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SEDIMENTATION OF PARTICLES IN STOKES FLOW

AMINA MECHERBET

IMAG, Montpellier University
Place Eugene Bataillon
Montpellier, 34090, France.

ABSTRACT. In this paper, we consider N identical spherical particles sedimenting in a
uniform gravitational field. Particle rotation is included in the model while fluid and
particle inertia are neglected. Using the method of reflections, we extend the investigation
of [I1] by discussing the threshold beyond which the minimal particle distance is conserved
for a short time interval independent of N. We also prove that the particles interact
with a singular interaction force given by the Oseen tensor and justify the mean field
approximation in the spirit of [§] and [9].

1. INTRODUCTION

In this paper, we consider a system of N spherical particles (B;)i1<;<ny with identical
radii R immersed in a viscous fluid satisfying the following Stokes equation:

AN VY =0, e
(1) diva¥ = 0, " R \L_Jle'7
completed with the no-slip boundary conditions

W= Vit Qi x (x— ), on 9B,
(2) lim [u(z)] = 0,

|z|—00
where (V;,€;) € R* x R?, 1 <4 < N represent the linear and angular velocities,

We describe the intertialess motion of the rigid spheres (B;)1<;<ny by adding to the instan-
taneous Stokes equation the classical Newton dynamics for the particles (z;)1<i<n

i o=V
(3) F,+mg = 0,
T, =0,
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2 AMINA MECHERBET

where m denotes the mass of the identical particles adjusted for buoyancy, g the gravita-
tional acceleration, F; (resp. T;) the drag force (resp. the torque) applied by the the fluid
on the " particle B; defined by

B / o, ¥,
0B;

T, = /8 =) x o p ),

with n the unit outer normal to dB; and o(u,p") = 2D(u") — p™I, the stress tensor
where 2D(u") = Vu + Vul .

Note that the constant velocities (V;, €2;) of each particle are unknown and are determined
by the prescribed force and torque F; = mg and T; = 0. In [16], the author shows that the
linear mapping on RV

(Vi, i) 1<ien = (F, Ti)1<i<n,
is bijective for all N € N*. This ensures existence and uniqueness of (u”,p") and the
velocities.

Remark 1.1 (About the modeling and nondimensionalization). Equations (1)~(3) describe
suspensions sedimenting in a uniform gravitational field. Equations (1), (2) are derived
starting from the Navier-Stokes equations and neglecting the inertial terms by means of the
Reynolds and Stokes number, see [0, Chapter 1 Section 1], [1], [16] and all the references
therein. Analogously, the ODE system 1s obtained by neglecting particle inertia. We
refer also to [4] where a formal derivation taking into account the slow motion of the system
1s performed.

When considering one spherical particle sedimenting in a Stokes flow, the linear relation
between the drag force F' and the velocity V' is given by the Stokes law

F'=—-6mRV,

see Section for more details. Stokes law leads to the well-known formula for the fall
speed of a sedimenting single particle under gravitational force denoted by

m
(4) kg = e 59
It is important to point out that in our model, a scaling with respect to the velocity fall
kg has been performed. This means that the drag forces (F;)i1<i<n and the gravitational
force mg are terms of order R. Consequently, in this paper, kg is a constant of order
one. For more details on the derivation of the model, we refer to [11l, Section 1.1] where
a nondimensionalization including physical units is provided. Moreover, as in [4], the
particle radius R is assumed to be proportional to % so that the collective force applied by
the particles on the fluid is of order one. This will be made precise in the presentation of
the main assumptions.

Given initial particle positions z;(0) := 29, 1 <4 < N, we are interested in the asymp-
totics of the solution when the number of particles NV tends to infinity and the radius R
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tends to zero. The main motivation is to justifiy the representation of the motion of a
dispersed phase inside a fluid using Vlasov-Stokes equations in spray theory [7], [2].

The analysis of the dynamics is done in [I3] in the dilute case i.e. when the minimal
distance between particles is at least of order N='/3. The authors prove that the particles
do not get closer in finite time. Moreover, in the case where the minimal distance between
particles is much larger than N~'/3 the result in [I3] shows that particles do not interact
and sink like single particles. We refer finally to [I1] where the author considers a particle
system with minimal distance of order N~'/3 and proves that, under a relevant time scale,
the spatial density of the cloud converges in a certain averaged sense to the solution of a
coupled transport-Stokes equation .

Since the desired threshold for the minimal distance is of order N~%/°, which allows to
tackle randomly distributed particles, we are interested in extending the results for lower
orders of the minimal distance. Therefore, in this paper, we continue the investigation of
[T1] by looking for a more general set of particle configurations that is conserved in time
and prove the convergence to the kinetic equation . Also, we include particle rotation
in the modeling.

2/3

1.1. Main assumptions and results. In this Section, we describe the configuration of
particles that we consider and present the main results : Theorem and Theorem
We recall that the particles B; are spherical with identical radii R

where

R = ;3, o > 0,

with ¢ a positive constant satisfying a smallness assumption (see Theorem .

Due to the quasi-static modeling, the velocities (V;(t), €2;())1<i<n at time ¢ > 0 depend only
on the prescribed force (F})i<;,<n, torque (T;)1<;<n and the particles position (z;()),.,«y
at the same time t. Consequently, we drop the dependence with respect to time in the
definition of the set of particle configurations. Keeping in mind that the idea is to start
from a configuration of particles that lies in the set and show that it remains in it for a
finite time interval.

Definition 1.1 (Definition of the set of particle configuration). Let (X )yen- be a con-

figuration of particles, where XV = (z1,--- ,zn). We define the minimal distance d;
by
dY,, = min {|z; —2;|}, YN € N*.
LN

We introduce the particle concentration MY defined for each positive sequence (\™)yen-
by
MY .= sup{#{i € {1,--- , N} such that z; € Boo(z,\N)}},VN € N*.

z€R3
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Given two positive constants M, E and a sequence (\) yen+, we define X (M, &) as the set
of configurations for which (d%; Ynen+ and (MY )nen- satisfy the following assumptions:

MN _
5 sup ———~= < M,
©) NP S
IAN]?
6 su £.
( ) NGII\)] |dmln‘2 a

AN must satisfy the following compatibility conditions:

(7) MW>ah /2, lim AN =0.
N—o00

Remark 1.2. Note that, according to the definition of MY , assumption (B)) ensures that

1 _
8 <M,
(8) N| AN =
which yields thanks to assumption @

1

) B>

Since R ~ %, this leads also

R
(10) v =0,

which ensures that the particles do not overlap.

Furthermore, for the proof of the second Theorem [I.3] the following assumption must
be satisfied initially:

(11) i L
NoroodN, (0)

=0.

Finally, we define p" the spatial density of the cloud by

N
1
i=1

In the rest of this paper, if needed, we make clear the dependence with respect to time by
writing for all N € N*, X™(t) = (x1(t), - ,xn(t)) for the particles configuration, dY, ()
for the minimal distance and M™ (¢) the particle concentration at time ¢ > 0.

The main results of this paper are the two following theorems. The first one ensures
that the particle configurations considered herein are preserved in a short time interval
depending only on the data 79, M, &, k|g|.

Theorem 1.2. Let (X™(0))ven- be the initial position of the particles. Assume that there
exists M, € and a sequence (\™) yen= such that (XN (0))yen- lies in the set X(M,E) i.e.
assumptions , @, hold true initially.
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If MY3ry is small enough, there exists N* € N* depending on (ro, M,E) and T > 0
depending on (ro,E, M, k|g|) such that for allt € [0,T] and N > N*
() > 2%, (0),

min 2 min
MN(t) < 8*MN(0).

The second part of the result is the justification of the convergence of p¥ when N tends
to infinity.

Theorem 1.3. Consider the mazimal time T > 0 introduced in Theorem and the
additional assumption . Let py be a positive regular density such that fR3 po=1. We
denote by (p,u) the unique solution to the coupled equation .

There ezists some positive constants Cy,Cy depending on (ro, M, E, ||pol| L=, k|g|) and N* €
N* depending on (ro, M, &, ||pollL=, k|g|, T) such that for all N > N* and t € [0, T]

Wi(pN(t,-), p(t,-)) < Cr (AN + di, (0) t + Wilpo, p))) €.

This shows that if the initial particle distribution p{’ converges to py then the particle
distribution p" converges toward the unique solution p of equation for all time 0 <
t < T. Moreover, Theorem provides a quantitative convergence rate in terms of the
initial Wasserstein distance W (pg, pd).

Remark 1.3. The regularity assumption on the initial density py is the one introduced by
Héfer in [11] which is po, Vpo € Xp, for some > 2. See Sectz’onfor the definition of
Xp. In particular, the assumption is satisfied if po is compactly supported and C*.

The idea of proof of Theorem is to formulate the problem considered as a mean-
field problem. The mean-field theory consists in approaching equations of motion of large
particles systems (X7, - - -, X) when the number of particles N tends to infinity. In mean-
field theory, the ODE governing the particle motion is known and is given by

Xi = NZF(X X;),
X,(0) = X0,

where the kernel F' is the interaction force of the particles. The limit model describing the
time evolution for the spatial density p(¢,x) is given by

op+Kp-Vp=0,

(12)

(13)
fR3 t y>dy7
In our case, the first difficulty is to extract a System similar to (12| for the particle motion

and to identify the interaction force F'. A key step is then a sharp expansion of the velocities
for large N. We obtain for each 1 <i < N

r .
(14) Vi:/fg%—GWNOZ(I)(xi—xj)/ﬁg#—O(dN ), 1<i<N,

min
J#i
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where @ is the Green’s function for the Stokes equations, also called the Oseen tensor (see
formula for a definition). kg is the fall speed of a sedimenting single particle under
gravitational force and is of order one in our model, see Remark This shows that the
particle system satisfies approzimately equation (12)) with an interaction force given by the
Oseen tensor. Since the convolution term Kp appearing in corresponds to the solution
of a Stokes equation in our case, the limiting model describing , , is a coupled
transport-Stokes equation

%+ div((kg+u)p) = 0,
—Au+Vp = 6mrokpg,
div(u) = 0,
p(07 ) = pPo,

(15)

The proof of Theorem is based on the two papers [9], [§] where, in the first one,
the authors justify the mean field approximation and prove the propagation of chaos for
a system of particles interacting with a singular interaction force and where the ODE
governing the particle motion is second order. In [8] the author considers a different mean-
field equation where the particle dynamics is a first order ODE. The results obtained hold
true for a family of singular kernels and applies to the case of vortex system converging
towards equations similar to the 2D Euler equation in vorticity formulation. The associated
kernel in this case is the Biot-Savard kernel.

