
HAL Id: hal-01824290
https://hal.science/hal-01824290

Submitted on 27 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recognizability for automata
Didier Caucal, Chloé Rispal

To cite this version:
Didier Caucal, Chloé Rispal. Recognizability for automata. DLT 2018, Sep 2018, Tokyo, Japan.
pp.206-218, �10.1007/978-3-319-98654-8_17�. �hal-01824290�

https://hal.science/hal-01824290
https://hal.archives-ouvertes.fr

Recognizability for automata

Didier Caucal and Chloé Rispal

LIGM–CNRS University Paris-Est
{caucal,rispal}@u-pem.fr

Abstract We present a new approach to define boolean algebras of
various language families : given a family F of infinite automata, an
automaton H recognizes the set of languages accepted by all automata
of F that can be mapped by morphism into H . Considering appropriate
automata families, we get boolean algebras of context-free languages,
indexed languages, Petri net languages, higher order indexed languages
and context-sensitive languages.

1 Introduction

The family of regular languages is closed under many operations. Those closure
properties give an easy way to work with this family and specially the closure un-
der boolean operations. Some of these boolean closure properties are not satisfied
at the next level of the Chomsky hierarchy: the family of context-free languages
is not closed under complementation and intersection, and the subfamily of de-
terministic context-free languages is not closed under union and intersection.
This boolean closure properties are satisfied neither by the families of Petri net
languages and higher-order indexed languages [11].

In this paper, we present a new approach to extract boolean algebras of all
those language families. A standard way to get boolean algebras is by recogniz-
ability by inverse morphism as defined by Eilenberg [5,6] for any monoid. This
notion of recognizability has been extended to terms, finite graphs, pictures,
traces, words indexed by linear orderings (see [17] among others). In all of these
extensions, recognizability is associated to appropriate finite automata. In this
paper, we adapt recognizability by inverse morphism to infinite automata.

An automaton is a set of labelled edges with some initial and final vertices.
A morphism f from an automaton G into an automaton H is a mapping from
the vertices of G into the vertices of H such that for any edge s

a
−→ t of G,

f(s)
a

−→ f(t) is an edge of H and for s initial/final in G, f(s) is initial/final in
H . We define the recognizability by an automaton H according to an automaton
family F as the set RecF(H) of languages accepted by the automata of F that
can be mapped by morphism into H .

A way to obtain boolean algebras of context-free languages is by synchro-
nization of pushdown automata [13,4]. This approach corresponds to the recog-
nizability with morphisms preserving the stack height. We show that this notion
can not be generalized to get boolean algebra for stack of stack automata.

We consider the family F(R) of automata such that each labelled transition
a

−→ is a binary relation of a set R. We introduce the structural recognizabil-
ity according to F(R) by restricting the morphisms to relations of R. To get
the closure under complementation, we add a natural condition of determin-
ism on the morphisms. Structural recognizability defines boolean algebras for
pushdown automata and also for stack of stack automata. More generally, we
consider the hierarchy of multistack of stack automata. We prove that for any
automaton family of this hierarchy, structural recognizability and deterministic
structural recognizability coincide and define a boolean algebra for any unam-
biguous automaton. We also get boolean algebras by deterministic structural
recognizability of synchronized automata.

2 Recognizability

In this section, we give notations and we define recognizability by inverse mor-
phism for infinite automata.

2.1 Automata

An automaton is a labelled oriented simple graph with initial and final vertices.
More precisely, an automaton G is defined by G ⊆ VG×TG×VG ∪ {ι, o}×VG

where VG is a finite or countable set of vertices, TG is a finite set of labels, ι
marks the initial vertices, and o marks the final vertices. Any triple (s, a, t) ∈ G

is an edge labelled by a from source s to goal t ; it is also denoted by s
a

−→G t

i.e.
a

−→G = {(s, t) | s
a

−→G t} is the a-transition of G. Any couple (c, s) ∈ G

is a vertex coloured by c ∈ {ι, o}; it is denoted by c s ∈ G and
c

−→G =

{ (s, s) | c s ∈ G } is the c-transition of G.

Taking symbols |, κ, and a triple
−→
T = (T−1, T0, T1) of disjoint alphabets, we

define the input-driven automaton:

Inp1,1(
−→
T) = { |nκ

a
−→ |n+1κ | n ≥ 0 ∧ a ∈ T1}

∪ { |n+1κ
b

−→ |nκ | n ≥ 0 ∧ b ∈ T−1}

∪ { |nκ
c

−→ |nκ | n ≥ 0 ∧ c ∈ T0} ∪ { ι κ } ∪ { o |nκ | n ≥ 0 }.

The automaton Inp1,1({b}, {c}, {a}) is represented below.

κ |κ ||κ |||κ

ι

c c cc

aaa

bb b

o ooo

Recall that a path s0
a1−→ . . .

an−→ sn is a sequence of consecutive transitions and
we write s0

a1...an−→
G

sn ; such a path is accepting for s0 initial and sn final. The

language accepted by an automaton G is the set L(G) of labels of the accepting
paths:

L(G) = { u ∈ T∗
G | ∃s, t (s

u
−→
G

t ∧ ι s, o t ∈ G) }.

The previous automaton Inp1,1({b}, {c}, {a}) accepts the language

L(Inp1,1({b}, {c}, {a})) = { u ∈ {a, b, c}∗ | ∀ v ≤ u, |v|a ≥ |v|b }

of prefixes of well-parenthesed words (a the open parenthesis and b the close
one). The notation v ≤ u means that u is a prefixe of v. An automaton is
deterministic if it has a unique initial vertex and if for any vertex s and any
label a, there exists at most one transition starting from s and labelled by a.
More generally, an automaton is unambiguous, if any two accepting paths have

distinct labels. The previous automata Inp1,1(
−→
T) are deterministic.

A morphism f from an automaton G into an automaton H is a mapping
f : VG −→ VH such that for any s, t ∈ VG , a ∈ TG and c ∈ {ι, o},

s
a

−→
G

t =⇒ f(s)
a

−→
H

f(t) and c s ∈ G =⇒ c f(s) ∈ H

we write G
f

−→ H and say that G is f -reducible into H .

2.2 Recognizability

Recall that a language family L is a boolean algebra with respect to a language
L ∈ L if

P ⊆ L and L− P, P ∩Q ∈ L for any P,Q ∈ L.

We define recognizability for families F of automata to get boolean sub-algebras of

L(F) = { L(G) | G ∈ F }.

For any fixed monoid M , Eilenberg has defined the following family rec(M) of
recognizable subsets of M by inverse morphism:

{ f−1(P) | ∃ N finite monoid (f : M → N morphism ∧P ⊆ N) }.

Contrary to Eilenberg, we define recognizability by fixing the image of the
morphism while its input domain takes values in a family of automata. Precisely,
let F be a family of automata and let H be an automaton not necessarily in
F . We consider the set of languages accepted by all possible automata G of F
reducible into H :

RecF (H) = { L(G) | G ∈ F ∧ G −→ H }.

Denote by LoopT the reduced automaton with one state and the loops labelled
by each letter of the alphabet T :

LoopT = { κ
a

−→ κ | a ∈ T } ∪ {ι κ , o κ}.

Any automaton labelled in T can be reduced to LoopT hence

RecF (LoopT) = L(F).

Proposition 2.1 For the family F0 of finite automata and for any H ∈ F0,

RecF0(H) = {L ⊆ L(H) | L regular }

is a boolean algebra with respect to L(H).

In particular RecF0(LoopT) is the set Reg(T ∗) of regular languages over T

which is a boolean algebra. This is not true in general for any family F of
automata. So conditions have to be given on the morphisms to get boolean
algebras.

3 Length recognizability

Boolean algebras of context-free languages can already be obtained by synchro-
nization of pushdown automata [13,4]. This notion corresponds to recognizabil-
ity by morphisms preserving vertex length. In the case of pushdown automata,
length recognizability defines a boolean algebra of context-free languages for any
unambiguous pushdown automaton.
We show that this approach is not suitable any more when considering stack
of stack automata: the set of languages accepted by stack of stack automata
mapped by a length-preserving morphism into a deterministic stack of stack
automaton is not in general closed under complementation.

3.1 Families of automata on words

We define an automaton family by the type of relations of its labelled transitions.
Given a family R of binary relations, we define the family F(R) of automata
G whose labelled transitions are relations of R :

a
−→
G

∈ R for any a ∈ TG ∪ {ι, o}.

From now on, N is a countable set of symbols. We denote by

R0 = { R ⊆ N×N | R finite }

the family of finite binary relations on N . So F(R0) is the set of finite automata
having vertices in N . For instance, for the family R1 of relations of the form

{ (|nκ, |n+1κ) | n ∈ P } or { (|n+1κ, |nκ) | n ∈ P } or { (|nκ, |nκ) | n ∈ P }

where P is a regular subset of IN, the automata Inp1,1(
−→
T) and LoopT are in

F(R1).

3.2 Length recognizability for pushdown automata

A morphism f from an automatonG is length-preserving if for any vertex s ∈ VG,
|f(s)| = |s|. For any family R of binary relations on N∗ and for any automaton
H of vertex set VH ⊆ N∗, the length recognizability is

ℓRecF(R)(H)

= { L(G) | G ∈ F(R) ∧ ∃ f (G
f

−→ H ∧ f length-preserving) }

the restriction of recognizability to length-preserving morphisms.

In particular the family of input-driven languages [12] for any triple
−→
T of disjoint

alphabets and for any family R of binary relations on N∗ is

IdlR(
−→
T) = ℓRecF(R)(Inp1,1(

−→
T)).

So, for a triple
−→
T = (T−1, T0, T1), a language is input-driven if it is accepted by

an automaton such that for u
a

−→v, we have (|v| = |u|+ i) for a ∈ Ti and (|u| = 0
for a = ι).
Length recognizability has been already considered for the family of pushdown
automata. Let us recall the suffix relations which define the same automaton
family as pushdown automata restricted to a regular vertex set [3]. The left con-
catenation of a language W ⊆ N∗ with a binary relation R ⊆ N∗

×N∗ is the
relation

W.R = { (wu,wv) | w ∈ W ∧ (u, v) ∈ R }.

For instance N∗.R is the suffix rewriting of R. For words u, v, we denote by

W (u, v) = W.{(u, v)} = { (wu,wv) | w ∈ W }

and is called an elementary suffix relation when W is a regular language. A
suffix relation is a finite union of elementary suffix relations:

W1(u1, v1) ∪ . . . ∪ Wn(un, vn) with n ≥ 0 and W1, . . . ,Wn regular.

The family of suffix relations is denoted by Stack.
For instance the automaton H1 defined by the suffix relations:

a
−→ = |∗(ε, |) ;

b
−→ = |∗(|, ε) ∪ |∗ †∗ (ε, †)

c
−→ = |∗ †∗ (†, ε) ;

o
−→ =

ι
−→ = (ε, ε)

belongs to F(Stack) and is represented as follows:

aa

bb

c

c

c

c

c

c

b

b

b

b

b

b

ι ||

||†

|| † †

|

|††

ε
o

†† | † †

Length recognizability for pushdown automata corresponds to synchronization
and defines a boolean algebra of context-free languages for any deterministic
pushdown automaton [13] and for any unambiguous pushdown automaton [4].

