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SEDIMENTATION OF PARTICLES IN STOKES FLOW

Amina Mecherbet

IMAG, Montpellier University
Place Eugène Bataillon

Montpellier, 34090, France.

Abstract. In this paper, we consider N identical spherical particles sedimenting in a
uniform gravitational field. Particle rotation is included in the model while fluid and
particle inertia are neglected. Using the method of reflections, we extend the investigation
of [11] by discussing the threshold beyond which the minimal particle distance is conserved
for a short time interval independent of N . We also prove that the particles interact
with a singular interaction force given by the Oseen tensor and justify the mean field
approximation in the spirit of [8] and [9].

1. Introduction

In this paper, we consider a system of N spherical particles (Bi)1≤i≤N with identical
radii R immersed in a viscous fluid satisfying the following Stokes equation:

(1)

{
−∆uN +∇pN = 0,

div uN = 0,
on R3 \

N⋃
i=1

Bi,

completed with the no-slip boundary conditions

(2)

{
uN = Vi + Ωi × (x− xi), on ∂Bi,

lim
|x|→∞

|uN(x)| = 0,

where (Vi,Ωi) ∈ R3 × R3 , 1 ≤ i ≤ N represent the linear and angular velocities,

Bi := B(xi, R).

We describe the intertialess motion of the rigid spheres (Bi)1≤i≤N by adding to the instan-
taneous Stokes equation the classical Newton dynamics for the particles (xi)1≤i≤N

(3)

 ẋi = Vi,
Fi +mg = 0,

Ti = 0,
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2 AMINA MECHERBET

where m denotes the mass of the identical particles adjusted for buoyancy, g the gravita-
tional acceleration, Fi (resp. Ti) the drag force (resp. the torque) applied by the the fluid
on the ith particle Bi defined by

Fi :=

∫
∂Bi

σ(uN , pN)n,

Ti =

∫
∂Bi

(x− xi)× [σ(uN , pN)n],

with n the unit outer normal to ∂Bi and σ(uN , pN) = 2D(uN) − pNI, the stress tensor

where 2D(uN) = ∇uN +∇uN>.
Note that the constant velocities (Vi,Ωi) of each particle are unknown and are determined
by the prescribed force and torque Fi = mg and Ti = 0. In [16], the author shows that the
linear mapping on R6N

(Vi,Ωi)1≤i≤N 7→ (Fi, Ti)1≤i≤N ,

is bijective for all N ∈ N∗. This ensures existence and uniqueness of (uN , pN) and the
velocities.

Remark 1.1 (About the modeling and nondimensionalization). Equations (1)–(3) describe
suspensions sedimenting in a uniform gravitational field. Equations (1), (2) are derived
starting from the Navier-Stokes equations and neglecting the inertial terms by means of the
Reynolds and Stokes number, see [6, Chapter 1 Section 1], [1], [16] and all the references
therein. Analogously, the ODE system (3) is obtained by neglecting particle inertia. We
refer also to [4] where a formal derivation taking into account the slow motion of the system
is performed.
When considering one spherical particle sedimenting in a Stokes flow, the linear relation
between the drag force F and the velocity V is given by the Stokes law

F = −6πRV ,

see Section 2.1 for more details. Stokes law leads to the well-known formula for the fall
speed of a sedimenting single particle under gravitational force denoted by

(4) κg :=
m

6πR
g .

It is important to point out that in our model, a scaling with respect to the velocity fall
κg has been performed. This means that the drag forces (Fi)1≤i≤N and the gravitational
force mg are terms of order R. Consequently, in this paper, κg is a constant of order
one. For more details on the derivation of the model, we refer to [11, Section 1.1] where
a nondimensionalization including physical units is provided. Moreover, as in [4], the
particle radius R is assumed to be proportional to 1

N
so that the collective force applied by

the particles on the fluid is of order one. This will be made precise in the presentation of
the main assumptions.

Given initial particle positions xi(0) := x0
i , 1 ≤ i ≤ N , we are interested in the asymp-

totics of the solution when the number of particles N tends to infinity and the radius R
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tends to zero. The main motivation is to justifiy the representation of the motion of a
dispersed phase inside a fluid using Vlasov-Stokes equations in spray theory [7], [2].
The analysis of the dynamics is done in [13] in the dilute case i.e. when the minimal
distance between particles is at least of order N−1/3. The authors prove that the particles
do not get closer in finite time. Moreover, in the case where the minimal distance between
particles is much larger than N−1/3 the result in [13] shows that particles do not interact
and sink like single particles. We refer finally to [11] where the author considers a particle
system with minimal distance of order N−1/3 and proves that, under a relevant time scale,
the spatial density of the cloud converges in a certain averaged sense to the solution of a
coupled transport-Stokes equation (15).
Since the desired threshold for the minimal distance is of order N−2/3, which allows to
tackle randomly distributed particles, we are interested in extending the results for lower
orders of the minimal distance. Therefore, in this paper, we continue the investigation of
[11] by looking for a more general set of particle configurations that is conserved in time
and prove the convergence to the kinetic equation (15). Also, we include particle rotation
in the modeling.

1.1. Main assumptions and results. In this Section, we describe the configuration of
particles that we consider and present the main results : Theorem 1.2 and Theorem 1.3.
We recall that the particles Bi are spherical with identical radii R

Bi = B(xi, R) , 1 ≤ i ≤ N,

where

R =
r0

N
, r0 > 0 ,

with r0 a positive constant satisfying a smallness assumption (see Theorem 1.2).
Due to the quasi-static modeling, the velocities (Vi(t),Ωi(t))1≤i≤N at time t ≥ 0 depend only
on the prescribed force (Fi)1≤i≤N , torque (Ti)1≤i≤N and the particles position (xi(t))1≤i≤N
at the same time t. Consequently, we drop the dependence with respect to time in the
definition of the set of particle configurations. Keeping in mind that the idea is to start
from a configuration of particles that lies in the set and show that it remains in it for a
finite time interval.

Definition 1.1 (Definition of the set of particle configuration). Let (XN)N∈N∗ be a con-
figuration of particles, where XN := (x1, · · · , xN). We define the minimal distance dNmin

by

dNmin := min
i 6=j

1≤i,j≤N

{|xi − xj| } ,∀N ∈ N∗ .

We introduce the particle concentration MN defined for each positive sequence (λN)N∈N∗
by

MN := sup
x∈R3

{#{i ∈ {1, · · · , N} such that xi ∈ B∞(x, λN)}} ,∀N ∈ N∗ .
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Given two positive constants M̄, E and a sequence (λN)N∈N∗, we define X (M̄, E) as the set
of configurations for which (dNmin)N∈N∗ and (MN)N∈N∗ satisfy the following assumptions:

sup
N∈N

MN

N |λN |3
≤ M̄,(5)

sup
N∈N

|λN |3

|dNmin|2
≤ E .(6)

λN must satisfy the following compatibility conditions:

λN ≥ dNmin/2 , lim
N→∞

λN = 0 .(7)

Remark 1.2. Note that, according to the definition of MN , assumption (5) ensures that

(8)
1

N |λN |3
≤ M̄,

which yields thanks to assumption (6)

(9) dNmin ≥
1√
EM̄1/2

1√
N
.

Since R ∼ 1
N

, this leads also

(10) lim
N→∞

R

dNmin

= 0 ,

which ensures that the particles do not overlap.

Furthermore, for the proof of the second Theorem 1.3, the following assumption must
be satisfied initially:

(11) lim
N→∞

|λN |2

dNmin(0)
= 0 .

Finally, we define ρN the spatial density of the cloud by

ρN(t, x) =
1

N

N∑
i=1

δxi(t)(x) , ρN0 := ρN(0, x).

In the rest of this paper, if needed, we make clear the dependence with respect to time by
writing for all N ∈ N∗, XN(t) = (x1(t), · · · , xN(t)) for the particles configuration, dNmin(t)
for the minimal distance and MN(t) the particle concentration at time t ≥ 0.
The main results of this paper are the two following theorems. The first one ensures
that the particle configurations considered herein are preserved in a short time interval
depending only on the data r0, M̄ , E , κ|g|.

Theorem 1.2. Let (XN(0))N∈N∗ be the initial position of the particles. Assume that there
exists M̄ , E and a sequence (λN)N∈N∗ such that (XN(0))N∈N∗ lies in the set X (M̄, E) i.e.
assumptions (5), (6), (7) hold true initially.
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If M̄1/3r0 is small enough, there exists N∗ ∈ N∗ depending on (r0, M̄ , E) and T > 0
depending on (r0, E , M̄ , κ|g|) such that for all t ∈ [0, T ] and N ≥ N∗

dNmin(t) ≥ 1

2
dNmin(0),

MN(t) ≤ 84MN(0).

The second part of the result is the justification of the convergence of ρN when N tends
to infinity.

Theorem 1.3. Consider the maximal time T > 0 introduced in Theorem 1.2 and the
additional assumption (11). Let ρ0 be a positive regular density such that

∫
R3 ρ0 = 1. We

denote by (ρ, u) the unique solution to the coupled equation (15).
There exists some positive constants C1, C2 depending on (r0, M̄ , E , ‖ρ0‖L∞ , κ|g|) and N∗ ∈
N∗ depending on (r0, M̄ , E , ‖ρ0‖L∞ , κ|g|, T ) such that for all N ≥ N∗ and t ∈ [0, T ]

W1(ρN(t, ·), ρ(t, ·)) ≤ C1

(
λN + dNmin(0) t+W1(ρ0, ρ

N
0 )
)
eC2t.

This shows that if the initial particle distribution ρN0 converges to ρ0 then the particle
distribution ρN converges toward the unique solution ρ of equation (15) for all time 0 ≤
t ≤ T . Moreover, Theorem 1.3 provides a quantitative convergence rate in terms of the
initial Wasserstein distance W1(ρ0, ρ

N
0 ).

Remark 1.3. The regularity assumption on the initial density ρ0 is the one introduced by
Höfer in [11] which is ρ0, ∇ρ0 ∈ Xβ, for some β > 2. See Section 5.1 for the definition of
Xβ. In particular, the assumption is satisfied if ρ0 is compactly supported and C1.

The idea of proof of Theorem 1.3 is to formulate the problem considered as a mean-
field problem. The mean-field theory consists in approaching equations of motion of large
particles systems (X1, · · · , XN) when the number of particles N tends to infinity. In mean-
field theory, the ODE governing the particle motion is known and is given by

(12)

 Ẋi = 1
N

N∑
i=1

F (Xi −Xj),

Xi(0) = X0
i ,

where the kernel F is the interaction force of the particles. The limit model describing the
time evolution for the spatial density ρ(t, x) is given by

(13)

 ∂tρ+Kρ · ∇ρ = 0 ,

Kρ(x) :=
∫
R3 F (x− y)ρ(t, y)dy,

In our case, the first difficulty is to extract a system similar to (12) for the particle motion
and to identify the interaction force F . A key step is then a sharp expansion of the velocities
for large N . We obtain for each 1 ≤ i ≤ N

(14) Vi = κg + 6π
r0

N

∑
j 6=i

Φ(xi − xj)κg +O
(
dNmin

)
, 1 ≤ i ≤ N,
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where Φ is the Green’s function for the Stokes equations, also called the Oseen tensor (see
formula (26) for a definition). κg is the fall speed of a sedimenting single particle under
gravitational force and is of order one in our model, see Remark 1.1. This shows that the
particle system satisfies approximately equation (12) with an interaction force given by the
Oseen tensor. Since the convolution term Kρ appearing in (13) corresponds to the solution
of a Stokes equation in our case, the limiting model describing (1), (2), (3) is a coupled
transport-Stokes equation

(15)


∂ρ
∂t

+ div((κg + u)ρ) = 0 ,
−∆u+∇p = 6πr0κρg ,

div(u) = 0 ,
ρ(0, ·) = ρ0 ,

The proof of Theorem 1.3 is based on the two papers [9], [8] where, in the first one,
the authors justify the mean field approximation and prove the propagation of chaos for
a system of particles interacting with a singular interaction force and where the ODE
governing the particle motion is second order. In [8] the author considers a different mean-
field equation where the particle dynamics is a first order ODE. The results obtained hold
true for a family of singular kernels and applies to the case of vortex system converging
towards equations similar to the 2D Euler equation in vorticity formulation. The associated
kernel in this case is the Biot-Savard kernel.
In order to extract the first order terms for the velocities (Vi,Ωi) we apply the method
of reflections. This method is introduced by Smoluchowski [17] in 1911. The main idea
is to express the solution uN of N separated particles as superposition of fields produced
by the isolated N particle solutions. We refer to [14, Chapter 8] and [6, Section 4] for an
introduction to the method. A convergence proof based on orthogonal projection operators
is introduced by Luke [16] in 1989. We refer also to the method of reflections developped
in [12] which is used by Höfer in [11].
In this paper, we design a modified method of reflections that takes into account the particle
rotation and relies on explicit solutions of Stokes flow generated by a translating, rotating
and straining sphere. To obtain the convergence of the method of reflections we need to
identify particle configuration that can be propagated in time. The particle configuration
considered herein is the one introduced in [10] to study the homogenization of the Stokes
problem in perforated domains. The novelty is that the author considers the minimal
distance dNmin together with the particle concentration MN as parameters to describe the
cloud. The result in [10] extends in particular the validity of the homogenization problem
for randomly distributed particles i.e. particle configurations having a minimal distance
of order at least N−2/3. Note that the notion of particle concentration appears also in [9]
to describe the cloud.

1.2. Discussion about the particle configuration set. As stated above, the assump-
tions introduced in Definition 1.1 are based on [10]. Assumptions (5) and (7) means that
there exists a uniformly bounded discrete spatial density that approximates ρN . Indeed, if
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we define ρ̃N by

(16) ρ̃N(t, x) :=
1

N

N∑
i=1

1B(xi,λN )

|B(xi, λN)|
,

one can show that

W1(ρ̃N , ρN) ≤ λN .

Assumption (5) ensures that there exists a sequence λN for which the infinite norm of ρ̃N

is bounded by M̄ , see formula (95). This suggests that ‖ρ‖∞ and M̄ are equivalent.
We recover the result of [13] in the case where λN = N−1/3 and the minimal distance dNmin

is much larger than N−1/3, the explicit formula for the velocities (14) implies in this case

|Vi − κg| .
6πr0

N

∑
j 6=i

1

|xi − xj|
|κg| . 1

N

N2/3

dNmin

� 1 ,

which is in accordance with the “non-interacting scenario” explained in [13]. In our case,
the smallness assumption on r0M̄

1/3 means that we consider a density of particles such
that ‖ρ‖∞ is small but of order one. Indeed, the second term in the velocity formula (14)
can be seen as a perturbation of order one of the velocity fall κg in the case where M̄ (or
the particle density ‖ρ‖∞) is small. This can be also seen in the coupled equation (15)
where the velocity term u is proportional to ‖ρ‖∞.
The second assumption (6) ensures the conservation of the minimal distance, see Proposi-
tion 4.2. In particular, for λN = N−1/3, Theorem 1.2 extends the previous known results
to configurations having minimal distance at least of order N−1/2, see assumption (6).
This lower bound for the minimal distance appears naturally in our analysis and is closely
related to the properties of the Green’s function for the Stokes equations. We emphasize
that this critical minimal distance appears also in the mean-field analysis due to [8]. Pre-
cisely, computations in the proof of [8, Theorem 2.1] show the convergence for a short time
interval under the assumption that

W∞(ρ0, ρ
N
0 )3

|dNmin(0)|2
,

is uniformly bounded, see Definition 5.4 for the definition of the infinite Wasserstein dis-
tance W∞. Standard measure-theory arguments show that the infinite Wasserstein distance
ensures assumption (5). In other words, one can take λN to be the infinite Wasserstein
distance, which yields finally the same assumption (6).
The first assumption in formula (7) means that we are interested in cases where there is
more than one particle per cube of length λN . As pointed out by Hillairet in [10], one
can choose a larger sequence (λN)N∈N∗ such that the compatibility assumption holds true.
Note also that, in the case where λN is the infinite Wasserstein distance, this compatibility
assumption is satisfied by definition.
Finally, assumption (11) is needed for the control of the Wasserstein distance.