In order to extract the first order terms for the velocities (V;,€);) we apply the method
of reflections. This method is introduced by Smoluchowski [I7] in 1911. The main idea
is to express the solution u” of N separated particles as superposition of fields produced
by the isolated N particle solutions. We refer to [I4, Chapter 8] and [6, Section 4] for an
introduction to the method. A convergence proof based on orthogonal projection operators
is introduced by Luke [16] in 1989. We refer also to the method of reflections developped
in [12] which is used by Hofer in [11].

In this paper, we design a modified method of reflections that takes into account the particle
rotation and relies on explicit solutions of Stokes flow generated by a translating, rotating
and straining sphere. To obtain the convergence of the method of reflections we need to
identify particle configuration that can be propagated in time. The particle configuration
considered herein is the one introduced in [I0] to study the homogenization of the Stokes
problem in perforated domains. The novelty is that the author considers the minimal
distance d2; together with the particle concentration M” as parameters to describe the
cloud. The result in [10] extends in particular the validity of the homogenization problem
for randomly distributed particles i.e. particle configurations having a minimal distance
of order at least N~%/3. Note that the notion of particle concentration appears also in [9]
to describe the cloud.

1.2. Discussion about the particle configuration set. As stated above, the assump-
tions introduced in Definition [1.1] are based on [10]. Assumptions () and (7)) means that
there exists a uniformly bounded discrete spatial density that approximates p’¥. Indeed, if
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we define 5"V by

~N 1B (i, AN)
16 =
( ) p Z |B xZ’ AN )
one can show that
Wi(p™, p™) < AV,

Assumption ([B]) ensures that there exists a sequence AV for which the infinite norm of p"
is bounded by M, see formula (95). This suggests that ||p|ls and M are equivalent.
We recover the result of [I3] in the case where A\ = N~1/3 and the mlmmal distance d7;

is much larger than N~1/3, the explicit formula for the velocities (4] implies in this case
67rr0 1 N2/3

which is in accordance with the “non-interacting scenario” explained in [I3]. In our case,
the smallness assumption on 79M /% means that we consider a density of particles such
that ||p|| is small but of order one. Indeed, the second term in the velocity formula
can be seen as a perturbation of order one of the velocity fall kg in the case where M (or
the particle density ||p|l) is small. This can be also seen in the coupled equation
where the velocity term w is proportional to ||p|so-

The second assumption @ ensures the conservation of the minimal distance, see Proposi-
tion [4.2] In particular, for AN = N~1/3, Theorem [L.2] extends the previous known results
to configurations having minimal distance at least of order N~/2 see assumption @
This lower bound for the minimal distance appears naturally in our analysis and is closely
related to the properties of the Green’s function for the Stokes equations. We emphasize
that this critical minimal distance appears also in the mean-field analysis due to [8]. Pre-
cisely, computations in the proof of [8, Theorem 2.1] show the convergence for a short time
interval under the assumption that

Wao(po, p')?
%L (0))2 7

is uniformly bounded, see Definition for the definition of the infinite Wasserstein dis-
tance W,. Standard measure-theory arguments show that the infinite Wasserstein distance
ensures assumption . In other words, one can take AV to be the infinite Wasserstein
distance, which yields finally the same assumption @

The first assumption in formula @ means that we are interested in cases where there is
more than one particle per cube of length AY. As pointed out by Hillairet in [I0], one
can choose a larger sequence (A" )yen+ such that the compatibility assumption holds true.
Note also that, in the case where A is the infinite Wasserstein distance, this compatibility
assumption is satisfied by definition.

Finally, assumption is needed for the control of the Wasserstein distance.
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1.3. Outline of the paper and main notations. The remaining Sections of this paper
are organized as follows.

In Section 2 we recall the classical results for the existence and uniqueness of the Stokes
solution u”. We recall also the definition of the drag force F}, torque T; and stresslet S; and
present in Section 2.1 the particular solutions to a Stokes flow generated by a translating, a
rotating or a straining sphere. Finally, the end of Section 2 is devoted to the approximation
of the stresslets S;. In Section 3 we present and prove the convergence of the method of
reflections in order to compute the first order terms for the velocities (V;, €2;)1<i<n. Section
4 is devoted to the proof of Theorem [I.2] In Section 5 we recall some definitions associated
to the Wasserstein distance. We present then the strong existence, uniqueness and stability
theory for equation . In the second part of Section 5 we show that the discrete density
p" satisfies weakly a transport equation. Section 6 is devoted to the proof of the second
Theorem [I.3] Finally, some technical Lemmas are presented in the appendix.

Notation 1.1. In this paper, n always refer to the unit outer normal to a surface.
The following shortcut will be often used

dij = |v; — 2], 1 <i#j <N,

where we drop the dependence with respect to N in order to simplify the notation.
Given an exterior domain €2 with smooth boundaries, we set

C®(Q) := {vja, v € C°(R?)},

and the following norm for all u € C*(£2)

lull12 = [[Vul[z2(0),

we define then the homogeneous Sobolev space D(2) as the closure of C*(2) for the norm ||-
1.2 (see [5, Theorem I1.7.2] ). We also use the notation D,(Q2) for the subset of divergence-
free D(2) fields

D, () :={u e D(Q), divu = 0}.

Which is also the closure of the subset of divergence-free C*°(S2) fields for the || - ||1.2 norm.
Analogously, if Q = R? we use the notation

Hy(R?) = D, (R?).

For all 3 x 3 matriz M, we define sym(M) (resp. ssym(M)) as the symmetric part of M
(resp. the skew-symmetric part of M)

sym(M) — %(M LMY, ssym(M) = (M — M),

We denote by x the cross product on R® and by ® the tensor product on R which associates
to each couple (u,v) € R® x R? the 3 x 3 matriz defined as

(u®v)ij:uivj, ].SZ,]SS
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For all 3 x 3 matrices A, B, we use the classical notation
3 3
A:B= ZZA”BZJ
i=1 j=1

InR3, | - | stands for the Euclidean norm while | - |o represents the I°° norm. We use the
notation Boo(x,7) for the ball with center x and radius r for the 1°° norm.

Finally, in the whole paper we use the symbol < to express an inequality with a multiplicative
constant independent of N and depending only on ro, M, £ and eventually on k|g| which
is uniformly bounded according to Remark [1.1]

2. REMINDER ON THE STOKES PROBLEM

In this Section we recall some results concerning the Stokes equations. We remind that
for all N € N we denote by (u”,p") the solution to (1) — (2). Keeping in mind that the
linear mapping, that associates to the linear and angular velocities the forces and torques,
is bijective (see [16]) together with the classical theory for the Stokes equations yields:

Proposition 2.1. For all N € N, there exists a unique pair (u¥,p™) € Dy(R3\ JB;) x
L2(R3*\ UB;) and unique velocities (Vi, Q;)1<i<n such that
/ o, pMn+mg = 0,V1<i<N,
0B,
/ (x —2;) x [o(u™,p")n] = 0,V1<i<N,
0B;

and u realizes

(17) inf / |Vol?,
RIUB;

UEDJ(R3\UE),v=‘/§+9i><(x—:ni) onaBi,lgz'gN}.

The velocity field vV can be extended to V; + €; x (z — x;) on each particle B;. This

extension denoted also u" is in H!(R?).
We recall the definition of the force F; € R3, torque T; € R? and stresslet S; € M;3(R)
applied by the particle B; on the fluid (see [6, Section 1.3])

E-:/ o(u™,pM)n.
oB;

(18) M; = aBl(x — ;) ® [a(uN,pN)n} )
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The matrix M; represents the first momentum which is decomposed into a symmetric and
skew-symmetric part

M; =T, + 5,
the symmetric part S; is called stresslet, see [0, Section 2.2.3]. Since the skew-symmetric

part of a 3 x 3 matrix M has only three independent components, it can be associated to
a unique vector T such that

ssym(M)r =T x z,Vz € R

In this paper, we allow the confusion between the skew-symmetric matrix ssym(M) and
the vector T. Hence, we define the torque T; € R?® as being the skew-symmetric part of
the first momentum M, which satisfies

7= ssym(M) = [ (@ =) x [ola® o)),
(19) S; = sym(M;).

2.1. Particular Stokes solutions. The linearity of the Stokes problem allows us to de-
velop powerful tools that will be used in the method of reflections. In particular, we
investigate in what follows the analytical solution to a Stokes flow generated by a trans-
lating, a rotating or a straining sphere. The motivation in considering these cases is that
the fluid motion near a point xy may be approximated by

u(x) ~ u(zo) + Vu(zg) - (x — xp),

hence, if we replace the boundary condition on each particle by its Taylor series of order
one, we can use these special solutions to approximate the flow u. The results and formulas
of this Section are detailed in [0, Section 2] and [I4, Section 2.4.1]. In what follows
B := B(a,r) is a ball centered in a € R? with radius r > 0.

2.1.1. Case of translation. Let V € R3. We consider (U, r[V], P.,gr[V]) the unique solution
to the following Stokes problem:

—AU, g[V]+ VP.r[V] = 0, =
(20) { V] dianﬁM _ o mR\B

completed by the boundary condition

U,rlV] = V., on 0B,
(21) V](z),

= 0.
U, r[V] is the flow generated by a unique sphere immersed in a fluid moving at V. The
explicit formula for (U, g[V], P, r[V]) is derived in [14], Section 3.3.1] and also in [0, Formula
(2.12) and (2.13)]. Explicit formulas imply the existence of a constant C' > 0 such that for
all x € R*\ B(a, R)

%
(22)  UuslVI@)] < CRA VU, alV)(@)] + PslV](0)] < CRA,

|z —al
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Vi

|z —al*

(23) V*Uar[V](2)] < CR

On the other hand, the force F', torque T and stresslet S exerted by a translating sphere
B as defined in read

(24) F=—67RV,T=0,5=0.

We recall now an important formula that links the solution to the Green’s function of the
Stokes problem. For all x € R®\ B(a, R) we have

R2
(25) Ua r[V](z) = — (CID(x —a) — FA‘P(% — a)) F,
where @ is the Green’s function for Stokes flow also called Oseen-tensor
1 1 1
26 P(x)=— | —TI — )
(26) (@) SW(u|y*uP$®w>

The 3 x 3 matrix A® represents the Laplacian of ® and is given by

1 2 6
AD = — | —Is — — .
(@) SW(mgs|ﬂﬁ®x)

The first term in the right-hand side of is the point force solution also called stokeslet,
see [0l Section 3.1]. In this paper we use the term stokeslet to define the whole solution
Us,.[V] which can bee seen as an extension of the point force solution.

Remark 2.1. Formula 15 closely related to the Faxén law which represents the rela-

tions between the force F' and the velocity V. We refer to [0, Section 2.3] and [14, Section

3.5] for more details on the topic.

Remark also that in the point force solution retains the most slowly decaying portion,
R

which is of order Tl This property is useful in order to extract the first order terms for

the velocities (Vi)1<i<n, see Lemma .