Theorem 1. For any unambiguous automaton H ∈ Stack,

ℓRecF(Stack)(H) is a boolean algebra with respect to L(H).

In particular for any partition
−→
T , the family IdlStack(

−→
T) of input-driven push-

down languages is a boolean algebra with respect to L(Inp1,1(
−→
T)) [12].

3.3 Length recognizability for stack of stack automata

So length recognizability defines boolean algebras for pushdown automata but
this approach is not suitable anymore when considering stack of stack automata.
We present the suffix relations of level 2, defining the same automaton family
as stack of stack automata. A vertex of a stack of stack automaton is a word of
words that is a tuple of words:

−→x = (x0, . . . , xk) ∈ (N∗)k with k ≥ 0 ;

the word xk corresponds to the topmost stack of level 1.
The following elementary operations are defined on words of words:
for any a ∈ N and x0, . . . , xk ∈ N∗,

(x0, . . . , xk)
a

−→ (x0, . . . , xka)
a

−→ (x0, . . . , xk)

(x0, . . . , xk)
#
−→ (x0, . . . , xk, xk)

#
−→ (x0, . . . , xk)

(ε)
!

−→ (ε) (x0, . . . , xk−1, ε)
?

−→ (x0, . . . , xk−1, ε)

We denote by
Op = N ∪ N ∪ {#,#, !, ?}

the set of letters representing those operations.
Elementary relations on words of operations are of the form:

W (u, v) = { (wu,wv) | w ∈ W} ⊆ Op∗×Op∗

where W is a regular set over Op.
Elementary suffix relations of level 2 (on words of words) are defined by inter-
pretation:

[[W (u, v)]] = { (−→x ,−→y) | ∃ w ∈ W, ∃ −→z , (ε)
w
−→−→z ∧ −→z

u
−→−→x ∧ −→z

v
−→−→y }

where the context W is a regular subset of Op∗, u and v are words over Op,
and −→x , −→y , −→z are words of words over N . In particular

w
−→ = [[Op∗(ε, w)]] for any w ∈ Op∗.

A suffix relation of level 2 is a finite union of elementary suffix relations of level 2
and the set of suffix relations of level 2 is denoted by Stack2. These suffix rela-
tions can be normalized [2]. The languages accepted by automata of F(Stack2)
are indexed languages [1] but the indexed language

{ uu | u ∈ {a, b}∗ } 6∈ L(F(Stack2)).

For instance, the following automata of F(Stack2) are a natural extention of

the automata Inp1,1. For any quintuple
−→
T = (T−1, T0, T1, T

′
−1, T

′
1) of disjoint

alphabets, the automaton Inp1,2(
−→
T) is defined for any a ∈ T1, b ∈ T−1, c ∈ T0,

A ∈ T ′
1 and B ∈ T ′

−1 by
a

−→ = [[op∗(κ, |κ)]] = { (|n0 , . . . , |nk)κ → (|n0 , . . . , |nk+1)κ | k, n0, . . . , nk ≥ 0 }
b

−→ = [[op∗(|κ, κ)]] = { (|n0 , . . . , |nk+1)κ → (|n0 , . . . , |nk)κ | k, n0, . . . , nk ≥ 0 }
c

−→ = [[op∗(κ, κ)]] = { (|n0 , . . . , |nk)κ → (|n0 , . . . , |nk)κ | k, n0, . . . , nk ≥ 0 }
A
−→ = [[op∗(κ,#κ)]] = { (|n0 , . . . , |nk)κ → (|n0 , . . . , |nk , |nk)κ | k, n0, . . . , nk ≥ 0 }

B
−→ = [[op∗(#κ, κ)]] = { (|n0 , . . . , |nk , |nk)κ → (|n0 , . . . , |nk)κ) | k, n0, . . . , nk ≥ 0 }
ι

−→ = [[(κ, κ)]] = { (κ, κ) }
o

−→ = [[op∗(κ, κ)]] = { (|n0 , . . . , |nk)κ → (|n0 , . . . , |nk)κ | k, n0, . . . , nk ≥ 0 }

where op = {|, |,#, ?} and (|n0 , . . . , |nk)κ = (|n0 , . . . , |nkκ).
For instance, Inp1,2({b}, {c}, {a}, {B}, {A}) is represented below

A B

a

b

A B

a

b

a

b

A B

a

b

a

b

a

b

a

b

A B

a

b

a

b

c c c

cc

ι
o o o

c c

o o o

c c cc

a

b

a

b

a

b

c c c

o

and corresponds to the Muchnik’s operation [15] of Inp1,1({b}, {c}, {a}).
Length recognizability is naturally extended to automata whose vertices are
words of words. Precisely a function f : (N∗)∗ −→ (N∗)∗ on words of words
is length-preserving if the image by f preserves the number of components and
the length of each component: for each f(x1, . . . , xm) = (y1, . . . , yn),

m = n ∧ |x1| = |y1| ∧ . . . ∧ |xm| = |ym|.

Length recognizability does not define in general boolean algebras for stack of
stack automata. For instance, a natural extension of input-driven languages is
not closed under complementation.

Proposition 3.1 For any partition
−→
T of non empty alphabets,

ℓRecF(Stack2)(Inp1,2(
−→
T)) is not closed under complementation.

As a counter example, the language

{ an cbn1an1d . . . cbnkankd | n, k > 0 ∧ 0 < n1, . . . , nk ≤ n

∧ ∃ 1 ≤ i < j ≤ k, ni = nj }

belongs to ℓRecF(Stack2)

(
Inp1,2({b}, ∅, {a}, {d}, {c})

)
but not its complement.

4 Structural recognizability

Since length recognizability does not define boolean algebras beyond context-free
languages, we introduce a new recognizability. For any automaton family F(R),
structural recognizability requires the morphism to be a relation of R.
Like for finite automata, we need determinism to get boolean algebras by struc-
tural recognizability but we do not determinize automata : we introduce a con-
dition of determinism on the morphisms. When the morphisms are deterministic

and belongs to R, recognizability is deterministic structural.
In this section, we apply structural recognizability to the whole hierarchy of
multi-stack of stack automata. We prove that for the family of automata defined
by m stacks of level n, structural recognizability and deterministic structural
recognizability coincide and define a boolean algebra for any unambiguous au-
tomaton.

For any automaton family F(R), the recognizability is structural when the
morphism is a relation of R.

Definition 1. We define by structural recognizability from an automaton H

according to an automaton family F(R) the set

sRecF(R)(H) = { L(G) | G ∈ F(R) ∧ ∃ f ∈ R (G
f

−→ H) }.

To illustrate this definition, we introduce the family of one counter relations
defined by pushdown automata using a unique stack symbol | ∈ N .
An elementary one counter relation is of the form

W (u, v) = { (wu,wv) |w ∈ W } for W ∈ Reg(|∗) and u, v ∈ |∗(N − {|}).

A one counter relation is a finite union of elementary one counter relations and
the set of one counter relations is denoted by Count.
For instance let G be the one counter automaton defined by

a
−→ = |∗(p, |p) ;

b
−→ = |∗(|p, q) ∪ |∗(|q, q)

ι
−→ = {(p, p)} ;

o
−→ = {(p, p), (q, q)}

and represented as follows:

p |p ||p |||p

q |q ||q |||q

a

b

a

b

a

b

b b b

o

o
ι

The (unique) morphism f from G into Inp1,1({b}, {c}, {a}) is the one counter
relation

f = |∗(p, κ) ∪ |∗(q, κ).

So { anbn | n ≥ 0 } = L(G) ∈ sRecF(Count)

(
Inp1,1({b}, {c}, {a})

)
.

Like for finite automata, we need to determinize to get the closure under com-
plementation by structural recognizability.

Definition 2. For G
f

−→ H, we say that the morphism f is deterministic and

we write G
f

−−⊲ H if the images by f are distinct for distinct initial vertices,

and for distinct goals of edges with the same source and label:

ι s , ι t ∈ G ∨ (r
a

−→
G

s ∧ r
a

−→
G

t) =⇒ s = t ∨ f(s) 6= f(t).

The reduction of a deterministic automaton is deterministic:

(G deterministic ∧ G
f

−→ H) =⇒ G
f

−−⊲ H .

The deterministic morphism preserves by inverse the determinism and the non-
ambiguity:

(G
f

−−⊲H ∧ H deterministic/unambiguous) =⇒ G deterministic/unambiguous.

Definition 3. For any relation family R and any automaton H, let

dsRecF(R)(H) = { L(G) | G ∈ F(R) ∧ ∃ f ∈ R (G
f

−−⊲ H) }

be the set of deterministic structural recognized languages.

Structural recognizability allows to get boolean algebras not only for pushdown
or stack of stack automata but for each level of the stack hierarchy [2,8] and also
by allowing multi-stacks.
For any integers m,n ≥ 1, we define the set Stack(m,n) of relations definable
by m stacks of level n and its subset Count(m,n) of relations definable by
m counters of level n. This hierarchy of relation families is represented by the
following figure:

2 counters

2 stacks m stacks

multi-stack
multi-stack of counters

n levels of stacks of counters

multi-counter (VAS or Petri nets)

stack of counters

counter

stack

n levels of stack of stacks

stack hierarchy

n levels of 2 stacks of stacks

2 stacks of stacks hierarchy

m counters

m stacks of counters

multi-stack of stacks

multi-stack of stacks of stacks

counter hierarchy

2 stacks of stacks m stacks of stacksstack of stacks

We have Count(1, 1) = Count, Stack(1, 1) = Stack and Stack(1, 2) = Stack2.
For those families, structural recognizability and deterministic structural recog-
nizability coincide and define a boolean algebra for each unambiguous automa-
ton.

Theorem 2. For any m,n > 0 and any unambiguous H ∈ F(Stack(m,n)),

sRecF(Stack(m,n))(H) = dsRecF(Stack(m,n))(H)

is a boolean algebra with respect to L(H).

In fact, we have defined properties of stability on the automaton family F such
that sRecF(H) = dsRecF(H) is a boolean algebra for any unambiguous au-
tomaton H in F . We have proved that those stability properties are satisfied
at each level of this multi-stack of stack hierarchy but more generally, struc-
tural recognizability can be applied to any stable automaton family. In the last
section, we chose to apply it to synchronized automata.

5 Synchronized automata

Synchronized automata can be of infinite degree or of finite but unbounded de-
gree. They accept all the context-sensitive languages.

An elementary synchronized relation is of the form

R.(U, V) = { (w1u,w2v) | (w1, w2) ∈ R, u ∈ U, v ∈ V }

where R ∈ Reg((N×N)∗) is a letter-to-letter regular relation and U, V ∈
Reg(N∗) are regular sets. A synchronized relation is a finite union of elementary
synchronized relations and the set of synchronized relations is denoted by Sync.
For instance, the automaton H2 defined by
a

−→ = (A,A)∗(B,A)(ε,B) ;
b

−→ = (B,B)(A,A)∗(A, ε)
c

−→ = [(A,A)∗(A,B)(B,A)(A,A)∗](ε, ǫ) ;
ι

−→ =
o

−→ = (B,B)(ε, ǫ)

belongs to F(Sync) and is represented below.

o

ι

B

AB

AAB

AAAB

BA

BAA

BAAA

ABA

AABA

ABAA

a

b

a

b

c

c

c

c

c

b

a

c

For the family F(Sync) of synchronized automata, the deterministic structural
recognizability gives a boolean algebra for each unambiguous synchronized au-
tomaton.

