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Abstract: This keynote paper intends to clearly define the possibilities and limitations 
offered by a simple diffusion approach of drying. Actually, many works use a simple 
diffusion equation to model mass transfer during drying, probably because a simple 
analytical solution of this equation does exist in the case of simple boundary conditions. 
However, one has to be aware of the limitations of this approach. Using a comprehensive 
formulation and a relevant computational solution, the most frequent assumptions of the 
diffusion approach were rigorously tested. It is concluded that analytical solutions must be 
discarded for several reasons: 
- Dirichlet boundary conditions are not realistic, 
- In the drying process, the coupling between heat and mass transfer is mandatory, 
- Non-linearity (variation of diffusivity with moisture content) cannot be avoided for 

mass transfer. 
 
The second part of the paper is devoted to the solution of configurations that exhibit a 
non-Fickian behavior. The first case study concerns the long-term behavior of wood 
during transient diffusion. Explained by the mobility of macromolecules, this behavior 
can be formulated through relevant boundary conditions. The second example shows how 
a diffusion equation solved in a dual-scale porous medium is able to produce a non-
Fickian behavior at the macroscopic scale. 
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INTRODUCTION 
 
A historical perspective on the formulation of 
coupled heat and mass transfer in porous media is a 
good introduction to the topic of this paper. 
It is worthwhile to remember that the widespread 
formulation of transfers in the form of differential 
equations was launched about 200 years ago. This 
approach started with the heat transfer by conduction, 
formulated and solved by Fourier in 1822[1]. Mass 
transfer, in continuum media and in porous media, 
was formulated with similar expressions at the end of 
the 19th century (Fick, 1855, Darcy 1856)[2,3]. 
Following these outstanding advances in the 
formulation of continuous media, a scientific 
approach of drying was initiated at the beginning of 
the 20th century. Lewis(1921)[4] describes drying as 
the combination of two mechanisms: humidity 
evaporation at the exchange surface and moisture 
diffusion within the solid. In 1929, in a paper entitled 
"The drying of solids"[5] Sherwood describes the 

drying as a combination of internal and external 
resistance to transfer. At this time, the nature of 
migration within the porous medium was the object 
of active discussion. A diffusion equation gave nice 
results for some materials (clay and wood in the 
hygroscopic range for example), but failed in other 
cases. The importance of capillary forces was 
definitely proved in the case of sand by Ceaglske and 
Hougen (1937)[6]. In this work, the moisture content 
profiles during drying were analyzed as quasi-
equilibrated moisture content profiles due to gravity. 
Nevertheless, none of these expressions, diffusion or 
capillary action, could be applied to all 
configurations. The need for a more comprehensive 
formulation became obvious. 

In the fifties, comprehensive sets of equations were 
proposed from the analysis of careful experiments by 
Krischer's school in Germany[7]. Some years later, 
from their works on transfer in soils, Philips and de 
Vries[8] proposed a comprehensive set of coupled 
transfer in porous media. In USSR, Luikov[9] 



 

produced an important work, especially in the 
mathematical formulation of coupled heat and mass 
transfer(1). In the sets of equations resulting from 
these three schools, most coupled phenomena 
involved in heat and mass transfer were considered: 
moisture migration due to a gradient of moisture 
content, thermo-migration, capillary forces, latent 
heat of vaporization in the energy balance… 

Finally, the "modern" way to formulate heat and 
mass transfer in porous media was open in 1977 by 
Whitaker[10], who derived a justification of the 
macroscopic formulation from the microscopic level 
using the volume averaging technique published by 
Slattery some years earlier[11]. 

COMPREHENSIVE FORMULATION OF HEAT 
AND MASS TRANSFER IN POROUS MEDIA 

 
Coupled and simultaneous heat, mass and momentum 
transfer in porous media is a complex problem, 
which requires the development of transport 
equations derived from the standard conservation 
laws inside each phase and fluxes at the phase 
interfaces. The challenge, however, is to overcome 
the problems associated with structural dependencies 
and the complex geometries evident in the internal 
pore network within the medium. Typically, transport 
phenomena are represented according to macroscopic 
equations valid at the relevant level of description.  
 

 
 

Fig. 1. Concept of Representative Elementary 
Volume (REV) [17]. 

 
This assumes the variables to be defined at the level 
of many pores and the porous material to be 
represented as a fictitious continuum[12]. In this 
framework, it is possible to rigorously derive the 
macroscopic equations from microscopic balance 
equations by means of volume averaging[10,11,13-15]. 