Moreover, we recall a Lipschitz-like inequality satisfied by the Oseen tensor
(27) 0(a) — 0(y)| < O— I vy 20

min(|y|*, |z[?)
Finally, in this paper, the velocity field U, gz[V] is extended by V' on B(a, R).

2.1.2. Case of rotation. Let w € R3. Denote by (As}%[w], Pélj)%[w]) the unique solution to

_AAW 1)
{ Adaplel + VE el =0 po\ Bl B,

28
(28) div AL w] = 0,

completed with the boundary conditions

Aé%[w] = wx (x—a), on dB(a, R),
(29) lim [A ]| = 0.

|z| =00
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Agk[w] represents the flow generated by a sphere rotating with angular velocity w. In

particular we have Pé%[w] = 0 due to symmetries. The drag force F’ and stresslet S also
vanish

F=0, S=0.

On the other hand, the hydrodynamic torque resulting from the fluid traction on the
surface defined in ([19) is given by

(30) T = —87R*w.
Finally, there exists C' > 0 such that for all x € R?\ B(a, R)

A < R 19 AD ) + PO < R

|z —af*’

2.1.3. Case of strain. Let E be a trace-free 3 x 3 symmetric matrix.
Denote by (Af%% [E], PG(%[E]) the unique solution to

_AAQ R pe) Bla R)
51 AanlE]H VEpEL = 0 o g\ Ba, ),
div A, z[E] = 0,

completed with the boundary conditions

lim |A®)[E]

|z|—o00

A(ZE%E = FE(x —a), on 0B(a, R),
(32) ,[1 (z —a) (a, R)

The velocity field Ag{[E] is the flow generated by a sphere submitted to the strain E(x—a).
In this case, the drag force and torque vanishes

(33) F=0, T=0.
On the other hand, the symmetric part of the first momentum S as defined in is given
by
20
(34) S——EwWE
Finally, there exists C' > 0 such that for all x € R*\ B(a, R) we have
(35) 4B < R LEL v A (B + | PRI < RV LE

jz]?”

2.1.4. Final notations. Now, assume that D is a trace-free 3 x 3 matrix. We denote by
(Aa.r[D], P, r[D]) the unique solution to

{_A%MM+V&RW]= 0. on R*\ Bla, ),

(36) div A.z[D] = 0,
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completed by the boundary conditions

{ A.r[D] = D(z—a), on dB(a,R),

(37) lim |A,z[D]] = 0.
|z]—o0

We set then D = F + w with £ = sym(D) and w = ssym(D). As stated in the definition
, w represents also a 3D vector. Hence, the boundary condition (37)) reads

A.rlD](x) =D(x —a) = E(x —a) +w X (x —a), forall z € 0B(a,R).
We have, thanks to the linearity of the Stokes equation, that
(A plD], PupD]) = (Aplw], PIplw]) + (AZR[E], PRIE)).
Since the two solutions have the same decay-rate, this yields for all z € R3\ B(a, R)
D]

j]*

(38) |Aar[D]] < CR® [V Aur[D]| + [Py r[D](x)| < CRMEL.

Analogously, for the second derivative we have

Dl

|z —al*

(39) |V?Aqr[D](2)] < CR®

2.2. Approximation result. In this part we consider the unique solution (v,p) of the
following Stokes problem:

N
Ao+ Vp = 0, oo e
(40) { dive = 0, on R \leBi’

completed with the boundary conditions

v = V+D(x—ux), on 0By,
(41) v = 0, on0dB;,1#1,
lim |v(z)] = 0,
|z| =00
with V € R3 and D a trace-free 3 x 3 matrix. We set
v = le,R[V] + Aml,R[D]-

We aim to show that the velocity field v; is a good approximation of the unique solution
.

Lemma 2.2. For N sufficiently large, we have the following error bound:

R i
||V"U - V’Ulan(Rs\UiE) 5 W|V| + |dﬁin|3/2|D|.
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Proof. We have

H Vu UlHQLQ(R:‘\l J; B;) ” U||2L2(R3\Ui Bi)
-2 Vo : Vv + Vv 2[ R B.)’
/]1{3\ ; Bi ' H 1|| T ' K

as v and vy satisfy the same boundary condition on 0B, this yields

(42) / Vv : Vo, = —/ (Opvy — pin) - v
RS\UZ-E 0B,
- /331@”01 =)o = IVl )

hence
Vo = Vol ooy, 7 = IVOllia@sy, 5 — Vo1l sy, 5

In order to bound the first term we construct an extension v of the boundary conditions
of v and apply the variational principle. We define

U= X ( mln/4) B B’xl’drjzm/4 dﬁln/Z[f]

where x is a truncation function such that y = 1 on B(0,1) and x = 0 out of B(0,2).
Thanks to formula . for N sufficiently large we have R < d¥. /4 and thus supp® C
B(xy,dY, /2). f is defined as follows

f@)i=u(o)- v {x X (m_/4>]

and B, v 4y denotes the Bogovskii operator satisfying

min

min

div By, av jaav polf]1 =1,
for all f € LY(B(x1,dY:,/2) \ B(x1,dY, /4) , q € (0,00). We refer to [5, Theorem I11.3.1]
for a complete definition of the Bogovskii operator. In particular, from [I0, Lemma 16],
there exists a positive constant C' independent of d2; such that
(43) IVByyan saay. ol flllzzcan < CllFllzan,

where A; := B(xy,dY,,/2) \ B(zy,dY. /4). With this construction o is a divergence-free
field satisfying the same boundary conditions as v. Moreover, applying formula , there
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exists (another) constant C' > 0 such that

V7117 s, 50

= fo Tl () )]

4 / VB, o a plf)(@)Pdz
RS\U B

2

dx

rT—z
—2/ Vv [:)sr—>x< i) 1(z )] VB, AN /4dgm/2[f]( z)d,
R3\U,; Bi mln/

= /]R3\Bl x < m1n/4) Vo(@)de

1 —
+o( | Vu@)P + gy zvX<“”" )\ or( >|2> dx.

Since y <dN /4) =1 on B(xy,dY, /4) we get

min

Vo = Vol 2 < IV, 2~ IVl 30
[V (z)dz,

Ay
Vx( >‘ v |2 d,

/ 1
A] |dl 1

1
J VX( )‘ [l

1 V|2 D|?
SHVXHZ/A |2 <R2 | | —|—R6 ‘ | )7

1 ’dmln |£L'—.1'1‘2 ‘$—$1|4

D2
<R2|V|2+R6—‘ 2' )dr,

1 diyin /2

‘dmm‘ daN. /4

min

(R2|V| dﬁm+R6‘dN| >

min

<

‘dmln‘Q
Reproducing an analogous computation for the first term we obtain finally

R? RS
(44) V0 = Voo, m) S VI +

This yields the expected result. O

|3\D|2-
min
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2.3. Estimation of the fluid stresslet. In this part we focus on approaching the stresslet
Si, 1 <1 < N, see for the definition. Unlike the drag force F; and torque T;, the
symmetric part of the first momentum does not appear in the ODEs governing the motion
of particles, see [0, Section 2.2.3] for more details. However, in order to approximate the
velocities (V;, §2;), we only need to estimate its value. Precisely we have

Proposition 2.3. For N sufficiently large, there exists a positive constant C > 0 indepen-
dent of the data such that we have for all 1 <1 < N

3

|5il S max ([Vj| + R|Q]) .

EAMEEEE

Proof. We fix 1 = 1. Let E be a trace-free symmetric 3 x 3 matrix. We define v as the
unique solution to the following Stokes equation

N

—Av+Vp = 0, —

(45) { divi’ _ o om rR*\ | JB:,
’ i=1

completed with the boundary conditions

v = E(xr—u), ondBy,
(46) v = 0, ondB;i#1,
lim |v(z)] = 0.

|z| =00

We also denote by (v, p;) the special solution (Ag rlE, Pg)R[E]) We have thanks to the
symmetry of

Sle—/aB sym ([o(u™, pM)n] @ (z — 21)) : E,

T /381 [o(u™,p™)n] - E(x — x1),

(47) = 2/{@3\U FD(UN) :D(v—vy) + 2/]1&3\UAB-D<UN) : D(vy).
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Using an integration by parts we have for the second term in the right hand side
N

Q/RS\UiBiD(UN) :D(vy) = —; /aBi [o(v, p1)n] - (Vi +Q; X (x — 1y))

_ _é </{{)Bi[a(vl,p1)n]) V- </8Bi[0(v1,p1)n] « (x — xi)) 0
—=0,

since v; corresponds to a flow submitted only to a strain, see . For the first term in
the right hand side of , using Lemma we have

Agu&Dwm:D@—%)

It remains to estimate ||[Vul|| L2®3\(J, By One can reproduce the same arguments as for
the proof of Lemma or follow the same proof as [10, Lemma 10] to get

Va3 o, 5y < max((Vil® + R2Su[?).

N RS
< [[Vu HLQ(R3\U¢E)W|E|'

Gathering all the estimates we obtain
3

R
S1:ES m\ﬂ max (|Vi| + R[<%) ,

this being true for all symmetric trace-free 3 x 3 matrix F, we obtain the desired result. [

3. ANALYSIS OF THE STATIONARY STOKES EQUATION

This Section is devoted to the analysis of a method of reflections and computation of
the unknown velocities (V;,€2;)1<i<ny. We remind that, for fixed time, u" is the unique
solution to the stationary Stokes problem

—AuN +VpV = 0, N
{ dive¥ = 0, M R UBZ”
’ i=1

completed with the no-slip boundary conditions

{ uY = Vi +Q; x (x —x;), on OB;,

lim |u™(x)] = 0,
|z|—o0

where (V,€);) are the unique velocities satisfying
(48) Fitmg=0, T,=0, Y1<i<A.

In this Section, we show that at each fixed time ¢ > 0, the convergence of the method
of reflections toward the unique solution ™ holds true in the case where (XN (t))yen- €
X (M, ) and under the assumption that roM'/? is small enough.
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3.1. The method of reflections. In this part, we present and prove the convergence of
a modified method of reflections for the velocity field " for arbitrary N € N*, we remind
that «"V is the unique solution to the stationary Stokes problem , , with unique
velocities (V;, ;) satisfying . The main idea is to express u" as the superposition of
N fields produced by the isolated N particle. Thanks to the superposition principle, we
know that the velocity field

N

3" (Usy rlVil(@) + Auy rIQ)(2)) |

i=1
satisfies a Stokes equation on R3\|J B;. But this velocity field does not match the boundary

conditions of u". Indeed, for all 1 < i < N and = € B; we have

W) Z 7) + Ay, 2 Q)(@)) |

j=1

- _Z xz;,R + Azj [Q KI» )
i#£]

which represents the error committed on the boundary conditions when approaching u”

by the sum of the particular Stokes solutions. In this paper, for all u, € C*(|JB;) we use
the notation Ulu,] to define the unique solution of the Stokes problem

N
(49) { —Au —|—'Vp = 87 on R?\ UEa

divu = 0,

completed by the boundary conditions

{ u = u.(z), on By,

(50) lim |u(z)] = O,

|z| =00

hence, we can write
uN =", mIVi] + Ag, R[] (2) + Uul)].