Theorem 3. For any unambiguous automaton H ∈ F(Sync),

dsRecF(Sync)(H) is a boolean algebra with respect to L(H).

The languages accepted by automata of F(Sync) are the context-sensitive lan-
guages [14]. Given an alphabet T , any synchronized automaton G labelled in
T is reducible to LoopT by the morphism mapping all vertices of VG to the
unique vertex κ of LoopT . So

sRecF(Sync)(LoopT) is the set of context-sensitive languages over T

which is a boolean algebra [9,16]. Furthermore dsRecF(Sync)(LoopT) is the set
of deterministic context-sensitive languages over T which is a boolean algebra
by Theorem 3. Thus, the following question arises:

sRecF(Sync)(LoopT) = dsRecF(Sync)(LoopT) ?

This corresponds to the famous conjecture of Kuroda [10].
A more general question is:

sRecF(Sync)(H) = dsRecF(Sync)(H) for any unambiguous H ∈ F(Sync) ?

For a given partition
−→
T = (T−1, T0, T1), let us also characterize by structural

recognizability the family

IdlSync(
−→
T) = ℓRecF(Sync)(Inp1,1(

−→
T))

of input-driven synchronized languages. For instance, for the previous automaton
H2, we have

L(H2) = { ancnbn | n ≥ 0 }∗ ∈ IdlSync({b}, {c}, {a}).

For a given partition
−→
T with T−1, T1 6= ∅,

IdlSync(
−→
T) ⊂ sRecF(Sync)(Inp1,1(

−→
T)).

For instance Inp1,1({d}, ∅, {c}) can be reduced to Inp1,1({b}, {c, d}, {a}) so the
language L(Inp1,1({d}, ∅, {c})) belongs to sRecF(Sync)(Inp1,1({b}, {c, d}, {a}))
but this language is not an input-driven synchronized language for the partition
({b}, {c, d}, {a}): all the vertices of Inp1,1({d}, ∅, {c}) are mapped to the same
vertex κ and it is not possible to have an infinite number of vertices of the same
length.

To characterize IdlSync(
−→
T), we restrict to the subfamily of synchronized rela-

tions R of bounded length difference :

∃ b, ∀ (u, v) ∈ R, | |u| − |v| | ≤ b.

So a synchronized relation of bounded length difference is a finite union of rela-
tions of the form

R.(u, v) = { (w1u,w2v) | (w1, w2) ∈ R }

where R ∈ Reg((N×N)∗) is a letter-to-letter regular relation and u, v ∈ N∗.
Denoting by bSync the set of synchronized relations of bounded length differ-
ence, the bounded length difference synchronized automata of F(bSync) recognize
the same languages as synchronized automata of F(Sync):

L(F(bSync)) is the family of context-sensitive languages [14].

This restriction to F(bSync) allows to characterize by structural recognizability

the family IdlSync(
−→
T) = IdlbSync(

−→
T) of input-driven synchronized languages.

Proposition 5.1 For any partition
−→
T ,

sRecF(bSync)(Inp1,1(
−→
T)) = IdlSync(

−→
T).

However we do not know whether IdlSync(
−→
T) is a boolean algebra with respect

to L(Inp1,1(
−→
T)). This is true when restricting to dsRecF(bSync)(Inp1,1(

−→
T)).

Theorem 4. For any unambiguous automaton H ∈ F(Sync),

dsRecF(bSync)(H) is a boolean algebra with respect to L(H).

Theorems 2, 3 and 4 are obtained in a same general way: for an automaton family
F(R), we define a condition on the relation family R over the vertices. This
condition ensures that vertices can be added or deleted while staying in the same
automaton family. It allows to make standard constructions on automata such
as determinization, synchronization product and complementation restricted to
vertices having the same morphic image.

6 Conclusion

We have defined structural recognizability by inverse morphism for infinite au-
tomata. We have applied it to automata of the multi-stack of stack hierarchy
and to synchronized automata and proved that, in those cases, any unambiguous
automaton defines a boolean algebra of languages.
In fact, structural recognizability can be applied to any unambiguous recognizer
and any stable automaton family.

Thanks to Arnaud Carayol for his remarks and for the example of Proposi-
tion 3.1.

References

1. A. Aho Indexed grammar-an extension of context-free grammars, Journal of the
ACM 15 (4): 647–671 (1968).

2. A. Carayol Regular sets of higher-order pushdown stacks, 30th MFCS J.
Jȩdrzejowicz and A. Szepietowski (Eds.), LNCS 3618, 168–179 (2005).

3. D. Caucal On infinite transition graphs having a decidable monadic theory, The-
oretical Computer Science 290, 79–115 (2003).

4. D. Caucal Boolean algebras of unambiguous context-free languages, 28th FSTTCS,
Dagstuhl Research Online Publication Server, R. Hariharan, M. Mukund, V. Vinay
(Eds.) (2008).

5. S. Eilenberg, Algèbre catégorique et théorie des automates, Institut H. Poincaré,
Université de Paris (1967).

6. S. Eilenberg, Automata, languages and machines, Vol. A, Academic Press, New-
York (1974).

7. C. Elgot and J. Mezei, On relations defined by generalized finite automata, IBM
Journal of Research and Development 9(1), 47–68 (1965).

8. S. Fratani, Automates à piles de piles . . . de piles, PhD thesis, University Bor-
deaux 1 (2005).

9. N. Immerman, Nondeterministic space is closed under complementation, SIAM J.
Comput., 17(5), 935–938 (1988).

10. S. Kuroda, Classes of languages and linear-bounded automata., Information and
control, 7(2), 207–223 (1964).

11. A. Maslov, The hierarchy of indexed languages of an arbitrary level, Doklady
Akademii Nauk SSSR 217, 1013–1016 (1974).

12. K. Mehlhorn, Pebbling mountain ranges and its application to DCFL recognition,
7th ICALP, LNCS 85, J. de Bakker, J. van Leeuwen (Eds.), 422–432 (1980).

13. D. Nowotka and J. Srba, Height-deterministic pushdown automata, 32nd MFCS,
LNCS 4708, L. Kucera, A. Kucera (Eds.), 125–134 (2007).

14. C. Rispal, The synchronized graphs trace the context-sensitive languages. Electr.
Notes Theor. Comput. Sci. 68(6), 55–70 (2002)

15. A. Semenov, Decidability of monadic theories, 11th MFCS, LNCS 176, M. Chytil,
V. Koubek (Eds.), 162–175 (1984).

16. R. Szelepcsnyi, The method of forced enumeration for nondeterministic automata,
Acta Informatica 26(3), 279–284 (1988).

17. W. Thomas, Uniform and nonuniform recognizability, Theoretical Computer Sci-
ence 292, 299–316 (2003).

Appendix

We give here proofs and complementary results.

A Operations on automata

The closure of sRecF(R)(H) under complementation and intersection are ob-
tained by closure of the automaton family

AutF(R)(H) = { G ∈ F(R) | ∃ f ∈ R (G
f

−→ H) }

under standard determinization and synchronization product but restricted to
vertices reducible to a same vertex.

A.a Determinization

An automaton is reduced if any vertex is accessible from an initial vertex and

coaccessible from a final vertex. Let us consider a reduction G
f

−→ H from a
reduced automaton G into a unambiguous automaton H . This morphism f is
unique.

Proposition A.1 There is at most one morphism from a reduced automaton

into a unambiguous automaton.

Proof.
Let G

g
−→ H and G

h
−→ H with G reduced and H unambiguous.

Let s be any vertex of G.
As G is reduced, there exists u, v such that ι

u
=⇒
G

s
v

=⇒
G

o meaning that

∃ r, t (r
u

=⇒
G

s
v

=⇒
G

t ∧ ι r, o t ∈ G).

As g and h are morphisms, we have

ι
u

=⇒
H

g(s)
v

=⇒
H

o and ι
u

=⇒
H

h(s)
v

=⇒
H

o .

As H is unambiguous, g(s) = h(s).
✷

We partially determinize G by applying the standard powerset construction re-
stricted to the subsets of vertices having the same image by f .
Precisely and for any a ∈ TG ∪ {ι, o}, the image by

a
−→
G

of P ⊆ VG is

a
−→
G

(P) = { t | ∃ s ∈ P (s
a

−→
G

t) }

the set of goals of a-edges of sources in P . In particular for c ∈ {ι, o},
c

−→
G

(P) = { s ∈ P | c s ∈ G }

is the set of vertices in P coloured by c.

Let Π be the family of non empty subsets of VG with the same image by f :
Π = { P ⊆ VG | |f(P)| = 1 } .

The determinization Det(G, f) of G according to f is the following automaton:

Det(G, f) = { ι P | P ∈ Π ∧ ∀ P ∈ Π (P ⊇ P =⇒
ι

−→
G

(P) = P) }

∪ { P
a

−→ Q | P,Q ∈ Π ∧ ∀ Q ∈ Π (Q ⊇ Q =⇒
a

−→
G

(P) ∩ Q = Q) }

∪ { oP | P ∈ Π ∧
o

−→
G

(P) 6= ∅ } .

By extending f : Π −→ VH by f(P) = f(s) for any s ∈ P ∈ Π, we get

Det(G, f)
f

−→ H .

The automaton Det(G, f) is deterministic according to f in the following sense:

G
f

−→ H is a deterministic reduction and we write G
f

−−⊲ H if

ι s , ι t ∈ G ∨ (r
a

−→
G

s ∧ r
a

−→
G

t) =⇒ s = t ∨ f(s) 6= f(t)

meaning that the images by f are distinct for initial vertices and for goals of
arcs with the same source and label.

Lemma A.2 For G
f

−→ H, we have

Det(G, f)
f

−−⊲ H and L(Det(G, f)) = L(G).

Proof.
i) Let us show that L(Det(G, f)) = L(G).
⊆ : Let a1. . .an ∈ L(Det(G, f)) with n ≥ 0 and a1, . . ., an ∈ T .
There exists P0

a1
−→

Det(G, f)
P1 . . .

an
−→

Det(G, f)
Pn with ι P0 , o Pn ∈ Det(G, f).

There is sn ∈ Pn such that o sn ∈ G.
By induction from i = n to i = 1,

there exists si−1 ∈ Pi−1 such that si−1
ai−→
G

si .

As s0 ∈ P0 , we have ι s0 ∈ G.
Finally s0

a1−→
G

s1 . . .
an−→
G

sn with ι s0 , o sn ∈ G hence a1. . .an ∈ L(G).

⊇ : Let a1. . .an ∈ L(G) with n ≥ 0 and a1, . . ., an ∈ T .
There exists s0

a1−→
G

s1 . . .
an−→
G

sn with ι s0 , o sn ∈ G.

