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 This paper presents a numerical and experimental study of Radar Cross Section (RCS) of 

radar targets using Gaussian Beam Summation (GBS) method. The purpose GBS method 

has several advantages over ray method, mainly on the caustic problem. To evaluate the 

performance of the chosen method, we started the analysis of the RCS using Gaussian Beam 

Summation (GBS) and Gaussian Beam Launching (GBL), the asymptotic models Physical 

Optic (PO), Geometrical Theory of Diffraction (GTD) and the rigorous Method of Moment 

(MoM). Then, we showed the experimental validation of the numerical results using 

experimental measurements which have been executed in the anechoic chamber of Lab-

STICC at ENSTA Bretagne. The numerical and experimental results of the RCS are studied 

and given as a function of various parameters: polarization type, target size, Gaussian 

beams number and Gaussian beams width.  
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1. Introduction  

In the radar frequency domain, both asymptotic and rigorous 

methods have been developed to model the variations of the RCS 

of canonical and complex targets. The rigorous methods such as 

Method of Moment (MoM) are based on an integral formulation, 

and they are served to validate the new asymptotic approaches. The 

asymptotic methods as Physical Optic (PO) and Geometrical 

Theory of Diffraction (GTD) reduce the operation number of 

solving of high-frequency equations as for large objects [1-3]. The 

asymptotic methods using the hypothesis of locally plane wave and 

high-frequency approximation are based on the principle of rays. 

The application of these methods in a complex propagation 

scenario is often limited by the transaction between highlighted 

and shadowed region and the caustic problem (except the PO 

method). To overcome this problem, we will apply an asymptotic 

technique based on Gaussian beams and we will study the RCS 

variation of different radar targets. The used Gaussian method 

named Gaussian Beam summation (GBS) has been the subject of 

research for several years. In fact, the solutions of Maxwell’s 

equations and Helmholtz’s wave equation as single Gaussian 

beams were developed in the sixties. Afterward, Babich and 

Pankratova have proposed a mathematical study of the integral 

Gaussian beams where they describe them as a representation of a 

scalar wave field [4-9]. This integral has been used for a 

mathematical study of the Green’s function discontinuities in the 

mixed problem for the wave equation. The Gaussian Beam 

summation as an asymptotic approach for computing high-

frequency wave fields has been developed by V. Cerveny [7] and 

M.M. Popov [8]. The summation of Gaussian beams allows 

solving some critical points of the asymptotic ray methods such as 

the problems related to the evaluation of wave field in singular 

areas.  

The main goal of this work is to simulate and analyze the RCS 

variations of canonical and complex targets using GBS method and 

validate the numerical simulation results by experimental 

measurements. Therefore, this paper is organized as follows: 

Section 2 shows the physical principle and the mathematical 

formulation of the GBS and GBL methods. Section 3, illustrates 

the numerical and experimental results of RSC of different radar 

targets. The final section presents conclusions and future research. 
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2. Formulation and analysis of Gaussian Beam Methods  

2.1. Formulation of GBS method 

V. Cerveny and M.M. Popov [7-9] have developed a new 

technique for calculation of wave fields in high-frequency 

approximation. This technique is called Gaussian Beam 

Summation. In the GBS method, the total final field in any 

observation point outcomes from a set of rays that passed through 

his vicinity. According to V. Cerveny [7], [9-10] and M.M. Popov 

[8], [11], the general procedure of the GBS method consists of two 

compatible steps. Firstly, we derive a Gaussian beam propagating 

along the ray for each selected ray. Each Gaussian beam has its 

own contribution to the receiver. In the final step, we sum all 

contributions over all rays [7-9]. 

Before showing the basic formulation of the GBS method, we 

must describe the assumptions that were used to establish this 

formulation. We’ve started by considering a homogeneous and 

isotropic medium with an electromagnetic wave propagating (with 

a propagation velocity v) in this medium which is being excited by 

a point source. Then, we’ve supposed that some wave’s process is 

described by the Helmholtz’s wave equation and the point source 

is positioned in the origin. After that, we’ve solved the Helmholtz’s 

equation in the neighborhood of rays.  

 
Figure 1: Geometric configuration and coordinate parameters: a point M 

situated in the plane Σ⊥ perpendicular and crossing Ω at point S. The point M is 

located in the vicinity of ray Ω and it ray-centered coordinates are q1, q2, and s. 

The center point O is at s=s0.  