Note that the boundary condition ufkl) is not constant on each particle B;, thus, the idea

is to approach ne by
(51) ul (@) ~ ulD () + ValD () - (& = ),

on each particle B; and write Ulul"] as follows:

N
U] = 3 (UoylV; )+ A0l 95]) + ULl
j=1
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where )
Vi = aD (@) = =) (Usy lVil (@) + Asyrl)(a2)
JF#i
VO =Vl (@) = =3 (VU rlVil(2:) + VA [ (@0) |
J7
remark that VZ(-l) has null trace due to the fact that
divul)(z;) = 0.

uf)] the new error term satisfying

We set then U

—

UN:

(Us, V)] + Auy il +Z( U+ Au, l90) + U,

(
J

&Mz

where for all 1 <i< N,and z € B;
N
W) = 0 @) = 3 (Ve alV)w) + Al V)(0))
j=1
N

—u (@) = VO = V(@ = 2) = 37 (UyrlVO)w) + Ay V() )

J#
We iterate then the process by setting for all 1 <i < N
(52) V=V, v”:=q,
and for p > 1,
(53) VP =P (@), VP = Vul (@),
for the error term we set
N
(54) uO (@) = (Vi+ Qi x (x =) 1g,,
and define forall p > 0,1 <t < N,z € B;
N
uf(a) = ul @) = 3 (U wlV;P)w) + Auy 7))
j=1
(59) =) =l (o) = Vul ) =)
- Z ( (&) + Ay [V§p>](x)) .
J#i
With this construction the following equality holds true for all £ > 1
(56) ZZ( P) —|—A [Vgp)]) —I—U[ k-i-l]

p=0 j=1

19
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Remark 3.1. This method of reflection is obtained by expanding the error term u, up to
the first-order

Uy (2) = Uy (;) + Vua(z) (2 — 25) + 0 (|Jz — 23]%),

which leads us to formula . If one consider an expansion of u, up to the zeroth-order
then one obtain only a stokeslet development:

ZZU'%7 + U[ (k+1) ]

p=0j=1

The main difference between these two expansions is that the first one allows us to tackle
the particle rotation. It also helps us to obtain a converging method of reflections for a
more general assumption on the minimal distance.

k k
We emphasize that we only need to show that the series (ZVZ-(p), ZVSP)> for all
=0

= =0 keN
1 <4 < N converge to obtain the convergence of the expansion , see Lemma and
Proposition [3.4  Precisely, the only assumptions needed to obtain the convergence of the
series are the smallness of M'/3ry, assumption () and the fact that

N |3
i 2T g i B
m N - Y 1m aN 1z — Y
N—oo dmln N—)OO' mln'

which 1s less restrictive than @

The second step is to show that the expansion is a good approzimation of the unique solution
uv. This is ensured by Proposition . Precisely, in addition of the previous assumptions,
we need the following uniform bound

R‘)\N‘B
dN

nE
min

sup < +0o0

NeN*

One can show that this assumption is less restrictive than @ and allows us to consider
smaller minimal distance. To reach lower bound for the minimal distance, one may develop
Uy at higher orders.

3.1.1. Preliminary estimates. Recall that the dependence in time is implicit in this Section.
All the following estimates hold true under the assumption that there exists a sequence

M) ven+ and two positive constants M, € such that (XV)yen- € X (M, &), see Definition
and M'/3r; is small enough.

Lemma 3.1. Assume that there exists M,E and a sequence (ANY)nen+ such that the particle
configuration (X™N)nen- lies in X(M,E). If MY3rq is small enough, there exists a positive
constant K < 1/2 and N(ro, M,E) € N* such that

max| V| 4+ Rmax VY| < K (max |V + Rmax| V7))

for all N > N(ro, M, E).
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Proof. Using formulas and @ we get

V;(PJFU u(p+1)(xl) ’

(57) :_Z( RV )+Amj,R[v§p>](a:i)),
J#i
and

vty = vu@“)(@-) ,

(58) - _Z (VU mVV @) + VA al V(1))

J#i
This yields, for all 1 <7 < N, using the decay-rate of the special solutions , and
Lemma Al with k =1 and k = 2

‘V(pH)’
|V(P | |V(P)|
< C’ZR + R Z
J#i
/\N 3 B R )\N 3 B
< Oy (max|x4(p)| + Rmaxyv§p>|> (||d | N+ M3 |d| ||2 + RM2/3> ,
similarly, using (10[), we have for all 1 <7 < N
(p)
(v1) V2 IV
v <y R z +R d3 ,
JF#i
R
<C (mzax“/;(p” + Rmzaxwl(p)o (Zd_Q L ZCF ) )
i#i min ;o4
ij
_ ») ») R R
=C (mzaxﬂ/;p | +RmZaX|Vip |> (;ﬁ) (1—1— dIJXm) ,
AN
< Cry (max]‘/i(p)\—l—RmaX]VEp)\) (|d M+M2/3) .

Finally
max|V;""™| + Rmax|V#™| < Crg (maX]Vi(p)\ + RmaX]V(p)D

AV s, BIAYP 2/3
X M+ M ———— M+ RM
( N A E >
For the second term on the right hand side we have
)\N 3 R )\N 3 )\N 3
\ | AT AT (d¥, + ) .

InlIl | dmln ’ 2 ‘ d

| 2
min
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which vanishes when N tends to infinity according to @ and . Moreover, if 7o M3 is
small enough, this ensures the existence of a positive constant K < 1/2 such that

max| V| + Rimnax VY| < K (max|V?| + Rmax| V1))
for N large enough and depending on 79, M and &. U

We have the following estimate.

Proposition 3.2. Let (U;)1<;<y be N vectors of R and

< (Di)i<i<n be N trace-free 3 x 3
matrices. There exists N(ro, M,E) € N* such that for all N > N(ro, M,E

) we have

> (UerlU] + Ay w[Di]) S max ([Ui] + B[ D).

1<

H' (B3\UB))
Proof. Considering only the stokeslet expansion we have

N 2

> Us,xlUi]

i=1

(59)

L (®\UE)

ZHU@ M mom, +Z / VU, 4lU] : VU, [0
R\UBL

1=1 j#i

The first term in the right hand side of can be computed using the fact that U,, g[U;] =
U; on 0B;, 1 <i < N and formula ([24))

Vs Uy e / VU U
ZH HH R\uBl Z B\, ] R[ ]
-y / (U lU): PoplU ] U

i=1 7/ 0Bi

N
= 6rR|U|?,

=1

2
< 6779 (max |U|) .

1<i<
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For the second term in the right hand side of we write for all ¢ # j

/ VU, 4] VU, #U;]
RS\LZJBZ

According to the decay properties of the stokeslet we have

|Ui] |Ui]
lo Uz, plU, Pos rlUiD | oo omy S B~ (1= 0) + —570u,
il
R|U,|
(60) 1Us; 2 lUi|| e o5,y S —d»lj (1= 0;0) + U0,
J

where 9;; is the Kronecker symbol. On the other hand, we recall that the triangle inequality
dij < dj + dj yields for all 1 # j # 1

1 1 1 1
61 N U
( ) dildﬂ d@'j (dzl djl)
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Using , formula twice and Lemma we obtain for all ¢ # j

Z47TR2 Z47TR2(’)Z + 47 R*O; +47TR2(9i],
l#1,5
R|Ui| R|U;| Uil BIU| | R BIUA]
< RP—1 + R? U;
l;:j dil dji R d;; d2 Uil
R3
S T d_ Z Z Z Uil
N Ny du I#i,j dit z;éu
U;||Uil Uil |Uj]
R2| J R3
TR, P
R AT AT
<= M+ MY3 ) + M + M2 ) |U;||U;
~ dl] (dl] < dﬁln + ) + ‘dmmP + | j|| |
2US|Ui| | 5 |Ui| U
+ R d; + R d2 ,
i M'Prg |U;||Ui] Ui |Uj]
M M2/3 |U; 217l 3
N d%] (8 " dﬁm ) |U]||U | " R dij R d’LQJ 7

R 1 +R2 R?
dij dN. di;  d

15 “min

| i

where we kept only the largest terms using the fact that dY, vanishes according to for
N large enough. Hence, the second term in the right hand side of yields using Lemma

Al / NNRS 1 R L
VU, 4lU) : VU, 5lU}] < f———+ MUWM
;; R3\UB, ’ ;; dij d. dy d2
N 2
RZ 1 R R2
< _
112%}5\1 (g [d dﬁm t dyj + 2 ]) (11553\[|UZ|> )
j#i
R ’ N|3 R|)\N|3 _ B 2
< S 1/3 2/3 '
[Qﬂm+0(dmf”+M' T M RM | pmalUd )

2
s(mwuu),
1<i<N

where we used the fact that dN < 1 thanks to and |21]\\’I. ® < |‘d)]\V |T2 dY. <1 according

min

to (6) and (7). The term involving rotating and Straining solutions A, r[D;] is handled
analogously. U
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) o)

Since the series > V", 3" V.” are convergent, we denote their limit by

p=0 p=0

V;OO = Z‘/;(P)’ v;x: = Zvip)
p=0

p=0

Thanks to the linearity of the Stokes equation and Proposition [3.2] the expansion term

)

converges in H'(R?\ LZJEZ) uniformly in N to the expansion where we replace the series by

k

p=0

k

p=0

+ AZZ',R

N
Z (Umi,R

i=1

their limit. This shows that the error term U [u&k)] has a limit when £ — oo. In order to
quantify the error term, we begin by the following estimate

Proposition 3.3. For all k > 1 we set

n® = maX|Vj(k)] + R maX|V§k)].
J J

Under the same assumptions as Lemma there ewists N(ro, M,&) € N* such that for
all N> N(rg, M,E) and 1 <i < N

)\N 3 _
IV2ul ) || e (5 S <1 + ,Lljv—’g + | log(Ml/SAN)O max(|V;] + R[Q]),
Va5, R||V2ul* ™ || e,y + P,

S
< R2||V2uik+1) ||L°°(B¢) + n(k).

[u{ ]| oo ()
Proof.

1. Estimate of \]V2u£k+1)]]Loo(Bi)
Let € B;, using formula we recall that for ¢ #£ j

o = 25| 2 |25 — 2] = o — @] 2 5dyy.