We take the maximal (for inclusion) subset P0 ∈ Π such that

for any s ∈ P0 , ι s ∈ G ∧ f(s) = f(s0).

In particular s0 ∈ P0 and ι P0 ∈ Det(G, f).
By induction on 1 ≤ i ≤ n, we take the maximal subset Pi ∈ Π such that

Pi ⊆
ai−→
G

(Pi−1) and f(s) = f(si) for any s ∈ Pi ;

in particular si ∈ Pi and Pi−1
ai−→

Det(G, f)
Pi .

As sn ∈ Pn we have oPn ∈ Det(G, f).
Thus P0

a1−→
Det(G, f)

P1 . . .
an−→

Det(G, f)
Pn with ι P0 , o Pn ∈ Det(G, f).

Hence a1. . .an ∈ L(Det(G, f)).

ii) It remains to check that Det(G, f)
f

−−⊲ H .

First Det(G, f) is f -deterministic since for(
ιQ , ιQ′ ∈ Det(G, f) ∨

(
P

a
−→

Det(G, f)
Q ∧ P

a
−→

Det(G, f)
Q′

))
with f(Q) = f(Q′)

we have Q ∪ Q′ ∈ Π hence by maximality of Q and Q′, we get Q = Q′.
Let c P ∈ Det(G, f) with c ∈ {ι, o}.

There is s ∈ P s uch that c s ∈ G.
So c f(s) ∈ H and f(s) = f(P) i.e. cf(P) ∈ H .

Let P
a

−→
Det(G, f)

Q. So Q 6= ∅ and we take t ∈ Q.

As Q ⊆
a

−→
G

(P), there is s ∈ P such that s
a

−→
G

t.

Thus f(P) = f(s)
a

−→
H

f(t) = f(Q).

✷

The deterministic reduction preserves determinism and unambiguity by inverse.

Lemma A.3 Let G
f

−−⊲ H.

If H is deterministic then G is deterministic.

If H is unambiguous then G is unambiguous and(
s

u
=⇒
G

t , ι s ∈ G , u ∈ L(G) , o f(t) ∈ H
)

=⇒ o t ∈ G.

Proof.

i) Let G
f

−−⊲ H with H deterministic. Let us check that G is deterministic.
Let ι s , ι t ∈ G. As f is a morphism, ι f(s) , ι f(t) ∈ H .
As H is deterministic, we have f(s) = f(t).
As G is f -deterministic, we get s = t.
Let r

a
−→
G

s and r
a

−→
G

t.

As f is a morphism, f(r)
a

−→
G

f(s) and f(r)
a

−→
G

f(t).

As H is deterministic, we have f(s) = f(t) hence s = t.

ii) Let G
f

−−⊲ H with H unambiguous. Let us check that G is unambiguous.
Let s0

a1
−→
G

s1. . .
an
−→
G

sn and t0
a1
−→
G

t1. . .
an
−→
G

tn with ι s0 , ι t0 , o sn , o tn ∈ G.

As f is a morphism, we have

f(s0)
a1−→
H

f(s1). . .
an−→
H

f(sn) and f(t0)
a1−→
H

f(t1). . .
an−→
H

f(tn)

with ι f(s0) , ι f(t0) , o f(sn) , o f(tn) ∈ H .
As H is unambiguous, f(s0) = f(t0), . . ., f(sn) = f(tn).
As G is f -deterministic and by induction on 0 ≤ i ≤ n, we get si = ti.
Thus G is unambiguous.

iii) Let s
a1...an=⇒

G

t with n ≥ 0, ι s ∈ G, a1. . .an ∈ L(G) and o f(t) ∈ H .

Let us check that o t ∈ G.
There is s0

a1−→
G

s1. . .
an−→
G

sn with s0 = s and sn = t.

As a1. . .an ∈ L(G), there exists t0
a1−→
G

t1. . .
an−→
G

tn with ι t0 , o tn ∈ G.

As f is a morphism,

f(s0)
a1−→
H

f(s1). . .
an−→
H

f(sn) and f(t0)
a1−→
H

f(t1). . .
an−→
H

f(tn)

with ι f(s0) , ι f(t0) , o f(sn) , o f(tn) ∈ H .
As H is unambiguous, f(s0) = f(t0), . . ., f(sn) = f(tn).
As G is f -deterministic, we get s0 = t0, . . ., sn = tn. Thus o t = o tn ∈ G.
✷

A.b Inversion

Let us consider a reduction G
f

−→ H between disjoint automata: VG ∩ VH = ∅.
Let us define an automaton reducible to H , and accepting L(H)−L(G) for H

unambiguous. The inverse automaton is the following automaton :

Inv(G, f,H) = (G− oVG) ∪ { o s 6∈ G | o f(s) ∈ H }

∪ H − { ι f(s) | ι s ∈ G }

∪ { s
a

−→ q | f(s)
a

−→
H

q ∧ ¬ ∃ t (s
a

−→
G

t ∧ f(t) = q) }.

This inversion is illustrated below (without specifying the vertices and the unique
morphism).

a o o a oι

ι

o

ι oa a ι a a

a o a o

ι

o

o

o

ab

a, b a, b

Inv(G,f,H) :

f

H :

G :

In this example, L(Inv(G, f,H)) = {ε , a , ab , aaa , aba} = L(H)− L(G).

The automaton Inv(G, f,H) recognizes L(H) − L(G) when G
f

−→ H is a
deterministic reduction and H is unambiguous.

Lemma A.4 For VG ∩ VH = ∅, we have

G
f

−→ H =⇒ Inv(G, f,H)
f ∪ IdH
−→ H ;

G
f

−−⊲ H =⇒ Inv(G, f,H)
f ∪ IdH

−−⊲ H

and L(Inv(G, f,H)) = L(H)− L(G) for H unambiguous.

Proof.
i) Let G

f
−→ H and fH = f ∪ IdH . Let us check that Inv(G, f,H)

fH
−→ H .

Let s
a

−→
Inv(G, f, H)

t. We have the three complementary cases below.

Case 1 : s, t ∈ VG.
So s

a
−→
G

t hence fH(s) = f(s)
a

−→
H

f(t) = fH(t).

Case 2 : s, t ∈ VH .
So s

a
−→
H

t hence fH(s) = s
a

−→
H

t = fH(t).

Case 3 : s ∈ VG and t ∈ VH .

So f(s)
a

−→
H

t. Thus fH(s) = f(s)
a

−→
H

t = fH(t).

Let c s ∈ Inv(G, f,H) with c ∈ {ι, o}.
Case 1 : s ∈ VG . So c s ∈ G or c f(s) ∈ H . Thus c fH(s) = c f(s) ∈ H .
Case 2 : s ∈ VH . So c s ∈ H hence c fH(s) = c s ∈ H .

ii) Let G
f

−−⊲ H . Let us show that Inv(G, f,H)
fH
−−⊲ H .

By (i), it remains to check that Inv(G, f,H) is fH -deterministic.
Let ι s , ι t ∈ Inv(G, f,H) with fH(s) = fH(t).
We have the complementary cases below.
Case 1 : s, t ∈ VG.

So ι s , ι t ∈ G and f(s) = fH(s) = fH(t) = f(t).
As G is f -deterministic, s = t.

Case 2 : s ∈ VG and t ∈ VH .
So ι s ∈ G, ι t ∈ H and ∀ r (f(r) = t =⇒ ι r 6∈ G).
Furthermore f(s) = fH(s) = fH(t) = t.
Thus ι s 6∈ G. This contradiction means that Case 2 is not possible.

Case 3 : s ∈ VH and t ∈ VG.
This case is symmetric to Case 2 hence is not possible.

Case 4 : s, t ∈ VH .
So ι s , ι t ∈ H and s = fH(s) = fH(t) = t.

Let r
a

−→
Inv(G, f,H)

s and r
a

−→
Inv(G, f, H)

t with fH(s) = fH(t).

We have s ∈ VG ⇐⇒ t ∈ VG.
In fact, assume that s ∈ VG and t ∈ VH .
So r

a
−→
G

s and f(s) = fH(s) = fH(t) = t.

As r
a

−→
Inv(G, f,H)

t with r
a

−→
G

s and f(s) = t,

we have a contradiction by definition of Inv(G, f,H).
It remains the two cases below.
Case 1 : s, t ∈ VH .

So s = fH(s) = fH(t) = t.
Case 2 : s, t ∈ VG.

So r
a

−→
G

s and r
a

−→
G

t.

Furthermore f(s) = fH(s) = fH(t) = f(t).
As G is f -deterministic, we get s = t.

iii) Let G
f

−−⊲ H with H unambiguous.
Let us show that L(Inv(G, f,H)) = L(H)− L(G).

⊇ : Let a1. . .an ∈ L(H)− L(G) for some n ≥ 0 and a1, . . ., an ∈ T .
There is t0

a1
−→
H

t1 . . .
an
−→
H

tn with ι t0 , o tn ∈ H .

Case 1 : There is no s ∈ VG such that ι s ∈ G and f(s) = t0 .
So ι t0 ∈ Inv(G, f,H).
We have t0

a1
−→

Inv(G, f,H)
t1 . . .

an
−→

Inv(G, f, H)
tn with ι t0 , o tn ∈ Inv(G, f,H).

Hence a1. . .an ∈ L(Inv(G, f,H)).
Case 2 : There is s0 such that ι s0 ∈ G and f(s0) = t0 .

We take a maximal derivation s0
a1−→
G

s1 . . .
am−→
G

sm

such that 0 ≤ m ≤ n and f(s1) = t1, . . ., f(sm) = tm.
Thus s0

a1
−→

Inv(G, f,H)
s1 . . .

am
−→

Inv(G, f, H)
sm

with ι s0 ∈ Inv(G, f,H).
Case 2.1 : m = n.

As a1. . .an 6∈ L(G), o sn 6∈ G. Furthermore o f(sn) = o tn ∈ H .
So o sn ∈ Inv(G, f,H) hence a1. . .an ∈ L(Inv(G, f,H)).

Case 2.2 : m < n.
By maximality of m, we have sm

am+1
−→

Inv(G, f,H)
tm+1 .

Furthermore tm+1
am+1...an

=⇒
Inv(G, f,H)

tn .

As o tn ∈ Inv(G, f,H), we get a1. . .an ∈ L(Inv(G, f,H)).

⊆ : Let u ∈ L(Inv(G, f,H)). By (i), u ∈ L(H).
Assume that u ∈ L(G). There exists s, t such that s

u
−→
G

t with ι s, o t ∈ G.

So s
u

−→
Inv(G, f, H)

t with ι s ∈ Inv(G, f,H) and o f(t) ∈ H .