                                                             
1Unfortunately, Luikov's formulation involves the so-
called phase conversion factor of liquid into vapour, which 
is not an intrinsic parameter and drove several scientists on 
a misleading track. 

 

 
Fig. 2. The averaging method assumes the existence 
of a representative elementary volume, large enough 
for the pore effect to be smoothed and small enough 

for macroscopic variations and non-equilibrium 
effects to be avoided. The examples here are for 

density (point 1 is in the solid phase and point 2 in a 
pore) [17]. 

 
The underlying idea of volume averaging[11,16] is to 
average the dependent variable (for example liquid  
or the gas phase water vapor density) over some 
representative localized volume, as depicted in 
figure 1. The averaging volume V  (REV) comprises 
the individual phase volumes each of which can vary 
with space, as well as time for the liquid and gas 
phases. Averages are then defined in terms of these 
volumes and are said to be associated with the 
centroid of the averaging volume V, which assumes 
the existence of a representative volume that is large 
enough for the averaged quantities to be defined and 
small enough to avoid variations due to macroscopic 
gradients and non-equilibrium configurations at the 
microscopic level (Fig. 2). 
 
The development of the volume averaged transport 
equations requires the introduction of what are called 
superficial and intrinsic averages. For example, the 
superficial average of the density of the liquid phase 
is given by 

 ρw = 1
V

ρwVw
∫ dV  (1) 

and its intrinsic average by 

 ρw
w = 1
Vw

ρwVw
∫ dV  (2) 

Where wV  is the volume of the liquid phase 
contained inV . One also notes the relationship 
ρw = εwρw

w
 in which εw =Vw /V  is the volume 

fraction of the liquid phase. The latter average is 
claimed to be the best representation in the sense that 
if ρw  were a constant given by ρw

0 , then the intrinsic 



 

average gives ρw
w = ρw

0 , whereas the superficial 

average gives ρw = εwρw
0 . 

 
The derivation of macroscopic equations starts with 
classical laws of conservation (mass, energy, 
momentum) for each phase. The average of these 
equations over the REV needs rules to obtain spatial 
and temporal derivatives. This gives rise to equations 
with fluctuations terms that requires closure 
equations to be solved[10,14]. The whole procedure 
assumes the separation of scales (Fig. 2). 
 
The comprehensive set of macroscopic equations 
resulting from this volume averaging procedure and 
adapted to the case of hygroscopic products reads as 
follows[14,17,18].  

Moisture conservation 

 

∂ εwρw + εgρv
g + ρb( )

∂t
+∇· ρwvw + ρv

gvg + ρbvb( )
= ∇· ρgDeff ·∇ωv( )

 (3) 

Energy conservation 

 

∂
∂t

εwρwhw + εg (ρv
ghv + ρa

gha )

+ρbhb + εsρshs − εg pg

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+∇· ρwhwvw + (ρv
ghv + ρa

gha )vg + hbρbvb( )
+ vw·∇pw + vg·∇pg

= ∇· ρgDeff (hv∇ωv + ha∇ωa ) + λeff∇T( )

(4) 

Air conservation 

 

∂ εgρa
g( )

∂t
+∇· ρa

gvg( ) = ∇· ρgDeff∇ωa( )  (5) 

In the following equation, the barycentric mass 
velocities comes from the generalized Darcy's law 

 

vg = −
Kkg
µg

(∇pg − ρg∇ψ g )

vw = −
Kkw
µw

(∇pw − ρw∇ψ g )

with pw = pg − pc (X ,T )

 (6) 

In equation (6), ψ g stands for the potential energy 

associated to gravity. 
In the case of almost isothermal media, such as in 
convective drying, all possible driving forces for the 

bound water migration are equivalent. This is why 
the simplest one, i.e. the gradient of bound water 
density (first expression in equation 7), has been 
widely used by the author. However, in the presence 
of a thermal gradient, the choice of the relevant 
driving force is a serious concern, still open in spite 
of numerous works devoted to this question. Recent 
experimental results[19, 20] tends to prove that the 
gradient of water vapor density in the gaseous phase 
(second expression in the following equation) is a 
relevant choice 

 
ρbvb = −Db,X∇ρb = −Db,ρv∇ρv

g  (7) 

Boundary conditions 
For the external drying surfaces of the sample, the 
boundary conditions are assumed to be of the 
following form: 

 

Jv x=0+·n = hm cMv ln
1− xv,∞
1− xv x=0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Jq x=0+·n = h (T x=0
−T∞ )

Pg x=0+
= Patm

 (8) 

where Jv and Jq  represent the fluxes of water vapor 
and heat at the boundary respectively, x denotes the 
position from the boundary along the external unit 
normal.  
 