8 AMINA MECHERBET

1.3. Outline of the paper and main notations. The remaining Sections of this paper
are organized as follows.
In Section 2 we recall the classical results for the existence and uniqueness of the Stokes
solution uN . We recall also the definition of the drag force Fi, torque Ti and stresslet Si and
present in Section 2.1 the particular solutions to a Stokes flow generated by a translating, a
rotating or a straining sphere. Finally, the end of Section 2 is devoted to the approximation
of the stresslets Si. In Section 3 we present and prove the convergence of the method of
reflections in order to compute the first order terms for the velocities (Vi,Ωi)1≤i≤N . Section
4 is devoted to the proof of Theorem 1.2. In Section 5 we recall some definitions associated
to the Wasserstein distance. We present then the strong existence, uniqueness and stability
theory for equation (13). In the second part of Section 5 we show that the discrete density
ρN satisfies weakly a transport equation. Section 6 is devoted to the proof of the second
Theorem 1.3. Finally, some technical Lemmas are presented in the appendix.

Notation 1.1. In this paper, n always refer to the unit outer normal to a surface.
The following shortcut will be often used

dij = |xi − xj| , 1 ≤ i 6= j ≤ N ,

where we drop the dependence with respect to N in order to simplify the notation.
Given an exterior domain Ω with smooth boundaries, we set

C∞(Ω) := {v|Ω , v ∈ C∞c (R3)},

and the following norm for all u ∈ C∞(Ω)

‖u‖1,2 := ‖∇u‖L2(Ω),

we define then the homogeneous Sobolev space D(Ω) as the closure of C∞(Ω) for the norm ‖·
‖1,2 (see [5, Theorem II.7.2]). We also use the notation Dσ(Ω) for the subset of divergence-
free D(Ω) fields

Dσ(Ω) := {u ∈ D(Ω) , div u = 0}.

Which is also the closure of the subset of divergence-free C∞(Ω) fields for the ‖ · ‖1,2 norm.
Analogously, if Ω = R3 we use the notation

Ḣ1
σ(R3) = Dσ(R3).

For all 3× 3 matrix M, we define sym(M) (resp. ssym(M)) as the symmetric part of M
(resp. the skew-symmetric part of M)

sym(M) =
1

2
(M +M>) , ssym(M) = 1

2
(M −M>).

We denote by × the cross product on R3 and by ⊗ the tensor product on R3 which associates
to each couple (u, v) ∈ R3 × R3 the 3× 3 matrix defined as

(u⊗ v)ij = uivj , 1 ≤ i, j ≤ 3.
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For all 3× 3 matrices A,B, we use the classical notation

A : B =
3∑
i=1

3∑
j=1

AijBij.

In R3, | · | stands for the Euclidean norm while | · |∞ represents the l∞ norm. We use the
notation B∞(x, r) for the ball with center x and radius r for the l∞ norm.
Finally, in the whole paper we use the symbol . to express an inequality with a multiplicative
constant independent of N and depending only on r0, M̄ , E and eventually on κ|g| which
is uniformly bounded according to Remark 1.1.

2. Reminder on the Stokes problem

In this Section we recall some results concerning the Stokes equations. We remind that
for all N ∈ N we denote by (uN , pN) the solution to (1) – (2). Keeping in mind that the
linear mapping, that associates to the linear and angular velocities the forces and torques,
is bijective (see [16]) together with the classical theory for the Stokes equations yields:

Proposition 2.1. For all N ∈ N, there exists a unique pair (uN , pN) ∈ Dσ(R3 \
⋃
i

Bi) ×

L2(R3 \
⋃
i

Bi) and unique velocities (Vi,Ωi)1≤i≤N such that∫
∂Bi

σ(uN , pN)n+mg = 0 ,∀ 1 ≤ i ≤ N ,∫
∂Bi

(x− xi)× [σ(uN , pN)n] = 0 ,∀ 1 ≤ i ≤ N ,

and u realizes

(17) inf

{∫
R3\

⋃
i
Bi

|∇v|2,

v ∈ Dσ(R3 \
⋃
i

Bi) , v = Vi + Ωi × (x− xi) on ∂Bi , 1 ≤ i ≤ N

}
.

The velocity field uN can be extended to Vi + Ωi × (x − xi) on each particle Bi. This
extension denoted also uN is in Ḣ1

σ(R3).
We recall the definition of the force Fi ∈ R3, torque Ti ∈ R3 and stresslet Si ∈ M3(R)
applied by the particle Bi on the fluid (see [6, Section 1.3])

Fi =

∫
∂Bi

σ(uN , pN)n.

Mi =

∫
∂Bi

(x− xi)⊗
[
σ(uN , pN)n

]
.(18)
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The matrix Mi represents the first momentum which is decomposed into a symmetric and
skew-symmetric part

Mi = Ti + Si,

the symmetric part Si is called stresslet, see [6, Section 2.2.3]. Since the skew-symmetric
part of a 3× 3 matrix M has only three independent components, it can be associated to
a unique vector T such that

ssym(M)x = T × x , ∀x ∈ R3.

In this paper, we allow the confusion between the skew-symmetric matrix ssym(M) and
the vector T . Hence, we define the torque Ti ∈ R3 as being the skew-symmetric part of
the first momentum Mi which satisfies

Ti = ssym(Mi) =

∫
∂Bi

(x− xi)×
[
σ(uN , pN)n

]
,

Si = sym(Mi).(19)

2.1. Particular Stokes solutions. The linearity of the Stokes problem allows us to de-
velop powerful tools that will be used in the method of reflections. In particular, we
investigate in what follows the analytical solution to a Stokes flow generated by a trans-
lating, a rotating or a straining sphere. The motivation in considering these cases is that
the fluid motion near a point x0 may be approximated by

u(x) ∼ u(x0) +∇u(x0) · (x− x0),

hence, if we replace the boundary condition on each particle by its Taylor series of order
one, we can use these special solutions to approximate the flow u. The results and formulas
of this Section are detailed in [6, Section 2] and [14, Section 2.4.1]. In what follows
B := B(a, r) is a ball centered in a ∈ R3 with radius r > 0.

2.1.1. Case of translation. Let V ∈ R3. We consider (Ua,R[V ], Pa,R[V ]) the unique solution
to the following Stokes problem:

(20)

{
−∆Ua,R[V ] +∇Pa,R[V ] = 0,

divUa,R[V ] = 0,
on R3 \B,

completed by the boundary condition

(21)

{
Ua,R[V ] = V, on ∂B,

lim
|x|→∞

|Ua,R[V ](x)| = 0.

Ua,R[V ] is the flow generated by a unique sphere immersed in a fluid moving at V . The
explicit formula for (Ua,R[V ], Pa,R[V ]) is derived in [14, Section 3.3.1] and also in [6, Formula
(2.12) and (2.13)]. Explicit formulas imply the existence of a constant C > 0 such that for
all x ∈ R3 \B(a,R)

|Ua,R[V ](x)| ≤ CR
|V |
|x− a|

, |∇Ua,R[V ](x)|+ |Pa,R[V ](x)| ≤ CR |V |
|x−a|2 .(22)
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(23) |∇2Ua,R[V ](x)| ≤ CR
|V |
|x− a|3

.

On the other hand, the force F , torque T and stresslet S exerted by a translating sphere
B as defined in (18) read

F = −6πRV , T = 0 , S = 0.(24)

We recall now an important formula that links the solution to the Green’s function of the
Stokes problem. For all x ∈ R3 \B(a,R) we have

(25) Ua,R[V ](x) = −
(

Φ(x− a)− R2

6
∆Φ(x− a)

)
F ,

where Φ is the Green’s function for Stokes flow also called Oseen-tensor

(26) Φ(x) =
1

8π

(
1

|x|
I3 +

1

|x|3
x⊗ x

)
.

The 3× 3 matrix ∆Φ represents the Laplacian of Φ and is given by

∆Φ(x) =
1

8π

(
2

|x|3
I3 −

6

|x|5
x⊗ x

)
.

The first term in the right-hand side of (25) is the point force solution also called stokeslet,
see [6, Section 3.1]. In this paper we use the term stokeslet to define the whole solution
Ua,r[V ] which can bee seen as an extension of the point force solution.

Remark 2.1. Formula (25) is closely related to the Faxén law which represents the rela-
tions between the force F and the velocity V . We refer to [6, Section 2.3] and [14, Section
3.5] for more details on the topic.
Remark also that in (25) the point force solution retains the most slowly decaying portion,
which is of order R

|x| . This property is useful in order to extract the first order terms for

the velocities (Vi)1≤i≤N , see Lemma 3.8.

Moreover, we recall a Lipschitz-like inequality satisfied by the Oseen tensor

(27) |Φ(x)− Φ(y)| ≤ C
|x− y|

min(|y|2 , |x|2)
, ∀x , y 6= 0.

Finally, in this paper, the velocity field Ua,R[V ] is extended by V on B(a,R).

2.1.2. Case of rotation. Let ω ∈ R3. Denote by (A
(1)
a,R[ω], P

(1)
a,R[ω]) the unique solution to

(28)

{
−∆A

(1)
a,R[ω] +∇P (1)

a,R[ω] = 0,

divA
(1)
a,R[ω] = 0,

on R3 \B(a,R),

completed with the boundary conditions

(29)

 A
(1)
a,R[ω] = ω × (x− a), on ∂B(a,R),

lim
|x|→∞

|A(1)
a,R[ω]| = 0.
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A
(1)
a,R[ω] represents the flow generated by a sphere rotating with angular velocity ω. In

particular we have P
(1)
a,R[ω] = 0 due to symmetries. The drag force F and stresslet S also

vanish

F = 0 , S = 0.

On the other hand, the hydrodynamic torque resulting from the fluid traction on the
surface defined in (19) is given by

(30) T = −8πR3ω.

Finally, there exists C > 0 such that for all x ∈ R3 \B(a,R)

|A(1)
a,R[ω]| ≤ CR3 |ω|

|x− a|2
, |∇A(1)

a,R[ω]|+ |P (1)
a,R[ω]| ≤ CR3 |ω|

|x−a|3 .

2.1.3. Case of strain. Let E be a trace-free 3× 3 symmetric matrix.

Denote by (A
(2)
a,R[E], P

(2)
a,R[E]) the unique solution to

(31)

{
−∆A

(2)
a,R[E] +∇P (2)

a,R[E] = 0,

divA
(2)
a,R[E] = 0,

on R3 \B(a,R),

completed with the boundary conditions

(32)

 A
(2)
a,R[E] = E(x− a), on ∂B(a,R),

lim
|x|→∞

|A(2)
a,R[E]| = 0.

The velocity field A
(2)
a,R[E] is the flow generated by a sphere submitted to the strain E(x−a).

In this case, the drag force and torque vanishes

F = 0 , T = 0.(33)

On the other hand, the symmetric part of the first momentum S as defined in (19) is given
by

(34) S = −20

3
πR3E.

Finally, there exists C > 0 such that for all x ∈ R3 \B(a,R) we have

|A(2)
a,R[E]| ≤ CR3 |E|

|x|2
, |∇A(2)

a,R[E]|+ |P (2)
a,R[E](x)| ≤ CR3 |E|

|x|3 .(35)

2.1.4. Final notations. Now, assume that D is a trace-free 3 × 3 matrix. We denote by
(Aa,R[D], Pa,R[D]) the unique solution to

(36)

{
−∆Aa,R[D] +∇Pa,R[D] = 0,

divAa,R[D] = 0,
on R3 \B(a,R),
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completed by the boundary conditions

(37)

{
Aa,R[D] = D(x− a), on ∂B(a,R),

lim
|x|→∞

|Aa,R[D]| = 0.

We set then D = E + ω with E = sym(D) and ω = ssym(D). As stated in the definition
(19), ω represents also a 3D vector. Hence, the boundary condition (37) reads

Aa,R[D](x) = D(x− a) = E(x− a) + ω × (x− a), for all x ∈ ∂B(a,R).

We have, thanks to the linearity of the Stokes equation, that

(Aa,R[D], Pa,R[D]) = (A
(1)
a,R[ω], P

(1)
a,R[ω]) + (A

(2)
a,R[E], P

(2)
a,R[E]).

Since the two solutions have the same decay-rate, this yields for all x ∈ R3 \B(a,R)

|Aa,R[D]| ≤ CR3 |D|
|x|2

, |∇Aa,R[D]|+ |Pa,R[D](x)| ≤ CR3 |D|
|x|3 .(38)

Analogously, for the second derivative we have

(39) |∇2Aa,R[D](x)| ≤ CR3 |D|
|x− a|4

.

2.2. Approximation result. In this part we consider the unique solution (v, p) of the
following Stokes problem:

(40)

{
−∆v +∇p = 0,

div v = 0,
on R3 \

N⋃
i=1

Bi,

completed with the boundary conditions

(41)


v = V +D(x− x1), on ∂B1,
v = 0, on ∂Bi, i 6= 1,

lim
|x|→∞

|v(x)| = 0,

with V ∈ R3 and D a trace-free 3× 3 matrix. We set

v1 := Ux1,R[V ] + Ax1,R[D].

We aim to show that the velocity field v1 is a good approximation of the unique solution
v.

Lemma 2.2. For N sufficiently large, we have the following error bound:

‖∇v −∇v1‖L2(R3\
⋃
iBi)
.

R√
dNmin

|V |+ R3

|dNmin|3/2
|D|.
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Proof. We have

‖∇v −∇v1‖2
L2(R3\

⋃
iBi)

= ‖∇v‖2
L2(R3\

⋃
iBi)

− 2

∫
R3\

⋃
iBi

∇v : ∇v1 + ‖∇v1‖2
L2(R3\

⋃
iBi)

,

as v and v1 satisfy the same boundary condition on ∂B1 this yields

(42)

∫
R3\

⋃
iBi

∇v : ∇v1 = −
∫
∂B1

(∂nv1 − p1n) · v

= −
∫
∂B1

(∂nv1 − p1n) · v1 = ‖∇v1‖2
L2(R3\

⋃
iBi)

,

hence

‖∇v −∇v1‖2
L2(R3\

⋃
iBi)

= ‖∇v‖2
L2(R3\

⋃
iBi)
− ‖∇v1‖2

L2(R3\
⋃
iBi)

.

In order to bound the first term we construct an extension ṽ of the boundary conditions
of v and apply the variational principle. We define

ṽ := χ

(
· − x1

dNmin/4

)
v1 − Bx1,dNmin/4,d

N
min/2

[f̄ ],

where χ is a truncation function such that χ = 1 on B(0, 1) and χ = 0 out of B(0, 2).
Thanks to formula (10), for N sufficiently large we have R < dNmin/4 and thus supp ṽ ⊂
B(x1, d

N
min/2). f̄ is defined as follows

f̄(x) := v1(x) · ∇
[
x 7→ χ

(
x− x1

dNmin/4

)]
,

and Bx1,dNmin/4,d
N
min/2

denotes the Bogovskii operator satisfying

divBx1,dNmin/4,d
N
min/2

[f ] = f,

for all f ∈ Lq0(B(x1, d
N
min/2) \ B(x1, dNmin/4) , q ∈ (0,∞). We refer to [5, Theorem III.3.1]

for a complete definition of the Bogovskii operator. In particular, from [10, Lemma 16],
there exists a positive constant C independent of dNmin such that

(43) ‖∇Bx1,dNmin/4,d
N
min/2

[f̄ ]‖L2(A1) ≤ C‖f̄‖L2(A1),

where A1 := B(x1, d
N
min/2) \ B(x1, dNmin/4). With this construction ṽ is a divergence-free

field satisfying the same boundary conditions as v. Moreover, applying formula (43), there
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exists (another) constant C > 0 such that

‖∇ṽ‖2
L2(R3\

⋃
iBi)

=

∫
R3\

⋃
iBi

∣∣∣∣∇ [x 7→ χ

(
x− x1

dNmin/4

)
v1(x)

]∣∣∣∣2 dx
+

∫
R3\

⋃
iBi

|∇Bx1,dNmin/4,d
N
min/2

[f̄ ](x)|2dx

− 2

∫
R3\

⋃
iBi

∇
[
x 7→ χ

(
x− x1

dNmin/4

)
v1(x)

]
: ∇Bx1,dNmin/4,d

N
min/2

[f̄ ](x)dx ,

≤
∫
R3\B1

|χ
(
x− x1

dNmin/4

)
∇v1(x)|2dx

+ C

(∫
A1

|∇v1(x)|2 +
1

|dNmin|2

∣∣∣∣∇χ(x− x1

dNmin/4

)∣∣∣∣2 |v1(x)|2
)
dx.

