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1 Outline and statement of the main result Many applications ranging from the worlds of engineering and …nance to the natural sciences call for a mathematical modelling in terms of stochastic differential equations. In particular, there have been many works devoted to the analysis of the ultimate behavior of solutions to stochastic partial di¤erential equations of parabolic type which speci…cally occur in population dynamics, population genetics, nerve pulse propagation and related topics, to name only a few (see, e.g., [START_REF] Vuillermot | On the time evolution of Bernstein processes associated with a class of parabolic equations[END_REF] for a brief account of some of those works and the references therein). Moreover, there have also been several more recent articles dealing with the analysis of solutions to various types of semilinear parabolic stochastic partial di¤erential equations driven either by a Brownian noise, or by a fractional noise with Hurst parameter H 2 1 2 ; 1 (see, e.g., [START_REF] Alvarez | Blowup estimates for a family of semilinear SPDE's with time-dependent coe¢ cients[END_REF], [START_REF] Balan | Stochastic heat equation with multiplicative fractional-colored noise[END_REF], [START_REF] Dozzi | Exponential functionals of Brownian motion and explosion times of a system of semilinear SPDEs[END_REF]- [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF], and the plethora of references therein, particularly [START_REF] Lv | Impacts of noise on a class of partial di¤ erential equations[END_REF]). While these works have been primarily centered around questions of global existence, uniqueness and blowup in …nite time, there have also been investigations essentially motivated by issues in …nancial mathematics devoted to the analysis of problems that involve a mixture of a Brownian noise with a fractional noise, within the realm of both ordinary and partial stochastic di¤erential equations (see, e.g., [START_REF] Guerra | Stochastic di¤ erential equations driven by fractional Brownian motion and standard Brownian motion[END_REF], [START_REF] Mishura | Existence and uniqueness of the solution of stochastic di¤ erential equation involving Wiener process and fractional Brownian motion with Hurst index H > 1 2[END_REF]- [START_REF] Mishura | Existence and uniqueness of mild solution to stochastic heat equation with white and fractional noises[END_REF] and the references therein).

It is our purpose here to contribute further to the analysis of some of the above questions by proving the existence, and in some cases the uniqueness, of global variational solutions to Neumann initial-boundary value problems associated with a class of non-autonomous stochastic parabolic partial di¤erential equations de…ned on certain regions of Euclidean space. In what follows we assume that all the functional spaces are real, use the standard notations for the usual spaces of Lebesgue integrable functions and their norms, and begin by de…ning the Wiener process that will generate the fractional noise we need. Let D R d be an unbounded open domain where d 2 N + , and let us consider a linear, self-adjoint, positive, non-degenerate trace-class operator C in L 2 (D) whose eigenfunctions and eigenvalues we write (e i ) i2N + and ( i ) i2N + , respectively. Let H = (H i ) i2N + be a sequence of Hurst parameters satisfying H i 2 1 2 ; 1 for every i, and for t 2 R + 0 let B Hi (t) i2N + be a sequence of onedimensional, independent fractional Brownian motions de…ned on the complete probability space ( ; F; P) and starting at the origin. Assuming that (e i ) i2N + constitutes an orthonormal basis of L 2 (D), we then de…ne the L 2 (D)-valued fractional Wiener process W H (:; t) by 

This series converges strongly in L 2 (D) P-a.s. by virtue of the basic properties of B Hi (t), the boundedness of the sequence H and the fact that C is traceclass. From this we conclude that (1) de…nes a centered Gaussian process whose covariance is entirely determined by C, that is,

E W H (:; s) ; v 2 W H (:; t) ; v 2 = 1 2 +1 X i=1 s 2Hi + t 2Hi js tj 2Hi (Cv; e i ) 2 (v; e i ) 2
for all s; t 2 R + 0 and all v; v 2 L 2 (D), where (:; :) 2 denotes the standard inner product in this space and E the expectation functional on ( ; F; P) (see, e.g., [START_REF] Nualart | Di¤ erential equations driven by fractional Brownian motion[END_REF] for a discussion of various basic properties of fractional Brownian motion). For T 2 R + arbitrary, we then consider the class of stochastic initial-boundary value problems formally given by

du(x; t) = (div (k(x; t)r x u(x; t)) + g(u(x; t)))dt + h(u(x; t))W H (x; dt); (x; t) 2 D (0; T ] ; u(x; 0) = '(x); x 2 D;
(2) @u(x; t) @n(k) = 0; (x; t) 2 @D (0; T ]

where @D = D n D stands for the boundary of D and the last line for the conormal derivative of u relative to the matrix-valued function k. Moreover, g and h are real-valued while ' is a random initial condition. Regarding these functions we will need the following hypotheses:

(K) The function k : D (0; T ] 7 ! R d 2 is Lebesgue-mesurable and we have k i;j (:) = k j;i (:) for all i; j 2 f1; :::; dg. Moreover, there exist constants k; k 2 R + such that the inequalities

k jyj 2 (k(x; t)y; y) k jyj 2 (3)
hold uniformly in (x; t) 2 D (0; T ] for all y 2 R d , where (:; :) and j:j denote the standard Euclidean inner product and the related norm in R d , respectively.