As Inv(G, f,H)
f ∪ IdH

−−⊲ H unambiguous and by Lemma A.3, o t ∈ Inv(G, f,H).
This is a contradiction by definition of Inv(G, f,H).
✷

A.c Synchronization product

Let us consider two reductions G
f

−→ H and G′ f ′

−→ H .
We partially synchronize G and G′ by applying standard synchronization prod-
uct restricted to couple of vertices having the same morphic image. Precisely and
for

∆ = { (s, s′) ∈ VG×VG′ | f(s) = f ′(s′) }

we define the mapping

f×f ′ : ∆ −→ VH by (f×f ′)(s, s′) = f(s) for any (s, s′) ∈ ∆

and we define the synchronization product

G×f,f ′G′ = { (s, s′)
a

−→ (t, t′) | s
a

−→G t ∧ s′
a

−→G′ t′ ∧ (s, s′), (t, t′) ∈ ∆ }

∪ { c (s, s′) | c ∈ {ι, o} ∧ c s ∈ G ∧ c s′ ∈ G′ ∧ (s, s′) ∈ ∆ }.

The automaton G×f,f ′G′ recognizes L(G) ∩ L(G′) for H unambiguous.

Lemma A.5 We have

G
f

−→ H ∧ G′ f ′

−→ H =⇒ G×f,f ′G′ f×f ′

−→ H

and L(G×f,f ′G′) = L(G) ∩ L(G′) for H unambiguous,

G
f

−−⊲ H ∧ G′
f ′

−−⊲ H =⇒ G×f,f ′G′
f×f ′

−−⊲ H.

Proof.

Let G
f

−→ H and G′ f ′

−→ H . We denote K = G×f,f ′G′.

i) We have K ⊆ G×G′ so K
Id
−→ G×G′ π1−→ G

f
−→ H .

Hence K
π1 o f
−→ H i.e. K

f×f ′

−→ H .
Furthermore L(K) ⊆ L(G×G′) = L(G) ∩ L(G′).
Let us prove the inverse inclusion using the hypothesis that H is unambiguous.
Let a1. . .an ∈ L(G) ∩ L(G′) with n ≥ 0 and a1, . . ., an ∈ T .
There exists accepting paths s0

a1−→
G

s1 . . .
an−→
G

sn and s′0
a1−→
G′

s′1 . . .
an−→
G′

s′n

with ι s0 , o sn ∈ G and ι s′0 , o s
′
n ∈ G′.

So f(s0)
a1
−→
H

f(s1) . . .
an
−→
H

f(sn) and f ′(s′0)
a1
−→
H

f ′(s′1) . . .
an
−→
H

f ′(s′n)

with ι f(s0), ι f
′(s′0), o f(sn), o f

′(s′n) ∈ H .
As H is unambiguous, f(s0) = f ′(s′0), . . ., f(sn) = f ′(s′n). Furthermore

(s0, s
′
0)

a1
−→
G×G′

(s1, s
′
1) . . .

an
−→
G×G′

(sn, s
′
n) with ι (s0, s

′
0), o (sn, s

′
n) ∈ G×G′.

Thus (s0, s
′
0)

a1
−→
K

(s1, s
′
1) . . .

an
−→
K

(sn, s
′
n) with ι (s0, s

′
0), o (sn, s

′
n) ∈ K.

Finally a1. . .an ∈ L(K).

ii) Let G
f

−−⊲ H and G′
f ′

−−⊲ H .

To show that K
f×f ′

−−⊲ H , it remains to check that K is (f×f ′)-deterministic.
Let ι (s, s′) , ι (t, t′) ∈ K with f(s) = f ′(s′) = f(t) = f ′(t′).
So ι s , ι t ∈ G and ι s′ , ι t′ ∈ G′.
As G (resp. G′) is f (resp f ′)-deterministic, s = t (resp. s′ = t′).
Let (r, r′)

a
−→
K

(s, s′) and (r, r′)
a

−→
K

(t, t′) with f(s) = f ′(s′) = f(t) = f ′(t′).

We have r
a

−→
G

s ∧ r
a

−→
G

t and r′
a

−→
G′

s′ ∧ r′
a

−→
G′

t′.

As G (resp. G′) is f (resp f ′)-deterministic, s = t (resp. s′ = t′).
✷

B Stability of binary relation sets

We introduce a condition of stability for any binary relation set R to get boolean
algebras by structural recognizability for F(R) (Theorem B.1). Then we give
a weaker stability condition to get boolean algebras by deterministic structural
recognizability (Theorem B.2). Finally we show that structural recognizabil-
ity coincide with deterministic structural recognizability for stable relation sets
(Proposition B.3).

B.a Strong stability

We say that a binary relation set R is stable if

a) R is closed under ∪ , ∩ , − , −1 , o

b) for any R ∈ R, the relation IdDom(R) = { (x, x) | x ∈ Dom(R) } ∈ R

c) for any functional relation f ∈ R, there exists R ∈ R such that

• Dom(f) ∩Dom(R) = ∅,

• R(x) 6= R(x′) for any x 6= x′ ∈ Dom(R),

• { R(x) | x ∈ Dom(R) } = { P 6= ∅ | ∃ z ∈ Im(f), P ⊆ f−1(z) }.

The last condition (c) called subset adding is illustrated by the following pic-
ture and says that for any element z of Im(f) and any nonempty subset P of
f−1(z), there exists a unique x of Dom(R) such that R(x) = P .

P

z

x

f

R

Let us give some explanations on this stability condition on R. First this condi-
tion is on the vertices and edges of the automata in F(R) and not on the labels
of the accepting paths. Thus the closure under − of condition (a) allows to
remove vertices and edges and, of course, this does not correspond to the closure
under difference of recognized languages. Furthermore the adding condition (c)
allows to add vertices (memory) needed by determinization (exponential space
for finite automata) and also by synchronization product (quadratic space for
finite automata).
Under this condition of stability of R, the automaton family AutF(R)(H) is
closed under morphic determinization, inversion and synchronization product.

Theorem B.1 For any stable family R of binary relations and for any

unambiguous automaton H ∈ F(R), the language family sRecF(R)(H) is a

boolean algebra with respect to L(H).

Proof.
i) Let G ∈ F(R). Let us check that the identity

IdG = { (s, s) | s ∈ VG }

on the vertices of G is in R. As R is closed under ∪ and −1, the relation

R =
⋃

a∈TG ∪{ι,o} (
a

−→
G

) ∪
⋃

a∈TG
(

a
−→
G

)−1 ∈ R.

By the stability condition (b), R is closed under domain identity, hence

IdG = IdDom(R) ∈ R.

ii) Let us show the following copy property :

for any G ∈ F(R) there exists G′ ∈ F(R)
and an isomorphism in R between G and G′ such that VG ∩ VG′ = ∅.

Let G ∈ F(R). By (i), IdG ∈ R.
By the subset adding property (stability condition c) applied to IdG , there
exists a relation S ∈ R such that S(x) 6= S(x′) for any x 6= x′ ∈ Dom(S) and

VG ∩ Dom(S) = ∅ and { S(x) | x ∈ Dom(S) } = { {s} | s ∈ VG }

So S is a bijection from Dom(S) to VG .
We define the automaton G′ for any a ∈ TG ∪ {ι, o} by

a
−→
G′

= S o
a

−→
G

o S−1 ∈ R.

Thus G′ ∈ F(R) and G′ is isomorphic to G by S ∈ R.

iii) Let us show the closure of sRecF(R)(H) under intersection.

Let G
f

−→ H and G′ f ′

−→ H with G,G′ ∈ F(R) and f, f ′ ∈ R.
As H is unambiguous and by Lemma A.5,

L(G×f,f ′G′) = L(G) ∩ L(G′).

By the copy property (ii), we can assume that VG ∩ VG′ = ∅.
By the subset adding property applied to f ∪ f ′, there exists S ∈ R such that

S(x) 6= S(x′) for any x 6= x′ ∈ Dom(S)

{ S(x) | x ∈ Dom(S) } = { P 6= ∅ | ∃ t ∈ VH (P ⊆ (f ∪ f ′)−1(t) }

Let us restrict Dom(S) to its elements x such that S(x) has two vertices, one
of G (and the other of G′): |S(x) ∩ VG| = |S(x) ∩ VG′ | = 1.
This is realized by the following identity relation:

I = IdDom(S)−
[(
S o (f o f−1− IdG) o S−1

)
∪

(
S o (f ′

of ′−1− IdG′) o S−1
)]

So I ∈ R that we use to define the following restriction of S

Ŝ = I o S ∈ R.

Let Ĝ be the automaton defined for any a ∈ TH ∪ {ι, o} by
a

−→
Ĝ

= (Ŝ o
a

−→
G

o Ŝ−1) ∩ (Ŝ o
a

−→
G′

o Ŝ−1)

Thus Ĝ ∈ F(R). This is illustrated by the following picture:

G′

a

a

ι

ι

f f f′ f′

a aι ι

Ŝ Ŝ Ŝ Ŝ

G

H

Ĝ

So Ĝ
Ŝ o f
−→ H with Ĝ isomorphic to G×f,f ′G′.

Thus L(G) ∩ L(G′) = L(Ĝ) ∈ sRecF(R)(H).

iv) Let G
f

−→ H with G ∈ F(R) and f ∈ R.

Let us show that there exists G′ ∈ F(R) and f ′ ∈ R such that G′ f ′

−→ H and
G′ isomorphic to Det(G, f).

By the stability condition (c) applied to f , there exists S ∈ R such that

S(x) 6= S(x′) for any x 6= x′ ∈ Dom(S)

{ S(x) | x ∈ Dom(S)} = Π.

Let us construct an automaton G′ isomorphic to Det(G, f) such that

VG′ ⊆ Dom(S) and G′ S o f
−→ H .

Let

S0 = S o (IdG −
ι

−→
G

) and S1 = (S o f o f−1
o

ι
−→
G

)− S

as illustrated below.

f

ι
S S

(r)

(s) (t)
ι

f
f

r
S0−→ s

r
S1−→ t

Thus S0, S1 ∈ R hence

Ŝ = S o f − (S0 ∪ S1) o f ∈ R

in such a way that Dom(Ŝ) is the set of initial vertices of G′ :
ι

−→
G′

= IdDom(Ŝ) ∈ R.

The o-transition of G′ is defined by
o

−→
G′

= IdDom(S) ∩ (S o
o

−→
G

o S−1) ∈ R.

Finally for any a ∈ TG , we define
a

−→
G′

= S o
a

−→
G

o S−1

− S o
a

−→
G

o (S o f o f−1 − S)−1

− [(S o
a

−→
G

o f o f−1)− (S o
a

−→
G

)] o S−1

which is illustrated below.

S

S a

a

S

f

f

−[S o
a

−→
G

o (S o f o f−1 − S)−1]

a

S

S a

a

f

S

f

S

−[(S o
a

−→
G

o f o f−1)− (S o
a

−→
G

)] o S−1

v) Let us show the closure of sRecF(R)(H) under complementation.

Let G
f

−→ H with G ∈ F(R) and f ∈ R.
By the copy property (ii), we can assume that VG ∩ VH = ∅.
By (iv), we can assume that G is isomorphic to Det(G, f).
As H is unambiguous and by Lemmas A.2 and A.4,

L(Inv(G, f,H)) = L(H)− L(G).