Applying this, formula 7 the decay properties of the second gradient of single particle
solutions 7 and the iteration formula together with Lemma for k = 3
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yields
[V2u{ D (2))
< V2l (2)| + D |V2Us, [V;)(@)] + V2 A, 5[V ()]
J#i
Ol 19
S IV (s +Z AT IR,
J#i
S IV | ey (Z 7o ng) (maX|V |+Rm]aX|V§.k)|) ’
ji min ;-
R R
G min
PR ~
< || V2u k)” By +roM (|dN 3 +\log(M1/3>\N)| + 1) n®,

hence, we iterate the formula and use the fact that v2? =0 according to formula
to get

N3
2,,(k+1) A ‘ 1/3 N
(Rl PRI (1 + o log(r e ) Zn
which yields the expected result by applying Lemma
2. Estimate of HVuikH)HLoo(Bi)
Let z € B;, again, the decay properties of the gradient of the special solutions , ,
formula and Lemma yields

[Vl ()|
k
< IVul(2) = Vul@)] + 3 VU, V)i | 4 1V As, V7))
j#l‘

2, (k) |v(k| 3

S/ RHV Uy HLOO "‘Z d2 PR R ,
J#i ij
J J
i dmn i Z 4

)\N 3
< R||v2u>(kk)||Loo(Bi) + (1 + ) (\ld ||2M+ M2/3) o™
again, according to , note that for NV large enough, 1 + -

assumption @ to bound the right hand side by n*) up to constants depending on M, &,
To-

< 2. We conclude using
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3. Estimate of ||u>(kk+1)||Loo(Bi)
Let z € B;, again, the decay property , and formula yields

D ()]
k

< R|\V2uP | g sy + > U, r[V](@)] + [As, [V ()]

J#i

v< v,

<R2||v2 k)||L°°B)+Z d ’R+‘d2 ‘R37

J#i gl

212, (k) ’ N|3 /3 4 R| N‘g 2/3 ) (k)

< RE||\ VA, “L‘X’(Bi) + 7o v M+ M |d |2M+RM n

Using @ and , the right hand side can be bounded by n*) up to constants depending
on M, &, ry. U

3.1.2. Approzimation result. We can now state the main result of this Section.

Proposition 3.4. Assume that there exists M,E and a sequence (\Y)yen+ such that
(XM nen- € X(M,E). Assume moreover that M'/3rq is small enough.

There exists a positive constant C = C(rog, M,E) and N(ro, M,E) € N* satisfying for all
N Z N(To, M, g)

lim VUL g2 5y < CRmax (Vi + RIC),
—00 1

Proof. The aim is to estimate |VU[ul*"] | 223\ B,)- To this end, we construct a suitable
extension E[u£k+1) | of the boundary conditions of ™ and apply the variational principle
(17). By construction, uF ™ s regular and well defined on each particle B(z;, R). Hence,
we construct the extension piecewise in each B(x;, 2R). Let 1 <i < N, forallz € B(x;,2R)
we set
v'(w) = ui? () + g (2),

where the first term ugi) matches the boundary condition on B(z;, R) and vanishes outside
B(x;,2R). The second term is the correction needed to get divw; = 0. In order to obtain

an extension of u{” on B (x;,2R) we set

i L=
e = (et o

u'(z) = (), ifz € B(xiR) ,

x;%%), if |z — ;| > R,

with x a truncation function such that y =1 on [0, 1] and x = 0 outside [0, 2].
We have then

i 1
62) Vel many < Ky (||Vu£’f>||m<3<xi,m> + E||u£'f>||m3<xi,m>) .
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In what follows we introduce the notation A(z,r, R) := B(x, R) \ B(z,r) for r < R. For

the second term we set:

u@) = B% ,R,2R<_ div ugl)),

(2

where B is the Bogovskii operator, see [10, Appendix A Lemma 15 and 16] for more details.
The construction satisfies:

e supp uEQ) C A(z, R,2R)
e divy;, =0

oy = ugl) = u{® on B(;, R)

We set then

k+1 E
U 1B (z:,2R) >

and thanks to the variational formulation we have

HVU[UikH)] H%?(RB\U B = HVE[UikH)] H%Z(R?’\U B;)>

N
= VUil iz as nany):

where we used the fact that the v; have disjoint support.
Thanks to the properties of the Bogovskii operator By, r.or we get

Vel S [ valP,
A(Z.“R,QR)

S RBHVU@ H%OO(B(A(mi,R,QR))) )
1 2
S 7 (1960w + 1 limiay )

Finally

N 2
1
VU [u k+1)]”%2(1R3\UBi) S ZRS <||vu>()<k)||L°°(Bi) + EH“WHL@(&)) :

i=1
Thanks to Proposition [3.3] we have

1
VU || Lo (5, + }—%HU*HLW(BZ-)
R )\N 3
< max(|Vi] + R|€]) (R |d‘N ,‘3

+ R 10g(M1/3)\N)|> + (— + 1) n™.

Since
n'*) < K'max(|Vi] + RI)),
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with K < 1 according to Lemma we get
VU V1 2o

RIAV3

S max((v + £ { (R S

Since K < 1 for N large enough the second term on the right hand side, which is uniformly
bounded with respect to N, vanishes when k£ — oco. This yields

_ 2
+ R log(Ml/?’)\N)\) +(1+R) K’f} :

min

. k41
Jim VUl || ey 5,
R|>\N|3
|din®
The second term on the right hand side can be bounded using assumptions @, and

(L)

< Rmax([Vi| + RI)) (R s log<M1/3AN>|) .

min

RIAYP?
|d
Finally we obtain

log M| + log N
7+ Rllog('/\Y)| S R+ — B o llos |N+ BN <,

min min

R+ —5—=

L [[VO [l 2oy s, S Rmax(|Vil + RIQ))
which is the desired result. O
Remark 3.2. According to Proposition [3.5 we have for all 1 <i < N
[ul ey S B2Vl ooy + 1™
AN

S max((v + Rlg) { & (T

as for the proof of Proposition the second term wvanishes when k — oo and we obtain

i [[ul Y] o) S max(|Vi] + RIu|) R
—00 (2

B + R log(M1/3)\N)|) + K‘f} .

3.1.3. Some associated estimates. We recall that we aim to compute the velocities (V;, £2;)
associated to the unique solution u” of the Stokes equation:

—AuN + VPV = 0, -
{ divu = 0, onR3\UBZ»,

completed with the no-slip boundary conditions

uN = V;+Q x (x —x;), on OB;,
lim [u™(z)] = 0,

|z|—o0
with
Fi4+mg=0, T,=0, V1<i<AN.
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The method of reflections obtained in this Section helps us to describe the velocity field

v’V in terms of explicit flows

=3 (U [V + Ay [95°]) + lim 019)

k—o0
Jj=1

In order to extract a formula for the unknown velocities (V;,€2;), 1 < i < N we need to

compute first the velocities Vi(oo) and matrices VEOO). Applying the method of reflections
and writing the force, torque and stresslet associated to the unique solution u" in two
different ways we get the following result.

Lemma 3.5. Consider the same assumptions as Proposition [3.4.
There exists N(ro, M,E) € N* such that for all N > N(ro, M,E)

Ve = /fg+0<mzax(|‘/;|—|—R|Qz~|)\/%), 1<i<N,

RIVE = 0 (max(Vi+ RIGD A ) 1<,

min

where kg is defined thanks to formula (4]).

Proof. For the sake of clarity we fix + = 1 and the same result holds for all 1 <7 < N.
Let V € R3, D a trace-free 3 x 3 matrix.
The main idea is to apply an integration by parts with a suitable test function v €

D, (R?\ UB;) such that v = V + D(z — 21) on OB, and v = 0 on the other 9B;, j # 1.

7
We choose v the unique solution to the Stokes equation:

N

“Av+Vp = 0, _

o { divg _ o R\ B
’ i=1

completed by the boundary conditions

v = V+D(x—x), on 0By,
(64) v = 0ondB;,1#1,
lim |v(z)| = 0.

|z| =00



SEDIMENTATION OF PARTICLES IN STOKES FLOW 31

We extend u” and v by their boundary values on all B;, 1 <i < N. We set E = sym(D),
2 = ssym(D). An integration by parts yields

243\UBiD(uN) D) ==Y /831_ (o™, p)] v,

:—/8]3 [o(W™,p")n] - (V+Qx (z —z1) + E(z — 21)),
(65) :—V~/83.U(UN,pN)n
_Q./aBi(:r—a:i)x [o(u™, p™)n] |

—E:/ (2 — ;) ® [o(u™,p")n] ,
dB;
(66) :—V'Fl—Q'TI—EZSh

see and for the definition of the force I}, torque T} and stresslet S;. On the other
hand, we apply the method of reflections to get

(67) /R -, D(u™): D(v) =
RV} D(VA, gV : D(v
22/[&3\% )+ D(V A, f{V5]) s Do)
+ lim D(U[u¥]) : D(v).
o0 R3\LiJBi

For the first term we integrate by parts to get forall 1 < j7 < N

2 DU, r[Vi®)) : D(v) = — 0(Us, rIV:®), Po, vV -0
/wm,[]]) 0 = =3 [ 1ol Pyl
2 D(Aq4; m[V5]) : Dv) = — 0(As, rIVS], P, RV )R] - 0.
/w (el P0) = =3 [ (ol Popal V7D

Recall that v vanishes on 0B;, i # 1 and hence, the sums above are reduced to the first
term. Applying and there holds for all 1 < j < N

/ [0(Us, 2[V;®), Py v[V°)0] - v = =67 RV - Vyj.
0B,
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/ [0(As, r[V], Py v[VE))0] -0 =
0B,

20
— TR <8 ssym(V{°) - Q + 3 sym(V{°) : E) 91j,

where 6y, is the Kronecker symbol.
For the second term on the right hand side of formula (67)), we consider vy := U, g[V] +
A, r[D] and write

(68) /RS\U.B_ DUu¥] : D(v) =

/ DU : D(v) + / D(U) : D(v — vy).
R3\U; Bi R3\U; Bi

To bound the last term we apply Lemma [2.2] and Proposition

lim
k—o0

/ D) : D(v — vn)
RAU; B;

R R
SmaX(MHR[QA)R( |V|+N—|D|> :

\/ dﬁin |dmin|3/2
RQ
N % (IVI+ R|D[) max(|V;| + R[<%).

We focus now on the first term on the right hand side of formula (68]), we have

Y

/ DU : D(wy) :‘Z/ (o, p1) -] - u®
R3\%Bi i 8Bi

< Y AnR?|o(vr, po)ll ez a1z,

)

using the decay properties , we have

RIV| R ,
lo(v, p)llLes) < 6;2 | + d—ng\, fori#1,
i i
V
Jo(vrp) i@ S Lo+ D]

R
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hence

/ DU™]) : D(v)| S R(IV| + RIDD|[ul?|| () »
R3\UB

RV RD|
+RZ( i R A
Z;ﬁl 1 (2

< R(IV] + RID|) max||uf™ || = (5

According to Remark ,we have forall 1 <i < N

T 0?5y S Rmax((Vi] + RIS).
—00 K3

Finally we get

/ D(U)) : Vo <
R3\Ui B;

~

(69) lim

k—00

+ /RS\U N D(UuF)) : V(v — )

2

R
V dﬁin
Identifying formula and and gathering all the inequalities above we have for all
V', Q € R3 and symmetric trace-free 3 x 3 matrix F

max(| Vi + R[€%]) (V] + R|DI).