(L) The functions g; h : R 7 ! R are Lipschitz continuous. Moreover, the derivative h 0 exists, is Hölder continuous with exponent 2 (0; 1] and bounded. In addition we impose that

H 2 1 + 1 ; 1 (4) 
where H := inf i2N + H i .

(I) The initial condition ' is an L 2 (D)-valued random variable.

Finally, whereas the above properties of the operator C are su¢ cient to de-…ne W H , they are not quite strong enough to allow us to prove the result we are looking for. Recalling that C is necessarily an integral transform whose generating kernel we denote by , we still impose the following spectral condition:

(C) We have

x 7 ! Z D dy j (x; y)j 2 2 L 1 (D) (5) 
and

+1 X i=1 p i ke i k 1 < +1: (6) 
As to the consistency of this hypothesis, we simply remark that we have indeed e i 2 L 1 (D) as a consequence of (5), which follows easily from the eigenvalue equation Ce i = i e i , Schwarz inequality and the fact that ke i k 2 = 1.

We will also need some functional spaces in order to de…ne the notion of variational solution we are interested in. To this end we …x once and for all an 2 1 H; +1 where H satis…es (4), and introduce the Banach space

B ;2 [0; T ] ; L 2 (D) of all Lebesgue measurable mappings u : [0; T ] 7 ! L 2 (D)
endowed with the norm kuk 2 ;2;T := sup

t2[0;T ] ku(t)k 2 ! 2 + Z T 0 dt Z t 0 d ku(t) u( )k 2 (t ) +1 ! 2 < +1. (7) 
Furthermore, let H 1 (D (0; T )) be the isotropic Sobolev space consisting of all real-valued functions v 2 L 2 (D (0; T )) that possess distributional derivatives v xi ; v 2 L 2 (D (0; T )), endowed with the inner product

(v 1 ; v 2 ) 1;2;T : = Z D (0;T ) dxd v 1 (x; )v 2 (x; ) + d X i=1 Z D (0;T ) dxd v 1;xi (x; )v 2;xi (x; ) + Z D (0;T ) dxd v 1; (x; )v 2; (x; ) (8) 
and the corresponding norm

kvk 1;2;T = (v; v) 1 2 
1;2;T .

We note that for any function v 2 H 1 (D (0; T )) which does not depend on time we have v 2 H 1 (D), the usual Sobolev space on D whose norm we denote by k:k 1;2 . Moreover, let H 1 ((0; T )) be the Sobolev space of functions de…ned on the time interval (0; T ). From these de…nitions it follows immediately that if v 2 H 1 (D) and 2 H 1 ((0; T )) then v 2 H 1 (D (0; T )). This allows us to consider the vector space of all …nite linear combinations of such tensor products as an inner product space with respect to (8), and we write H (D (0; T )) for its completion in H 1 (D (0; T )) with respect to [START_REF] Guerra | Stochastic di¤ erential equations driven by fractional Brownian motion and standard Brownian motion[END_REF]. About this Hilbert space we shall prove in Section 2 the existence of the trace embedding

H (D (0; T )) ! L 2 (D f = tg) (10) 
valid for each t 2 [0; T ] and every d 2 N + , which is important to formulate the following notion of variational solution:

De…nition 1. We say the H 1 (D)-valued random …eld (u V;' (:; t)) t2[0;T ] de…ned on ( ; F; P) is a global variational solution to (2) if the following two conditions hold:

(1) We have u V;' 2 L 2 0; T ; H 1 (D) \ B ;2 [0; T ] ; L 2 (D) P-a.s., which means that the relations

Z T 0 d ku V;' (:; )k 2 1;2 = Z T 0 d ku V;' (:; )k 2 2 + kru V;' (:; )k 2 2 < +1 (11) 
and ku V;' k ;2;T < +1 hold P-a.s. In the sequel we shall sometimes write ku V;' k L 2 (0;T ;H 1 (D)) for norm [START_REF] Lv | Impacts of noise on a class of partial di¤ erential equations[END_REF].

( 

+ Z t 0 Z D dxv(x; )h(u V;' (x; ))W H (x; d ) (12) 
holds P-a.s. for each v 2 H (D (0; T )) and every t 2 [0; T ], where x 7 ! v(x; t) 2 L 2 (D) stands for the trace of v in the sense of [START_REF] Hu | A multiparameter Garsia-Rodemich-Rumsey inequality and some applications[END_REF], and where the stochastic integral with respect to (1) is de…ned as

Z t 0 Z D dxv(x; )h(u V;' (x; ))W H (x; d ) : = +1 X i=1 p i Z t 0 (v(:; ); h(u V;' (:; ))e i ) 2 B Hi (d ): (13) 
In order to make sense out of each term in [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF] and prove the existence of such a solution we will still need the following geometric hypothesis on the domain D:

(D) There exists a sequence (D N ) N 2N + of open sets such that for every N we have D N D N +1 D and the compactness of the embedding

H 1 (D N ) ,! L 2 (D N ) : (14) 
Moreover, let B H 1 (D) be any bounded set. Then for each > 0 there exists

N 2 N + such that Z DnD N dx ju(x)j 2 < ( 15 
)
for every u 2 B.