Remark: The previous set of equations assumes that 
the porous medium is locally at equilibrium. This 
implies that: 
- the temperature is the same for all phases 
Ts
s = Tw

w = Tg
g  

- the partial pressure of water vapor inside the 
gaseous phase is related to the moisture content X
via the sorption isotherm pv = pvs(T )×a(T ,X ) , 
where the function a  is the sorption isotherm of the 
product, also called water activity, namely in food 
science. 
 
Further simplifications or assumptions allow this set 
of equations to take a more convenient form: 
- the variations of partial densities inside the REV are 
negligible, so the intrinsic average is equal to the 
local value ρv

g = ρv  and ρa
g = ρa , 

- the solid density is assumed to be constant
ρs = constant , 
- the moisture content X  is used to consider the total 
amount of water present in the porous medium
ρsX = εwρw + εgρv

g + ρb , 



 

- the effective diffusivity is expressed as a function of 

the binary diffusivity of vapor in air: Deff = f Dv
where f is a dimensionless diffusivity tensor, 
- the pressure changes are supposed to be much 
smaller than its absolute value. This means that the 
variation of pressure can be omitted in the enthalpy 
balance, while keeping the effect of its gradient in 
Darcy's law. 
 
With these new assumptions, the 3-variable model 
reads: 

Water conservation 

 
ρs

∂X
∂t

+∇· ρwvw + ρvvg( )
= ∇· ρg f Dv·∇ωv + Db,ρv∇ρv( )

 (9) 

Energy conservation 

 

∂
∂t

εwρwhw + εg (ρvhv + ρaha )

+ρbhb + εsρshs

⎛

⎝
⎜

⎞

⎠
⎟

+∇· ρwhwvw + (ρvhv + ρaha )vg( )
= ∇·

λeff∇T + ρg f Dv (hv∇ωv + ha∇ωa )

+hbDb,ρv∇ρv

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (10) 

Air conservation 

 

∂ εgρa( )
∂t

+∇· ρavg( ) = ∇· ρg f Dv∇ωa( )  (11) 

These equations are able to compute the coupling 
between heat and mass transfer occurring in a porous 
medium. It allows three independent variables to be 
computed (for example, temperature or enthalpy, 
moisture content, air density or gaseous pressure). 
This is required, for example, if an important part of 
mass transfer occurs as convective flow (Darcy's 
regime). This comprehensive set of equations will be 
named the 3-variable model in this paper. Because 
this formulation accounts for the internal pressure 
through the air balance (equation 11), this 
formulation has proven its ability to tackle numerous 
configurations involving intense transfers: high 
temperature convective drying, vacuum drying, 
micro-wave drying[17, 21-23]. 

SIMPLIFICATIONS OF THE COMPREHENSIVE 
FORMULATION 

 
If the total gaseous pressure is assumed to be equal to 
the external pressure, the mass balance of the air part 
of the gaseous phase (11) can be discarded to obtain 
a set of two independent equations able to compute 
two independent variables (typically temperature and 

moisture content). In this case, the effect of gravity 
on the gas flow is often neglected in equation (6) and 
the gaseous velocity is set to zero. Consistently, the 
enthalpy of the air phase may also be neglected, as it 
is negligible with respect to the sensible heat of the 
solid phase (this assumption is not valid when the air 
velocity may be large).This simplified set defines the 
2-variable model: 

Water conservation 

 
ρs

∂X
∂t

+∇· ρwvw( )
= ∇· ρg f Dv·∇ωv + Db,ρv∇ρv( )

 (12) 

Energy conservation 

 

∂
∂t

εwρwhw + εgρvhv + ρbhb + εsρshs( )
+∇· ρwhwvw( )

= ∇· λeff∇T + hvρg f Dv∇ωv + hbDb,ρv∇ρv( )
 (13) 

Consistently, two boundary conditions are needed: 

 Jv x=0+·n = hm cMv ln
1− xv,∞
1− xv x=0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (14) 

 Jq x=0+·n = h (T x=0
−T∞ )  (15) 

Using the 2-variable model, the porous medium is 
described with only two independent variables 
(temperature or equivalent and moisture content or 
equivalent). This model can be analyzed as a 
simplification of the comprehensive model. This set 
is obviously not suitable to drying configurations 
with internal vaporization. However, through the 
difference of enthalpy between vapor and liquid, it 
accounts for the latent heat of vaporization. By this 
way, it is able to deal with the most important 
feature of drying: the coupling between heat and 
mass transfer (this two-way coupling is due to the 
latent heat of vaporization and the relation between 
temperature and saturated vapor pressure). 
 