Figure 1 presents the ray-centered coordinate system (s, q1, q2) 

used to formulate the equation (1) of the Gaussian beam amplitude 

u(s, q1, q2, t). This coordinate system is connected to any selected 

ray Ω. As a function of the local coordinates and at the receiver 

point, the solution of the Helmholtz equation as a solitary Gaussian 

beam is given by (1) [8].                 
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In (1) (s) is the travel time from the source along the selected 

ray, v is the propagation velocity, qT represents the transpose of the 

vector, the quantities Q and P are 2 x 2 matrix called “dynamic 

quantities” satisfying the system ODE (2) in variations, called 

“dynamic ray tracing equations” (DRT) [11], [15].In a 

homogeneous medium with wave speed equal to the celerity c, the 

DRT equations can be written as: 

            0;. ==
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dQ
                                                  (2) 

The system of differential equations (2), is solved by 

introducing initial conditions specified at an arbitrary point (s = s0) 

on the central ray. The initial conditions are also related to three 

other conditions along the whole rays [12]. These conditions are:  

• Even though P and Q are not symmetrical the (P×Q-1) must be 

symmetric matrix; 

•  Im(P×Q-1) is a positive-definite matrix; 

• (det[Q]≠ 0); 

To find the initial values for Q and P, we use Hill’s [13] initial 

data for the Green’s function.  

            
0

2

0 ;.;.
.

ssandI
c

j
PI

c
Q r ===


                                                                                    (3)                      

In (3), 0 is the initial half beam width at the frequency f = 

r/2, I is the identity matrix (2×2). Using the initial conditions in 

(3), we can find the general solution of (2), and can be written as 

follows: 
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In the case of homogeneous media, by using (4) in (1), we 

return to the representation of the amplitude u of the Gaussian 

beam in 3D: 
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Using the geometrical configuration illustrated in Figure 1, and 

introducing the spherical coordination system (r, , φ), we can 

deduce the following factor (in 6) as a function of the distance (r) 

between the transmitter and the receiver:  

            ( ) ( ) cos.;sin.
0

2

2

2

1
rssandrqq =−=+                                 (6)          

Finally, to calculate the full amplitude (uGBS) at the receiver we 

must use an integral formulation as shown in (7). This integral will 

be calculated on all Gaussian beams described by their 

characteristic angle () from the source: 

( ).
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Where, Φφ is a quantity, generally complex-valued, which 

remains constant along the considered ray but may differ from ray 

to ray. It is called complex weight function. And the function uφ(s, 

q1, q2) is the Gaussian beam connected with the ray. 

In (7) the domain δ is centered on the central ray, it delimits the 

beams propagating in the vicinity of the central ray, chosen in such 

way that the Gaussian beam uφ(s,q1,q2) outside this domain do not 

contribute effectively to the wave field. δ is a cone with a vertex 

angle φ. 

                 2,0,..sin = ddd                                                           (8) 
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For a homogeneous medium, on an observation point (M) the 

ray asymptotic solution of the Helmholtz equation is given by the 

following equation: 
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The GBS integral, in (7), may be evaluated asymptotically 

using the saddle-point method. Thus, this result must coincide with 

the above ray asymptotic solution in the regular region [12], [17]. 

Matching both asymptotic solution of (7) and (9) we can determine 

the complex weight function Φφ. Integral (7) is evaluated by 

numerical quadrature with regular increment Δφ. The equation 

(10) is used for the numerical computation.  
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After the formulation of the scattered filed using GBS method 

((7) and (10)), we will analyze the influence of the main parameters 

of the Gaussian beam on the variation on the field amplitude. Then, 

we will compare the solution based on Gaussian beam with the 

analytical solution given by (9).  

2.2. Analysis of GBS method 

Figure 2 compares the amplitude of field calculated by GBS 

method and ray asymptotic solution of the Helmholtz equation. 

This simulation (Figure 2) has been realized as a function of the 

distance (r in km) from the source to the receiver. The frequency 

equal to 10GHz, the beam width (ω0) equal to 18λ (where λ is the 

wavelength) and the values of beams number (N) are : {133, 200, 

400 and 600}. Magenta, red, green, blue and lines correspond to 

the GBS solution for different beams number, respectively 133, 

200, 400 and 600 over which the summation is down. The black 

line represents the ray asymptotic solution. We can observe, that 

the beam density in the vicinity of the central ray offers satisfactory 

accuracy. In fact, when the number of the beams is more than 200, 

the GBS and the ray asymptotic are in good agreement. So, as with 

the usual techniques of ray tracing, a high beam density (200 for 

this case) is necessary for high accuracy.  

 
Figure 2: Comparison between the ray asymptotic solution and GBS method 

for beam number N={133, 200, 400, 600}  and beam width is 18λ. 

In Figure 3, we compare the percentage error between the ray 

asymptotic solution and the GBS method. We can see even at a 

distance of 15 km the percentage error between the ray asymptotic 

solution and the GBS technique is lower than 10% for a beam 

density N = 200 and remains below 4% fo N = 400. In addition, 

one should note that the computations by GBS method exhibit no 

singularities when passing by the source point (r=0), unlike the ray 

asymptotic solution. This result confirms that by using the GBS 

method we can overcome some limitation of the ray asymptotic 

models. The proof of this result relies on the theory of systems of 

linear first order differential equations [14-16]. 