Remark. It is essential to observe here that any domain satisfying (D) is necessarily of …nite Lebesgue measure as a consequence of the theory of tesselations developed in Chapter 6 of [START_REF] Adams | Sobolev Spaces[END_REF], and more importantly that (D) implies the compactness of the embedding H 1 (D) ,! L 2 (D) as it amounts to a geometric condition implying that D becomes rapidly narrow at in…nity, as the two examples discussed at the end of this section will show. It is also easily veri…ed that each term in ( 12) is well de…ned and …nite P-a.s. as a consequence of all of the above hypotheses. In particular, we may conclude that ( 13) is an in…nite sum of one-dimensional, pathwise, generalized Stieltjes integrals which de…nes a real-valued random variable as a consequence of Hypothesis (C) and of the fact that h is Lipschitz continuous. We shall dwell a bit more on this and on related properties of the stochastic integral in the Appendix. We note that Problem (2) was thoroughly analyzed in [START_REF] Nualart | Variational solutions for partial di¤ erential equations driven by a fractional noise[END_REF] in case D is a bounded domain satisfying the cone condition and with a single Hurst parameter in [START_REF] Adams | Sobolev Spaces[END_REF].

Under these conditions our main result is the following:

Theorem. Assume that Hypotheses (K), (L), (I), (C) and (D) hold. Then Problem (2) possesses a global variational solution u V;' . Moreover, if h is an a¢ ne function then u V;' is the unique solution to [START_REF] Adams | Some imbedding theorems for Sobolev spaces[END_REF].

In order to prove this result we shall organize the remaining part of this article in the following way: in Section 2 we …rst state the existence of u V;' when the test functions in ( 12) are independent of time, that is, with v 2 H 1 (D).

We then extend the statement to the case of an approximating family of test functions in R d+1 consisting of …nite linear combinations of the tensor products we alluded to above, and eventually to all test functions v 2 H (D (0; T )) by a suitable density argument and by invoking the trace embedding of the form [START_REF] Hu | A multiparameter Garsia-Rodemich-Rumsey inequality and some applications[END_REF] which we prove by elementary means. In Section 2 we also illustrate our results with two examples, while we prove some crucial estimates for the stochastic integral in the Appendix by means of a necessary modi…cation of the theory set forth in [START_REF] Nualart | Di¤ erential equations driven by fractional Brownian motion[END_REF] due to the fact that we are dealing there with an in…nite sequence of Hurst parameters satisfying (4). The method rests in an essential way on a particular case of an inequality proved by Garsia, Rodemich and Rumsey in [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF], and on Minkowski's integral inequality (see, e.g., Appendix A in [START_REF] Stein | Singular Integrals and Di¤ erentiability Properties of Functions[END_REF]).

Proof of the main result and two examples

We begin with the following result: Proposition 1. Assume that Hypotheses (K), (L), (I), (C) and (D) hold. Then there exists u

V;' 2 L 2 0; T ; H 1 (D) \ B ;2 [0; T ] ; L 2 (D) such that the integral relation (12) holds for every v 2 H 1 (D), that is, (v; u V;' (:; t)) 2 = (v; ') 2 d X i;j=1 Z t 0 d v xi ; k i;j (:; )u V;';xj (:; ) 2 + Z t 0 d (v; g(u V;' (:; ))) 2 + Z t 0 Z D dxv(x)h(u V;' (x; ))W H (x; d ) (16) 
P-a.s. for every t 2 [0; T ].

Proof. Since the theory developed in Chapter 6 of [START_REF] Adams | Sobolev Spaces[END_REF] implies the compactness of the embedding H 1 (D) ,! L 2 (D), the result follows from a direct adaptation of all the arguments put forward in the …rst part of [START_REF] Nualart | Variational solutions for partial di¤ erential equations driven by a fractional noise[END_REF].

The next intermediary result is: Lemma 1. Assume that Hypotheses (K), (L), (I), (C) and (D) hold and let u V;' be the random …eld of Proposition 

+ Z t 0 Z D dxv(x; )h(u V;' (x; ))W H (x; d ) (17) 
P-a.s. for every t 2 [0; T ].

Proof. By linearity it is su¢ cient to prove that (17) holds for v = v . The easiest way out is to start with the …rst integral on the right-hand side. Using [START_REF] Nualart | Di¤ erential equations driven by fractional Brownian motion[END_REF] we obtain

Z t 0 d (v (:; ); u V;' (:; )) 2 = Z t 0 d 0 ( ) (v; u V;' (:; )) 2 = (v(:; t); ') 2 (v(:; 0); ') 2 d X i;j=1 Z t 0 d 0 ( ) Z 0 d v xi ; k i;j (:; )u V;';xj (:; ) 2 + Z t 0 d 0 ( ) Z 0 d (v; g(u V;' (:; ))) 2 + Z t 0 d 0 ( ) Z 0 Z D dxv(x)h(u V;' (x; ))W H (x; d ): (18) 
We then integrate by parts the last three terms with respect to and reintroduce v whenever possible to obtain respectively 

d X i;j=1 Z t 0 d 0 ( ) Z 0 d v xi ; k i;
and

Z t 0 d 0 ( ) Z 0 d (v; g(u V;' (:; ))) 2 = (t) Z t 0 d (v; g(u V;' (:; ))) 2 Z t 0 d (v(:; ); g(u V;' (:; ))) 2 (20)
for the deterministic integrals, while we get

Z t 0 d 0 ( ) Z 0 Z D dxv(x)h(u V;' (x; ))W H (x; d ) = (t) Z t 0 Z D dxv(x)h(u V;' (x; ))W H (x; d ) Z t 0 Z D dxv(x; )h(u V;' (x; ))W H (x; d ) (21) 
for the stochastic integral. The substitution of ( 19)-( 21) into (18) then leads to the desired result, after having lumped together the three terms containing the factor (t) and used there (16) once again.