From this 2-variable model, it is still possible to 
imagine something simpler: just forget about 
temperature, and equation (13) is not longer 
necessary. By doing so, you assume in fact that the 
product temperature immediately follows the airflow 
temperature, in spite of the energy required to 
evaporate liquid water. Therefore, it is not longer 
necessary to differentiate liquid and vapor flows just 
because they have a different enthalpy. A very simple 
1-variable model is then obtained: 



 

Water Conservation 

 ∂X
∂ t

= ∇⋅ Dp(X )∇X( )  (16) 

Equation (16) is often known as “second Fick’s law”, 
which combines the Fick’s law of mass transfer due 
to a concentration gradient with the mass 
conservation equation. In this equation, as no 
temperature gradient now exists inside the product, 
one single driving force subsists: the gradient of 
moisture content. The pseudo-diffusivity tensor Dp  
can be expressed using equations (6), (7) and (9) 
provided it is assumed that the gravity field has 
negligible effect on moisture migration: 

Dp (X ) = −ρw
Kkw
µw

∂pc (X ,T )
∂X

+ f Dv (T ) + Db,ρv (X ,T )( ) pvs(T )Mv
RT

∂a(X ,T )
∂X

 
(17) 

In equation (17), the temperature remains involved as 
a parameter able to account for thermo-activation of  
- liquid flow : effect of temperature on the surface 

tension of water,  
- vapor and bound water diffusion : effect of 

temperature on the binary diffusivity, bound 
water diffusion and sorption isotherm, and, above 
all, the dependence of saturated water vapor with 
temperature. 

In addition, it becomes obvious from this expression 
that equation (16) is a non-linear equation: the 
pseudo-diffusivity coefficient depends on moisture 
content. In most products, this dependence is known 
to be strong: the overall moisture diffusivity 
increases dramatically with moisture content. 

Boundary conditions 
 
Equation (14) is the proper physical formulation for 
vapor flow in the convective boundary layer. 
However, when the simple 1-variable model is used, 
the following boundary conditions is often used 

 Jv x=0+ ⋅ n̂ = hX (Xsurf − Xeq )  (18) 

where Xh is a pseudo mass transfer coefficient, that 
may be calculated from equation (8), surfX is the 

moisture content at the exchange surface and eqX the 
equilibrium moisture content as obtained from 
temperature and relative humidity of the surrounding 
air. Note that equation (18) is not strictly equivalent 
to equation (14). Indeed, while the surface of the 
porous medium remains in the domain of free liquid 
(first drying period), the vapor pressure at surface is 
constant, equal to the saturated vapor pressure. The 
driving force for the external vapor flux in equation 

(14) is therefore constant during the first drying 
period whereas it decreases in equation (18) as 
drying progresses. 
 
Equations (16-18) - or (14, 16, 17) - define the drying 
of a product with one variable, the moisture content 
field. This simple set summarizes what is called the 
diffusion approach of drying. If we remember that 
the objective of drying is to remove the moisture 
from the product, the concept of a 1-variable model 
sounds relevant: it accounts for the moisture 
migration within the medium and the moisture flux at 
the boundary. In addition, a simple analytical 
solution exists for this equation in 1-D. Both 
arguments probably explain why many scientists in 
the field of drying use this diffusion approach of 
drying.  
The following paragraphs intend to expose the 
possibilities and limitations of this approach and to 
draw some clear conclusions regarding the state-of-
the-art. 

ANALYTICAL SOLUTIONS OF THE DIFFUSION 
EQUATION 

 
Classical analytical solutions of the 1-variable model 
(equations 16 and 18) exist, namely for a slab of 
thickness 2ℓ . However, further assumptions are 
needed for the simplest solution to be used: 
- The pseudo-diffusivity is assumed to be constant 

throughout the drying process, 
- Dirichlet boundary conditions are adopted, which 

is the limit of equation (18) as the mass transfer 
coefficient tends towards infinity, 

- The configuration is reduced to one space 
dimension (1-D solution), 

- The boundary conditions (value of Xeq ) is 

applied at t = 0 and remains constant thereafter, 
- No deformation of the solid occurs during the 

process. 
 