Since χ
(
·−x1

dNmin/4

)
= 1 on B(x1, d

N
min/4) we get

‖∇v −∇v1‖2
L2(R3\

⋃
iBi)
≤ ‖∇ṽ‖2

L2(R3\
⋃
iBi)
− ‖∇v1‖2

L2(R3\
⋃
iBi)

,

.
∫
A1

|∇v1(x)|2dx ,

+

∫
A1

1

|dNmin|2

∣∣∣∣∇χ(x− x1

dNmin/4

)∣∣∣∣2 |v1|2dx,

Thanks to (22) and (38) we have:∫
A1

1

|dNmin|2

∣∣∣∣∇χ(x− x1

dNmin/4

)∣∣∣∣2 |v1|2

. ‖∇χ‖2
∞

∫
A1

1

|dNmin|2

(
R2 |V |2

|x− x1|2
+R6 |D|2

|x− x1|4

)
,

.
1

|dNmin|2

∫ dNmin/2

dNmin/4

(
R2|V |2 +R6 |D|2

r2

)
dr ,

.
1

|dNmin|2

(
R2|V |2dNmin +R6 |D|2

dNmin

)
.

Reproducing an analogous computation for the first term we obtain finally

(44) ‖∇v −∇v1‖2
L2(R3\

⋃
iBi)
.

R2

dNmin

|V |2 +
R6

|dNmin|3
|D|2.

This yields the expected result. �
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2.3. Estimation of the fluid stresslet. In this part we focus on approaching the stresslet
Si, 1 ≤ i ≤ N , see (19) for the definition. Unlike the drag force Fi and torque Ti, the
symmetric part of the first momentum does not appear in the ODEs governing the motion
of particles, see [6, Section 2.2.3] for more details. However, in order to approximate the
velocities (Vi,Ωi), we only need to estimate its value. Precisely we have

Proposition 2.3. For N sufficiently large, there exists a positive constant C > 0 indepen-
dent of the data such that we have for all 1 ≤ i ≤ N

|Si| .
R3

|dNmin|3/2
max

1≤j≤N
(|Vj|+R|Ωj|) .

Proof. We fix i = 1. Let E be a trace-free symmetric 3 × 3 matrix. We define v as the
unique solution to the following Stokes equation

(45)

{
−∆v +∇p = 0,

div v = 0,
on R3 \

N⋃
i=1

Bi,

completed with the boundary conditions

(46)


v = E(x− x1), on ∂B1,
v = 0, on ∂Bi, i 6= 1,

lim
|x|→∞

|v(x)| = 0.

We also denote by (v1, p1) the special solution (A
(2)
x1,R

[E], P
(2)
x1,R

[E]). We have thanks to the
symmetry of E

S1 : E =

∫
∂B1

sym
(
[σ(uN , pN)n]⊗ (x− x1)

)
: E ,

= −
∫
∂B1

[σ(uN , pN)n] · E(x− x1) ,

= −
∫
∂B1

[σ(uN , pN)n] · v ,

= 2

∫
R3\

⋃
iBi

D(uN) : D(v) ,

= 2

∫
R3\

⋃
iBi

D(uN) : D(v − v1) + 2

∫
R3\

⋃
iBi

D(uN) : D(v1) .(47)
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Using an integration by parts we have for the second term in the right hand side

2

∫
R3\

⋃
iBi

D(uN) : D(v1) = −
N∑
i=1

∫
∂Bi

[σ(v1, p1)n] · (Vi + Ωi × (x− xi)) ,

= −
N∑
i=1

(∫
∂Bi

[σ(v1, p1)n]

)
· Vi −

(∫
∂Bi

[σ(v1, p1)n]× (x− xi)
)
· Ωi ,

= 0 ,

since v1 corresponds to a flow submitted only to a strain, see (33). For the first term in
the right hand side of (47), using Lemma 2.2 we have∣∣∣∣∣

∫
R3\

⋃
iBi

D(uN) : D(v − v1)

∣∣∣∣∣ ≤ ‖∇uN‖L2(R3\
⋃
iBi)

R3

|dNmin|3/2
|E| .

It remains to estimate ‖∇uN‖L2(R3\
⋃
iBi)

. One can reproduce the same arguments as for

the proof of Lemma 2.2 or follow the same proof as [10, Lemma 10] to get

‖∇uN‖2
L2(R3\

⋃
iBi)
. max

i
(|Vi|2 +R2|Ωi|2).

Gathering all the estimates we obtain

S1 : E .
R3

|dNmin|3/2
|E|max

i
(|Vi|+R|Ωi|) ,

this being true for all symmetric trace-free 3×3 matrix E, we obtain the desired result. �

3. Analysis of the stationary Stokes equation

This Section is devoted to the analysis of a method of reflections and computation of
the unknown velocities (Vi,Ωi)1≤i≤N . We remind that, for fixed time, uN is the unique
solution to the stationary Stokes problem{

−∆uN +∇pN = 0,
div uN = 0,

on R3 \
N⋃
i=1

Bi,

completed with the no-slip boundary conditions{
uN = Vi + Ωi × (x− xi), on ∂Bi,

lim
|x|→∞

|uN(x)| = 0,

where (Vi,Ωi) are the unique velocities satisfying

Fi +mg = 0 , Ti = 0 , ∀ 1 ≤ i ≤ N.(48)

In this Section, we show that at each fixed time t ≥ 0, the convergence of the method
of reflections toward the unique solution uN holds true in the case where (XN(t))N∈N∗ ∈
X (M̄, E) and under the assumption that r0M̄

1/3 is small enough.
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3.1. The method of reflections. In this part, we present and prove the convergence of
a modified method of reflections for the velocity field uN for arbitrary N ∈ N∗, we remind
that uN is the unique solution to the stationary Stokes problem (1), (2), with unique
velocities (Vi,Ωi) satisfying (48). The main idea is to express uN as the superposition of
N fields produced by the isolated N particle. Thanks to the superposition principle, we
know that the velocity field

N∑
i=1

(
Uxj ,R[Vj](x) + Axj ,R[Ωj](x)

)
,

satisfies a Stokes equation on R3\
⋃
Bi
i

. But this velocity field does not match the boundary

conditions of uN . Indeed, for all 1 ≤ i ≤ N and x ∈ Bi we have

u(1)
∗ (x) := uN(x)−

N∑
j=1

(
Uxj ,R[Vj](x) + Axj ,R[Ωj](x)

)
,

= −
N∑
i 6=j

(
Uxj ,R[Vj](x) + Axj ,R[Ωj](x)

)
,

which represents the error committed on the boundary conditions when approaching uN

by the sum of the particular Stokes solutions. In this paper, for all u∗ ∈ C∞(
⋃
i

Bi) we use

the notation U [u∗] to define the unique solution of the Stokes problem

(49)

{
−∆u+∇p = 0,

div u = 0,
on R3 \

N⋃
i=1

Bi,

completed by the boundary conditions

(50)

{
u = u∗(x), on Bi,

lim
|x|→∞

|u(x)| = 0,

hence, we can write

uN =
N∑
i=1

Uxi,R[Vi] + Axj ,R[Ωj](x) + U [u(1)
∗ ].

Note that the boundary condition u
(1)
∗ is not constant on each particle Bi, thus, the idea

is to approach u
(1)
∗ by

(51) u(1)
∗ (x) ∼ u(1)

∗ (xi) +∇u(1)
∗ (xi) · (x− xi),

on each particle Bi and write U [u
(1)
∗ ] as follows:

U [u(1)
∗ ] =

N∑
j=1

(
Uxj ,R[V

(1)
j ] + Axj ,R[∇(1)

j ]
)

+ U [u(2)
∗ ],
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where
V

(1)
i := u(1)

∗ (xi) = −
∑
j 6=i

(
Uxj ,R[Vj](xi) + Axj ,R[Ωj](xi)

)
,

∇(1)
i := ∇u(1)

∗ (xi) = −
∑
j 6=i

(
∇Uxj ,R[Vj](xi) +∇Axj ,R[Ωj](xi)

)
,

remark that ∇(1)
i has null trace due to the fact that

div u(1)
∗ (xi) = 0.

We set then U [u
(2)
∗ ] the new error term satisfying

uN =
N∑
j=1

(
Uxj ,R[Vj] + Axj ,R[Ωj]

)
+

N∑
j=1

(
Uxj ,R[V

(1)
j ] + Axj ,R[∇(1)

j ]
)

+ U [u(2)
∗ ],

where for all 1 ≤ i ≤ N , and x ∈ Bi

u(2)
∗ (x) = u(1)

∗ (x)−
N∑
j=1

(
Uxj ,R[V

(1)
j ](x) + Axj ,R[∇(1)

j ](x)
)
,

= u(1)
∗ (x)− V (1)

i −∇(1)
i (x− xi)−

N∑
j 6=i

(
Uxj ,R[V

(1)
j ](x) + Axj ,R[∇(1)

j ](x)
)
.

We iterate then the process by setting for all 1 ≤ i ≤ N

V
(0)
i := Vi , ∇(0)

i := Ωi,(52)

and for p ≥ 1,

V
(p)
i := u(p)

∗ (xi) , ∇(p)
i := ∇u(p)

∗ (xi),(53)

for the error term we set

(54) u(0)
∗ (x) :=

N∑
i

(Vi + Ωi × (x− xi)) 1Bi ,

and define for all p ≥ 0, 1 ≤ i ≤ N , x ∈ Bi

u(p+1)
∗ (x) = u(p)

∗ (x)−
N∑
j=1

(
Uxj ,R[V

(p)
j ](x) + Axj ,R[∇(p)

j ](x)
)

= u(p)
∗ (x)− u(p)

∗ (xi)−∇u(p)
∗ (xi)(x− xi)

−
N∑
j 6=i

(
Uxj ,R[V

(p)
j ](x) + Axj ,R[∇(p)

j ](x)
)
.

(55)

With this construction the following equality holds true for all k ≥ 1

(56) uN =
k∑
p=0

N∑
j=1

(
Uxj ,R[V

(p)
j ] + Axj ,R[∇(p)

j ]
)

+ U [u(k+1)
∗ ].
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Remark 3.1. This method of reflection is obtained by expanding the error term u∗ up to
the first-order

u∗(x) = u∗(xi) +∇u∗(xi)(x− xi) + o (|x− xi|2),

which leads us to formula (56). If one consider an expansion of u∗ up to the zeroth-order
then one obtain only a stokeslet development:

uN =
k∑
p=0

N∑
j=1

Uxj ,R[V
(p)
j ] + U [u(k+1)

∗ ].

The main difference between these two expansions is that the first one allows us to tackle
the particle rotation. It also helps us to obtain a converging method of reflections for a
more general assumption on the minimal distance.

We emphasize that we only need to show that the series

(
k∑
p=0

V
(p)
i ,

k∑
p=0

∇(p)
i

)
k∈N

for all

1 ≤ i ≤ N converge to obtain the convergence of the expansion (56), see Lemma 3.1 and
Proposition 3.2. Precisely, the only assumptions needed to obtain the convergence of the
series are the smallness of M̄1/3r0, assumption (5) and the fact that

lim
N→∞

|λN |3

dNmin

= 0 , lim
N→∞

R|λN |3
|dNmin|2

= 0,

which is less restrictive than (6).
The second step is to show that the expansion is a good approximation of the unique solution
uN . This is ensured by Proposition 3.4. Precisely, in addition of the previous assumptions,
we need the following uniform bound

sup
N∈N∗

R|λN |3

|dNmin|3
< +∞.

One can show that this assumption is less restrictive than (6) and allows us to consider
smaller minimal distance. To reach lower bound for the minimal distance, one may develop
u∗ at higher orders.

3.1.1. Preliminary estimates. Recall that the dependence in time is implicit in this Section.
All the following estimates hold true under the assumption that there exists a sequence
(λN)N∈N∗ and two positive constants M̄, E such that (XN)N∈N∗ ∈ X (M̄, E), see Definition
1.1 and M̄1/3r0 is small enough.

Lemma 3.1. Assume that there exists M̄, E and a sequence (λN)N∈N∗ such that the particle
configuration (XN)N∈N∗ lies in X (M̄, E). If M̄1/3r0 is small enough, there exists a positive
constant K < 1/2 and N(r0, M̄ , E) ∈ N∗ such that

max
i
|V (p+1)
i |+Rmax

i
|∇(p+1)

i | ≤ K
(

max
i
|V (p)
i |+Rmax

i
|∇(p)

i |
)
,

for all N ≥ N(r0, M̄ , E).



SEDIMENTATION OF PARTICLES IN STOKES FLOW 21

Proof. Using formulas (53) and (55) we get

V
(p+1)
i = u(p+1)

∗ (xi) ,

= −
N∑
j 6=i

(
Uxj ,R[V

(p)
j ](xi) + Axj ,R[∇(p)

j ](xi)
)
,(57)

and

∇(p+1)
i = ∇u(p+1)

∗ (xi) ,

= −
N∑
j 6=i

(
∇Uxj ,R[V

(p)
j ](xi) +∇Axj ,R[∇(p)

j ](xi)
)
.(58)

This yields, for all 1 ≤ i ≤ N , using the decay-rate of the special solutions (38), (22) and
Lemma A.1 with k = 1 and k = 2

|V (p+1)
i |

≤ C
∑
j 6=i

R
|V (p)
j |
dij

+R3
|∇(p)

j |
d2
ij

≤ Cr0

(
max
i
|V (p)
i |+Rmax

i
|∇(p)

i |
)( |λN |3
|dNmin|

M̄ + M̄1/3 +
R|λN |3

|dNmin|2
+RM̄2/3

)
,

similarly, using (10), we have for all 1 ≤ i ≤ N

|∇(p+1)
i | ≤ C

∑
j 6=i

R
|V (p)
j |
d2
ij

+R3
|∇(p)

j |
d3
ij

,

≤ C
(

max
i
|V (p)
i |+Rmax

i
|∇(p)

i |
)(∑

j 6=i

R

d2
ij

+
1

dNmin

∑
j 6=i

R2

d2
ij

)
,

= C
(

max
i
|V (p)
i |+Rmax

i
|∇(p)

i |
)(∑

j 6=i

R

d2
ij

)(
1 +

R

dNmin

)
,

≤ Cr0

(
max
i
|V (p)
i |+Rmax

i
|∇(p)

i |
)( |λN |3
|dNmin|2

M̄ + M̄2/3

)
.

Finally

max
i
|V (p+1)
i |+Rmax

i
|∇(p+1)

i | ≤ Cr0

(
max
i
|V (p)
i |+Rmax

i
|∇(p)

i |
)

×
(
|λN |3

dNmin

M̄ + M̄1/3 +
R|λN |3

|dNmin|2
M̄ +RM̄2/3

)
.

For the second term on the right hand side we have

|λN |3

dNmin

+
R|λN |3

|dNmin|2
=
|λN |3

|dNmin|2
(
dNmin +R

)
,
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which vanishes when N tends to infinity according to (6) and (7). Moreover, if r0M̄
1/3 is

small enough, this ensures the existence of a positive constant K < 1/2 such that

max
i
|V (p+1)
i |+Rmax

i
|∇(p+1)

i | ≤ K
(

max
i
|V (p)
i |+Rmax

i
|∇(p)

i |
)
.

for N large enough and depending on r0, M̄ and E . �

We have the following estimate.