We infer from the preceding considerations that for any v 2 H (D (0; T )) there exist functions vn satisfying [START_REF] Nualart | Variational solutions for partial di¤ erential equations driven by a fractional noise[END_REF] for every n 2 N + such that kv vn k 1;2;T ! 0

as n ! +1, where k:k 1;2;T is given by [START_REF] Guerra | Stochastic di¤ erential equations driven by fractional Brownian motion and standard Brownian motion[END_REF]. The …rst consequence of this is that we can already approximate the three deterministic integrals in [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF], deferring to separate propositions the analysis of the remaining terms: 

ku V;' k L 2 (0;T ;H 1 (D)) Z D (0;T ) dxd jv (x; ) vn; (x; )j 2 ! 1 2 ku V;' k L 2 (0;T ;H 1 (D)) kv vn k 1;2;T ! 0
as n ! +1 P-a.s., by using successively Schwarz inequalities in L 2 (D) and on the time interval (0; T ) along with [START_REF] Lv | Impacts of noise on a class of partial di¤ erential equations[END_REF] and ( 22). The proof of (24) follows from similar arguments. Thus, noting that the matrix elements k i;j are uniformly bounded for all i; j 2 f1; :::; dg as a consequence of (3), we eventually get 

c 1 + c 2 ku V;' k L 2 (0;T ;H 1 (D)) lim n!+1
kv vn k 1;2;T = 0 P.-a.s. with c 1;2 > 0, which follows from the fact that g is Lipschitz continuous and jDj < +1 where jDj stands for the Lebesgue measure of D.

In the sequel we will also need approximation properties for the remaining terms in [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF] that are similar to those of the above proposition. However, the proof of those properties and eventually of the main theorem will require two more preparatory results. The …rst one is: Lemma 2. Let H (D (0; T )) be the Hilbert space de…ned in Section 1. Then there exists the continuous trace embedding

H (D (0; T )) ! L 2 (D f = tg) (26)
valid for each t 2 [0; T ] and every d 2 N + . Moreover, there also exists the continuous embedding

H (D (0; T )) ! B ;2 [0; T ] ; L 2 (D) (27) 
where B ;2 [0; T ] ; L 2 (D) is endowed with norm [START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF].

Proof. It is su¢ cient to prove the result for H 1 (D (0; T )). Let v 2 H 1 (D (0; T )) and let us write momentarily k:k 1;2;H 1 ((0;T )) for the norm in H 1 ((0; T )). From ( 9) and Fubini's theorem we infer that x 7 ! v(x; t) 2 L 2 (D) for almost every t, and more importantly that t 7 ! v(x; t) 2 H 1 ((0; T )) for almost every x 2 D. Therefore, writing C ([0; T ]) for the space of all continuous functions de…ned on [0; T ] endowed with the uniform norm k:k 1;T we have t 7 ! v(x; t) 2 C ([0; T ]) by virtue of the embedding H 1 ((0; T )) ,! C ([0; T ]). Consequently we obtain jv(x; t)j kv(x; :)k 1;T c kv(x; :)k 1;2;H 1 ((0;T )) for each t 2 [0; T ] and almost every x 2 D for some c > 0, and thereby the desired result

Z D dx jv(x; t)j 2 c 2 Z D dx kv(x; :)k 2 1;2;H 1 ((0;T ))
c 2 kvk 2 1;2;T according to [START_REF] Guerra | Stochastic di¤ erential equations driven by fractional Brownian motion and standard Brownian motion[END_REF]. As for the proof of the second embedding, we note that for every v 2 H 1 (D (0; T )) and t we have

kv(:; t) v(:; )k 2 (t ) 1 2 Z D (0;T ) dxd jv (x; )j 2 ! 1 2 (t ) 1 
2 kvk 1;2;T by ( 9), and therefore kvk 2 ;2;T = sup

t2[0;T ] kv(:; t)k 2 ! 2 + Z T 0 dt Z t 0 d kv(:; t) v(:; )k 2 (t ) +1 ! 2 c kvk 2 1;2;T + Z T 0 dt Z t 0 d (t ) 1 2 2 kvk 2 1;2;T c kvk 2 
1;2;T by virtue of (26) and the fact that < 1 2 , changing the value of c whenever necessary.

The desired approximation property for the stochastic integral in [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF] will now rest on (27) and on the following estimate, which also shows that ( 13) is Hölder continuous with respect to the time variable: Lemma 3. Let us consider the stochastic integral as de…ned in [START_REF] Mishura | Existence and uniqueness of the solution of stochastic di¤ erential equation involving Wiener process and fractional Brownian motion with Hurst index H > 1 2[END_REF]. Then there exists a P-a.s. …nite, positive random variable r H such that the estimate

Z t t Z D dxv(x; )h(u V;' (x; ))W H (x; d )
r H 1 + ku V;' k ;2;T kvk ;2;T jt tj 1 2

(28)

holds P-a.s. for every v 2 B ;2 [0; T ] ; L 2 (D) and all t; t 2 [0; T ].