With such simplifications, the problem reads as: 

 

∂X
∂ t

= Dp
∂X
∂x2

, t ∈ 0,tend⎡⎣ ⎤⎦ , x ∈ −ℓ,+ℓ⎡⎣ ⎤⎦

X (x,0) = Xini
X (−ℓ,t) = X (+ℓ,t) = Xeq

 (19) 

The solution of problem (19) is obtained as an 
infinite series of orthogonal functions[24]: 

X (x,t) − Xini
Xeq − Xini

=1− 4
π
×

(−1)n

2n +1
exp − (2n +1)

2π 2

4ℓ2
Dpt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥n=0

∞

∑ cos
2n +1
2ℓ

π x
⎛
⎝⎜

⎞
⎠⎟

 (20) 

Crank proposes also a solution able to account for a 
mass transfer coefficient at the exchange surface, 



 

provided that equation (18) is used instead of (14). In 
this case, the series of orthogonal functions is slightly 
different: 

 

X (x,t) − Xini
Xeq − Xini

=

1−
2Lcos(βnx / ℓ)exp(−Dpt / ℓ

2)

(βn
2 + L2 + L)cosβnn=1

∞

∑
 (21) 

where the nβ are the positive roots of β tanβ = L
and L = ℓhX / Dp . 
 
The solution (20) is often preferred to solution (21), 
which requires a transcendent equation to be solved 
to get the values of nβ .  

IMPORTANCE OF COUPLED HEAT AND MASS 
TRANSFER 

 
In order to quantify the effect of these assumptions, 
the computational code TransPore has been used to 
simulate different simplifications in the physical 
formulation, from those needed in the analytical 
solution to a quite comprehensive formulation. Note 
that this analysis is focused on a low temperature 
configuration (1-D convective drying with dry bulb = 
50°C, dew point = 30°C, slab thickness = 20 mm, h = 
14 W.m-2.°C -1 and hm = 0.014 m.s-1).  
 
Table 1. Summary of the six configurations. 
 

N° Model Diffusivity Boundary 
conditions 

1 1-variable  8 2 110 .− −m s  Dirichlet 
2 1-variable 8 2 110 .− −m s  Xh  
3 1-variable 8 2 110 .− −m s  9Xh  
4 1-variable 8 2 110 .− −m s  9mh  
5 2-variable 8 2 110 .− −m s  mh  
6 2-variable 910 exp(3 )− X  mh  

 
These drying conditions set the equilibrium moisture 
content at 7% when using the sorption isotherms of 
wood. We made this choice of low temperature 
configuration to intentionally exclude from the 
discussion the 3-variable model, because this full 
version is too far from the limited possibilities 
offered by analytical solutions. The interested reader 
is invited to refer to published works regarding the 
potential of this comprehensive formulation[17,21,25-27] 
In addition, we just consider a global mass transfer 
diffusivity, which includes liquid, vapor and bound 
water (17). In the case of the 2-variable model, the 
moisture is supposed to migrate with the enthalpy of 
liquid water. Table 1 summarizes the respective 
assumptions of the 6 simulation tests selected here. 

 
Tests 1 to 4 are different ways to solve the 1-variable 
model: no coupling between heat and mass transfer 
and constant pseudo mass diffusivity (equation 16 
with Dp = cte ). Test 1 is the solution (20) which 

assumes Dirichlet conditions at the exchange surface. 
As a consequence of this boundary condition, the 
surface moisture content drops to the equilibrium 
moisture content immediately after drying starts (Fig. 
3, graph 1). Indeed, it is well-known that this solution 
leads to an infinite, hence unrealistic, drying rate at t 
= 0. This is why the drying curve is so fast in this 
case (curve 1 of Fig. 4). Therefore, this simple 
analytical solution should be strictly limited to 
configurations for which the resistance to internal 
mass transfer governs the process (falling drying 
rate period or sorption/desorption of thick products 
with low mass diffusivity). The next three tests use 
the same model for the internal transfer, but different 
versions of a mass transfer coefficient at the 
exchange surface. In this case, it is interesting to 
compare equation (14), the rigorous physical 
expression and equation (18) the expression suitable 
for the analytical solution (21). However, the 
equivalence of these expressions requires some 
arrangements. Assuming x∞ <<1  and xv x=0 <<1 , 

equation (14) reads 

Jv x=0+·n = hm cMv xv x=0 − xv,∞( )
= hmMv ( pv,surf − pv,∞ )

= hmMv pvs(T ) a(T ,Xsurf ) − a(T ,Xeq )( )
! hmMv pvs(T )

Δa
ΔX
(Xsurf − Xeq )

 (22) 

A comparison of equations (18) and (22) allows a 
relationship between the two mass transfer 
coefficients to be obtained: 

 hX ! hmMv pvs(T )
Δa
ΔX

 (23) 

An order of magnitude of the average slope of the 
water activity curve (sorption isotherm) is simply 
obtained by: 

 Δa
ΔX

= 1
Xb,max

 (24) 

Where Xb,max is the maximum value of bound water 
content, also known as fiber saturation point (fsp) in 
lignocellulosic materials. Note that the equivalence 
of these formulations is valid only within the 
hygroscopic domain, because the driving force in 
(18) is the difference of moisture content (a strict 
equivalence would need the difference of bound 
water content as driving force in equation (18)).  