20
—~V-F,—Q-Ty—E:S =6rRV° -V +871R*ssym(V5°) - Q + gwR?’ sym(Vy®) : E

R2
V dgin
with F1+mg = 0, T} = 0. Note that the value of the stresslet S;, see for the definition,

is unknown. However, we only need to approximate its value using Proposition We
conclude by identifying the terms involving V' € R? to obtain

R
V @) Vil + R||)—== | ,
Z o+ (mgX(l |+ |>@>

+0 <miaX(IViI+R!Q¢I) (!V!+R|D|)>,

for the skew-symmetric part we get
R

Rssym (V)| S max(|Vi[ + R[€%]) S max(|Vi] + RI)) =575 FAmEES

and for the symmetric part using Proposition

R
Rlsym(V{°)| = O (m?X(|Vi| + R[Q; |>]d ’3/2) ’

which concludes the proof. [l

min



34 AMINA MECHERBET

Corollary 3.6. Under the same assumptions as Lemmal[3.5, there exists a positive constant

C = C(klg|) and N(ro, M,E) € N* such that for all N > N(ro, M, &) we have
max (|V;| + R|]) < C.
1<i<N

Proof. recall that V;-(O) =V, VEO) =, for all 1 <7 < N, according to Lemma and
Lemma [3.1] we obtain for all 1 <i < N

SMﬂ+RWﬂ+K(§)W)wmmﬂ+MQM

p=0

Vil + Rl < [VE<] + RV +Z(

R K
S elol+ (et + g ) max(Vi-+ R

Hence, according to Lemmawe have % < 1. Moreover, assumption @ ensures that

R < 53/4M3/4
32~ N4

|d™.
which vanishes when N goes to infinity. U

min

3.2. Extraction of the first order terms for the velocities (V;,€2;). In order to
control the motion of the particles, we want to provide a good approximation of the un-
known velocities (V;, ;). Thanks to the method of reflections, the velocity field vV can
be approached by a superposition of analytical solutions to a Stokes flow generated by a
translating, a rotating and a straining sphere (See Proposition with the associated
velocities (V,>°,V$°). This allows us to compute the first order terms for (V;, ;) applying
Lemma and Corollary [3.6l Keeping in mind that all the computations are done for a
fixed time ¢ > 0, the main result of this Section is the following Proposition.

Proposition 3.7. Assume that, for a fixed time, we have the existence of a sequence
(AM) yen+ and two positive constants M, E such that (X™)yen- € X (M, E). Assume more-
over that M'/3rq is small enough. Then, there exists N(ro, M,E) € N* such that for all
N > N(rg, M,E), for all 1 <i < N we have

N
Vi = kg + 67TRZ(I)< —zj)kg + O ( mm) , RQ; =0 (dﬁm) ,
J#
We begin by the following lemma:

Lemma 3.8. For all trace-free 3 X 3 matrices (D;)i<i<n, for all W € R® and 1 <i < N

we have
N

> 67RO (2 — x)) W — Uy, o[W](2)| S RIW).
J#1
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Z Az, r[Dj] ()] S Rmax RID;|.
J#i
Proof of Lemma([3.8 Thanks to formula we have for i # j
1 R3 3 oz —ax) W
U, z[W](z:) = 61R® {7, A -2 ) IR PR
5 mW](@:) TRO(z; — x))W + Az — z 4 |z — ;] (; — i)

this yields
RS
|Us, r[W](2;) — 6T R®(z; — 2)W| < .
ij

Applying Lemma with k& = 3 yields

RS
§ Uy, r[W](2;) — 6T R®(z; — )W | < § — pe W
i j#i 4
_ ] NP _
gRrOM<|d g R(|logM|—|—|log)\N|)> W].

We have thanks to assumptions @, and

RIANP? : v R ]
i ’3+R(|logM|+|10g/\ |)§dTE+R|logM|+RlogN§1.
Analogously, we obtain the second bound by applying with & = 2 this time. O

We can now prove the main result.

Proof of Proposition[3.7. Let fix 1 < i < N. According to Lemma [3.5] and Corollary [3.6]

we have

As Vi(o) =V, we get

Formula for the velocities V-(p ) yields

V; = ZZ( jp (@) + A, [vg.pfl)]( >>+ﬁg+o<\/dRT>’

p=1 j#i

s 0 R
= =g+ > (U, nlV;)(ai) + Au, IV ](xl))—l—O(@),

JF
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we apply Lemma , Lemma and Corollary together with @ and to get:

D | Aw, mIVF) )| S RmaxR|VE],
J#i
R
|dm1n’3/2 ’
3/4 0 r3/4
< dﬁmgN—lMM ,
S duin:

Now, we rewrite the sum as follows:

ZU:CJ Voo xl ZUIJ Hg (Ez +ZU$J VOO_Hg}( )

J#i J#i J#i

and we bound the error term using the decay rate , Lemma and Lemma with
k=1

ZUxJ - Hg] ( )

< (Zf) max |V — /ig’

JF#i JF#i
< R ,
~ N
dmin
N
5 dmin .

We conclude by replacing the stokeslets by the Oseen tensor thanks to Lemma (3.8, Finally
we have for all 1 < < N

N
Vi = kg + 6TRY ®(x; — x;)rg + O (dl,,) .

min
J#

For the angular velocities we obtain thanks to Lemma and formula for vgp )7 p>1

- R
ROy ==Y RssymV{ + 0 ( _> ,
dﬁln

p=1

= Rssym (ZVUIj,R[‘/jOO](xl) + VAzj,R[V]‘?O](xl)) +0 ( R ) .

J#1
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As before, using Lemma we bound the first term by

R VU, lVi®](x1) + VAy, g[ V5] (1)
J#1
<R (ZCF > max(|v00\ RIVY),
J#1
R (o] o
(Zdz ) ( v )max(|v B R[V ),
]761 min
< Reo (7 3p 4y
~ O |dm1n|2 ’
<ay, (Bl e
|dm1n
< dﬁln’

where we used the fact that ﬁﬁ ||3 is uniformly bounded according to @ and (| . U

min

4. CONTROL OF THE PARTICLE DISTANCE AND CONCENTRATION

In this Section, we make precise the particle behavior in time. Precisely we want to
prove that if initially there exists two positive constants M, & and a sequence (AY)yen-

such that (XV(0))nen- € X(M,E) (see Definition [L.1)), then the same holds true for a
finite time. Recall that the initial distribution of particles satisfies:

e The minimal distance is at least of order |\V|3/2.
e The maximal number of particles concentrated in a cube of width AV satisfies
assumption ({3)).
We aim to show that there exists a small interval of time [0,7] independent of N on
which the particle distance and concentration stay at the same order. The idea is to use

a Gronwall argument and the computation of the velocities (V;)1<i<ny at each fixed time
t>0.

4.1. Proof of Theorem We assume that initially there exists two positive constants
M, € and a sequence (A\Y)yen- such that (XN (0))yen- € X(M,E). Let T > 0 be such
that

1
(70) di;(t) > §dij(0) NV1I<i#j<N,Vtel0,T].
This maximal time 7" > 0 exists and we aim to prove that it is independent of N. As long
as t <'T' we have a control on the particle concentration.

Lemma 4.1 (Control of particle concentration M”). As long as t € [0, T we have:

MY (t) < 8*M™N(0).
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Proof. We recall the definition of M™(t)
MY (t) .= Sup{#{i € {1, -+, N} such that z;(t) € Boo(a:,)\N)}}.
T€R3

We introduce the following quantity:
(71) LN(t) :== max# {j € {1,..., N} such that |z;(t) — 2;(t)|c < AV)}.

One can show that the two definitions of concentration L (t) and M™(t) are equivalent in
the sense that

LN (t) < MY (t) < 8LY (1)

see Lemma for the proof. We also need to introduce the following notation for all
B> 0:

Ly(t) = max {j €{1,...,N} such that |z;(t) — z;(t)| < BAV)},
and
MY (t) == sgp{#{z’ € {1,---, N} such that x;(t) € m}},
with the notation
MY (t) = MY(t), LY (1) = LY(1).
We have for all 8 > 0 and all a > 1
LY(6) < S[al*LY (),

where [-] denotes the ceiling function. See Corollary for the proof.
The idea is to show that the concentration L” is controlled in time and hence, the same
applies to M according to Lemma, . Recall that we have for all ¢t € [0, T

1
2
Now, fix 1 <4 < N and consider j # i satisfying |2;(0) — 2;(0)|o > AV, then

dij(t) = 5di;(0).

|2:(t) = 2;(D) |0 = TIxi(t) — ;)]

Which means that

N
j & {1 < k < N, such that |z;(t) — zx(t)] < 2)\—}
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We obtain

)\N
72) {1<j <N, such that |z;(t) — z;(t)] < ——
) {155 <V, st dat o) - a0 < |

C {1 <j < N, such that |z;(0) — z;(0)] <AV},
Hence taking the maximum over 1 <: < N we obtain

LY, () < LN(0
%ﬁ()_ (0),

thus, we apply Corollary [A.3[ with 3 = ﬁg and a = 7! = 2v/3 to get

LN(t) < 8 LN(0).
According to Lemma , the equivalence between M"Y and LY yields finally for all ¢t €
[0, T

MY (t) < 8*M™N(0).
This ends the proof. Il

This shows that as long as t < T we have (X™(t))nen+ € X (8*M,4€). This implies the
following control.

Proposition 4.2. Assume that there exists two positive constants M,E and a sequence
(AV)nen= such that (XN)yen- € X(8*M,4E). If roM'/? is small enough, there exists
N(rg, M, &) and a positive constant C = C(rg, M, &, k|g|) independent of N such that for
all N > N(ro, M, &), for all i # j we have

Vi = V;| < Cdy;.

Proof. For the sake of clarity we fix i = 1 and 7 = 2. The computations below are
independent of this choice. Thanks to Proposition [3.7] we obtain :

N
Vi—Vo=6mRY (D(x1 —2;) — D(az — 3:))kg + O(dyy

min)'
1#£1,2

Hence, according to assumption @, formula (27) and using Lemma for k = 2 we
obtain

N
1 1
ViVl S RY. (g + o ) o= el + O,
17 21

i#1,2
< - AN r2/3 N
>To M|dN |2 + M ‘1'1 - [E’Q’ + O(dmin)7
min
5 dlg.
We set then C' > 0 the universal constant implicit in the above estimate. O

We have the following control.
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Lemma 4.3 (Control of particle distance). For all 1 < i # 5 < N, for allt € [0,T] we
have
dlj<t) > dij (0)€7Ct.
Proof. Thanks to and Lemma we have for all ¢ < T that
(XN(t))NeN* € X(84M, 45)
Hence, all computations from Proposition hold true up to time 7T'. In other words, there
exists a positive constant C' = C(ry, M, £, k|g|) such that for all indices 1 < i # j < N we
have
Vi(t) = V(1) < Cdy(t) vt € 0,1,
thus,

Zdi(t) > —|Vi(t) = Vit

> —C'd;;(t).