We defer the proof of this lemma to the Appendix, as it requires technical tools regarding generalized Stieltjes integrals that do not directly pertain to the main core of this article.

The expected approximation property of the stochastic integral is then the following: Proposition 3. Let v 2 H (D (0; T )) and (v n ) n2N + be as in Proposition 2. Then we have 

lim n!+1 Z t 0 Z D dxv n (x; )h(u V;' (x; ))W H (x; d ) = Z t 0 Z D dxv(x; )h(u V;' (x; ))W H (x;
+ Z t 0 d (v n (:; ); g(u V;' (:; ))) 2 + Z t 0 Z D dxv n (x; )h(u V;' (x; ))W H (x; d ) (29)
P-a.s. for each t 2 [0; T ] and every n, and we already know that each integral on the right-hand side of this expression converges to the desired integral in [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF] according to Propositions 2 and 3. Let us now investigate the term on the left-hand side. From Schwarz inequality in L 2 (D) and ( 7) we have (v(:; t) vn (:; t); u V;' (:; t)) 2 ku V;' k ;2;T sup t2[0;T ] kv(:; t) vn (:; t)k 2 ku V;' k ;2;T kv vn k ;2;T c ku V;' k ;2;T kv vn k 1;2;T ! 0 P-a.s. as n ! +1 for some c > 0 by virtue of ( 22) and ( 27). Therefore we get lim n!+1 (v n (:; t); u V;' (:; t)) 2 = (v(:; t); u V;' (:; t)) 2 P-a.s. uniformly in t 2 [0; T ], where v(:; t) stands for the trace of v in the sense of (26). Passing to the limit in (29) we then obtain for the remaining term

lim n!+1 (v n (:; 0); ') 2 = (v(:; t); u V;' (:; t)) 2 Z t 0 d (v (:; ); u V;' (:; )) 2 + d X i;j=1 Z t 0 d v xi (:; ); k i;j (:; )u V;';xj (:; ) 2 Z t 0 d (v(:; ); g(u V;' (:; ))) 2 Z t 0 Z D dxv(x; )h(u V;' (x; ))W H (x; d ) (30) 
P-a.s. for every t 2 [0; T ], hence

lim n!+1
(v n (:; 0); ') 2 = (v(:; 0); u V;' (:; 0)) 2 by choosing t = 0. But from ( 16) at t = 0 we have (v; u V;' (:; 0) ') 2 = 0 for every v 2 H 1 (D) and thereby for every smooth and compactly supported v 2 C 1 c (D), the latter space being dense in L 2 (D). Therefore u V;' (:; 0) ' is orthogonal to L 2 (D), hence u V;' (:; 0) = ' so that lim n!+1 (v n (:; 0); ') 2 = (v(:; 0); ') 2 :

The substitution of the preceding expression into (30) then proves [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF] for every v 2 H (D (0; T )). Finally, the proof that u V;' is the unique variational solution to (2) satisfying ( 16) when h is an a¢ ne function is identical to that carried out in [START_REF] Nualart | Variational solutions for partial di¤ erential equations driven by a fractional noise[END_REF]. Therefore, let ũV;' be another variational solution to (2) satisfying [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF]. We then have ũV;' = u V;' P-a.s. as a solution to [START_REF] Nualart | Di¤ erential equations driven by fractional Brownian motion[END_REF], hence also as a solution to [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF].

Remarks. (1) The preceding considerations show that there are actually two distinct types of equivalent variational solutions to [START_REF] Adams | Some imbedding theorems for Sobolev spaces[END_REF], to wit, one that sat-is…es ( 16) which involves test functions independent of time, and one satisfying [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF]. As was done in [START_REF] Nualart | Variational solutions for partial di¤ erential equations driven by a fractional noise[END_REF] where the class of problems given by ( 2) was de…ned and analysed on a bounded domain D satisfying the cone condition, we may refer to them as variational solutions of type I and II, respectively. Moreover, for the kind of equations considered in this article and to the best of our knowledge, the problem of uniqueness of the solution in case of a general nonlinearity h in the noise term remains open.

(2) If D is a bounded domain that satis…es the cone condition, the natural space of test functions for variational solutions of type II is H 1 (D (0; T )), as was shown in [START_REF] Nualart | Variational solutions for partial di¤ erential equations driven by a fractional noise[END_REF] by …rst using [START_REF] Nualart | Di¤ erential equations driven by fractional Brownian motion[END_REF] to prove [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF] for polynomial test functions, then for smooth test functions by invoking the C 1 -version of Weierstrass'approximation theorem, and eventually for functions in H 1 (D (0; T )) by a density argument. It is not possible to argue in that way when D is unbounded and merely satis…es Hypothesis (D). Thus, it is still true that the space C 1 D [0; T ] of all uniformly continuous and uniformly bounded functions on D (0; T ) is dense in H 1 (D (0; T )) if we assume in addition that D and therefore D (0; T ) satisfy the so-called segment condition (see, e.g. [START_REF] Adams | Sobolev Spaces[END_REF]). However, we can no longer approximate functions in C 1 D [0; T ] by polynomials in a suitable topology to make such approximations worthwile in the context of this article (an approximation of the functions in C 1 D [0; T ] by polynomials is still possible if one endows C 1 (D (0; T )) with the structure of a Fréchet space, see, e.g., Section 3 of Chapter 3 in [START_REF] Kirillov | Theorems and Problems in Functional Analysis[END_REF], but this did not turn out to be strong enough in our case). We therefore bypassed the di¢ culty by constructing the space H (D (0; T )) in Section 1, but the determination of the relative size of this space within H 1 (D (0; T )) remains an open problem at the present time.