 

  

  

  
Fig. 3. Convective drying at low temperature (Dry bulb = 50°C, dew point = 30°C, board thickness = 20 mm, h 
= 14 W.m-2.°C -1; hm = 0.014 m.s-1). Moisture content profiles obtained at different times (1h, 2h, 5h, 10h, 15h, 

20h, 30h, 40h and 50h) with different physical assumptions (same test numbers as in table 1). 
 
However, we have no choice if we want to use the 
analytical solution (21). 
Test n°2 represents this analytical solution with a 
value of hX  deduced from equation (23) with mh = 
0.014 m.s-1. It is obvious from these profiles that the 
external resistance to mass transfer seems to be 

negligible: the profiles of test 2 are not so different 
from those of test 1.  
Indeed, this 1-variable model is not capable of 
capturing the reduction of vapor pressure at the 
surface resulting from the surface cooling due to 
evaporation. Consequently, the drying process is 
much faster than it should be when using the mass 
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transfer coefficient obtained by the analogy between 
heat and mass transfer. In order to obtain a similar 
drying curve as for the 2-variable model (run 5), the 
mass transfer coefficient has to be significantly 
reduced, by a factor 9 in this example. However, the 
correct factor depends on the drying conditions, 
namely on the difference between the dry bulb and 
wet bulb temperatures. Keeping this fact in mind, 
solution (21) keeps some advantages: for example, 
fitting experimental kinetics with this solution would 
give a better agreement and would allow an accurate 
value of the mass diffusivity to be identified (which 
is not possible when assuming Dirichlet conditions as 
in solution 20). However, the identified mass 
transfer coefficient losses its physical meaning and 
must not be used at all. Indeed, with this 1-variable 
model, the mass transfer coefficient is reduced to a 
degree of freedom allowing the model to slow down 
the external mass flux in spite of the absence of 
explicit coupling between heat and mass transfer. 
 

 
Fig. 4. Convective drying at low temperature: drying 
curves obtained for the 4 versions of the 1-variable 

model (tests 1 to 4). 
 
Using the correction factor, the 1-variable model is 
able to reproduce nicely the correct drying curve 
(Fig. 4, run 4) to be compared to Fig. 5 and the 
correct MC profiles (Fig. 3, graph 4 to be compared 
to graph 5), provided the correct driving force is used 
as boundary conditions (equation 14). In particular, 
this expression allows the constant drying rate period 
to be perfectly reproduced. The analytical solution 
(21) imposes the boundary condition (18), which 
leads to a decreasing drying rate from the beginning 
of drying. In spite of the reduced mass transfer 
coefficient, the 1-variable model is in this case not 
able to reproduce the right drying curves (Fig. 4, run 
3) and moisture content profiles (Fig. 3, graph 3). 
As already stated, test 5 is a simple case of the 2-
variable model: coupling between heat and mass 
transfer, constant diffusivity and evaporation at the 

surface of the product. Although simple, most 
features of convective drying are depicted (Fig. 5):  
- A short transient period during which the product 
temperature increases up to the wet bulb temperature. 
The initial drying rate may be negative (when the 
initial temperature is lower than the dew point) and 
gradually increases during this period, 
- A constant drying rate period, during which the 
product temperature is equal to the wet bulb 
temperature and the drying curve is a straight line 
(constant drying rate), 
- A decreasing drying rate period, which starts when 
the surface of the product enters the hygroscopic 
domain (activity a < 1). The product temperature 
increases to compensate for the decrease in water 
activity by increasing the saturated vapor pressure 
and keep a positive vapor flux at surface, 
- A final phase, when the product tends everywhere 
towards the equilibrium MC and the dry bulb 
temperature, two values imposed by the drying 
conditions. 

 
Fig. 5. Convective drying at low temperature: drying 
curves and product temperature obtained with the 2-

variable model and constant diffusivity (test 5). 