Proposition 3.2. Let (Ui)1≤i≤N be N vectors of R3 and (Di)1≤i≤N be N trace-free 3 × 3
matrices. There exists N(r0, M̄ , E) ∈ N∗ such that for all N ≥ N(r0, M̄ , E) we have

∥∥∥∥∥
N∑
i=1

(Uxi,R[Ui] + Axi,R[Di])

∥∥∥∥∥
Ḣ1(R3\∪

l
Bl)

. max
1≤i≤N

(|Ui|+R|Di|).

Proof. Considering only the stokeslet expansion we have

(59)

∥∥∥∥∥
N∑
i=1

Uxi,R[Ui]

∥∥∥∥∥
2

Ḣ1(R3\∪
l
Bl)

=

N∑
i=1

‖Uxi,R[Ui]‖2
Ḣ1(R3\∪

i
Bi)

+
N∑
i=1

N∑
j 6=i

∫
R3\∪

l
Bl

∇Uxi,R[Ui] : ∇Uxj ,R[Uj] .

The first term in the right hand side of (59) can be computed using the fact that Uxi,R[Ui] =
Ui on ∂Bi, 1 ≤ i ≤ N and formula (24)

N∑
i=1

‖Uxi,R[Ui]‖2
Ḣ1(R3\∪

l
Bl)
≤

N∑
i=1

∫
R3\Bi

∇Uxi,R[Ui] : ∇Uxi,R[Ui] ,

= −
N∑
i=1

∫
∂Bi

[σ(Uxi,R[Ui], Pxi,R[Ui])n] · Ui ,

=
N∑
i=1

6πR|Ui|2 ,

≤ 6πr0

(
max

1≤i≤N
|Ui|
)2

.
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For the second term in the right hand side of (59) we write for all i 6= j

∫
R3\∪

l
Bl

∇Uxi,R[Ui] : ∇Uxj ,R[Uj]

= −
N∑
l=1

∫
∂Bl

[σ(Uxi,R[Ui], Pxi,R[Ui])n] · Uxj ,R[Uj] ,

≤
N∑
l=1

4πR2 ‖σ(Uxi,R[Ui], Pxi,R[Ui])‖L∞(∂Bl)

∥∥Uxj ,R[Uj]
∥∥
L∞(∂Bl)

,

:=
N∑
l=1

4πR2Oli,j.

According to the decay properties of the stokeslet (22) we have

‖σ(Uxi,R[Ui], Pxi,R[Ui])‖L∞(∂Bl)
. R

|Ui|
d2
il

(1− δil) +
|Ui|
R
δil ,∥∥Uxj ,R[Uj]

∥∥
L∞(∂Bl)

.
R|Uj|
djl

(1− δjl) + |Uj|δjl ,(60)

where δij is the Kronecker symbol. On the other hand, we recall that the triangle inequality
dij ≤ dil + djl yields for all i 6= j 6= l

(61)
1

dildjl
≤ 1

dij

(
1

dil
+

1

djl

)
.
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Using (60), formula (61) twice and Lemma A.1 we obtain for all i 6= j

N∑
l=1

4πR2Oli,j =
∑
l 6=i,j

4πR2Oli,j + 4πR2Oii,j + 4πR2Oji,j ,

.
∑
l 6=i,j

R2R|Ui|
d2
il

R|Uj|
djl

+R2 |Ui|
R

R|Uj|
dij

+R2R|Ui|
d2
ij

|Uj| ,

.
R3

dij

(
1

dij

(∑
l 6=i,j

R

dil
+
∑
l 6=i,j

R

djl

)
+
∑
l 6=i,j

R

d2
il

)
|Uj||Ui|

+R2 |Uj||Ui|
dij

+R3 |Ui||Uj|
d2
ij

,

.
R3

dij

(
1

dij

(
|λN |3

dNmin

M̄ + M̄1/3

)
+
|λN |3

|dNmin|2
M̄ + M̄2/3

)
|Uj||Ui|

+R2 |Uj||Ui|
dij

+R3 |Ui||Uj|
d2
ij

,

.
R3

dij

(
EM̄ +

M̄1/3r2
0

dNmin

+ M̄2/3

)
|Uj||Ui|+R2 |Uj||Ui|

dij
+R3 |Ui||Uj|

d2
ij

,

.

[
R3

dij

1

dNmin

+
R2

dij
+
R3

d2
ij

]
|Uj||Ui| ,

where we kept only the largest terms using the fact that dNmin vanishes according to (7) for
N large enough. Hence, the second term in the right hand side of (59) yields using Lemma
A.1

N∑
i=1

N∑
j 6=i

∫
R3\∪

l
Bl

∇Uxi,R[Ui] : ∇Uxj ,R[Uj] .
N∑
i=1

N∑
j 6=i

[
R3

dij

1

dNmin

+
R2

dij
+
R3

d2
ij

]
|Uj||Ui| ,

. max
1≤i≤N

(
N∑
j 6=i

[
R2

dij

1

dNmin

+
R

dij
+
R2

d2
ij

])(
max

1≤i≤N
|Ui|
)2

,

.

[(
R

dNmin

+ 1

)(
|λN |3

dNmin

M̄ + M̄1/3

)
+
R|λN |3

|dNmin|2
M̄ +RM̄2/3

](
max

1≤i≤N
|Ui|
)2

,

.

(
max

1≤i≤N
|Ui|
)2

,

where we used the fact that R
dNmin
. 1 thanks to (10) and |λN |3

dNmin
≤ |λN |3
|dNmin|2

dNmin . 1 according

to (6) and (7). The term involving rotating and straining solutions Axi,R[Di] is handled
analogously. �
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Since the series
k∑
p=0

V
(p)
i ,

k∑
p=0

∇(p)
i are convergent, we denote their limit by

V ∞i :=
∞∑
p=0

V
(p)
i , ∇∞i :=

∞∑
p=0

∇(p)
i .

Thanks to the linearity of the Stokes equation and Proposition 3.2, the expansion term

N∑
i=1

(
Uxi,R

[
k∑
p=0

V
(p)
i

]
+ Axi,R

[
k∑
p=0

∇(p)
i

])
,

converges in Ḣ1(R3 \∪
l
Bl) uniformly in N to the expansion where we replace the series by

their limit. This shows that the error term U [u
(k)
∗ ] has a limit when k → ∞. In order to

quantify the error term, we begin by the following estimate

Proposition 3.3. For all k ≥ 1 we set

η(k) := max
j
|V (k)
j |+R max

j
|∇(k)

j |.

Under the same assumptions as Lemma 3.1, there exists N(r0, M̄ , E) ∈ N∗ such that for
all N ≥ N(r0, M̄ , E) and 1 ≤ i ≤ N

‖∇2u(k+1)
∗ ‖L∞(Bi) .

(
1 +

|λN |3

|dNmin|3
+ | log(M̄1/3λN)|

)
max
i

(|Vi|+R|Ωi|),

‖∇u(k+1)
∗ ‖L∞(Bi) . R‖∇2u(k+1)

∗ ‖L∞(Bi) + η(k),

‖u(k)
∗ ‖L∞(Bi) . R2‖∇2u(k+1)

∗ ‖L∞(Bi) + η(k).

Proof.

1. Estimate of ‖∇2u
(k+1)
∗ ‖L∞(Bi)

Let x ∈ Bi, using formula (10) we recall that for i 6= j

|x− xj| ≥ |xi − xj| − |x− xi| ≥
1

2
dij.

Applying this, formula (10), the decay properties of the second gradient of single particle
solutions (23), (39) and the iteration formula (55) together with Lemma A.1 for k = 3
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yields

|∇2u(k+1)
∗ (x)|

≤ |∇2u(k)
∗ (x)|+

∑
j 6=i

|∇2Uxj ,R[V
(k)
j ](x)|+ |∇2Axj ,R[∇(k)

j ](x)| ,

. ‖∇2u(k)
∗ ‖L∞(Bi) +

∑
j 6=i

|V (k)
j |
d3
ij

R +
|∇(k)

j |
d4
ij

R3 ,

. ‖∇2u(k)
∗ ‖L∞(Bi) +

(∑
j 6=i

R

d3
ij

+
R

dNmin

∑
j 6=i

R

d3
ij

)(
max
j
|V (k)
j |+Rmax

j
|∇(k)

j |
)
,

= ‖∇2u(k)
∗ ‖L∞(Bi) +

(∑
j 6=i

R

d3
ij

)(
1 +

R

dNmin

)
η(k) ,

. ‖∇2u(k)
∗ ‖L∞(Bi) + r0M̄

(
|λN |3

|dNmin|3
+ | log(M̄1/3λN)|+ 1

)
η(k),

hence, we iterate the formula and use the fact that ∇2u
(0)
∗ = 0 according to formula (54)

to get

‖∇2u(k+1)
∗ ‖L∞(Bi) .

(
1 +

|λN |3

|dNmin|3
+ | log(M̄1/3λN)|

) k∑
p=0

η(p),

which yields the expected result by applying Lemma 3.1.

2. Estimate of ‖∇u(k+1)
∗ ‖L∞(Bi)

Let x ∈ Bi, again, the decay properties of the gradient of the special solutions (22), (38),
formula (55) and Lemma A.1 yields

|∇u(k+1)
∗ (x)|

≤ |∇u(k)
∗ (x)−∇u(k)

∗ (xi)|+
∑
j 6=i

|∇Uxj ,R[V
(k)
j ](xi)|+ |∇Axj ,R[∇(k)

j ](xi)| ,

. R‖∇2u(k)
∗ ‖L∞(Bi) +

∑
j 6=i

|V (k)
j |
d2
ij

R +
|∇(k)

j |
d3
ij

R3 ,

. R‖∇2u(k)
∗ ‖L∞(Bi) +

(∑
j 6=i

R

d2
ij

+
R

dNmin

∑
j 6=i

R

d2
ij

)(
max
j
|V (k)
j |+Rmax

j
|∇(k)

j |
)
,

. R‖∇2u(k)
∗ ‖L∞(Bi) +

(
1 +

R

dNmin

)(
|λN |3

|dNmin|2
M̄ + M̄2/3

)
r0η

(k),

again, according to (10), note that for N large enough, 1 + R
dNmin
≤ 2. We conclude using

assumption (6) to bound the right hand side by η(k) up to constants depending on M̄ , E ,
r0.
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3. Estimate of ‖u(k+1)
∗ ‖L∞(Bi)

Let x ∈ Bi, again, the decay property (22), (38) and formula (55) yields

|u(k+1)
∗ (x)|

≤ R2‖∇2u(k)
∗ ‖L∞(Bi) +

∑
j 6=i

|Uxj ,R[V
(k)
j ](x)|+ |Axj ,R[∇(k)

j ](x)| ,

. R2‖∇2u(k)
∗ ‖L∞(Bi) +

∑
j 6=i

|V (k)
j |
dij

R +
|∇(k)

j |
d2
ij

R3 ,

. R2‖∇2u(k)
∗ ‖L∞(Bi) + r0

(
|λN |3

dNmin

M̄ + M̄1/3 +
R|λN |3

|dNmin|2
M̄ +RM̄2/3

)
η(k).

Using (6) and (7), the right hand side can be bounded by η(k) up to constants depending
on M̄ , E , r0. �

3.1.2. Approximation result. We can now state the main result of this Section.

Proposition 3.4. Assume that there exists M̄, E and a sequence (λN)N∈N∗ such that
(XN)N∈N∗ ∈ X (M̄, E). Assume moreover that M̄1/3r0 is small enough.
There exists a positive constant C = C(r0, M̄ , E) and N(r0, M̄ , E) ∈ N∗ satisfying for all
N ≥ N(r0, M̄ , E)

lim
k→∞
‖∇U [u(k+1)

∗ ]‖L2(R3\
⋃
Bi) ≤ CRmax

i
(|Vi|+R|Ωi|),

Proof. The aim is to estimate ‖∇U [u
(k+1)
∗ ]‖L2(R3\

⋃
Bi). To this end, we construct a suitable

extension E[u
(k+1)
∗ ] of the boundary conditions of u

(k+1)
∗ and apply the variational principle

(17). By construction, u
(k+1)
∗ is regular and well defined on each particle B(xi, R). Hence,

we construct the extension piecewise in eachB(xi, 2R). Let 1 ≤ i ≤ N , for all x ∈ B(xi, 2R)
we set

vi(x) := u
(i)
1 (x) + u

(i)
2 (x),

where the first term u
(i)
1 matches the boundary condition on B(xi, R) and vanishes outside

B(xi, 2R). The second term is the correction needed to get div vi = 0. In order to obtain

an extension of u
(k)
∗ on B(xi, 2R) we set

u
(i)
1 (x) = u(k)

∗

(
xi +R

x− xi
|x− xi|

)
χ

(∣∣∣∣x− xiR

∣∣∣∣) , if |x− xi| ≥ R,

u
(i)
1 (x) = u(k)

∗ (x), if x ∈ B(xi, R) ,

with χ a truncation function such that χ = 1 on [0, 1] and χ = 0 outside [0, 2].
We have then

(62) ‖∇u(i)
1 ‖L∞(B(xi,2R)) ≤ Kχ

(
‖∇u(k)

∗ ‖L∞(B(xi,R)) +
1

R
‖u(k)
∗ ‖L∞(B(xi,R))

)
.
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In what follows we introduce the notation A(x, r, R) := B(x,R) \ B(x, r) for r < R. For
the second term we set:

u
(2)
i = Bxi , R , 2R(− div u

(1)
i ),

where B is the Bogovskii operator, see [10, Appendix A Lemma 15 and 16] for more details.
The construction satisfies:

• supp u
(2)
i ⊂ A(xi, R, 2R)

• div vi = 0
• vi = u

(1)
i = u

(k)
∗ on B(xi, R)

We set then

E[u(k+1)
∗ ] =

N∑
i

vi(x)1B(xi,2R),

and thanks to the variational formulation we have

‖∇U [u(k+1)
∗ ]‖2

L2(R3\
⋃
Bi)
≤ ‖∇E[u(k+1)

∗ ]‖2
L2(R3\

⋃
Bi)

,

=
N∑
i

‖∇vi‖2
L2(A(xi,R,2R)),

where we used the fact that the vi have disjoint support.
Thanks to the properties of the Bogovskii operator Bxi , R , 2R we get

‖∇vi‖2
L2(B(xi,R)) .

∫
A(xi,R,2R)

|∇u(i)
1 |2 ,

. R3‖∇u(i)
1 ‖2

L∞(B(A(xi,R,2R))) ,

. R3

(
‖∇u(k)

∗ ‖L∞(Bi) +
1

R
‖u(k)
∗ ‖L∞(Bi)

)2

.

Finally

‖∇U [u(k+1)
∗ ]‖2

L2(R3\
⋃
Bi)
.

N∑
i=1

R3

(
‖∇u(k)

∗ ‖L∞(Bi) +
1

R
‖u(k)
∗ ‖L∞(Bi)

)2

.

Thanks to Proposition 3.3 we have

‖∇u(k)
∗ ‖L∞(Bi) +

1

R
‖u∗‖L∞(Bi)

. max
i

(|Vi|+R|Ωi|)
(
R +

R|λN |3

|dNmin|3
+R| log(M̄1/3λN)|

)
+

(
1

R
+ 1

)
η(k).

Since

η(k) ≤ Kkmax
i

(|Vi|+R|Ωi|),
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with K < 1 according to Lemma 3.1, we get

‖∇U [u(k+1)
∗ ]‖2

L2(R3\
⋃
Bi)

. max
i

(|Vi|+R|Ωi|)2
{
R

(
R +

R|λN |3

|dNmin|3
+R| log(M̄1/3λN)|

)
+ (1 +R)Kk

}2

.

Since K < 1 for N large enough the second term on the right hand side, which is uniformly
bounded with respect to N , vanishes when k →∞. This yields

lim
k→∞
‖∇U [u(k+1)

∗ ]‖L2(R3\
⋃
Bi)

. Rmax
i

(|Vi|+R|Ωi|)
(
R +

R|λN |3

|dNmin|3
+R| log(M̄1/3λN)|

)
.