We complete this section by illustrating the above results by means of two examples. We begin with: Proposition 4. Let us consider the two-dimensional domain

D = (x 1 ; x 2 ) 2 R 2 : x 1 > 0; 0 < x 2 < b(x 1 ) (31) 
where the positive boundary curve b 2 C 1 R + 0 is decreasing, has a bounded derivative and satis…es

lim s!+1 b (s + ) b (s) = 0 (32) 
for every > 0. Then the conditions of Hypothesis (D) in Section 1 hold.

Proof. For every N 2 N + let us de…ne the bounded open set

D N := (x 1 ; x 2 ) 2 R 2 : 0 < x 1 < N \ D.
Then we have D N D N +1 D and D N satis…es the cone condition, so that compact embedding [START_REF] Mishura | Mixed stochastic di¤ erential equations with long-range dependence: existence, uniqueness and convergence of solutions[END_REF] holds by the Rellich-Kondrachov theorem. Furthermore, the properties of the ‡ow associated with D in the sense of Example 6.46 and Theorem 6.47 in [START_REF] Adams | Sobolev Spaces[END_REF] by means of the function b satisfying (32) imply that for every u 2 H 1 (D), the inequality Z

DnD N dx ju(x)j 2 c N kuk 2 1;2
is valid with lim N !+1 c N = 0. Consequently, for each > 0 there exists N 2 N + such that (15) holds for each u belonging to a bounded set of H 1 (D).

We conclude that for a domain of the form (31) the embedding H 1 (D) ,! L 2 (D) is compact, so that our main theorem holds true in this case. Typical examples of boundary functions satisfying the above conditions include b(x) = exp x 1+ where > 0, whereas the mere exponential b(x) = exp [ x] does not belong to that class of curves. In fact, since b is decreasing it follows easily from (32) that

lim s!+1 exp [s] b(s) = 0:
Generally speaking, it is in fact the …niteness of the Lebesgue measure of D, along with the rapid decrease of the measure of the part of D situated outside the disk of radius R centered at the origin as R ! +1, which makes all this possible.

Our second example refers to the horn-shaped region discussed in [START_REF] Adams | Some imbedding theorems for Sobolev spaces[END_REF], for which our main theorem is also valid: Proposition 5. Let us consider the three-dimensional domain

D = (x 1 ; x 2 ; x 3 ) 2 R 3 : x 3 > 0; 0 < x 2 1 + x 2 2 < b 2 (x 3 )
where the boundary curve b satis…es the same hypotheses as in Proposition 4 .

Then the conditions of Hypothesis (D) in Section 1 hold.

Proof. The argument is similar to that given in the proof of Proposition 4 if we de…ne D N := (x 1 ; x 2 ; x 3 ) 2 R 3 : 0 < x 3 < N \ D for every N 2 N + . Thus the compactness of embedding [START_REF] Mishura | Mixed stochastic di¤ erential equations with long-range dependence: existence, uniqueness and convergence of solutions[END_REF] along with [START_REF] Mishura | Existence and uniqueness of mild solution to stochastic heat equation with white and fractional noises[END_REF] hold.

Appendix: some remarks on generalized Stieltjes integrals and proof of Lemma 3

The following considerations constitute a necessary modi…cation of the theory developed in [START_REF] Nualart | Di¤ erential equations driven by fractional Brownian motion[END_REF], needed to take into account the fact that we are dealing here with an in…nite sequence of Hurst parameters. For every i 2 N + let us introduce the random variable Hi = sin ( ) sup

0 t<t T B Hi (t) B Hi (t ) (t t) 1 + (1 ) 
Z t t d B Hi (t) B Hi ( ) ( t) 2 
(33) where is the …xed parameter chosen in Section 1, for which we have the inequality

Hi sup 0 t<t T B Hi (t ) B Hi (t) (t t) 1 + (1 ) 
Z t t d B Hi ( ) B Hi (t) ( t) 2 ! : 
(34) For reasons that will soon be apparent, we …rst need to get appropriate estimates for the moments of (33) that are uniform in i 2 N + , and to achieve this suitable upper bounds for the increments of B Hi (t). Indeed the main result that will lead to the proof of Lemma 3 is: Proposition A. 1. Let B Hi (t) i2N + be the one-dimensional, independent fractional Brownian motions introduced in Section 1, where the sequence H = (H i ) i2N + satis…es (4). Then for each i 2 N + we have

sup i2N + E Hi p < +1 (35) 
for every p 2 [1; +1).