 
Fig. 6. Convective drying at low temperature: drying 
curves and product temperature obtained with the 2-

variable model and variable diffusivity (test 6). 
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Finally, test 6 proposes a simulation using the 2-
variable model and a variable diffusivity, an 
important feature of all products that must be 
considered as soon as the moisture content varies 
significantly. The exponential expression chosen here 
increases the pseudo-diffusivity by a factor 3 when 
the MC increases from 0% to 100%, while keeping 
its averaged value over the same interval [0%; 100%] 
to the constant value selected in the previous tests 

8 2 1(10 . )− −m s . This factor is quite small compared to 
real products. Yet, this test points out the importance 
of the non-linearity of equation (16). It affects 
significantly the duration of the constant drying rate 
period and the product behavior at the end of drying: 
the time to attain the equilibrium is much longer (Fig. 
6), due to MC profiles with a steep slope near the 
exchange surface as the moisture content decreases 
(graph 6 of Fig. 3). This behavior is of utmost 
importance when using simulation for process 
optimization or process control. 

NON-FICKIAN BEHAVIOUR 
 
As an extension of the previous part devoted to the 
possibilities and limitations of a diffusive approach 
of drying, it is important to emphasize on some non-
Fickian behaviors encountered in porous media. In 
all cases, a modified or a dual-scale formulation of 
diffusion was always able to capture the observed 
facts. 
 
a) Unsteady-diffusion in lignocellulosic materials  
 
When performed unsteady sorption or desorption 
tests with materials made of bio-macromolecules, 
two times constant are generally observed. The first 
one is due to the diffusion phenomenon itself, while 
the second characteristic time, revealed over long 
durations, depicts a slow change of the equilibrium 
moisture content. This effect is due to the mobility of 
macromolecules. Indeed, changes in the moisture 
content result in reorganization of the 
macromolecules ultrastructure[28], which allows for 
changes in sorption sites. This effect is sometimes 
named non-Fickian behavior[29]. In this case, a simple 
diffusion model is not able to fit the experimental 
data (Fig. 7, case (i)). To overcome the failure of the 
diffusive approach, the equilibrium bound water 
content (Xeq) used in the convective boundary 
condition was modified in order to account for the 
exponential approach of the wood surface moisture 
content to the equilibrium with moist air[30]. The 
modification was proposed in the following form: 

 Xeq = c + d ⋅ 1− exp −t / τ( )⎡⎣ ⎤⎦  (25) 

In equation (25), coefficient c represents the 
equilibrium moisture content before macromolecule 
relaxation, coefficient d is the additional amount of 

bound water molecules allowed by relaxation and 
reorganization of already sorbed water[29,31], τ is the 
relaxation time resulting from macromolecules and 
water mobility. Thanks to this additional term, the 
model perfectly fits the experimental data (Fig. 7). 
 

 
Fig. 7. Comparison of estimated and measured 
bound water contents, longitudinal direction, 

desorption, air relative humidity change 90-72%, (i) 
Constant diffusivity and (iii) Constant diffusivity and 

modified boundary conditions[30]. 
 
b) Dual-scale diffusion mechanisms:  
 
Non-Fickian behavior is observed at the macroscopic 
level in porous media composed of a convective and 
highly diffusive phase containing inclusions with low 
diffusivity[32,33]. 
 

 
Fig. 8. Experimental data: dimensionless mass 

increase versus the square root of time for 3 different 
thicknesses (2, 10 and 24 mm) [34]. 

 
Fig. 8 exhibits a selection of experimental results 
obtained for sample low density fiberboard of 
different thicknesses (2, 10 and 24 mm)[34]. As 
expected, the duration of the experiment increases 
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with sample thickness. However, the mass diffusivity 
determined from these experiments depends on 
thickness (Fig. 9), which is not consistent with the 
concept of intrinsic parameter. 
 

 
Fig. 9. Dimensionless mass diffusivity determined for 

different thicknesses[34]. 
 
This failure of Fick’s law is simply due to the fact 
that, because of the contrast of diffusivity in air and 
in fibers, the porous medium is not at equilibrium at 
the microscopic scale (Fig. 10). This is a typical 
configuration of non locality in multiscale media. 
One possibility to deal with this non locality is to 
compute the macro and the micro scale 
simultaneously. This can be done with distributed 
micro-models[32,33].  
 

 
Fig. 10. The dual-scale mechanisms combine a fast 
diffusion in the conductive and connected phase (C) 

and a slow diffusion in the storage phase (S). 
 
In order to account for the heat and mass transfer 
coupling at both scale, we used a comprehensive 
formulation proposed recently by the author[35,36]. 
The corresponding model was used to simulate the 
behavior of a 1-D fiberboard slab with different 
thicknesses subjected to a sudden change of relative 
humidity (Fig. 11). In order to be close to the 
experimental conditions, the dry bulb temperature is 
equal to 33°C. The initial condition of the slab 
corresponds to an equilibrium state at 40% of RH and 
the RH value is set at 75% at the time origin. 