The second term on the right hand side can be bounded using assumptions (6), (8) and
(10)

R +
R|λN |3

|dNmin|3
+R| log(M̄1/3λN)| . R +

R

dNmin

E +
| log M̄ |+ logN

N
. 1,

Finally we obtain

lim
k→∞
‖∇U [u(k+1)

∗ ]‖L2(R3\
⋃
Bi) . Rmax

i
(|Vi|+R|Ωi|) ,

which is the desired result. �

Remark 3.2. According to Proposition 3.3 we have for all 1 ≤ i ≤ N

‖u(k+1)
∗ ‖L∞(Bi) . R2‖∇2u(k+1)

∗ ‖L∞(Bi) + η(k)

. max
i

(|Vi|+R|Ωi|)
{
R

(
R|λN |3

|dNmin|3
+R| log(M̄1/3λN)|

)
+Kk

}
.

as for the proof of Proposition 3.4 the second term vanishes when k →∞ and we obtain

lim
k→∞
‖u(k+1)
∗ ‖L∞(Bi) . max

i
(|Vi|+R|Ωi|)R.

3.1.3. Some associated estimates. We recall that we aim to compute the velocities (Vi,Ωi)
associated to the unique solution uN of the Stokes equation:{

−∆uN +∇pN = 0,
div uN = 0,

on R3 \
N⋃
i=1

Bi,

completed with the no-slip boundary conditions{
uN = Vi + Ωi × (x− xi), on ∂Bi,

lim
|x|→∞

|uN(x)| = 0,

with

Fi +mg = 0 , Ti = 0 , ∀1 ≤ i ≤ N.
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The method of reflections obtained in this Section helps us to describe the velocity field
uN in terms of explicit flows

uN =
N∑
j=1

(
Uxj ,R

[
V

(∞)
j

]
+ Axj ,R

[
∇(∞)
j

])
+ lim

k→∞
U [u(k)

∗ ].

In order to extract a formula for the unknown velocities (Vi,Ωi), 1 ≤ i ≤ N we need to

compute first the velocities V
(∞)
i and matrices ∇(∞)

i . Applying the method of reflections
and writing the force, torque and stresslet associated to the unique solution uN in two
different ways we get the following result.

Lemma 3.5. Consider the same assumptions as Proposition 3.4.
There exists N(r0, M̄ , E) ∈ N∗ such that for all N ≥ N(r0, M̄ , E)

V ∞i = κg +O

(
max
i

(|Vi|+R|Ωi|) R√
dNmin

)
, 1 ≤ i ≤ N ,

R |∇∞i | = O

(
max
i

(|Vi|+R|Ωi|) R

|dNmin|
3/2

)
, 1 ≤ i ≤ N ,

where κg is defined thanks to formula (4).

Proof. For the sake of clarity we fix i = 1 and the same result holds for all 1 ≤ i ≤ N .
Let V ∈ R3, D a trace-free 3× 3 matrix.

The main idea is to apply an integration by parts with a suitable test function v ∈
Dσ(R3 \

⋃
i

Bi) such that v = V + D(x − x1) on ∂B1 and v = 0 on the other ∂Bj, j 6= 1.

We choose v the unique solution to the Stokes equation:

(63)

{
−∆v +∇p = 0,

div v = 0,
on R3 \

N⋃
i=1

Bi,

completed by the boundary conditions

(64)


v = V +D(x− x1), on ∂B1,
v = 0 on ∂Bi, i 6= 1,

lim
|x|→∞

|v(x)| = 0.
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We extend uN and v by their boundary values on all Bi, 1 ≤ i ≤ N . We set E = sym(D),
Ω = ssym(D). An integration by parts yields

2

∫
R3\

⋃
i
Bi

D(uN) : D(v) = −
∑
i

∫
∂Bi

[
σ(uN , pN)n

]
· v ,

= −
∫
∂B1

[
σ(uN , pN)n

]
· (V + Ω× (x− x1) + E(x− x1)) ,

= −V ·
∫
∂Bi

σ(uN , pN)n(65)

− Ω ·
∫
∂Bi

(x− xi)×
[
σ(uN , pN)n

]
,

− E :

∫
∂Bi

(x− xi)⊗
[
σ(uN , pN)n

]
,

= −V · F1 − Ω · T1 − E : S1,(66)

see (18) and (19) for the definition of the force F1, torque T1 and stresslet S1. On the other
hand, we apply the method of reflections to get

(67)

∫
R3\

⋃
i
Bi

D(uN) : D(v) =

N∑
j=1

∫
R3\

⋃
i
Bi

(D(Uxj ,R[V ∞j ]) +D(∇Axj ,R[∇∞j ])) : D(v)

+ lim
k→∞

∫
R3\

⋃
i
Bi

D(U [uk∗]) : D(v).

For the first term we integrate by parts to get for all 1 ≤ j ≤ N

2

∫
R3\

⋃
i
Bi

D(Uxj ,R[V ∞j ]) : D(v) = −
N∑
i=1

∫
∂Bi

[
σ(Uxj ,R[V ∞j ], Pxj ,R[V ∞j ])n

]
· v.

2

∫
R3\

⋃
i
Bi

D(Axj ,R[∇∞j ]) : D(v) = −
N∑
i=1

∫
∂Bi

[
σ(Axj ,R[∇∞j ], Pxj ,R[∇∞j ])n

]
· v.

Recall that v vanishes on ∂Bi, i 6= 1 and hence, the sums above are reduced to the first
term. Applying (34) (30) and (24) there holds for all 1 ≤ j ≤ N∫

∂B1

[
σ(Uxj ,R[V ∞j ], Pxj ,R[V ∞j ])n

]
· v = −6πRV ∞1 · V δ1j.



32 AMINA MECHERBET∫
∂B1

[
σ(Axj ,R[∇∞j ], Pxj ,R[∇∞j ])n

]
· v =

− πR3

(
8 ssym(∇∞1 ) · Ω +

20

3
sym(∇∞1 ) : E

)
δ1j,

where δ1j is the Kronecker symbol.
For the second term on the right hand side of formula (67), we consider v1 := Ux1,R[V ] +
Ax1,R[D] and write

(68)

∫
R3\

⋃
iBi

DU [uk∗] : D(v) =∫
R3\

⋃
iBi

D(U [uk∗]) : D(v1) +

∫
R3\

⋃
iBi

D(U [uk∗]) : D(v − v1).

To bound the last term we apply Lemma 2.2 and Proposition 3.4

lim
k→∞

∣∣∣∣∣
∫
R3\

⋃
iBi

D(U [uk∗]) : D(v − v1)

∣∣∣∣∣
. max

i
(|Vi|+R[Ωi|)R

(
R√
dNmin

|V |+ R3

|dNmin|3/2
|D|

)
,

.
R2√
dNmin

(|V |+R|D|) max
i

(|Vi|+R|Ωi|).

We focus now on the first term on the right hand side of formula (68), we have∣∣∣∣∣∣
∫
R3\∪

i
Bi

DU [u(k)
∗ ] : D(v1)

∣∣∣∣∣∣ =

∣∣∣∣∣∑
i

∫
∂Bi

[σ(v1, p1) · n] · u(k)
∗

∣∣∣∣∣ ,
≤
∑
i

4πR2‖σ(v1, p1)‖L∞(Bi)‖u(k)
∗ ‖L∞(Bi),

using the decay properties (22), (38) we have

‖σ(v1, p1)‖L∞(Bi) .
R|V |
d2
i1

+
R3

d3
i1

|D|, for i 6= 1 ,

‖σ(v1, p1)‖L∞(B1) .
|V |
R

+ |D|,
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hence ∣∣∣∣∣∣
∫
R3\∪

i
Bi

D(U [u(k)
∗ ]) : D(v1)

∣∣∣∣∣∣ . R(|V |+R|D|)‖u(k)
∗ ‖L∞(B1) ,

+R
∑
i 6=1

(
R2|V |
d2
i1

+
R4|D|
d3
i1

)
max
i
‖u(k)
∗ ‖L∞(Bi) ,

. R(|V |+R|D|) max
i
‖u(k)
∗ ‖L∞(Bi).

According to Remark 3.2 , we have for all 1 ≤ i ≤ N

lim
k→∞
‖u(k)
∗ ‖L∞(Bi) . Rmax

i
(|Vi|+R|Ωi|).

Finally we get

(69) lim
k→∞

∣∣∣∣∣
∫
R3\

⋃
iBi

D(U [uk∗]) : ∇v1

∣∣∣∣∣+

∣∣∣∣∣
∫
R3\

⋃
iBi

D(U [uk∗]) : ∇(v − v1)

∣∣∣∣∣ .
max
i

(|Vi|+R|Ωi|)
R2√
dNmin

(|V |+R|D|).

Identifying formula (66) and (67) and gathering all the inequalities above we have for all
V , Ω ∈ R3 and symmetric trace-free 3× 3 matrix E

− V · F1 − Ω · T1 − E : S1 = 6πRV ∞1 · V + 8πR3 ssym(∇∞1 ) · Ω +
20

3
πR3 sym(∇∞1 ) : E

+O

(
max
i

(|Vi|+R|Ωi|)
R2√
dNmin

(|V |+R|D|)

)
,

with F1 +mg = 0, T1 = 0. Note that the value of the stresslet Si, see (19) for the definition,
is unknown. However, we only need to approximate its value using Proposition 2.3. We
conclude by identifying the terms involving V ∈ R3 to obtain

V ∞i :=
∞∑
p=0

V
(p)
i =

m

6πR
g +O

(
max
i

(|Vi|+R|Ωi|)
R√
dNmin

)
,

for the skew-symmetric part we get

R |ssym(∇∞1 )| . max
i

(|Vi|+R|Ωi|)
R√
dNmin

. max
i

(|Vi|+R|Ωi|)
R

|dNmin|3/2
,

and for the symmetric part using Proposition 2.3

R |sym(∇∞1 )| = O

(
max
i

(|Vi|+R|Ωi|)
R

|dNmin|3/2

)
,

which concludes the proof. �
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Corollary 3.6. Under the same assumptions as Lemma 3.5, there exists a positive constant
C = C(κ|g|) and N(r0, M̄ , E) ∈ N∗ such that for all N ≥ N(r0, M̄ , E) we have

max
1≤i≤N

(|Vi|+R |Ωi|) ≤ C.

Proof. recall that V
(0)
i = Vi, ∇(0)

i = Ωi for all 1 ≤ i ≤ N , according to Lemma 3.5 and
Lemma 3.1 we obtain for all 1 ≤ i ≤ N

|Vi|+R|Ωi| ≤ |V ∞i |+R|∇∞i |+
∞∑
p=1

(∣∣∣V (p)
i

∣∣∣+R
∣∣∣∇(p)

i

∣∣∣) ,
≤ |V ∞i |+R|∇∞i |+K

(
∞∑
p=0

Kp

)
max
i

(|Vi|+R|Ωi|) ,

. κ|g|+
(

R

|dNmin|3/2
+

K

1−K

)
max
i

(|Vi|+R|Ωi|).

Hence, according to Lemma 3.1 we have K
1−K < 1. Moreover, assumption (9) ensures that

R

|dNmin|3/2
.
E3/4M̄3/4

N1/4
,

which vanishes when N goes to infinity. �

3.2. Extraction of the first order terms for the velocities (Vi,Ωi). In order to
control the motion of the particles, we want to provide a good approximation of the un-
known velocities (Vi,Ωi). Thanks to the method of reflections, the velocity field uN can
be approached by a superposition of analytical solutions to a Stokes flow generated by a
translating, a rotating and a straining sphere (See Proposition 3.4) with the associated
velocities (V ∞i ,∇∞i ). This allows us to compute the first order terms for (Vi,Ωi) applying
Lemma 3.5 and Corollary 3.6. Keeping in mind that all the computations are done for a
fixed time t ≥ 0, the main result of this Section is the following Proposition.

Proposition 3.7. Assume that, for a fixed time, we have the existence of a sequence
(λN)N∈N∗ and two positive constants M̄, E such that (XN)N∈N∗ ∈ X (M̄, E). Assume more-
over that M̄1/3r0 is small enough. Then, there exists N(r0, M̄ , E) ∈ N∗ such that for all
N ≥ N(r0, M̄ , E), for all 1 ≤ i ≤ N we have

Vi = κg + 6πR
N∑
j 6=i

Φ(xi − xj)κg +O
(
dNmin

)
, RΩi = O

(
dNmin

)
,

We begin by the following lemma:

Lemma 3.8. For all trace-free 3 × 3 matrices (Di)1≤i≤N , for all W ∈ R3 and 1 ≤ i ≤ N
we have

N∑
j 6=i

∣∣6πRΦ(xi − xj)W − Uxj ,R[W ](xi)
∣∣ . R|W |.
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N∑
j 6=i

∣∣Axj ,R[Dj](xi)
∣∣ . Rmax

j
R|Dj|.

Proof of Lemma 3.8. Thanks to formula (25) we have for i 6= j

Uxj ,R[W ](xi) = 6πRΦ(xj − xi)W +
1

4

R3

|xj − xi|3
W − 3

4
R3 (xj − xi) ·W

|xj − xi|5
(xj − xi),

this yields ∣∣Uxj ,R[W ](xi)− 6πRΦ(xj − xi)W
∣∣ . R3

d3
ij

|W |.

Applying Lemma A.1 with k = 3 yields

N∑
j 6=i

∣∣Uxj ,R[W ](xi)− 6πRΦ(xj − xi)W
∣∣ . N∑

j 6=i

R3

d3
ij

|W |

. Rr0M̄

(
R|λN |3

|dNmin|3
+R(| log M̄ |+ | log λN |)

)
|W |.

We have thanks to assumptions (6), (8) and (10)

R|λN |3

|dNmin|3
+R(| log M̄ |+ | log λN |) ≤ R

dNmin

E +R| log M̄ |+R logN . 1.

Analogously, we obtain the second bound by applying A.1 with k = 2 this time. �

We can now prove the main result.

Proof of Proposition 3.7. Let fix 1 ≤ i ≤ N . According to Lemma 3.5 and Corollary 3.6
we have

V ∞i =
∞∑
p=0

V
(p)
i =

m

6πR
g +O

(
R√
dNmin

)
.

As V
(0)
i = Vi we get

Vi = −
∞∑
p=1

V
(p)
i +

m

6πR
g +O

(
R√
dNmin

)
.

Formula (57) for the velocities V
(p)
j yields

Vi =
∞∑
p=1

∑
j 6=i

(
Uxj ,R[V

(p−1)
j ](xi) + Axj ,R[∇(p−1)

j ](xi)
)

+
m

6πR
g +O

(
R√
dNmin

)
,

=
m

6πR
g +

∑
j 6=i

(
Uxj ,R[V ∞j ](xi) + Axj ,R[∇∞j ](xi)

)
+O

(
R√
dNmin

)
,
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we apply Lemma 3.8, Lemma 3.5 and Corollary 3.6 together with (9) and (10) to get:∑
j 6=i

∣∣Axj ,R[∇∞j ](xi)
∣∣ . Rmax

j
R|∇∞j | ,

. R
R

|dNmin|3/2
,

≤ dNmin

E3/4M̄3/4

N1/4
,

. dNmin.

Now, we rewrite the sum as follows:∑
j 6=i

Uxj ,R[V ∞j ](xi) =
∑
j 6=i

Uxj ,R[κg](xi) +
∑
j 6=i

Uxj ,R
[
V ∞j − κg

]
(xi),

and we bound the error term using the decay rate (22), Lemma 3.5 and Lemma A.1 with
k = 1 ∣∣∣∣∣∑

j 6=i

Uxj ,R
[
V ∞j − κg

]
(xi)

∣∣∣∣∣ .
(∑

j 6=i

R

dij

)
max
j

∣∣V ∞j − κg∣∣ ,
.

R√
dNmin

,

. dNmin.