 
Figure 3: Percentage error between the ray asymptotic solution and the GBS 

approximation of the Helmholtz’s wave equation for different beam number 

values. 

Figure 4 illustrates the field amplitude calculated by GBS 

method (where N = 600 beams) and ray asymptotic solution. The 

different color lines correspond to the GBS solution for different 

beam width, {5λ, 8λ, 12λ, 15λ and 18λ}. This comparison shows 

that the GBS is ω0 dependent. This beam initial parameter must be 

chosen optimally to guarantee sufficient accuracy.   

 

Figure 4: Comparison between the ray asymptotic solution and GBS method 

for different beam width values: ω0={5, 8, 12, 15, 18} and beam number equal to 

600. 

 

Figure 5: Percentage error between the ray asymptotic solution and the GBS 

approximation of the Helmholtz’s wave equation for different beam width 

values. 

To study in greater details the effect of the ω0 parameters on 

the scattered field variation, we have simulated in Figure 5 the 

relative error between GBS solution and ray asymptotic solution. 

The relative error is normalized by ray asymptotic solution. The 

numerical analysis in Figure 5 indicates that for ω0 = 18λ the 
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relative error remains below 3% even at a distance 15 km  (and less 

than 2% at 5 km) from the source and the GBS solution match the 

ray asymptotic solution.  

In the present paper, the GBS method was compared with 

another Gaussian approach called Gaussian Beam Launching 

(GBL). The formulations of GBL method are presented in the 

following part.  

2.3. Formulation of GBL method 

The Gaussian Beam Launching (GBL) technique has been 

introduced and applied in the research published by H. T. Chou et 

al [17]. Consider a target (plate, disc, cylinder,…) illuminated by 

a Gaussian beam, the GBL method is applied to calculate the 

radiation integral of the target scattered fields. For the considered 

Gaussian beam, the incident magnetic field is given by the 

following form [4], [17]: 
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In (11), the distance between a point on the illuminated surface 

and the waist the incident Gaussian beam is denoted by i, the 

position vector in the Gaussian beam is defined by and bi =k.0
2/2, 

where k, 0 are the wave number and the half beam-width 

respectively. 

The electric fields scattered from the target surface (Σ) 

illuminated by the incident field is given by the integration of the 

incident Gaussian beam on the reflector surface (PO integral). This 

integral is written by (11): 
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Finally, by using (11) in (12) and solving the integral, we can 

compute the scattered field applying GBL formulation as in [4], 

[17].  

 

Figure 6: Target size as a function of distance for far-field approximation:   The 

Fraunhofer criterion of far-field. 

In both GBS and GBL methods, it’s required to take into 

account the far-field approximation parameters (distance r, target 

size D, and wavelength ). In order that the phases and amplitudes 

of the waves arriving from different regions of the target do not 

vary considerably with the distance (r), the far-field region must be 

far enough away from the source. This region of the far field starts 

at a distance "r" given by the following equation (Fraunhofer 

criterion) [19]: r ≥ ((2.D2)/). 

Figure 6 shows the minimum far-field range as a function of 

the target dimensions D, and for different frequencies values. In 

this work, the simulations and measurements are realized for two 

frequency bands (5GHz and 10GHz). 

3. Numerical and Experimental Results 

3.1. Experimental setup  

The experimental measurements of RCS have been carried out 

on an anechoic chamber (8m x 5m x 5m) at Lab-STICC ENSTA 

Bretagne (see Figure 7).  The characteristics of various 

components of measurements system are: 

• All walls are covered with absorbent material; 

• The transmitter and receiver antennas are identical and there 

polarization is horizontal or vertical. They are placed on an 

angular rail that allows changing their position; 

• A computer controls the Vectorial Network Analyzer 

(Anritsu 37347D) which operates in the frequency range 

from 40MHz to 20GHz and the positioning system; 

• The NEWPORT positioning system with an angular 

resolution equal to 0.01° and an angle vary between -90° and 

90°. An elevation motor for adjusting the height of the 

target; 

 
(a) 

 
(b) 

 
(c) 

 
 

(d) 

Figure 7:  (a) General description of the experimental setup, (b) Target plate, 

(c) Radar sphere calibration, (d) Transmitter and receiver antennas.  