Let us show that there exists g ∈ R and K ∈ F(R) isomorphic to Inv(G, f,H)

such that K
g

−→ H .
We define such an automaton K of vertex set VG ∪ VH as follows:

a
−→
K

=
a

−→
G

∪
a

−→
H

∪
(
(f o

a
−→
H

) − (
a

−→
G

o f)
)

for any a ∈ TH

ι
−→
K

=
ι

−→
G

∪
(ι
−→
H

− f−1
o

ι
−→
G

o f
)

o
−→
K

=
o

−→
H

∪
(
(IdG −

o
−→
G

) ∩ (f o
o

−→
H

o f−1)
)

The construction of K from G
f

−→ H is illustrated by the following picture:

a

o
H

ιnew o
o

G

ι

f f f f a

So K ∈ F(R) with K isomorphic to Inv(G, f,H).

Furthermore K
g

−→ H for g = f ∪ IdH ∈ R.
Finally L(H)− L(G) = L(Inv(G, f,H)) = L(K) ∈ F(R).
✷

B.b Weak stability

To get boolean algebras by deterministic structural recognizability, we do not
need the determinization operation. In fact the closure of dsRecF(R)(H) under
complementation and intersection are obtained by closure of the automaton fam-
ily

dAutF(R)(H) = { G ∈ F(R) | ∃ f ∈ R (G
f

−−⊲ H) }

under inversion and synchronization product. We only need a weaker condition
than stability on R.
We say that R is weakly stable if in the stability condition, we replace the subset
adding property (condition c) by the following pair adding property:

for any functional relation f ∈ R, there exists R ∈ R such that

• Dom(f) ∩ Dom(R) = ∅

• R(x) 6= R(x′) for any x 6= x′ ∈ Dom(R)

• { R(x) | x ∈ Dom(R) } = { {y, f(y)} | y ∈ Dom(f) }.

The pair adding condition allows to add vertices needed for the synchronization
product (quadratic space for finite automata) and also for the inversion (lin-
ear space for finite automata). Under this condition of weak stability of R, the
automaton family dAutF(R)(H) is closed under (morphic) inversion and syn-
chronization product.

Theorem B.2 For any weakly stable family R of binary relations and for

any unambiguous automaton H ∈ F(R), the language family dsRecF(R)(H)
is a boolean algebra with respect to L(H).

Proof.
This is a simplification of the proof of Theorem B.1.
The part (i) remains valid for a weakly stable family, and also (ii) since the pair
adding property applied to IdG is sufficient.
The closure under intersection of (iii) remains true by Lemma A.5 and by ap-
plying directly the pair adding property to f o f ′−1.
The part (iv) is useless. The closure under complementation of (v) remains true
by the second implication of Lemma A.4.
✷

B.c Strong and weak stability

The deterministic structural recognizability coincides with structural recogniz-
ability for any stable relation family.

Proposition B.3 For any stable family R and any automaton H ∈ F(R),

dsRecF(R)(H) = sRecF(R)(H).

Proof.
By definition dsRecF(R)(H) ⊆ sRecF(R)(H). Let us show the inverse inclusion.
Let L ∈ sRecF(R)(H).

So L = L(G) for some G
f

−→ H with G ∈ F(R) and f ∈ R.
By (iv) of the proof of Theorem B.1, there exists G′ ∈ F(R) and f ′ ∈ R such
that

G′ f ′

−→ H and G′ is isomorphic to Det(G, f).

By Lemma A.2, G′
f ′

−−⊲ H with L(G′) = L(Det(G, f)) = L(G).
Hence L = L(G′) ∈ dsRecF(R)(H).
✷

C Proof of Theorem 2

By Theorem B.1, we get Theorem 2 by proving the stability of the families
Stack(m,n) and Count(m,n) for each m,n > 0.
The stability of the families Stack(m,n) are already known for m = 1 except
for the subset adding property. First, we show that for all these families, the
subset adding property coincides with the pair adding which is easy to check.
Then for each n ≥ 1, we translate by desynchronization product the closure
properties of Stack(1, n) to Stack(m,n) for any m > 1.

C.a From pair adding to subset adding

Having a linear order <N on a set N of symbols, recall that the length lexico-

graphic order <llex on the set N∗ of words over N is the linear order defined
for any a, b ∈ N and u, v, w ∈ N∗ by

u <llex v for |u| < |v| ; uav <llex ubw for a <N b and |v| = |w|.

This order is extended to the set (N∗)+ of non empty word tuples as follows:
for any m,n > 0 and u1, . . . , um, v1, . . . , vn ∈ N∗,

(u1, . . . , um) <llex (v1, . . . , vn) for u1# . . .#um <llex v1# . . .#vn

where the symbol # 6∈ N and # < a for any a ∈ N .
Weak stability of a family R of binary relations on (N∗)+ coincides with sta-
bility when the relations of R are bounded and R is closed under intersection
with <llex .

Proposition C.1 Let R be a weakly stable family of bounded relations on

(N∗)+ which is closed under intersection with <lex. Then R is stable.

Proof.
We have to show that R satisfies the subset adding property.

i) Let us extend the pair adding property to any not functional relation of R.
Let R ∈ R. Let us show that there exists S ∈ R such that

Dom(R) ∩ Dom(S) = ∅ and S(x) 6= S(x′) for any x 6= x′ ∈ Dom(S)

and { S(x) | x ∈ Dom(S) } = { {y, z} | y R z }.

As R is bounded, we take the integer

b = max{ |R(x)| | x ∈ Dom(R) }.

Let us check that for any 1 ≤ i ≤ b, the function

fi = { (x, y) ∈ R | |{ z ≤lex y | z ∈ R(x) }| = i } ∈ R.

This is done by strong induction on 1 ≤ i ≤ b.
Basic case : i = 1. So

f1 = R − (R o <llex) = R − R o [(R−1
o R)∩ <llex] ∈ R.

Inductive case : {1, . . . , i− 1} =⇒ (i > 1).

So fi is the function of the basic case for R − (f1 ∪ . . . ∪ fi−1).

It remains to take

S = S1 ∪ . . . ∪ Sb

for S1, . . . , Sb defined by induction as follows:
i = 1 : we take S1 by pair adding from f1 .
i > 1 : having taken S1, . . . , Si−1 with Dom(S),Dom(S1), . . . ,Dom(Si−1) pairwise
disjoint, we take S′

i by pair adding from fi ∪ IdDom(S1 ∪...∪Si−1), and we define

Si = S′
i − (S′

i o IdDom(S1 ∪...∪Si−1)).

ii) Let R ∈ R and b = max{ |R−1(z)| | z ∈ Im(R) }.
Let us show the subset adding property for R : there exists S ∈ R such that

Dom(R) ∩ Dom(S) = ∅ and S(x) 6= S(x′) for any x 6= x′ ∈ Dom(S)

and { S(x) | x ∈ Dom(S) } = { P 6= ∅ | ∃ z ∈ Im(R), P ⊆ R−1(z) }.

Let R = (R o R−1)∩ <llex .
The single adding is realized by S1 ∈ R taken by extended pair adding (i) from
IdDom(R).
Let R1 = ∅. By induction on 1 < i ≤ b, we define

Ri = [Si−1 − (Si−1 o R−1
i−1)] o R

and like in (i), we take S′
i by extended pair adding (i) from Ri ∪ IdDom(S1 ∪...∪Si−1),

and we define

Si = S′
i − (S′

i o IdDom(S1 ∪...∪Si−1)).
Finally we take S = S1 ∪ . . . ∪ Sb .
✷

Proposition C.1 is used to show the subset adding property for any family
Stack(m,n) by only checking the pair adding property.

C.b Stability

Let us show the stability of each family Stack(m,n). The stability of Count(m,n)
is similar. We begin with m = n = 1.

Proposition C.2 The family Stack is stable.

Proof.
The proof of stability condition (a) has already been done in [3]. However we
give here a complete proof.

i) We say that two words u, v are left-irreducible if

u = ε ∨ v = ε ∨ (u, v 6= ε ∧ u(1) 6= v(1))

meaning that they cannot have a first common letter. By taking the greatest
common prefix z of any words u, v, we have the unique decomposition

u = zx ∧ v = zy for x, y left-irreducible.

In that case and for any language W ,

W (u, v) = Wz(x, y)

meaning that any couple (wu,wv) for w ∈ W is obtained by applying by suffix
the rule (x, y) under the left context wz. This is illustrated by the unlabelled
arrow in the following Alph(W ∪ {u, v})-tree:

w

z

x
y

wu
wv

w

wz

W (u, v) :

w ∈ W

(u, v) = z(x, y) with x, y left-irreducible

We say that a system R is left-irreducible if u, v are left-irreducible for any
(u, v) ∈ R. For any left-irreducible systems R,S and for any languages W,Z,
let us show the following equalities:

W.R ∩ Z.S = (W ∩ Z).(R ∩ S) (1)

W.R − Z.S = (W − Z).R ∪ (W ∩ Z)(R− S) (2)

W.R o Z.S =
⋃
{ (Ww−1 ∩ Z)(wu, y) | (u, v) ∈ R ∧ (wv, y) ∈ S }

∪
⋃
{ (W ∩ Zz−1)(u, zy) | (u, zx) ∈ R ∧ (x, y) ∈ S } (3)

ii) Let us check Equality (1) for R and S left-irreducible.
⊇ : obvious and for any relations R,S.

⊆ : let w(u, v) = z(x, y) with w ∈ W , z ∈ Z, (u, v) ∈ R and (x, y) ∈ S.
So wu = zx and wv = zy.
We distinguish the three complementary cases below.
Case 1 : |w| < |z|. Thus u(1) = z(|w|+ 1) = v(1).

Such a case is not possible since u, v are left-irreducible.
Case 2 : |w| > |z|. Thus x(1) = w(|z|+ 1) = y(1).

Such a case is not possible since x, y are left-irreducible.
Case 3 : |w| = |z|. Thus w = z ∈ W ∩ Z and (u, v) = (x, y) ∈ R ∩ S.

iii) Let us check Equality (2) for R and S left-irreducible. We have

W.R = [(W ∩ Z) ∪ (W − Z)].R

= (W ∩ Z).R ∪ (W − Z).R

= (W ∩ Z).[(R ∩ S) ∪ (R− S)] ∪ (W − Z).R

= (W ∩ Z).(R ∩ S) ∪ (W ∩ Z).(R− S) ∪ (W − Z).R

which is by (i) a partition of W.R.
Furthermore by (i), Z.S is disjoint of (W ∩ Z).(R − S) ∪ (W − Z).R.
As (W ∩ Z).(R ∩ S) ⊆ Z.S, we get Equality (2).

iv) Let us check Equality (3) for any relations R,S.
⊆ : Let w ∈ W , z ∈ Z, (u, v) ∈ R and (x, y) ∈ S such that wv = zx.
We have to check that (wu, zy) belongs to the right hand side of Equality (3).
We distinguish the two cases below.
Case 1 : |w| ≥ |z|.
By Levi’s lemma, there exists w such that w = zw and x = wv.
So (wu, zy) = z(wu, y) with z ∈ Ww−1 ∩ Z, (u, v) ∈ R and (wv, y) ∈ S.