For the thinner sample (2 mm), all unit cells have 
almost the same behavior. In this case, the resistance 
to water vapor diffusion in the macroscopic gaseous 
phase is negligible compared to the diffusion 
resistance inside the fiber. In this case, the 
macroscopic behavior is directly governed by the 
behavior of one fiber. With the 24-mm thick sample, 
the behavior of the fiber situated at surface and in the 
core of the slab is contrasted. The stagnation of the 
center unit cell close to zero at short times is typical 
of a diffusion resistance at the macroscopic level. 
Both scales are now involved to build up the 
macroscopic behavior. 
 

 

 
Fig. 11. Simulations obtained with the dual-scale 
model for a microscopic mass diffusivity equal to 

2.10-13 m2.s-1[34]. 
 
c) Fractional diffusion 
 
Even more surprising that the previous examples is 
the concept of fractional diffusion. Recent studies of 
diffusion processes in highly heterogeneous, fractal-
like media, highlight that the traditional diffusion 
equation may not adequately describe the movement 
of water in the pore network because of the evidently 
anomalous transport phenomena[37,38].  
 
As such anomalous diffusion behaviour was 
observed for small samples of wood, this concept 
was proposed to model the diffusion of moisture in 

0

0.1

0.2

0.3

0 5 10 15 20 25

Thickness (mm)

D
im

en
si

on
le

ss
 d

iff
us

iv
ity

0

0.2

0.4

0.6

0.8

1.0

0 100 200 300

Average MC
Surface
Center

2 mm

√Time (√s)

D
im

en
si

on
le

ss
 m

as
s 

in
cr

ea
se

0

0.2

0.4

0.6

0.8

1.0

0 100 200 300

Average MC
Surface
Center

24 mm

√Time (√s)

D
im

en
si

on
le

ss
 m

as
s 

in
cr

ea
se



 

the cell walls of wood[39]. The approach consists in 
using a moisture potential defined in terms of a 
fractional-in-space operator involving the Laplacian 
raised to a fractional index. When modelling media 
undergoing anomalous diffusion, the second-order 
derivative is replaced with a fractional-order 
derivative (with order α ): 

 

∂X
∂t

= −DbΔ y X

where : X = (−Δ y )
α
2
−1
X

 (26) 

In equation (26), Δ y denotes the Laplacian operator. 
 
A coupled anomalous transport model for 
temperature and moisture content was then derived to 
simulate the absorption of water in the cell walls of 
wood. This model was discretised in space using the 
finite volume method to produce a large system of 
ordinary differential equations, which is advanced in 
time using a second order exponential Euler method. 
The model was validated against experimental data 
available for beech, where good agreement is 
observed[39]. 

CONCLUSIONS 
 
This paper proposes a complete review of the 
formulation of coupled transfer in porous media. It is 
explained how the volume averaging strategy allows 
a comprehensive set of macroscopic equations to be 
obtained. The full set comprises three independent 
equations with three corresponding variables (i.e. 
temperature, moisture content and internal pressure). 
From this full set, successive assumptions are 
presented in detail to obtain a 2-variable and then a 
1-variable model. Further simplifications are required 
to use the classical analytical solutions of the 
diffusion equations. Using the computational code 
TransPore, several tests are proposed to assess the 
possibilities and limitations of the diffusive approach 
of drying. As a summary of this part, one has to keep 
in mind some important features: 
- the use of analytical solutions imposes drastic 

simplifications (no heat and mass coupling, 
constant diffusivity, unrealistic boundary 
conditions), 

- the diffusive approach of drying is not able to 
account for the effect of gravity on moisture 
migration. In particular, the MC field is always 
uniform at equilibrium; 

- the 1-variable model with the physical expression 
of the boundary conditions (14) allows the 
moisture field and history to be correctly 
simulated provided the mass transfer coefficient 
is corrected by a huge factor, 

- accounting for the coupling between heat and 
mass transfer is mandatory to correctly describe 
the drying process, 

- the variation of diffusivity with moisture content 
has not to be seen as a refinement of the model, 
but as an mandatory geature to represent correctly 
the drying kinetics and the moisture content 
profiles. 

 
At the end of the paper, several examples of non-
Fickian behaviors are presented. In all cases, 
solutions are proposed to account for these deviations 
of Fick’s law, by modification of the diffusion 
formulation. 
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