3.2. Numerical simulation and experimental measurement of 

RCS  

In the simulations illustrated in Figure 8, we set the azimuth 

angles φi to zero; the incident angle θi varies from −10˚ to 10˚ and 

the other acquisition parameters are: f = 10GHz, the beam width 

ω0 = 2λ, beams number N = 200. The GBS is compared with the 

Gaussian GBL method, the asymptotic PO model, and the rigorous 

MoM method (in FEKO). Comparing the curve of RCS using GBS 

is in the blue line, GBL technique in red line with the other models; 

we observe that they match rigorously the PO solution and MoM 

for the main beam. In fact, GBS and GBL accurately model the 

main beam, without mitigation, the diagrams are also consistent, 
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G. Helmi et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 01-06 (2018) 

www.astesj.com     5 

and the modeled peak width and location match the PO and MoM 

solutions.  

 

Figure 8:  Monostatic RCS of a PEC flat plate computed using GBS, GBL 

techniques, for beam width ω0 = 2λ and compared with PO and MoM methods: f 

=10GHz, vv polarization. 

From Figure 8 we can conclude that the GBS method models 

very well the variation of the scattered field in the specular 

direction. However, we observe that the GBL method simulates 

the secondary lobes better than the GBS method. The deviation 

between the curves in outside specular direction can be considered 

through broadening the range of validity of the GBS by taking into 

account the edge diffraction. To consider the edge diffraction 

contribution, we need to use the method of the Geometric Theory 

of Diffraction (GTD) [18]. In fact, the diffracted field when 

incident field strikes the edges is calculated from the GTD and is 

accounted in the complex weight function in the integral (7).  

 

Figure 9: Geometry of a flat plate (30 cm ×30 cm) meshed with triangular 

patches. 

Figure 9 represents the geometry of a flat plate meshed with a 

triangular patch (using CATIA software). In this geometric 

configuration, each facet is represented by a triangle node (in blue) 

with a central point in red color (bright points) and black cross in 

the middle of the external edge. This geometric configuration and 

this mesh will be used in the calculation of RCS by the two 

techniques GBL and GBS + GTD. 

The simulated (using GBS, GBL, PO, and MoM) and 

measured RCS results of PEC plate are shown in Figure 10 and 

Figure 11. The acquisition parameters are: frequency of 10GHz, 

the incident angle θi varies from −60˚ to 60˚, the azimuthal 

scattering angle equal to 0°, the size of a flat plate as function of 

the wavelength is (10λ x10λ), the beam width of  = beam 

number density equal to 200 and the polarizations are hh and vv in 

Figure 10 and Figure 11 respectively. 

The comparison between GBS, with accounting and without 

accounting the edge diffraction contribution, is illustrated in Figure 

10. The evaluation GBS technique is also performed with GBL, 

PO, and MoM methods. From this comparison results, we can see 

that when the diffraction is accounted we obtain values of the RCS 

which get closer to those given by the experimental measurements 

and the rigorous MoM method. In addition, where the polarization 

state is hh and vv respectively, we remark that the PO model is 

insufficient in computing of edge plate diffraction contributions, 

although the agreement of GBS+GTD and GBL with the rigorous 

MoM solution and measured data are good in the most of scattering 

angles (particularly in vv polarization). 

 

Figure 10: Comparison between GBS, GBS+GTD, GBL, the numerical models 

and the experimental measurements in hh polarization: (30cm × 30cm). 

 

Figure 11: Comparison between GBS+GTD, GBL, the numerical models and the 

experimental measurements in vv polarization: (30cm ×30cm). 

The experimental validation results show that GBS method 

gives a higher accurate representation of the scattered field and 

offer very interesting perspectives for complex targets such as 

cavity and corner for example. Figure 12 shows the evolution of 

the RCS of a metallic dihedral corner reflector realized using Ray 

Launching-Geometrical Optics (RL-GO) and MoM methods and 

also experimental measurement at a frequency of 5GHz.  

In Figure 12, we can see that the curve of measured RCS is 

near to that simulated by MoM method. These results will serve as 

a basis for evaluating the development of the GBS method in our 

future work. 
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Figure 12: RCS of rectangular dihedral corner reflector (f = 5GHz): 

Experimental and numerical models.  

4. Conclusion and future work  

In this study, the RCS of radar targets has been investigated by 

using a new technique called Gaussian Beam Summation (GBS). 

In the GBS technique, the total field at the receiver is represented 

by the integral over all Gaussian beams propagating in the vicinity 

of the receiver. To study the performance of the chosen GBS 

method, we have carried out it theoretical formulation and we have 

study the influence main Gaussian parameters (beams width, the 

density of beams number) on the field amplitude. Then, we have 

introduced a numerical simulation of the RCS of a PEC plate using 

GBS method. The results obtained using GBS were compared with 

those simulated trough GBL, PO and MoM methods. In addition, 

we have presented the experimental measurements of RCS of 

canonical and complex targets. The results of RCS using GBS 

method were compared and validated by the experimental 

measurements.  

The study of the RCS of different complex objects (including 

dihedral and trihedral corner reflector) using GBS method is one 

of the perspectives of the work presented in this paper. 
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