Case 2 : |w| ≤ |z|.
By Levi’s lemma, there exists z such that z = wz and v = zx.
So (wu, zy) = w(u, zy) with w ∈ W ∩ Zz−1, (u, zx) ∈ R and (x, y) ∈ S.

⊇ : Due to the union of the set of the right hand side of Equality (3), we have
the two cases below.
Case 1 : Let z ∈ Ww−1 ∩ Z, (u, v) ∈ R and (wv, y) ∈ S.
As zw ∈ W , we get (zwu, zwv) ∈ W.R.
As z ∈ Z, we get (zwv, zy) ∈ Z.S hence (zwu, zy) ∈ W.R o Z.S.

Case 2 : Let w ∈ W ∩ Zz−1, (u, zx) ∈ R and (x, y) ∈ S.
As w ∈ W , we get (wu,wzx) ∈ W.R.
As wz ∈ Z, we get (wzx,wzy) ∈ Z.S hence (wu,wzy) ∈ W.R o Z.S.

v) We can show the stability of the binary relation family Stack.
By definition, the family Stack is closed under ∪ .
Equalities (1-3) give the closure under ∩ , − , −1 , o for the family of elementary
suffix relations. In fact for {(u, v) , (x, y)} left-irreducible and for languages
W,Z, we get

W (u, v) ∩ Z(x, y) =

{
(W ∩ Z)(u, v) if (u, v) = (x, y)
∅ otherwise

W (u, v) − Z(x, y) =

{
(W − Z)(u, v) if (u, v) = (x, y)
W (u, v) otherwise

W (u, v) o Z(x, y) =





(Ww−1 ∩ Z)(wu, y) if x = wv

(W ∩ Zz−1)(u, zy) if v = zx

∅ otherwise.

Furthermore

(W (u, v))−1 = W (v, u).

It follows the closure under ∩ , − , −1 , o of Stack.
In fact consider any suffix relations R,S :

R =
⋃p

i=1 Wi(ui, vi) and S =
⋃q

j=1 Zj(xj , yj)

for some p, q ≥ 0 with for any 1 ≤ i ≤ p, Wi is regular and ui, vi are left-
irreducible, and for any 1 ≤ j ≤ q, Zj is regular and xj , yj are left-irreducible.
Thus

R ∩ S =
⋃

i,j Wi(ui, vi) ∩ Zj(xj , yj) ; R o S =
⋃

i,j Wi(ui, vi) o Zj(xj , yj)

R − S =
⋃

i

⋂
j Wi(ui, vi) − Zj(xj , yj) ; R−1 =

⋃
i

(
Wi(ui, vi)

)−1

IdDom(R) =
⋃p

i=1 Wi(ui, ui)

It remains to check the closure of Stack under subset adding. Note that

R ∩ <llex =
⋃
{ Wi(ui, vi) | 1 ≤ i ≤ p ∧ ui <llex vi }.

By Proposition C.1, it remains to check the weak stability property.
As the family of elementary suffix relations is closed under ∩ and − , we can
assume that

(
Wi(ui, vi)

)
1≤i≤p

is a partition of R i.e.

Wi(ui, vi) ∩ Wj(uj , vj) = ∅ for any 1 ≤ i < j ≤ p.

We take p new symbols &1, . . . ,&p and a relation S satisfying the pair adding
property for R is the following:

S =
⋃p

i=1 Wi(&i, ui) ∪
⋃p

i=1 Wi(&i, vi)

which is a relation of Stack.
✷

Let us translate the stability of Stack(1, 1) to Stack(m, 1) for every m > 1.

Proposition C.3 The family Stack(m, 1) is stable for each m > 1.

Proof.
We restrict the proof to m = 2 since the generalization to any m > 2 is simple.
Recall that a relation of Stack(2, 1) is a finite union of elementary relations of
the form

(W1,W2) ((u1, u2) −→ (v1, v2))

= { (w1u1, w2u2) −→ (w1v1, w2v2) | w1 ∈ W1 ∧ w2 ∈ W2 }

with W1,W2 ∈ Reg(N∗) and u1, u2, v1, v2 ∈ N∗.
The translation of the stability of Stack(1, 1) to Stack(2, 1) is done by the fol-
lowing operation:

(u, v)⊗ (x, y) = ((u, x) , (v, y)) for any u, v, x, y ∈ N∗

that we extend by union to any binary relations R,S on N∗ to get the following
binary relation R⊗S on N∗

×N∗:

R⊗S = { ((u, x) , (v, y)) | uRv ∧ xS y }.

We have the following equalities:

(W1,W2) ((u1, u2) −→ (v1, v2)) = W1(u1 −→ v1) ⊗ W2(u2 −→ v2)

(R⊗S) ∩ (R′
⊗S′) = (R ∩ R′) ⊗ (S ∩ S′)

(R⊗S) − (R′
⊗S′) = (R − R′) ⊗ S ∪ R ⊗ (S − S′)

(R⊗S) o (R′
⊗S′) = (R o R′) ⊗ (S o S′)

Let us check the first equality.

W1(u1 −→ v1) ⊗ W2(u2 −→ v2)

= { (w1u1, w1v1) | w1 ∈ W1 } ⊗ { (w2u2, w2v2) | w2 ∈ W2 }

= { (w1u1, w2u2) −→ (w1v1, w2v2) | w1 ∈ W1 ∧ w2 ∈ W2 }

= (W1,W2) ((u1, u2) −→ (v1, v2)).

Let us check the second equality.

(R⊗S) ∩ (R′
⊗S′)

= { ((u, x) , (v, y)) | uRv ∧ xS y } ∩ { ((u, x) , (v, y)) | uR′ v ∧ xS′ y }

= { ((u, x) , (v, y)) | (u, v) ∈ R ∩ R′ ∧ (x, y) ∈ S ∩ S′ }

= (R ∩ R′) ⊗ (S ∩ S′).

Let us check the third equality.

(R⊗S) − (R′
⊗S′)

= { ((u, x) , (v, y)) | uRv ∧ xS y } − { ((u, x) , (v, y)) | uR′ v ∧ xS′ y }

= { ((u, x) , (v, y)) | uR−R′ v ∧ xS y }

∪ { ((u, x) , (v, y)) | uRv ∧ xS − S′ y }

= (R−R′) ⊗ S ∪ R ⊗ (S − S′).

Let us check the last equality.

(R⊗S) o (R′
⊗S′)

= { ((u, x) , (v, y)) | uRv ∧ xS y } o { ((v, y) , (w, z)) | v R′ w ∧ y S′ z }

= { ((u, x) , (w, z)) | uR o R′w ∧ xS o S′ z }

= (R o R′) ⊗ (S o S′).

These four equalities permit to translate the closure under ∩ , − , o of Stack(1, 1)
to Stack(2, 1).

For the other stability closure properties, consider any relation R of Stack(2, 1) :

R =
⋃p

i=1(Wi,W
′
i) ((ui, u

′
i) −→ (vi, v

′
i))

with for any 1 ≤ i ≤ p, Wi,W
′
i ∈ Reg(N∗) and ui, u

′
i, vi, v

′
i ∈ N∗. So

R−1 =
⋃p

i=1(W
′
i ,Wi) ((u

′
i, ui) −→ (v′i, vi))

and

IdDom(R) =
⋃p

i=1(Wi,W
′
i) ((ui, u

′
i) −→ (ui, u

′
i))

As
R ∩ <llex

=
⋃
{ (W ′

i ,Wi) ((u
′
i, ui) −→ (v′i, vi)) | 1 ≤ i ≤ p ∧ (ui, u

′
i) <llex (vi, v

′
i) }

and by Proposition C.1, it remains to check the closure under pair adding.
By the closure under ∩ and − , we can assume that(

(W ′
i ,Wi) ((u

′
i, ui) −→ (v′i, vi))

)
1≤i≤p

is a partition of R.

We take p new symbols &1, . . . ,&p and a relation S satisfying the pair adding
property for R is the following:

S =
⋃p

i=1(Wi,W
′
i)((&i,&i) −→ (ui, u

′
i)) ∪

⋃p
i=1(Wi,W

′
i)((&i,&i) −→ (vi, v

′
i))

which is a relation of Stack(2, 1).
✷

For any n ≥ 2, the closure of Stack(1, n) under ∩ , − , o (and the iteration of
o) has been done in [2] and its extension to Stack(m,n) for any m > 1 is given
by the equalities in the proof of Proposition C.3. By Proposition C.1, the subset
adding property follows from the pair adding property.

D Proof of Theorems 3 and 4

By Theorem B.2, we get Theorems 3 and 4 by proving the weak stability of
the family Sync of synchronized (rational) relations and its subfamily bSync
of bounded difference length synchronized relations.

Proposition D.1 The families Sync and bSync are weakly stable.

Proof.
Recall that a synchronized relation is a finite union of elementary synchronized
relations of the form:

R(U, V) with R ∈ Reg((N×N)∗) and U, V ∈ Reg(N∗).

Such an elementary relation is in normal form if

(U = V = {ε}) or (U = {ε} ∧ ε 6∈ V) or (V = {ε} ∧ ε 6∈ U).

i) Let us check that any synchronized relation is a finite union of elementary
synchronized relations in normal form.
It is sufficient to check it for U×V with U, V ∈ Reg(N∗).
The relation accepted by an automaton C labelled in N×N is

R(C) = { (a1. . .an, b1. . .bn) | n ≥ 0 ∧ (a1, b1). . .(an, bn) ∈ L(C) }.

Given finite automata A and B recognizing respectively U and V , we define
the finite automaton

C = { (p, s)
(a,b)
−→ (q, t) | p

a
−→
A

q ∧ s
b

−→
B

t } ∪ { ι (p, s) | ι p ∈ A ∧ ι s ∈ B }

For any p ∈ VA and s ∈ Vb , we define the automata

Ap = (A− {ι}×VA) ∪ { ι p } and Bs = (B − {ι}×VB) ∪ { ι s }

Cp,s = C ∪ { o (p, s) }.