This entails

dij(t) = dij(0)e™ ",
which is the desired result. 0
Conclusion. Thanks to Lemma and Lemma we have for all 1 < i # 7 < N,
tel0,T]
dij(O)G_Ct,
8'M™(0),

di;(t)

MM (1)

this shows that 7' is independent of N and is at least of order %
(TOa M7 5’ ’i|g|)

>
<

where C' depends on

5. REMINDER ON WASSERSTEIN DISTANCE AND ANALYSIS OF THE LIMITING EQUATION

In this part we recall some important results of existence, uniqueness, regularity and
stability concerning the mean-field equation . We recall also the definition of the
Monge-Kantorovich-Wasserstein distance of order one and infinite. We refer to [18, Part
I, chapter 6] for definition and properties of the order one distance W;. To define the
infinite Wasserstein distance we start with some associated notions. We refer to [3] for
more details.

Definition 5.1 (Transference plan). Let p, v € P(R3) be two probability measures. The
set of transference plans from p to v denoted I(p, v) is the set of all probability measures
7 € P(R3 x R3) with first marginal p and second marginal v i.e.

mell ) e [ [ o+ vy = [ s+ [ o),

for all ¢, 1 € Cy(R3).
Recall that for all probability measure A € P(R? x R?) we have
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Definition 5.2 (Essential supremum).
A —esssup |z — y| ;= inf{t >0 : A\({(z,9) € R* xR? : |z —y| > t}) = 0}.
We recall also the definition of the support for a (non-negative) measure.

Definition 5.3 (Measure support). Given u € P(R®) a non-negative measure, then the
support of v is defined as the set of all points x for which every open neighbourhood of x
has positive measure

suppp = {z € R*: VYV € V(x), u(V) > 0},
where V(x) denotes the set of open neighbourhoods of x.
With this definition for the support one can show that there holds
A —esssup |z — y| :=sup{|z —y| : (z,y) € supp A}).
We can now define the infinite Wasserstein distance W:

Definition 5.4 (Infinite Wasserstein distance). The infinite Wasserstein distance between
two probability measures p and v is defined as follows:

Woolp, v) = _inf {m —esssuplo —yl}.

A transference plan ©* € I(u, v) satisfying
Wy, v) =7 — esssup |x — y|,
1s called an optimal transference plan.
We recall also the definition of a transport map.

Definition 5.5 (Transport map). Given two probability measures p and v, a transport
map T is a measurable mapping T : supp p — R3 such that

v="Tyup.
We emphasize that T(R?) C supp v p - almost everywhere. Indeed
p{z € R?: T(x) ¢ supp v } = p{T ™' (*supp v )},
= v{“suppv},
= 0.

Remark 5.1. Note that, for all transport map T from p to v one may associate a trans-
ference plan (I1d,T)#p € U(w, v) i.e. the pushforward of u by the map x — (z,T(x)) and
we have

(Id, T)#p — esssup |z — y|,

= inf{t >0 : (Id, T)#u({(z,y) € R* xR’ : [z —y| > t}) = 0},
=inf{t >0 : pu((Id, T) {(z,y) €R* xR® : |z —y| > t}) =0},
=inf{t >0 : u({xr €R® : |z — T(z)| > t}) =0},

= p — esssup | — T(x)].
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Note that this yields

1111(1f ){7r — esssup |z — y|} < inf{p — esssup [T'(z) — x|, T : suppp — R®, v = T#u}.
mell(p,v

It is then natural to investigate in which conditions one has the existence of a transport
map T associated to an optimal transference plan. As in [9] we refer to [3] for the following
existence result.

Theorem 5.6 (Champion, De Pascale, Juutinen). Assume that p is absolutely continuous
with respect to the Lebesque measure. Then there exists optimal transference plans, and at
least one of them is given by a transport map T. If moreover v is a finite sum of Dirac
masses, this optimal transport map is unique.

5.1. Existence, uniqueness and stability for the mean-field equation. Consider
the following problem

) .
(73) { £+ div((kg +Kp)p) = 0,

p(07 ) = po,
recall the definition of the kernel IC

Kn(z) = 6rron / (x — y) gnly)dy,

for all n € L=(R3) x L'(R3). We refer to the existence and uniqueness result due to Hofer
[T, Theorem 9.2] in the case where the initial data py and its gradient Vpg are in the space
Xp for some 8 > 2 where

Xp:={h e L*®%), |h|x, < oo},
with
|hllxs := esssup(1 + |z|?)|h(x)|.
Theorem 5.7 (Hofer). Assume that py, Vpy € Xg for > 2. There exists a unique

solution p € WH((0,T), X;) to equation for allT > 0 and a unique well defined flow
X satisfying

(74) 0: X (s,t,x) kg + Kp(s, X(s,t,x)), Vs, tel0,+o0],
X(t,t,x) = =, Vit € [0, 400,

such that

(75) p(t,2) = po(X(0,4,2)), ¥ (t,) € [0, -+oo[xR.

Remark 5.2. The flow X is measure-preserving i.e. for a test function ¢ € Cyp(R?) we
have

/ o(y)o(s, y)dy = / H(X (5,1, 9))p(t,y)dy,

for all s, t € [0,T]. This allows us to separate the dependence of time s in the integral
with respect to the measure p(t,-).
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Remark 5.3. Note that for all n € L=(R3) N L' (R?), the velocity field Kn is Lipschitz
Kn)(2) = K@) < (Il + [Inllz<) |z = yl, Ya#yeR

Moreover, if one assume that py is only Lipschitz and compactly supported, then one
can show the existence and uniqueness of the solution p to equation in the space
L>((0,T); L>(R?) N L*(R?)). The method of proof is related to the stability result due to
G. Loeper in [I5] which gives a stability estimate in terms of Wasserstein distance for the
Vlasov-Poisson equation. This result is adapted by M. Hauray in [8, Theorem 3.1] for a
more general class of kernels K satisfying a (C) condition with a@ < d — 1 where d is the
space dimension

(C) div K = 0, |K (@), |2]|VE ()] < =, ¥ £0,

]
see [§]. This condition being satisfied by the Oseen tensor ® we have the following result.

Theorem 5.8 (Hauray-Loeper). GivenT > 0, consider two solutions py, ps € L>((0,T), L>(R3)N
LY(R?)) of equation associated to two initial data p), pi € L°(R3) N LY(R3). There
holds

(76) Wi(pi(t,-), pa(t,-)) < Wl(pé, pg)QCmax(Hp?Hle,llpgllmm)t,

We refer to [8, Theorem 3.1] for a complete proof which introduces the main ideas used
also in [9] for the mean field approximation result.

5.2. pY as a weak solution to a transport equation. According to Theorem , there
exists a time T" > 0 independent of N for which the particles do not overlap. This shows
that the empirical measure

1
pN () = Nz@ci(t) (@),

is well defined on [0,7]. Recall that we are interested in the limiting behaviour of pV €
P([0,T] x R*) when N — oo. According to Proposition [3.7, particles (z;)1<;<n satisfy the
following system:

T, =V
{ Vi ~ kg+6mRY D(x; — x;).
i#]

In order to prove Theorem [1.3| we want to compare the particle system to the continuous
density p which is solution to equation . Hence, we need to express pV as a weak
solution to a transport equation. The remainder of this Section is devoted to establish
such a formulation.

Analogously to the continuous case, we are interested in giving a sense to the quantity

KpN = 6mrok / d(z — y)gp™ (t, dy),
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which is not well defined because ® is singular. On the other hand, as the only values of
¢ that matters are the terms ®(x; — x;), ¢ # j we define the following regularization

PN O(2) = D) (@),

where YV (x) := ( (0)) and 1 is a truncation function such that ¢» = 0 on B(0,1/4)
and ¢ = 1 outside B(O 1/2). We can now define the operator XV

KNpN (8, x) = 67k 1/) Oz —y)gp"(t,dy),

_ bmrok N o
=~ 'w O(x —x4(t))g.

)

Since Theorem ensures that the particles satisfy

‘xl(t) —Zlf]( )| > 9 mln( )7 Vi §£.]7\v/2f S [OﬂTL

we have for z = z,(t), t € [0,7], 1 <i < N

6mroK

KN p™ (8, x:(t)) =

> 0(x;(t) — xi(t))g.

J#

Now, it remains to check that p is a weak solution of a transport equation. We recall that

p" is a weak solution of a transport equation % + div(VpN) with V' € C([0, T], C*(R?)) if

for all test function ¢ € C°([0,T] x R?) we have

/0 g (0u0(t,z) + Vo(t,z) - V(t,z)) p™ (dx, t)dt = 0.

Note that this integral yields
T
/ (0u6(t, 7) + Vo(t,7) - V(t, 7)) p™ (d, 1)
R3
1
/ ¥ 2 @uolt i) + Vot (1) -Vt (o).
In particular if we choose V' such that V (¢, x;(t)) = Vi(t) one has

/ ¥ 20l 1) + VoLt 1l0) i
-y / < (ol 2:(0)).

=0.
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On the other hand, we recall that from Proposition we can write for all 1 <7 < N

N
Vi = kg + 6TRY ®(x; — x;)kg + Ei(t),
i
= kg + KNpN (t, z:(t)) + Ei(t),
with E;(t) = O(dY,,). Hence if we construct a divergence-free vector field EV such that
EN(t,24(t) = Ei(t),
we can define V' as
V(t,z) = kg +KNpN(t,z) + EN(t, 7).
Construction of EV. We fix y a truncation function such that y = 1 on B(0,1) and
x =0 on “B(0,2). For all i we set

&t z) = curl (X (“”_Tf(t)) Ei(t) x x_T“t)> .

By construction, &; is a divergence-free compactly supported vector field satisfying
Ei(t,xi(t)) = Ei(t).

Furthermore, &; is supported in B(w;(t),2R). Thanks to Theorem [1.2] this entails that
supp(&;) N Supp( ;) =0 for i # j. We set then

EN(t,x) ZS (t,x)
By construction, this velocity field is divergence-free and is regular EY € C([0,T] x R3),

EN(t,-) € CHR3) for all 0 < ¢t < T. Moreover is satisfies for all ¢ € [0, 7]
EN(t,z:(t)) = Ei(t) forall 1 <i < N,

(77) IEY(t, ) oo < Cymax |Ei(t)] S diin-
The only statement that needs further explanation is (77). For all 2 € B(z;(t), R;) we have
Ei(t, x) = Ei(t),

and for all z € B(z;,2R) \ B(z;, R), direct computations yields

£t x) = %[2)( (“”‘Tj’f(’f)) I, - %vx (%W) ® (x — 24(t))
o= () Vx <$_T) I | Ei(1)

Therefore
Ei(t,2)| < Cllxlloo + [[VXloo] [E(E)].
We can now state the following proposition.
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Proposition 5.9. For arbitrary N we have that kg + KNp" + EN € C([0,T] x R?) and
VNN + VEN € C([0,T] x R?). Moreover, the velocity field satisfies

(78) kg + KV pY (1) + BN (1) < O, V(t,x) € [0,T] x R,
for some positive constant C' independent of N.

