. 

10.2 Stress distribution 

The programme allows one to choose a line segment in a plane drawn through 
Oz. By rotation about Oz, this segment generates a curved strip in the shape 
of a truncated cone or of a cylinder, across which force transmission will be 
analyzed. To this end, the contacts occurring in grain pairs with centers 



t = 18. 7 s; 3606 grains 

oo� 

t = 31.4 s; 6039 grains 

0 

t = 19.5 s; 3754 grains 

t = 72.1 s; 13869 grains 

Fig. 4. Fossilelayers 

separated by the conical or cylindrical surfaces are reviewed. A contact force 
R is retained in the list if the corresponding contact point M has a projection 
onto the separating surface which belongs exactly to the strip. The meridian 
half-plane II containing Mis used, in order to decompose R into a component 
Rz in the Oz direction and a component Rr in the axifugal direction (the 
component of 'R orthogonal to II is not investigated). The sum of all Rz in 
the list, as well as the sum of all Rr , are divided by the area of the strip. 
This yields the components in II of a vector Tn which may be viewed as the 
average density of meridian force transmitted across the strip. 

Fig. 5. Reciprocal cuts 

In a classical continuous material, possessing a Cauchy stress tensor field, 
the similar construction would deliver an average density of meridian force 



related to the strip normal unit vin the form TII = O"[]V, where O"[] denotes a 
symmetric two-dimensional tensor. Symmetry implies a reciprocity property 
for a pair of (conical or cylindrical) strips drawn through a given point, with 
respective normal units v and v' and force densities TII and Th : one readily 
finds v. Th = v'. TII, For a common value equal to zero, there cornes out that 
the strip with normal v is parallel to Th if and only if the strip with normal 
v' is parallel to TII . 

That a granular material, observed at large scale, admits a Cauchy stress 
field like any continuous medium is a familiar fact, for instance in Soi! Me­
chanics. When some numerical simulation has revealed the values of inter­
granular forces, the assessement of the average stress over a delimited sample 
is also a classical matter but the question of the representativity of the sam­
ple, in regard to its size, needs investigation. In fact, photoelastic experiments 
as well as numerical simulations reveal that the transmission of forces in a 
granular mass in equilibrium exhibits a certain inhomogeneity. Loads hap­
pen to be carried by privileged grains forming force chains. A sample has 
naturally to exceed the size of these chains in order to yield a representative 
value of stress. For an investigation of this subject through Contact Dynamics 
simulations, see [57][60]. 

The purpose of Fig. 5 is to check that, in the present numerical experi­
ment, the numbers of grains is large enough for the above reciprocity property 
to hold reasonably true, in spi te of sampling aleas ( a two-dimensional exam­
ple, with irregular polygonal grains is presented in [60]). 

Fig. 6. Reference to fossile layers 



Figure 6 shows the same 2 cm thick slice as before, with two fossile layers 
outlined. This suggests the following approximate law : 

In each point of the pile, the average density of meridian force Tn cor­

responding to a cylindrical strip with axis Oz has the same direction as the 

meridian section of a fossile layer containing this point. 

This distribution of meridian forces expresses an arching effect, present 
even in the central region of the pile. 

In the peripheral bank, which has been constructed by the deposition of 
avalanching grains, the fossile layers are nearly parallel to the free surface. 
Through the reciprocity property, this is equivalent to saying that, on a con­
ical eut parallel to the free surface, the average density of transmitted force 
is vertical. This feature looks natural since the bank is made of layers suc­
cessively deposited by avalanches. When such a layer stops, the supporting 
forces it experiences from the material beneath should equilibrate its weight, 
and this verticality of transmitted forces is expected to persist after other 
layers possessing the same property have been superimposed. 

10.3 Ground pressure 

Ground contacts: 2367 

Fig. 7. Average ground pressure in annular regions 

The central core of the pile clearly has part of its weight supported by the 
arching effect of the peripheral bank and this explains that in some experi­
ments, a local minimum of ground pressure has been found at the vertical of 
the pile apex. Figure 7 displays the results obtained in the present numerical 
simulation. The supporting ground surface has been divided into annular re­
gions with axis Oz and uniform width. For ail the contact points between the 
pile and the rough gound surface wich project in one of the annular regions, 
the total vertical component of the contact forces is divided by the area of 
the region, yielding the corresponding average pressure. The graph shows the 
respective values of this pressure (in deciPascal) plotted against the distance 
to Oz. Regions of small radii are naturally more subject to sampling aleas 



than the larger ones, but a central local minimum is in evidence. The pressure 
at center is smaller than the hydrostatic pressure which would be found in a 
liquid column of the same height and the same average volume mass, namely 
3320 dPa corresponding to the height of 5.5 cm and a volume mass of 0.615 
(in computation, the volume mass of the material the grains are made of has 
been taken equal to 1). 

Anyway, the statics of a pile of dry grains has nothing to do with hy­
drostatics. This is evidenced by the fact that the free surface of the pile at 
rest is not horizontal. The merit of the reciprocity property disclosed in the 
foregoing is to establish a mathematical connexion between the arching effect 
and the inclination of the free surface. 
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