This allows to describe the following decomposition of U×V :

U×V =
⋃

o p∈A, o s∈B R(Cp,s)({ε}, {ε})

∪
⋃

o p∈A, s∈VB
R(Cp,s)({ε},L(Bs)− {ε})

∪
⋃

p∈VA, o s∈B R(Cp,s)(L(Ap)− {ε}, {ε})

as a finite union of elementary synchronized relations in normal form.

ii) Let us check the closure of Sync under ∩ and − .
By definition Sync is closed under ∪ and by distributivity, it remains to
check the closure under ∩ and − for elementary synchronized relations in
normal form. In that case,

R(U, ε) ∩ S(V, ε) = (R ∩ S)(U ∩ V, ε)

R(U, ε) ∩ S(ε, V) = ∅ = R(U, ε) ∩ S

R(U, ε) − S(V, ε) = (R− S)(U, ε) ∪ R(U − V, ε)

R(U, ε) − S(ε, V) = R(U, ε) = R(U, ε) − S

iii) Let us check the closure of Sync under o . We have

R(U, V) o S(X,Y) =
(
R(ε, V X−1) o S

)
(U, Y) ∪

(
R o S(XV −1, ε)

)
(U, Y)

Furthermore

R(ε, U) o S =
⋃

u∈U

⋃
z∈N |u|

(
R o S(u, z)−1

)
(ε, z)

which can be described by a finite union since the length-preserving synchro-
nized relation S has a finite number of (right) residuals, and

{ (u′, z′) | S(u, z)−1 = S(u′, z′)−1 }

is a length-preserving synchronized relation.

iv) Let us check the weak stability conditions (b) and (c) for Sync.
The closure under inverse is obvious:(

R(U, V)
)−1

= R−1(V, U)

and also the closure under domain identity:

IdDom(R(U,V)) = IdDom(R).U .

v) It remains to show the pair adding property for any R ∈ Sync.
Let NR be the subset of symbols of N used in R.
We take an injective mapping

ϕ : (NR ∪ {ε})×(NR ∪ {ε}) →֒ N −NR

that we extend to an injective mapping N∗
R×N∗

R −→ (N − NR)
∗ by induction

as follows: for any u, v ∈ N∗
R and a, b ∈ NR ,

ϕ(au, bv) = ϕ(a, b)ϕ(u, v)

ϕ(au, ε) = ϕ(a, ε)ϕ(u, ε)

ϕ(ε, bv) = ϕ(ε, b)ϕ(ε, v)

ϕ(ε, ε) = ε

It remains to check that

S = { (ϕ(u, v), u) | u R v } ∪ { (ϕ(u, v), v) | u R v }

is a relation in Sync.
The relation R is recognized by a synchronized transducer A i.e. a finite
automaton labelled in (NR×NR) ∪ (NR×{ε}) ∪ ({ε}×NR) such that for any

p
(a,b)
−→
A

q
(c,d)
−→
A

r, if a = ε (resp. b = ε) then c = ε (resp. d = ε).

Let A1 (resp. A2) be the automaton obtained from A by renaming each label
(a, b) by (ϕ(a, b), a) [resp. (ϕ(a, b), b)]. Then

S = R(A1) ∪ R(A2) ∈ Sync.

vi) Note that the bounded length difference property is preserved by ∪ , [[]], − , o , −1.
Furthermore in (v) and for R of difference length bounded by b, the relation S

is also of difference length bounded by b since |ϕ(u, v)| = max{|u|, |v|}.
In consequence the relation subfamily bSync remains weakly stable.
✷

E Proof of Propositions 5.1

This proposition is based on the length recognizability. Recall that for any family
R of binary relations on words, the length recognizability from an automaton
H with word vertices, is the following language family:

ℓRecF(R)(H) = { L(G) | ∃ f (G
f

−→ H ∧ f length-preserving) }.

The length structural recognizability from H according to R is

ℓsRecF(R)(H) = { L(G) | ∃ f ∈ R (G
f

−→ H ∧ f length-preserving) }

the recognizability by morphisms in R preserving the length.
For the family bSync of binary relations on words, structural recognizability
can be done by length preserving morphisms.

Proposition E.1 For any automaton H with VH ⊂ N+,

sRecF(bSync)(H) = ℓsRecF(bSync)(H).

Proof.
⊇ : immediate.

⊆ : Let L ∈ sRecF(bSync)(H).

There is a reduction G
f

−→ H such that G ∈ F(bSync), f ∈ bSync, L = L(G).

As f ∈ bSync which is closed under ∪ , ∩ , − we can express f by a disjoint
union of elementary synchronized relations of bounded length difference:

f =
⊎n

i=1 fi(ui −→ vi)

where for any 1 ≤ i ≤ n, fi ∈ Reg((N×N)∗) functional, ui ∈ N∗ and vi ∈ N+.
We take n new symbols p1, . . . , pn and we define the relation

g =
⋃n

i=1 IdDom(fi)(ui −→ ||vi|−1pi).

So g ∈ bSync and Dom(g) = Dom(f) = VG .
Let us check that this relation g is functional and injective. Let

(xiui, xi||vi|−1pi) , (x
′
juj, x

′
j |

|vj |−1pj) ∈ g

with 1 ≤ i, j ≤ n, xi ∈ Dom(fi) and x′
j ∈ Dom(fj). We have to prove

that

xiui = x′
juj ⇐⇒ xi||vi|−1pi = x′

j |
|vj |−1pj .

Assume that xiui = x′
juj. So

(xiui, f(xiui)) = (x′
juj , f(x

′
juj)) ∈ fi.(ui, vi) ∩ fj.(uj , vj).

Thus i = j hence ui = uj and xi = x′
j . So xi|

|vi|−1pi = x′
j |
|vj |−1pj .

Assume that xi||vi|−1pi = x′
j |

|vj |−1pj .
So pi = pj hence i = j. Thus vi = vj and xi = x′

j . So xiui = x′
juj.

So G is isomorphic to the automaton

g(G) = { g(s)
a

−→ g(t) | s
a

−→
G

t } ∪ { c g(s) | c s ∈ G }.

Furthermore g(G) ∈ F(bSync) since for any a ∈ Tg(G) ∪ {ι, o} = TG ∪ {ι, o},
a

−→
g(G)

= g−1
o

a
−→
G

o g.

For f ′ = g−1
o f , we have

g(G)
f ′

−→ H and f ′ ∈ bSync is length-preserving.

Thus L = L(G) = L(g(G)) ∈ ℓsRecF(bSync)(H).

✷

We characterize the family IdlSync(
−→
T) of input-driven synchronized lan-

guages by structural recognizibility from the input-driven automaton Inp1,1(
−→
T)

according to the family F(bSync) of bounded length difference synchronized
automata.

Proposition 5.1 For any partition
−→
T ,

sRecF(bSync)(Inp1,1(
−→
T)) = IdlSync(

−→
T).

Proof.
For Inp1,1 , the partition has three parts:

−→
T = (T−1,T0,T1).

⊇ : Let L ∈ IdlSync(
−→
T).

So L = L(G) for some automaton G with VG ⊂ N+ such that
a

−→
G

∈ Sync for any a ∈ TG ∪ {ι, o}

and for any u
a

−→
G

v, we have |u|, |v| > 0 with

(|v| = |u|+ i for a ∈ Ti) and (|u| = |v| = 1 for a = ι).

In particular G ∈ F(bSync).
Furthermore the length preserving mapping f : VG −→ |∗κ i.e.

f(u) = ||u|−1κ for any u ∈ VG

is a morphism from G into Inp1,1(
−→
T) : G

f
−→ Inp1,1(

−→
T).

As VG is a regular language, f ∈ bSync.

Thus L = L(G) ∈ sRecF(bSync)(Inp1,1(
−→
T)).

ii) Let L ∈ sRecF(bSync)(Inp1,1(
−→
T)).

By Lemma E.1, L ∈ ℓsRecF(bSync)(Inp1,1(
−→
T)).

So L = L(G) for some G
f

−→ Inp1,1(
−→
T) such that

G ∈ F(bSync) and f length-preserving.

So G is input-driven for bSync hence L ∈ IdlSync(
−→
T).

✷

F Proof of Proposition 3.1

We consider the language

L = { an cbn1an1d . . . cbnkankd | n, k > 0 ∧ 0 < n1, . . . , nk ≤ n

∧ ∃ 1 ≤ i < j ≤ k, ni = nj }.

It is easy to check that

L ∈ ℓRecF(Stack2)

(
Inp1,2({b}, ∅, {a}, {d}, {c})

)
.

We take the alphabet

N = {|, †} ∪ Q

where |, † are the two stack letters and Q is a finite set of states.
Taking states p, q, r, s, t, f ∈ Q, we define a stack of stack automaton for having
the following derivations:

p
am+n+1

−→ |m†|nq
c

−→ (|m†|n, |m†|n)r

with

(|m†|n, |m†|n)r
biaidc
−→ (|m†|n, |m†|n)r for any 0 ≤ i ≤ m+ n+ 1

and

(|m†|n, |m†|n)r
bn+1an+1dc

−→ (|m†|n, |m†|n)s

From state s, these two last derivations are repeated by

(|m†|n, |m†|n)s
biaidc
−→ (|m†|n, |m†|n)s for any 0 ≤ i ≤ m+ n+ 1

and

(|m†|n, |m†|n)s
bn+1an+1d

−→ |m†|nf
c

−→ (|m†|n, |m†|n)t

Finally it remains to realize the following derivations:

(|m†|n, |m†|n)t
biaid
−→ |m†|nf for any 0 ≤ i ≤ m+ n+ 1.

The unique initial configuration is p and the set of final configurations is |∗†|∗f .

It remains to show that the complement L of L satisfies

L 6∈ ℓRecF(Stack2)

(
Inp1,2({b}, ∅, {a}, {d}, {c})

)
.

Assume the converse hence the language

M = { an cbn1an1d . . . cbnkankd | n, k > 0 ∧ 0 < n1, . . . , nk ≤ n

∧ ∀ 1 ≤ i < j ≤ k, ni 6= nj }

belongs to ℓRecF(Stack2)

(
Inp1,2({b}, ∅, {a}, {d}, {c})

)
.

So there is a stack of stack automaton G recognizing L(G) = M and length-
reducible to Inp1,2({b}, ∅, {a}, {d}, {c}).
Let N be the alphabet of the configurations of G and

Op = N ∪ N ∪ {#,#, !, ?}.

For any a ∈ T ∪ {ι, o}, we have

a
−→
G

=
⋃

i∈Ia
[[W a

i (u
a
i , v

a
i)]]

for some finite set Ia and for each i ∈ Ia , W a
i ∈ Reg(Op∗) and ua

i , v
a
i ∈ Op∗.

So

−→x
a

−→
G

−→y =⇒ −→x
ua
i v

a
i

−→
G

−→y for some i ∈ Ia .

Let

β = max{ |ua
i |+ |vai | | a ∈ T ∪ {ι, o} ∧ i ∈ Ia }

be the maximal length of the rules defining the labelled transitions of G.
We decompose any word u ∈ N∗ into

u = Pre(u).Suf(u) with |Suf(u)| = min(|u|, β).

Note that

−→x
#(N∪N)∗#

−→ −→y =⇒ −→x = −→y

and

(x0, . . . , xk)
#(N∪N)i#

−→ −→y =⇒ −→y = (x0, . . . , xk−2, yk−1, yk)

with xk−1 = xk and yk−1 = yk of same prefix of length max(|xk|, |yk|)− i.

In particular we get for any u, v ∈ N∗ and n ≥ 0,

u
cbnand
−→ v =⇒

(
|u| = |v| ∧ Pre(u) = Pre(v)

)
.

Let γ = |N |β and aγ cbn1an1d . . . cbnγanγd ∈ M .
There exists an accepting path of G of the form

u
aγ

−→ v0
cbn1an1d

−→ v1 . . .
cbnγanγ d

−→ vγ with ι u , o vγ ∈ G.

As |v0| = . . . = |vγ | and Pre(v0) = . . . = Pre(vγ) , there exists 0 < i < j ≤ γ

such that vi = vj . Thus

aγ cbn1an1d . . . cbnjanjd cbni+1ani+1d . . . cbnγanγd ∈ M

which brings a contradiction since the factor cbnjanjd appears twice.
✷