We conclude by replacing the stokeslets by the Oseen tensor thanks to Lemma 3.8. Finally
we have for all 1 ≤ i ≤ N

Vi = κg + 6πR
N∑
j 6=i

Φ(xi − xj)κg +O
(
dNmin

)
.

For the angular velocities we obtain thanks to Lemma 3.5 and formula (58) for ∇(p)
1 , p ≥ 1

RΩ1 = −
∞∑
p=1

R ssym∇(p)
1 +O

(
R√
dNmin

)
,

= R ssym

(∑
j 6=1

∇Uxj ,R[V ∞j ](x1) +∇Axj ,R[∇∞j ](x1)

)
+O

(
R√
dNmin

)
.
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As before, using Lemma 3.5 we bound the first term by

R

∣∣∣∣∣∑
j 6=1

∇Uxj ,R[V ∞j ](x1) +∇Axj ,R[∇∞j ](x1)

∣∣∣∣∣
. R

(∑
j 6=1

R

d2
1j

+
R2

d3
1j

)
max
j

(|V ∞j |, R|∇∞j |) ,

. R

(∑
j 6=1

R

d2
1j

)(
1 +

R

dNmin

)
max
j

(|V ∞j |, R|∇∞j |) ,

. Rr0

(
|λN |3

|dNmin|2
M̄ + M̄2/3

)
,

. dNmin

(
R|λN |3

|dNmin|3
+ M̄2/3

)
,

. dNmin ,

where we used the fact that R|λN |3
|dNmin|3

is uniformly bounded according to (6) and (10). �

4. Control of the particle distance and concentration

In this Section, we make precise the particle behavior in time. Precisely we want to
prove that if initially there exists two positive constants M̄, E and a sequence (λN)N∈N∗
such that (XN(0))N∈N∗ ∈ X (M̄, E) (see Definition 1.1), then the same holds true for a
finite time. Recall that the initial distribution of particles satisfies:

• The minimal distance is at least of order |λN |3/2.
• The maximal number of particles concentrated in a cube of width λN satisfies

assumption (5).

We aim to show that there exists a small interval of time [0, T ] independent of N on
which the particle distance and concentration stay at the same order. The idea is to use
a Gronwall argument and the computation of the velocities (Vi)1≤i≤N at each fixed time
t ≥ 0.

4.1. Proof of Theorem 1.2. We assume that initially there exists two positive constants
M̄, E and a sequence (λN)N∈N∗ such that (XN(0))N∈N∗ ∈ X (M̄, E). Let T > 0 be such
that

(70) dij(t) ≥
1

2
dij(0) ,∀1 ≤ i 6= j ≤ N , ∀t ∈ [0, T [.

This maximal time T > 0 exists and we aim to prove that it is independent of N . As long
as t < T we have a control on the particle concentration.

Lemma 4.1 (Control of particle concentration MN). As long as t ∈ [0, T [ we have:

MN(t) ≤ 84MN(0).
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Proof. We recall the definition of MN(t)

MN(t) := sup
x∈R3

{
#
{
i ∈ {1, · · · , N} such that xi(t) ∈ B∞(x, λN)

}}
.

We introduce the following quantity:

(71) LN(t) := max
i

#
{
j ∈ {1, . . . , N} such that |xi(t)− xj(t)|∞ ≤ λN)

}
.

One can show that the two definitions of concentration LN(t) and MN(t) are equivalent in
the sense that

LN(t) ≤MN(t) ≤ 8LN(t)

see Lemma A.2 for the proof. We also need to introduce the following notation for all
β > 0:

LNβ (t) := max
i

#
{
j ∈ {1, . . . , N} such that |xi(t)− xj(t)|∞ ≤ βλN)

}
,

and

MN
β (t) := sup

x

{
#
{
i ∈ {1, · · · , N} such that xi(t) ∈ B∞(x, βλN))

}}
,

with the notation

MN
1 (t) := MN(t) , LN1 (t) := LN(t).

We have for all β > 0 and all α > 1

LNαβ(t) ≤ 8dαe3LNβ (t),

where d·e denotes the ceiling function. See Corollary A.3 for the proof.
The idea is to show that the concentration LN is controlled in time and hence, the same

applies to MN according to Lemma A.2. Recall that we have for all t ∈ [0, T [

dij(t) ≥
1

2
dij(0).

Now, fix 1 ≤ i ≤ N and consider j 6= i satisfying |xi(0)− xj(0)|∞ > λN , then

|xi(t)− xj(t)|∞ ≥
1√
3
|xi(t)− xj(t)| ,

≥ 1

2
√

3
|xi(t)− xj(0)| ,

>
λN

2
√

3
.

Which means that

j 6∈
{

1 ≤ k ≤ N, such that |xi(t)− xk(t)| ≤
λN

2
√

3

}
.
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We obtain

(72)

{
1 ≤ j ≤ N , such that |xi(t)− xj(t)| ≤

λN

2
√

3

}
⊂
{

1 ≤ j ≤ N , such that |xi(0)− xj(0)| ≤ λN
}
.

Hence taking the maximum over 1 ≤ i ≤ N we obtain

LN1
2
√

3

(t) ≤ LN(0),

thus, we apply Corollary A.3 with β = 1
2
√

3
and α = β−1 = 2

√
3 to get

LN(t) ≤ 83LN(0).

According to Lemma A.2, the equivalence between MN and LN yields finally for all t ∈
[0, T [

MN(t) ≤ 84MN(0).

This ends the proof. �

This shows that as long as t < T we have (XN(t))N∈N∗ ∈ X (84M̄, 4E). This implies the
following control.

Proposition 4.2. Assume that there exists two positive constants M̄, E and a sequence
(λN)N∈N∗ such that (XN)N∈N∗ ∈ X (84M̄, 4E). If r0M̄

1/3 is small enough, there exists
N(r0, M̄ , E) and a positive constant C = C(r0, M̄ , E , κ|g|) independent of N such that for
all N ≥ N(r0, M̄ , E), for all i 6= j we have

|Vi − Vj| ≤ Cdij.

Proof. For the sake of clarity we fix i = 1 and j = 2. The computations below are
independent of this choice. Thanks to Proposition 3.7 we obtain :

V1 − V2 = 6πR
N∑

i 6=1,2

(Φ(x1 − xi)− Φ(x2 − xi))κg +O(dNmin).

Hence, according to assumption (6), formula (27) and using Lemma A.1 for k = 2 we
obtain

|V1 − V2| . R
N∑

i 6=1,2

(
1

d2
1i

+
1

d2
2i

)
|x1 − x2|+O(dNmin) ,

. r0

(
M̄
|λN |3

|dNmin|2
+ M̄2/3

)
|x1 − x2|+O(dNmin) ,

. d12.

We set then C > 0 the universal constant implicit in the above estimate. �

We have the following control.
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Lemma 4.3 (Control of particle distance). For all 1 ≤ i 6= j ≤ N , for all t ∈ [0, T [ we
have

dij(t) ≥ dij(0)e−Ct.

Proof. Thanks to (70) and Lemma 4.1 we have for all t < T that

(XN(t))N∈N∗ ∈ X (84M̄, 4E).

Hence, all computations from Proposition 4.2 hold true up to time T . In other words, there
exists a positive constant C = C(r0, M̄ , E , κ|g|) such that for all indices 1 ≤ i 6= j ≤ N we
have

|Vi(t)− Vj(t)| ≤ C dij(t)∀t ∈ [0, T [,

thus,

d

dt
dij(t) ≥ −|Vi(t)− Vj(t)|,

≥ −C dij(t).
This entails

dij(t) ≥ dij(0)e−Ct ,

which is the desired result. �

Conclusion. Thanks to Lemma 4.3 and Lemma 4.1 we have for all 1 ≤ i 6= j ≤ N ,
t ∈ [0, T [

dij(t) ≥ dij(0)e−Ct,

MN(t) ≤ 84MN(0),

this shows that T is independent of N and is at least of order log(2)
C

where C depends on
(r0, M̄ , E , κ|g|).

5. Reminder on Wasserstein distance and analysis of the limiting equation

In this part we recall some important results of existence, uniqueness, regularity and
stability concerning the mean-field equation (13). We recall also the definition of the
Monge-Kantorovich-Wasserstein distance of order one and infinite. We refer to [18, Part
I, chapter 6] for definition and properties of the order one distance W1. To define the
infinite Wasserstein distance we start with some associated notions. We refer to [3] for
more details.

Definition 5.1 (Transference plan). Let µ , ν ∈ P(R3) be two probability measures. The
set of transference plans from µ to ν denoted Π(µ , ν) is the set of all probability measures
π ∈ P(R3 × R3) with first marginal µ and second marginal ν i.e.

π ∈ Π(µ , ν)⇔
∫ ∫

R3×R3

(φ(x) + ψ(y))π(dxdy) =

∫
R3

φ(x)µ(dx) +

∫
R3

ψ(y)ν(dy),

for all φ , ψ ∈ Cb(R3).

Recall that for all probability measure λ ∈ P(R3 × R3) we have
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Definition 5.2 (Essential supremum).

λ− esssup |x− y| := inf{t ≥ 0 : λ({(x, y) ∈ R3 × R3 : |x− y| > t}) = 0}.
We recall also the definition of the support for a (non-negative) measure.

Definition 5.3 (Measure support). Given µ ∈ P(R3) a non-negative measure, then the
support of µ is defined as the set of all points x for which every open neighbourhood of x
has positive measure

suppµ = {x ∈ R3 : ∀V ∈ V(x) , µ(V ) > 0},
where V(x) denotes the set of open neighbourhoods of x.

With this definition for the support one can show that there holds

λ− esssup |x− y| := sup{|x− y| : (x, y) ∈ supp λ}).
We can now define the infinite Wasserstein distance W∞:

Definition 5.4 (Infinite Wasserstein distance). The infinite Wasserstein distance between
two probability measures µ and ν is defined as follows:

W∞(µ , ν) = inf
π∈Π(µ , ν)

{π − esssup |x− y|}.

A transference plan π∗ ∈ Π(µ, ν) satisfying

W∞(µ , ν) = π∗ − esssup |x− y|,
is called an optimal transference plan.

We recall also the definition of a transport map.

Definition 5.5 (Transport map). Given two probability measures µ and ν, a transport
map T is a measurable mapping T : suppµ→ R3 such that

ν = T#µ.

We emphasize that T (R3) ⊂ supp ν µ - almost everywhere. Indeed

µ{x ∈ R3 : T (x) /∈ supp ν } = µ{T−1(csupp ν )} ,
= ν{c supp ν} ,
= 0.

Remark 5.1. Note that, for all transport map T from µ to ν one may associate a trans-
ference plan (Id, T )#µ ∈ Π(µ , ν) i.e. the pushforward of µ by the map x 7→ (x, T (x)) and
we have

(Id, T )#µ− esssup |x− y| ,
= inf{t ≥ 0 : (Id, T )#µ({(x, y) ∈ R3 × R3 : |x− y| ≥ t}) = 0} ,
= inf{t ≥ 0 : µ((Id, T )−1{(x, y) ∈ R3 × R3 : |x− y| ≥ t}) = 0} ,
= inf{t ≥ 0 : µ({x ∈ R3 : |x− T (x)| ≥ t}) = 0} ,
= µ− esssup |x− T (x)|.
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Note that this yields

inf
π∈Π(µ , ν)

{π − esssup |x− y|} ≤ inf{µ− esssup |T (x)− x| , T : suppµ→ R3 , ν = T#µ}.

It is then natural to investigate in which conditions one has the existence of a transport
map T associated to an optimal transference plan. As in [9] we refer to [3] for the following
existence result.

Theorem 5.6 (Champion, De Pascale, Juutinen). Assume that µ is absolutely continuous
with respect to the Lebesgue measure. Then there exists optimal transference plans, and at
least one of them is given by a transport map T . If moreover ν is a finite sum of Dirac
masses, this optimal transport map is unique.

5.1. Existence, uniqueness and stability for the mean-field equation. Consider
the following problem

(73)

{
∂ρ
∂t

+ div((κg +Kρ)ρ) = 0 ,
ρ(0, ·) = ρ0 ,

recall the definition of the kernel K

Kη(x) = 6πr0κ

∫
Φ(x− y) g η(y)dy,

for all η ∈ L∞(R3)×L1(R3). We refer to the existence and uniqueness result due to Höfer
[11, Theorem 9.2] in the case where the initial data ρ0 and its gradient ∇ρ0 are in the space
Xβ for some β > 2 where

Xβ := {h ∈ L∞(R3) , ‖h‖Xβ <∞},
with

‖h‖Xβ := esssup
x

(1 + |x|β)|h(x)|.

Theorem 5.7 (Höfer). Assume that ρ0, ∇ρ0 ∈ Xβ for β > 2. There exists a unique
solution ρ ∈ W 1,∞((0, T ), Xβ) to equation (73) for all T > 0 and a unique well defined flow
X satisfying

(74)

{
∂sX(s, t, x) = κg +Kρ(s,X(s, t, x)), ∀ s, t ∈ [0,+∞[,
X(t, t, x) = x, ∀ t ∈ [0,+∞[,

such that

(75) ρ(t, x) = ρ0(X(0, t, x)) , ∀ (t, x) ∈ [0,+∞[×R3.

Remark 5.2. The flow X is measure-preserving i.e. for a test function φ ∈ Cb(R3) we
have ∫

φ(y)ρ(s, y)dy =

∫
φ(X(s, t, y))ρ(t, y)dy,

for all s , t ∈ [0, T ]. This allows us to separate the dependence of time s in the integral
with respect to the measure ρ(t, ·).
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Remark 5.3. Note that for all η ∈ L∞(R3) ∩ L1(R3), the velocity field Kη is Lipschitz

|K(η)(x)−K(η)(y)| . (‖η‖L1 + ‖η‖L∞) |x− y|, ∀x 6= y ∈ R3.

Moreover, if one assume that ρ0 is only Lipschitz and compactly supported, then one
can show the existence and uniqueness of the solution ρ to equation (73) in the space
L∞((0, T );L∞(R3)∩L1(R3)). The method of proof is related to the stability result due to
G. Loeper in [15] which gives a stability estimate in terms of Wasserstein distance for the
Vlasov-Poisson equation. This result is adapted by M. Hauray in [8, Theorem 3.1] for a
more general class of kernels K satisfying a (Cα) condition with α < d− 1 where d is the
space dimension

(Cα) divK = 0, |K(x)|, |x||∇K(x)| < C

|x|α
, ∀x 6= 0,

see [8]. This condition being satisfied by the Oseen tensor Φ we have the following result.

Theorem 5.8 (Hauray-Loeper). Given T > 0, consider two solutions ρ1, ρ2 ∈ L∞((0, T ), L∞(R3)∩
L1(R3)) of equation (73) associated to two initial data ρ1

0, ρ
2
0 ∈ L∞(R3) ∩ L1(R3). There

holds

(76) W1(ρ1(t, ·), ρ2(t, ·)) ≤ W1(ρ1
0, ρ

2
0)eC max(‖ρ0

1‖L∞∩L1 ,‖ρ0
2‖L∞∩L1 )t.

We refer to [8, Theorem 3.1] for a complete proof which introduces the main ideas used
also in [9] for the mean field approximation result.

5.2. ρN as a weak solution to a transport equation. According to Theorem 1.2, there
exists a time T > 0 independent of N for which the particles do not overlap. This shows
that the empirical measure

ρN(t, x) :=
1

N

N∑
i=1

δxi(t)(x),

is well defined on [0, T ]. Recall that we are interested in the limiting behaviour of ρN ∈
P([0, T ]×R3) when N →∞. According to Proposition 3.7, particles (xi)1≤i≤N satisfy the
following system: {

ẋi = Vi,
Vi ∼ κg + 6πR

∑
i 6=j

Φ(xi − xj).