The proof of this proposition rests on the following particular case of the Garsia-Rodemich-Rumsey inequality, obtained by rescaling the basic estimate stated in Lemma 1.1 of [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF] to establish its validity on [0; T ] rather than just on [0; 1], and by applying the particular choice of the functions involved made at the very beginning of [START_REF] Hu | A multiparameter Garsia-Rodemich-Rumsey inequality and some applications[END_REF]:

Lemma A. 1. Let f : [0; T ] 7 ! R be continuous, let q 2 [1; +1) and 2 1 q ; +1 . If the integral between parentheses in (36) is …nite, then the inequality

jf (t ) f (t)j c ;q;T Z T 0 Z T 0 d d jf ( ) f ( )j q j j q+1 ! 1 q jt tj 1 q (36)
holds for all t; t 2 [0; T ], where c ;q;T = c T + 1 q

1 q 1 ( 37 
)
and where c T > 0 depends only on T .

The upper bounds for the increments of B Hi (t) we need turn out to be provided by (36) for particular values of the parameters. In all that follows we write for a …xed auxiliary quantity which we can eventually express in terms of the constants , and H ¯:

Lemma A. 

for every p 2 [1; +1).

Proof. Let us …rst de…ne the random variable

~ i; ;T := Z T 0 Z T 0 d d B Hi ( ) B Hi ( ) 2 j j 2H i
and prove that sup

i2N + E ~ i; ;T p < +1 (40) 
for every p 2 [1; +1). For any r 2 2 ; +1 we have p := r 2 2 [1; +1) so that on the one hand we obtain

E ~ i; ;T p = E 0 @ Z T 0 Z T 0 d d B Hi ( ) B Hi ( ) 2 j j 2H i 1 A r 2 0 @ Z T 0 Z T 0 d d E B Hi ( ) B Hi ( ) r j j rHi ! 2 r 1 A r 2 (41) 
from Minkowski's integral inequality. On the other hand, from the basic properties of the one-dimensional fractional Brownian motion we have

E B Hi ( ) B Hi ( ) r c r j j rHi
for some constant c r depending only on r, so that the substitution of this expression into (41) annihilates the dependence in H i , thus leading to

E ~ i; ;T p c r T 2p < +1
uniformly in i, which is (40). Let us now choose q = 2 and i = H i 2 for every i 2 N + in Lemma A. 1. Then clearly q 2 [1; +1) and i 2 2 ; +1 by virtue of (4), and since (40) implies in particular that ~ i; ;T < +1 P-a.s. we may thus apply (36) to obtain B Hi (t ) B Hi (t)

c i ;q;T 0 @ Z T 0 Z T 0 d d B Hi ( ) B Hi ( ) 2 j j 2H i 1 A 2 jt tj Hi c i ;q;T 0 @ Z T 0 Z T 0 d d B Hi ( ) B Hi ( ) 2 j j 2H i 1 A 2 jt tj H = c i ;q;T ~ 2 i; ;T jt tj H P-a.
s. for all t; t 2 [0; T ], where c i ;q;T di¤ers from c i ;q;T by a trivial factor depending only on T and H. In order to get (38) it is thus su¢ cient to take 

and prove that sup

i2N + c i ;q;T < +1 (43) 
along with (39). Ignoring the trivial dependence in T and H in c i ;q;T we …rst infer from (37) that the simple estimate

i + 2 i 2 1 = H i (H i ) 1 1 + 1 1 < +1
holds uniformly in i thanks to (4) and our choice of , which gives (43). Finally, let us partition the probability space as

= n ! 2 : ~ i; ;T (!) 1 o [ n ! 2 : ~ i; ;T (!) > 1 o
and split the expectation functional accordingly. From (42) it is then plain that

sup i2N + E j i; ;T j p = sup i2N + E ~ i; ;T p 2 1 + sup i2N + E ~ i; ;T p < +1
according to (40) since 2 1, which is the desired result.

The proof of (35) then follows from (39) and from the substitution of (38) into (34) provided we impose a further restriction on the parameter to make the singularities integrable:

Proof of Proposition A. 1. We …rst notice that

H 1 + < 1 + 1
as a consequence of the conditions we imposed on these parameters in Section 1. Then, …xing 2 (0; H 1 + ) we may substitute (38) into (34) to obtain Remark. To follow up on our remark preceding the statement of Lemma A. 2., we see a posteriori that we could have chosen for instance = 1 2 (H 1 + ) throughout.

We are now ready for the following:

Proof of Lemma 3. We begin by estimating each integral on the righthand side of [START_REF] Mishura | Existence and uniqueness of the solution of stochastic di¤ erential equation involving Wiener process and fractional Brownian motion with Hurst index H > 1 2[END_REF]. For every i 2 N + let us set f i ( ) := (v(:; ); h(u V;' (:; ))e i ) 2 :

Then, from the basic estimate (4.11) 

W

  H (:; t) := +1 X i=1 p i e i (:) B Hi (t):

ZD 2 ! 1 2cd

 21 (:; ) vn;xi (:; ); k i;j (:; )u V;';xj (:; )2 c ku V;' k L 2 (0;T ;H 1 (D)) d X j=1 (0;T )dxd v xj (x; ) vn;xj (x; ) ku V;' k L 2 (0;T ;H 1 (D)) kv vn k 1;2;T ! 0 as n ! +1 P-a.s., where c > 0 is a constant depending only on k, k and d. In a similar way for (25) we have lim (v(:; ) vn (:; ); g(u V;' (:; ))) 2

  .s. after an explicit integration, where the prefactor is uniform in i 2 N + . Therefore, (35) indeed follows from (39).