In order to prove Theorem 1.3 we want to compare the particle system to the continuous
density ρ which is solution to equation (73). Hence, we need to express ρN as a weak
solution to a transport equation. The remainder of this Section is devoted to establish
such a formulation.
Analogously to the continuous case, we are interested in giving a sense to the quantity

KρN = 6πr0κ

∫
Φ(x− y)gρN(t, dy),
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which is not well defined because Φ is singular. On the other hand, as the only values of
Φ that matters are the terms Φ(xi − xj), i 6= j we define the following regularization

ψNΦ(x) := Φ(x)ψN(x),

where ψN(x) := ψ
(

x
dNmin(0)

)
and ψ is a truncation function such that ψ = 0 on B(0, 1/4)

and ψ = 1 outside B(0, 1/2). We can now define the operator KN

KNρN(t, x) := 6πr0κ

∫
R3

ψNΦ(x− y) g ρN(t, dy) ,

=
6πr0κ

N

∑
i

ψNΦ(x− xi(t))g.

Since Theorem 1.2 ensures that the particles satisfy

|xi(t)− xj(t)| ≥
1

2
dNmin(0) , ∀i 6= j ,∀ t ∈ [0, T ],

we have for x = xi(t), t ∈ [0, T ], 1 ≤ i ≤ N

KNρN(t, xi(t)) =
6πr0κ

N

∑
j 6=i

Φ(xj(t)− xi(t))g.

Now, it remains to check that ρN is a weak solution of a transport equation. We recall that
ρN is a weak solution of a transport equation ∂

∂t
+ div(V ρN) with V ∈ C([0, T ], C1(R3)) if

for all test function φ ∈ C∞c ([0, T ]× R3) we have∫ T

0

∫
R3

(∂tφ(t, x) +∇φ(t, x) · V (t, x)) ρN(dx, t)dt = 0.

Note that this integral yields∫ T

0

∫
R3

(∂tφ(t, x) +∇φ(t, x) · V (t, x)) ρN(dx, t)dt ,

=

∫ T

0

1

N

∑
i

(∂tφ(t, xi(t)) +∇φ(t, xi(t)) · V (t, xi(t))) .

In particular if we choose V such that V (t, xi(t)) = Vi(t) one has

=

∫ T

0

1

N

∑
i

∂tφ(t, xi(t)) +∇φ(t, xi(t)) · Vi ,

=
1

N

∑
i

∫ T

0

d

dt
(φ(t, xi(t))) ,

= 0.
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On the other hand, we recall that from Proposition 3.7 we can write for all 1 ≤ i ≤ N

Vi = κg + 6πR
N∑
j 6=i

Φ(xi − xj)κg + Ei(t) ,

= κg +KNρN(t, xi(t)) + Ei(t),

with Ei(t) = O(dNmin). Hence if we construct a divergence-free vector field EN such that

EN(t, xi(t)) = Ei(t),

we can define V as

V (t, x) = κg +KNρN(t, x) + EN(t, x).

Construction of EN . We fix χ a truncation function such that χ = 1 on B(0, 1) and
χ = 0 on cB(0, 2). For all i we set

Ei(t, x) := curl

(
χ

(
x− xi(t)

R

)
Ei(t)×

x− xi(t)
2

)
.

By construction, Ei is a divergence-free compactly supported vector field satisfying

Ei(t, xi(t)) = Ei(t).

Furthermore, Ei is supported in B(xi(t), 2R). Thanks to Theorem 1.2, this entails that
supp(Ei) ∩ supp(Ej) = ∅ for i 6= j. We set then

EN(t, x) :=
∑
i

Ei(t, x) .

By construction, this velocity field is divergence-free and is regular EN ∈ C([0, T ] × R3),
EN(t, ·) ∈ C1(R3) for all 0 ≤ t ≤ T . Moreover is satisfies for all t ∈ [0, T ]

EN(t, xi(t)) = Ei(t) for all 1 ≤ i ≤ N ,

(77) ‖EN(t, ·)‖∞ ≤ Cχ max
i
|Ei(t)| . dNmin.

The only statement that needs further explanation is (77). For all x ∈ B(xi(t), Ri) we have

Ei(t, x) = Ei(t),

and for all x ∈ B(xi, 2R) \B(xi, R), direct computations yields

Ei(t, x) =
1

2

[
2χ

(
x− xi(t)

R

)
I3 −

1

R
∇χ

(
x− xi(t)

R

)
⊗ (x− xi(t))

+
1

R
(x− xi(t)) · ∇χ

(
x− xi(t)

R

)
I3

]
Ei(t).

Therefore

|Ei(t, x)| ≤ C [‖χ‖∞ + ‖∇χ‖∞] |Ei(t)|.
We can now state the following proposition.
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Proposition 5.9. For arbitrary N we have that κg + KNρN + EN ∈ C([0, T ] × R3) and
∇KNρN +∇EN ∈ C([0, T ]× R3). Moreover, the velocity field satisfies

(78) |κg +KNρN(t, x) + EN(t, x)| ≤ C , ∀(t, x) ∈ [0, T ]× R3,

for some positive constant C independent of N .

Proof. As the kernel is regularized, the two first properties are satisfied by construction.
For all (t, x) ∈ [0, T ]× R3 we have

KNρN(x) =
6πr0κ

N

∑
i

ψN(x)Φ(x− xi(t)) ,

=
6πr0κ

N

∑
i

ψN(x)1
{|xi(t)−x|>

dN
min

(0)

2
}
Φ(x− xi(t)).

We set I(t, x) = {1 ≤ i ≤ N , |xi(t)−x| > dNmin(0)

2
}. Reproducing the arguments of Lemma

A.1 for k = 1 together with assumptions (6), (7) and Theorem 1.2 yields∣∣KNρN(x)
∣∣ . 1

N

∑
I(t,x)

1

|x− xi(t)|
,

. M̄
|λN |3

dNmin(0)
+ M̄1/3 ,

. M̄
|λN |3

|dNmin(0)|2
dNmin(0) + M̄1/3 ,

. 1 .

Furthermore, the velocity field EN is uniformly bounded according to (77). �

This allows us to state the following result.

Theorem 5.10. ρN is a weak solution of

(79)

{
∂ρN

∂t
+ div((κg +KNρN + EN)ρN) = 0 ,

ρN(0, ·) = ρN0 ,

on [0, T ]× R3. Moreover, the characteristic flow defined for all s, t ∈ [0, T ] by

(80)

{
∂sX

N(s, t, x) = κg +KNρN(s,XN(s, t, x)) + EN(s,XN(s, t, x)),
XN(t, t, x) = x,

is of class C1 for all N ≥ 1 and the following classical formula holds true:

(81) ρN(t, ·) = XN(t, 0, ·)#ρN0 ∀ t ∈ [0, T ].

Proof. As V (t, x) := κg + KNρN(t, x) + EN(t, x) ∈ C1([0, T ] × R3) is defined such that
V (t, xi(t)) = Vi , ∀ 1 ≤ i 6= N this ensures that for all test function φ ∈ C∞c ([0, T ]× R3):∫ T

0

∫
R3

(
∂tφ(t, x) +∇φ(t, x) ·

[
κg +KNρN(t, x) + EN(t, x)

])
ρN(dx, t)dt = 0,
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thus, ρN is a weak solution for (79).
According to Proposition 5.9, the ode governing the characteristic flow satisfies the as-
sumptions of the Cauchy-Lipschitz theorem. Therefore, the ode admits a unique maximal
solution XN ∈ C1([0, T ] × [0, T ] × R3) thanks to formula (78). Equality (81) holds true
thanks to the classical theory for transport equations. �

6. Proof of Theorem 1.3

At this point, we proved that the particles interact two by two with an interaction force
given by the Oseen-tensor with an additional error term.

(82)

{
ẋi(t) = Vi(t),
Vi(t) = κg + 6πR

∑
i 6=j

Φ(xi(t)− xj(t)) + EN(t, xi(t)).

We want to estimate the Wasserstein distance W1(ρN(t, ·), ρ(t, ·)) for all time 0 ≤ t ≤ T .
To this end, we follow the ideas of [8] and [9] and show that the additional error term EN

can be controled. As in [9], we introduce an intermediate density ρ̄N .

6.1. Step 1. Estimate of the distance between ρ and ρ̄N . We define ρ̄N0 as the
regularized density of ρN0 :

ρ̄N0 := ρN0 ∗ χλN
where χλN (x) := 1

|λN |3χ
(
x
λN

)
a mollifier compactly supported. Note that the support of χ

is not important, we consider for instance χ such that suppχ = B(0, 1). We emphasize
that the regularized density is uniformly bounded

ρ̄N0 (x) =

∫
1

|λN |3
χ

(
x− y
λN

)
ρN0 (dy) ,

=
1

N |λN |3
N∑
i=1

χ

(
x− xi(0)

λN

)
,

≤ 1

N |λN |3
‖χ‖∞ sup

x
#{i ∈ {1, . . . , N} , xi(0) ∈ B(x, λN)} ,

≤ ‖χ‖∞M̄,(83)

according to assumption (5). Moreover, we have∫
R3

ρ̄N0 (x)dx =
1

N |λN |3
N∑
i=1

∫
B(xi(0),λN )

χ

(
x− xi(0)

λN

)
dx ,

= 1.(84)

Now, we define ρ̄N as the unique solution to equation (73) associated to the initial data
ρ̄N0 . The stability Theorem 5.8 allows us to compare ρ and ρ̄N :

W1(ρ(t, ·), ρ̄N(t, ·)) ≤ W1(ρ0, ρ̄
N
0 )eCt,
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where C = C(‖χ‖∞, M̄ , ‖ρ0‖∞). We split the distance W1(ρ0, ρ̄
N
0 ) as follows

W1(ρ0, ρ̄
N
0 ) ≤ W1(ρ0, ρ

N
0 ) +W1(ρN0 , ρ̄

N
0 ),

and use the fact that
W1(ρN0 , ρ̄

N
0 ) ≤ W∞(ρN0 , ρ̄

N
0 ),

together with [9, Proposition 1]

(85) W∞(ρN0 , ρ̄
N
0 ) ≤ CλN ,

to get

(86) W1(ρ(t, ·), ρ̄N(t, ·)) .
(
λN +W1(ρ0, ρ

N
0 )
)
eCt.

6.2. Step 2. Estimate of the distance between ρ̄N to ρN . It remains to estimate
W1(ρN(t, ·), ρ̄N(t, ·)). We have the following result.

Lemma 6.1. For N large enough, there exists a positive constant C such that for all
t ∈ [0, T ]

W1(ρN(t, ·), ρ̄N(t, ·)) .
(
λN + tdNmin

)
eCt.

Theorem 1.3 is a consequence of estimate (86) and Lemma 6.1. The rest of this Section
is devoted to proving the above lemma.

Proof of Lemma 6.1. According to Theorems 5.7 and 5.10 we have the explicit formulas
for all s , t ∈ [0, T ]

ρ̄N(t, ·) = X(t, s, ·)#ρ̄Ns ,
ρN(t, ·) = XN(t, s, ·)#ρNs .

At t = 0 we have the existence of an optimal transport map T0 from ρ̄N0 to ρN0 thanks to
Theorem 5.6

ρN0 = T0#ρ̄N0 ,

satisfying
W∞(ρ̄N0 , ρ

N
0 ) = ρ̄N0 − esssup |T0(x)− x|.

We construct then a transport map Tt from ρ̄N to ρN at all time t ∈ [0, T ] by following T0

along the two flows X and XN

Tt = XN(t, 0, ·) ◦ T0 ◦X(0, t, ·).
One can remark that for all 0 ≤ s ≤ t:

Tt = XN(t, s, ·) ◦ Ts ◦X(s, t, ·)
ρN(t, ·) = Tt#ρ̄

N(t, ·).
As in [9] we set then

fN(t) := sup
s≤t

ρ̄N(t, ·)− esssup |Ts(x)− x|,

so that
W∞(ρN(t, ·), ρ̄N(t, ·)) ≤ fN(t),
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and thanks to (85) we have

(87) fN(0) = W∞(ρ̄N0 , ρ
N
0 ) ≤ CλN .

We reproduce the same steps as in [9] and introduce the following notation for a generic
“particle” of the continuous system with position xt at time t such that

xs = X(s, t, xt),

we fix in what follows 0 ≤ t2 ≤ t1 and recall the following formula

Tt1 ◦X(t1, t2, ·) = XN(t1, t2, ·) ◦ Tt2 .

We aim now to estimate |Tt1(xt1)− xt1| for all test particle xt1

Tt1(xt1)− xt1 = XN(t1, t2, Tt2(xt2))−X(t1, t2, xt2),

= Tt2(xt2)− xt2 +

∫ t1

t2

ẊN(s, t2, Tt2(xt2))− Ẋ(s, t2, xt2)ds,

= Tt2(xt2)− xt2 +

∫ t1

t2

(
[KNρN + EN ](s,XN(s, t2, Tt2(xt2))),

−Kρ̄N(s, xs))
)
ds,

= Tt2(xt2)− xt2 +

∫ t1

t2

(
[KNρN + EN ](s, Ts(xs))−Kρ̄N(s, xs))

)
ds,

= Tt2(xt2)− xt2 +

∫ t1

t2

EN(s, Ts(xs))ds,

+

∫ t1

t2

∫
R3

6πr0κ
(
ψNΦ(Ts(xs)− Ts(y))− Φ(xs − y)

)
gρ̄N(s, dy)ds,

where we used the fact that ρNs = Ts#ρ̄
N
s to get

KNρN(s, Ts(xs)) = 6πr0κ

∫
R3

ψNΦ(Ts(xs)− y)gρN(s, dy) ,

= 6πr0κ

∫
R3

ψNΦ(Ts(xs)− Ts(y))gρ̄N(s, dy).

We set then t1 = t and t2 = t1 − τ = t− τ , τ > 0. We obtain for almost every xt

|Tt(xt)− xt| ≤ |Tt−τ (xt−τ )− xt−τ |+ τ‖EN(t)‖∞,

+ 6πr0κ|g|
∫ t

t−τ

∫
R3

∣∣ψNΦ(Ts(xs)− Ts(y))− Φ(xs − y)
∣∣ ρ̄N(s, dy)ds,

≤ fN(t− τ) + τ‖EN(t)‖∞ ,

+ C

∫ t

t−τ

∫
R3

∣∣ψNΦ(Ts(xs)− Ts(ys))− Φ(xs − ys)
∣∣ ρ̄N(t, dyt)ds,
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here we used Remark 5.2 with ys = X(s, t, yt). In addition we defined

‖EN(t)‖∞ := sup
0≤s≤t

‖EN(s, ·)‖∞.

This being true for almost every xt we obtain

(88) fN(t) ≤ fN(t− τ) + τ‖EN(t)‖∞

+ C esssup
xt

∫ t

t−τ

∫
R3

∣∣ψNΦ(Ts(xs)− Ts(ys))− Φ(xs − ys)
∣∣ ρ̄N(t, dyt)ds.

Hence, it remains to control the last quantity. We split the integral on R3 into two terms:
the first one denoted J1 is the integral over the subset I and the second one denoted J2

the integral over R3 \ I where

I = {yt : |xt − yt| ≥ 4fN(t)eτL},

where L will be defined later.
Step 1: Estimate of J1.
For all t− τ ≤ s ≤ t, we have

|xs − ys| ≥ |xt − yt| −
∫ t

s

|Ẋ(t′, t, xt)− Ẋ(t′, t, yt)|dt′,

≥ |xt − yt| −
∫ t

s

|Kρ̄N(t′, X(t′, t, xt))−Kρ̄N(t′, X(t′, t, yt))|dt′,

≥ |xt − yt| − Lip (Kρ̄N)

∫ t

s

|X(t′, t, xt)−X(t′, t, yt)|dt′.

Using Remarks 5.2 and 5.3, formula (75) and the uniform bounds (83), (84), the Lipschitz
constant of Kρ̄N is uniformly bounded. This allows us to define the constant L as

Lip (Kρ̄N) ≤ C‖ρ̄N0 ‖L∞(L∞∩L1) ≤ L .

Applying Gronwall’s inequality yields for all 0 ≤ t− τ ≤ s ≤ t

|xs − ys| ≥ |xt − yt|e−L(t−s).

We can make precise now the constant L := Lip (Kρ̄N) which is uniformly bounded with
respect to N and t ∈ [0, T ].
We have for all 0 ≤ t− τ ≤ s ≤ t and τ small enough

(89) |xs − ys| ≥ |xt − yt|e−L(t−s) ≥ |xt − yt|e−Lτ ≥
1

2
|xt − yt|.

Analogously, for almost all xs and ys

|Ts(xs)− Ts(ys)| ≥ |xs − ys| − |Ts(xs)− xs| − |Ts(ys)− ys| ,
≥ |xs − ys| − 2fN(s) ≥ |xs − ys| − 2fN(t),
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where we used the fact that fN(t) ≥ fN(s). According to the definition of I = {yt :
|xt − yt| ≥ 4fN(t)eτL}, this yields for τ small enough

(90) |Ts(xs)− Ts(ys)| ≥
1

4
|xt − yt|.

Moreover, recall that Ts(xs) and Ts(ys) are in the support of ρN(s, ·) i.e. there exists i , j
such that Ts(xs) = xi(s) and Ts(ys) = xj(s). In addition, estimate (90) and the definition
of I ensures that i 6= j. We have then

(91) ψNΦ(Ts(xs)− Ts(ys)) = Φ(Ts(xs)− Ts(ys)).
Finally, using estimates (89), (90), formula (91) and the Lipschitz-like estimate (27) for Φ
we obtain

J1 =

∫
I

∫ t

t−τ
|Φ(Ts(xs)− Ts(ys))− Φ(xs − ys)| dsρ̄N(t, dyt),

≤ C

∫
I

∫ t

t−τ

|xs − Ts(x)|+ |ys − Ts(y)|
min(|xs − ys|2 , |Ts(x)− Ts(y)|2)

dsρ̄N(t, dyt),

≤ CfN(t)τ

∫
I

1

|xt − yt|2
ρ̄N(t, dyt),

≤ CτfN(t)‖ρ̄N(t)‖L∞∩L1 ,

≤ CτfN(t)‖ρ̄N0 ‖L∞∩L1 ,

≤ CτfN(t) ,

where we used Remark 5.2, formula (75) and the uniform bounds (83), (84).
Step 2: Estimate of J2.
We focus now on

J2 := esssup
xt

∫ t

t−τ

∫
cI

∣∣ψNΦ(Ts(xs)− Ts(ys))− Φ(xs − ys)
∣∣ ρ̄N(t, dyt)ds.

Again Ts(xs) and Ts(ys) are in the support of ρN(s, ·) i.e. there exists i , j such that
Ts(xs) = xi(s) and Ts(ys) = xj(s). Moreover if i = j then ψNΦ(Ts(xs) − Ts(ys)) = 0.
Hence in all cases we have∣∣Φ(xs − ys)− ψNΦ(Ts(xs)− Ts(ys))

∣∣ ≤ |Φ(xs − ys)|+ |ψNΦ(Ts(xs)− Ts(ys))| ,

≤ C

(
1

|xs − ys|
+

1

dNmin(s)

)
,

applying the change of variable yt = X(t, s, ys) we get∫
cI

∫ t

t−τ

1

|xs − ys|
dsρ̄N(t, dyt) ≤ ‖ρ̄N‖∞

∫ t

t−τ

∫
cI

1

|xs − ys|
dytds,

= C

∫ t

t−τ

∫
X(t,s,cI)

1

|xs − ys|
dysds.
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Denote K = X(t, s, cI), as the flow X preserves the Lebesgue measure we have |K| = |cI|.
For all s ∈ [t− τ, t] and a > 0 a direct computation yields∫

K

1

|xs − ys|
dys =

(∫
K∩B(xs,a)

+

∫
K∩cB(x,a)

)
1

|xs − ys|
dys,

≤ Ca2 +
1

a
|K|,

we choose then a3 = |K| = |cI| ≤ C
∣∣fN(t)

∣∣3 e3Lτ to get

(92)

∫
cI

∫ t

t−τ

1

|xs − ys|
dsρ̄N(t, dyt) ≤ Cτ

∣∣fN(t)
∣∣2 e2Lτ .

For the remaining term we apply Theorem 1.2 and get for all t− τ ≤ s ≤ t∫
cI

∫ t

t−τ

1

dNmin(s)
dsρ̄N(t, dyt) ≤

2

dNmin(0)

∫
cI

∫ t

t−τ
dsρ̄N(t, dyt),

≤ Cτ
2e3τL

dNmin(0)

∣∣fN(t)
∣∣3 .

Conclusion.
Gathering these bounds, there exists a constant K > 0 independent of N such that for τ
small enough and 0 < t ≤ T

fN(t) ≤ fN(t− τ) + τ‖EN(t)‖∞ +KτfN(t)

[
1 + fN(t) +

∣∣fN(t)
∣∣2

dNmin(0)

]
.

We can now apply a discrete Gronwall argument: Note that at time t = 0, assumption
(11) and formula (87) ensures the existence of a positive constant C1 > 1 such that

1 + fN(0) +

∣∣fN(0)
∣∣2

dNmin(0)
≤ C1

K
,

hence, we define T ∗ ≤ T as the maximal time for which

(93) 1 + fN(t) +

∣∣fN(t)
∣∣2

dNmin(0)
≤ C1

K
∀t ∈ [0, T ∗[.

Note that T ∗ a priori depends on N , the purpose is to show that this is not the case. We
obtain for all t ∈ [0, T ∗[

fN(t) ≤ fN(t− τ) + C1τf
N(t) + τ‖EN‖∞.

If τ is small enough we can write

fN(t) ≤ (1− C1τ)−1fN(t− τ) +
τ

1− C1τ
‖EN‖∞,
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iterating the formula we obtain for M ∈ N∗

fN(t) ≤ (1− C1τ)−MfN(t−Mτ) + τ

M∑
k=1

1

(1− C1τ)k
‖EN‖∞,

≤ (1− C1τ)−MfN(t−Mτ) + τ

M∑
k=1

e2C1τk‖EN‖∞.

Thanks to the bound 1
1−C1τ

≤ e2C1τ for τ small enough. We set then t−Mτ = 0 to get

fN(t) ≤ (1− C1
t

M
)−MfN(0) +

t

M

M∑
k=1

e2C1
t
M
k‖EN‖∞.

As e2C1
t
M
k ≤ e2C1t for all 1 ≤ k ≤M the second term yields

t

M

M∑
k=1

e2C1
t
M
k‖EN‖ ≤ te2C1t‖EN‖∞,

and for M sufficiently large

(1− C1
t

M
)−M ≤ e2C1t.

Finally for all t ∈ [0, T ∗[

fN(t) ≤ fN(0)e2C1t + te2C1t‖EN‖∞.
In particular we have for all t ∈ [0, T ∗[

fN(t) +

∣∣fN(t)
∣∣2

dNmin(0)

≤ fN(0)e2C1t + ‖EN‖∞Te2C1t + 2

∣∣fN(0)
∣∣2 e4C1t + ‖EN‖2

∞T
2e4C1t

dNmin(0)
,

≤ e4C1T (2 + T + 2T 2)

(
fN(0) + ‖EN‖∞ +

∣∣fN(0)
∣∣2 + ‖EN‖2

∞

dNmin(0)

)
.

Since we have fN(0) = O
(
λN
)

and thanks to (77)∣∣fN(0)
∣∣2 + ‖EN‖2

∞

dNmin(0)
.
|λN |2

dNmin(0)
+ dNmin ,

which vanishes according to assumption (7) and (11). This shows that we can take N large
enough and depending on T , K and C1 such that T ∗ → T and formula (93) holds true up
to time T . Hence, for N large enough we have for all t ∈ [0, T ]

fN(t) ≤ fN(0)e2C1t + te2C1t‖EN‖∞.
Using (87) and the fact that W1(ρN , ρ̄N) ≤ W∞(ρN , ρ̄N) ≤ fN , this implies Lemma 6.1. �
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Appendix A. Technical lemmas

We state here an important lemma which is the extension of [13, Lemma 2.1] to the new
assumptions on the dilution regime introduced in [10]. We introduce ρ̃N an approximation
of ρN defined as

(94) ρ̃N(t, x) :=
1

N

N∑
i=1

1B∞(xi,λN/3)

|B∞(xi, λN/3)|
.

ρ̃N is L∞ and using (5), one can check that

(95) ‖ρ̃N‖L∞ .
1

N |λN |3
sup
x∈R3

#
{
i ∈ {1, · · · , N} such that xi ∈ B∞(x, λN/3)

}
.

MN

N |λN |3
. M̄ .

Moreover, ρ̃N is L1 and we have ‖ρ̃N‖L1 = 1 by construction.

Lemma A.1. For all k ∈ [0, 2], under assumptions (5), (7), if N is large enough, there
exists a positive constant C > 0 such that for all fixed 1 ≤ i ≤ N :

(96)
1

N

∑
j 6=i

1

dkij
≤ CM̄

|λN |3

|dNmin|k
+ M̄k/3.

Moreover, if k = 3 we have

1

N

∑
j 6=i

1

d3
ij

≤ CM̄

(
|λN |3

|dNmin|3
+ | log(M̄1/3λN)|+ 1

)
.

Proof. We fix i = 1 and the same holds true for all 1 ≤ i ≤ N . We use the following
shortcut

I1 := {j ∈ {1, · · · , N} such that |x1 − xj|∞ ≤ λN}.
The sum can be written as follows:

1

N

∑
j 6=1

1

dk1j
=

1

N

∑
j∈I1
j 6=1

1

dk1j
+

1

N

∑
j 6∈I1

1

dk1j
,

≤ 1

N

MN

|dNmin|k
+

1

N

∑
j 6∈I1

1

dk1j
,

≤ M̄
|λN |3

|dNmin|k
+

1

N

∑
j 6∈I1

1

dk1j
.

For the second term in the right hand side, note that, for all y ∈ B∞(xj, λ
N/3), j 6∈ I1 we

have

|x1 − y|∞ ≥ |x1 − xj|∞ − |xj − y|∞ ≥ 2/3λN ,
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this yields

|x1 − xj|∞ ≥ |x1 − y|∞ − λN/3 ≥ |x1 − y|∞/2 .
Hence, we have for all constant L > 2/3λN

1

N

∑
j 6∈I1

1

dk1j
≤ 2k

N

∑
j 6∈I1

∫
B∞(xj ,λN/3)

1

|B∞(xj, λN/3)|
1

|x1 − y|k
dy ,

.
∫
cB(x1,2/3λN )

1

|x1 − y|k
ρ̃N(t, dy) ,

≤ ‖ρ̃N‖L∞
∫ L

2/3|λN |
r2−kdr +

∫
cB(x1,L)

1

|x1 − y|k
ρ̃N(t, dy) ,

≤ ‖ρ̃N‖L∞
L3−k −

(
2/3|λN |

)3−k

3− k
+
‖ρ̃N‖L1

Lk
,

. M̄
L3−k

3− k
+

1

Lk
.

One can show that the optimal constant L > 2/3λN is L = 1
M̄1/3 . Since lim

N→∞
λN = 0, this

choice of L is possible for N large enough such that λN < 3
2M̄1/3 . Hence, we obtain

1

N

∑
j 6∈I1

1

dk1j
.

4− k
3− k

M̄k/3.

If k = 3, we integrate the term r−1 keeping the same value for L as before

1

N

∑
j 6∈I1

1

d3
1j

≤ ‖ρ̃N‖L∞
∫ 1

M̄1/3

2/3|λN |

dr

r
+

∫
cB(x1,

1

M̄1/3
)

1

|x1 − y|3
ρ̃N(t, dy) ,

≤ M̄

(
log

(
1

M̄1/3|λN |

)
+ log (3/2)

)
+ M̄ ,

≤ 2M̄(| log(M̄1/3λN)|+ 1) ,

for N large enough to ensure 3
2
≤ 1

M̄1/3|λN | . �

The following results are used for the control of the particle concentration MN :

MN(t) := sup
x∈R3

{
#
{
i ∈ {1, · · · , N} such that xi(t) ∈ B∞(x, λN)

}}
.

We recall the definition of LN introduced in (71):

LN(t) := max
i

#
{
j ∈ {1, . . . , N} such that |xi(t)− xj(t)|∞ ≤ λN

}
.

The following lemma shows that the two definitions are equivalent.

Lemma A.2. We have

LN(t) ≤MN(t) ≤ 8LN(t).
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Proof. The first inequality is trivial. To prove the second one note that we have:

sup
x∈R3

{
#
{
i ∈ {1, · · · , N} such that xi ∈ B∞(x, λN)

}}
≤

8 sup
x∈R3

{
#
{
i ∈ {1, · · · , N} such that xi ∈ B∞(x, λN/2)

}}
.

Indeed, for all x ∈ R3 there exists x̄k, k = 1, · · · , 8 such that

B∞ (x, λN) ⊂
8⋃
k

B∞

(
x̄k,

λN

2

)
,

this yields{
i ∈ {1, · · · , N} such that xi ∈ B∞(x, λN)

}
⊂

8⋃
k

{
i ∈ {1, · · · , N} such that xi ∈ B∞(x̄k, λN/2)

}
.

Taking the supremum in the right hand side and then in the left one we obtain

(97) sup
x∈R3

{
#
{
i ∈ {1, · · · , N} such that xi ∈ B∞(x, λN)

}}
≤

8 sup
x∈R3

{
#
{
i ∈ {1, · · · , N} such that xi ∈ B∞(x, λN/2)

}}
.

Moreover, we remark that the supremum in the right hand side over all x ∈ R3 can be

reduced to the supremum over
⋃
i

B∞(xi,
λN

2
). Now consider x ∈

⋃
i

B∞(xi,
λN

2
), there exists

1 ≤ i0 ≤ N such that |x−xi0|∞ ≤ λN

2
, we have then for all j 6= i0 such that |x−xj|∞ ≤ λN

2
:

|xj − xi0|∞ ≤ |xj − x|∞ + |x− xi0|∞ ≤ λN ,

which means that for all x ∈
⋃
i

B∞(xi,
λN

2
) there exists 1 ≤ i0 ≤ N such that

{
1 ≤ j ≤ N, such that xj ∈ B∞(x, λN/2)

}
⊂
{

1 ≤ j ≤ N, such that |xj − xi0|∞ ≤ λN
}
.

Taking the maximum over all i0 in the right hand side, and then the supremum over all

x ∈
⋃
i

B∞(xi,
λN

2
) we obtain

(98) sup
x

{
#
{
i ∈ {1, · · · , N} such that xi ∈ B∞(x, λN/2)

}}
≤

max
i

#
{
j ∈ {1, . . . , N} \ {i} such that |xi − xj|∞ ≤ λN

}
.

Gathering inequality (97) and (98) concludes the proof. �
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More generally we define for all β > 0:

LNβ (t) := max
i

#
{
j ∈ {1, . . . , N} such that |xi(t)− xj(t)|∞ ≤ βλN

}
,

and

MN
β (t) := sup

x∈R3

{
#
{
i ∈ {1, · · · , N} such that xi(t) ∈ B∞(x, βλN)

}}
,

with the notation
MN

1 (t) := MN(t) , LN1 (t) := LN(t).

The previous results yields

Corollary A.3. For all β > 0 and all α > 1 we have

LNαβ(t) ≤ 8dαe3LNβ (t),

where d·e denotes the ceiling function.

Proof. For sake of clarity we set β = 1 and the proof remains the same for all β > 0. The
idea is to show an equivalent formula for MN and use Lemma A.2. Analogously to the
proof of Lemma A.2, for all x ∈ R3 there exists x̄k, k = 1, · · · , bλc3 such that

B∞ (x, αλN) ⊂
dαe3⋃
k=1

B∞ (x̄k, λN).

This yields, with the definition of MN
λ :

MN
α ≤ dαe3MN(t).

Finally, we apply Lemma A.2 to get

LNα (t) ≤MN
α (t) ≤ dαe3MN(t) ≤ 8dαe3LN(t) ,

which completes the proof. �
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[17] M. Smoluchowski, Über die Wechelwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen,
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