  [START_REF] Adams | Sobolev Spaces[END_REF]. Then for all …nite linear combinations v of functions of the form v where v 2 H 1 (D) and 2 H 1 ((0; T )) we have

		Z t	
	(v(:; t); u V;' (:; t)) 2 = (v(:; 0); ') 2 + d X Z t	0	d (v (:; ); u V;' (:; )) 2
	i;j=1		

0 d vxi (:; ); k i;j (:; )u V;';xj (:; ) 2 + Z t 0 d (v(:; ); g(u V;' (:; ))) 2

  Proposition 2. Let v 2 H (D (0; T )) and let (v n ) n2N + be as in (22).

				lim n!+1	d X i;j=1	Z t 0	d vn;xi (:; ); k i;j (:; )u V;';xj (:; ) 2
		=	d X i;j=1	Z t 0	d v xi (:; ); k i;j (:; )u V;';xj (:; ) 2	(24)
	and					
	Z t					Z t
	lim n!+1	0	d (v n (:; ); g(u V;' (:; ))) 2 =	0	d (v(:; ); g(u V;' (:; ))) 2	(25)
	P-a.s. for every t 2 [0; T ].
	Proof. Regarding (23) we have
		Z t			
	Then we have			
		Z t				Z t
	lim n!+1	0		d (v n; (:; ); u V;' (:; )) 2 =	0	d (v (:; ); u V;' (:; )) 2 ;	(23)

0 d (v (:; ) vn; (:; ); u V;' (:; )) 2

  Proof of the main result. Let v 2 H (D (0; T )) and let (v n ) n2N + be as in(22). According to Lemma 1 we have

		Z t
	(v n (:; t); u V;' (:; t)) 2 = (v n (:; 0); ') 2 + d Z t X i;j=1 0 d vn;xi (:; ); k i;j (:; )u V;';xj (:; ) 2 d (v n; (:; ); u V;' (:; )) 2 0
	Proof. From Relation (28) and embedding (27) we have
	Z t	Z
	0	
	The preceding considerations now lead to the following:

d ) P-a.s. for every t 2 [0; T ].

D

dx (v(x; ) vn (x; )) h(u V;' (x; ))W H (x; d )

cr H 1 + ku V;' k ;2;T kv vn k 1;2;T P-a.s. for some c > 0, hence the desired result from (22).

  in Proposition 4.1 of[START_REF] Nualart | Di¤ erential equations driven by fractional Brownian motion[END_REF] regarding generalized Stieltjes integrals we infer that the inequality P-a.s., where Hi is given by (33). Furthermore, from Schwarz inequality and the basic hypotheses of Section 1 we havejf i ( )j c ke i k 1 1 + ku V;' (:; )k 2 kv (:; )k 2 c ke i k 1 1 + ku V;' k ;2;T kvk ;2;T(45)where the second inequality follows from[START_REF] Dozzi | Finite-time blowup and existence of global positive solutions of a semi-linear SPDE[END_REF], and similarlyjf i ( ) f i ( )j c ke i k 1 ku V;' (:; ) u V;' (:; )k 2 kvk ;2;T +c ke i k 1 1 + ku V;' k ;2;T kv (:; ) v (:; )k 2(46)for all ; 2 [0; T ], for some constant c > 0. Consequently, on the one hand the substitution of (45) into the …rst integral on the right-hand side of (44) gives On the other hand, the substitution of (46) into the second integral on the right-hand side of (44), Schwarz inequality relative to the measure d and (7) lead to Z t N + since 1 > 1 2 according to our original choice of this parameter. In order to prove (28) it is therefore su¢ cient to show that according to[START_REF] Mishura | Existence and uniqueness of the solution of stochastic di¤ erential equation involving Wiener process and fractional Brownian motion with Hurst index H > 1 2[END_REF] and (49), with the obvious choice for r H . But (50) follows from Relation (35) of Proposition A.1. with p = 1 since spectral condition (6) holds.

	Z t t	d	(	jf i ( )j t )		c ke 1 2 :
										(48)
	Therefore, with (47) and (48) into (44) we obtain
	Z t								1 2	(49)
	for every i 2 +1 X i=1	p	i ke i k 1	Hi < +1	(50)
	P-a.s., for then				
					Z t	Z			
	Z t t	f i ( )B Hi (d ) t c +1 X i=1	p	Hi i ke i k 1 Z t t	d	Hi	( !	jf i ( )j t ) 1 + ku V;' k ;2;T kvk ;2;T jt + t d ( ) jf i ( ) f i ( )j +1 Z tj ! 1 2	(44)

holds i k 1 1 + ku V;' k ;2;T kvk ;2;T jt tj

1 (47) by direct integration. t d Z t d jf i ( ) f i ( )j ( ) +1

c ke i k 1 1 + ku V;' k ;2;T kvk ;2;T jt tj

t f i ( )B Hi (d ) c ke i k 1

Hi 1 + ku V;' k ;2;T kvk ;2;T jt tj D dxv(x; )h(u V;' (x; ))W H (x; d )
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