Proof. As the kernel is regularized, the two first properties are satisfied by construction.
For all (¢,z) € [0,T] x R* we have

KN o (2 67TT0I§}Z¢N Bz — 2(1)) |

6““"”“2¢N o B — (1))

{\IL —z|> "““ }

Weset Z(t,z) = {1 <i < N, |z;(t) —z| > m‘" } Reproducing the arguments of Lemma
for k =1 together with assumptlons @ and Theorem |1 - 1.2| yields

VCN N Z 7
tx)|x —;(t
AN
dpnin (0)

AP

M

N

v

<M dN. (0) 4+ M3,

|din ()2

N

1.
Furthermore, the velocity field EV is uniformly bounded according to (77)). O
This allows us to state the following result.

Theorem 5.10. pV is a weak solution of
8%+ div((kg + KNpN + EN)pN) = 0,
(79) ot N N
P (07 ) = Po >
on [0,T] x R3. Moreover, the characteristic flow defined for all s,t € [0,T] by

(80) O XN (s, t,x) = kg +KNpN (s, XN (s,t,2)) + EV(s, X" (s,,2)),
XNt t,x) = uz,

is of class C' for all N > 1 and the following classical formula holds true:

(81) pN(t,) = XN (t,0,)#py Vi€ [0,T).

Proof. As V(t,x) := kg + KNpN(t,x) + EN(t,z) € C*([0,T] x R?) is defined such that
V(t,x;(t)) =V;, V1 <i# N this ensures that for all test function ¢ € C>([0,T] x R3):

/0 /R (00(t,2) + Vo(t,2) - [rg + KV pV (1) + BV (t,2)]) o (de, )t = 0,
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thus, p" is a weak solution for (79).

According to Proposition [5.9, the ode governing the characteristic flow satisfies the as-
sumptions of the Cauchy-Lipschitz theorem. Therefore, the ode admits a unique maximal
solution XV € C'([0,T] x [0,T] x R?) thanks to formula (78). Equality holds true
thanks to the classical theory for transport equations. ]

6. PROOF OF THEOREM [L.3]

At this point, we proved that the particles interact two by two with an interaction force
given by the Oseen-tensor with an additional error term.

{i’i(t) = Vi(0),

(82) Vi(t) = kg+6mR®(x(t) — x;(t)) + EN(t, 2:(t)).

7]
We want to estimate the Wasserstein distance W1 (p™ (¢, ), p(t,-)) for all time 0 < ¢t < T.

To this end, we follow the ideas of [§] and [9] and show that the additional error term EV
can be controled. As in [9], we introduce an intermediate density p.

6.1. Step 1. Estimate of the distance between p and p". We define p}’ as the
regularized density of p:

Po =Py * Xaw
where x v (x) := WX (/\%) a mollifier compactly supported. Note that the support of x

is not important, we consider for instance x such that supp y = B(0,1). We emphasize
that the regularized density is uniformly bounded

po ( / |)\N|3X (IA_Ny) po (dy)
N\AN\?’ZX (x_x ) |

1
< N|)\N|3HXHOO Slip#{i e{l,...,N}, z;,(0) € B(z, )\N)}

(83) < lIxlle M,

according to assumption . Moreover, we have

[ = N|AN|3Z/B<% <_A+(O)) d‘*’

(84) = 1.

Now, we define pV as the unique solution to equation associated to the initial data
py’. The stability Theorem allows us to compare p and p':

Wi(p(t,-), p™ (t,-)) < Wilpo, o )e,
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where C' = C(||X|ls0, M, ||polls0). We split the distance Wi (po, pi’) as follows

Wi(po, 5o ) < Wilpo, ) + Wi(pd', o ),
and use the fact that
Wl(p(])V7ﬁ(])V) < Wm(ﬂ{)\f?ﬁév)a
together with [9, Proposition 1]

(85) Woolpy s g ) < CXY,
to get
(86) Wl(p<t7 ')7 ﬁN(tv )) ri ()‘N + Wl(p07 p(])\/)) eCt‘

6.2. Step 2. Estimate of the distance between 5" to p". It remains to estimate
Wi(pN(t,-), pN (t,-)). We have the following result.
Lemma 6.1. For N large enough, there exists a positive constant C such that for all
tel0,T]
Wi(p™(t ). 0" (t.) S (A + tdy, ) €.
Theorem is a consequence of estimate and Lemma The rest of this Section
is devoted to proving the above lemma.

Proof of Lemmal6.1 According to Theorems [5.7 and we have the explicit formulas
for all s, t € [0,T]

ﬁN(t7 ) = X(t’ 8y )#ﬁé\]a

pN(tv ) = XN(t’ 85 )#pé\/
At t = 0 we have the existence of an optimal transport map T, from pY’ to p) thanks to
Theorem [.6]

po = To#p, ,
satisfying
Woolpo s 05) = Py — esssup [Tp(z) — xl.

We construct then a transport map T} from p" to p” at all time ¢ € [0, 7] by following T}
along the two flows X and XV

T, = XN(,0,) 0 Ty 0 X(0,¢,-).
One can remark that for all 0 < s < ¢
T, = X™(t,s,-)oTy0X(s,t,-)
pN(t) = T#p" ().
As in [9] we set then
V() = sup Y (t, ) — esssup Ty (x) — a1,

s<t

so that
Wao (0N (t,-), p™ (8, -)) < fY (1),
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and thanks to (85)) we have
(87) FR0) = We(py' ) < CAY.

We reproduce the same steps as in [9] and introduce the following notation for a generic
“particle” of the continuous system with position z; at time ¢ such that

xs = X(s,t,24),
we fix in what follows 0 < t5 < ¢; and recall the following formula
T o X(ti,ta, ) = XN (t1,ta,") o Tp,.
We aim now to estimate |1y, (x4, ) — x4, | for all test particle x,

Ttl(‘rtl) — Tty = XN(tlvt%T;iQ(xtz)) - X(t17t2,$t2),

tl . .
Ty () — 2 + / XN (s, o, Toa (1)) — X (5.t 1) s,
to

t1
= T;fz(xtz) — Tty + / ([ICNpN + EN](S7XN(57 t27T;52(xt2)))7
to

— Ko™ (s, z5)))ds,

- T;fz xt2 ’CNpN + EN](S T ($5)) - ’CﬁN(S>$S)>)d87

.’ﬂtQ /
=T, (z,) — x4, + / (s, Ts(xs))ds,

/ [ srrn (0¥ 0(T () ~ Tulw) - Do~ ) 90" (5. ),
R
where we used the fact that pY = T,#p" to get

KN N (5, T (22)) = 6rom / PNB(T () — y)go” (5. dy)

R3

= 6mror | PN O(Ty(x,) — Ti(y))gp™ (s, dy).

R3

We set then ty =t and to =ty —7=t— 7,7 > 0. We obtain for almost every x;

(To(xe) — @] < |Tor(@er) = Teer| + T EY (1),
+ 67roklg| s [WNO(Ty(zs) — Tuly)) — ®(xs — y)| p" (s, dy)ds,
< SNt =T) +TIEY ()]s,

+C /t T/]R3 wN(I) xs - s( s)) @(xs—ys)’ﬁN(t,dyt)ds,
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here we used Remark |5.2f with y; = X (s,t,4;). In addition we defined
IEY ()]l = sup [E¥(s,)lo-
0<s<t
This being true for almost every x; we obtain
(88) fY(W) < Nt —7)+7IEY ()]s

+ Cesssup/ WN@ JEs - Ts(ys)) - q’(xs - ys)l ﬁN(ta dyt)ds.

t—7 JR3

Hence, it remains to control the last quantity. We split the integral on R?® into two terms:
the first one denoted J; is the integral over the subset I and the second one denoted J,
the integral over R3 \ I where

I'=A{y : oy —wl > 4fN(t)eTL}’

where L will be defined later.
Step 1: Estimate of J;.
For all t — 7 < s <t, we have

20— sl > ae — w1l — / X (1,2 — X(E b )|
> [y — | - / K™ (X (1, 20)) — KN (¢, X (E 1)) de

> 2 — | — Lip (K5) / X(E, ty0) — X(E, 1,y

Using Remarks and formula and the uniform bounds , , the Lipschitz
constant of Kp” is uniformly bounded. This allows us to define the constant L as

Lip (Kp"™) < Cllpy | e (roerzry < L.
Applying Gronwall’s inequality yields for all 0 <t —7 < s <t
|25 — ys| > |z — yt|eiL(tis)'

We can make precise now the constant L := Lip (Kp") which is uniformly bounded with
respect to N and t € [0, 7.
We have for all 0 <t — 7 < s <t and 7 small enough

L 1
(89) |5 = ys| = [z — yele M=) > | = yile™ 7 > §|$t — -
Analogously, for almost all x5 and y;

|T5(JJS) - Ts(y5)| > |I5 - ySl - |T5(l’5) - xs| - |Ts(ys> - ys| )
2 ‘:Us - ys‘ - QfN(S) 2 ’$s - ys’ - 2fN(t)a
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where we used the fact that f(¢t) > f¥(s). According to the definition of I = {y;
|z — ye| > 4fN (t)e™ '}, this yields for 7 small enough

(90) 7o) — Tolw)] = gl — il

Moreover, recall that Ty(x,) and Ty(y,) are in the support of p™(s,-) i.e. there exists i, j
such that Ty(x;s) = z;(s) and Ts(ys) = x;(s). In addition, estimate and the definition
of I ensures that ¢ # j. We have then

(91) PNO(Ty(w,) — Tilys)) = (Tu(ws) — Tul(ys))-
Finally, using estimates , , formula and the Lipschitz-like estimate for ®

we obtain

J = / / T|<I><Ts<xs>—T8<ys>>—@(xs—ysndspN(t,dyt),

’SL’S ( )|+|ys_ s(y)‘ _N
<C/ t—r min \xs Y2, |To(x) — Ts(y)‘z)dSP (t, dy),

<O /, e ),

< Cr NN O e
< Cr YO | Lerrs
< CTfN( )7

where we used Remark formula and the uniform bounds , .
Step 2: Estimate of J;.
We focus now on

Jo —esssup/t ’ }@DN@ s(zs) — Ts(ys)) — (I>($s—ys)}ﬁN(t,dyt)ds.

Again T,(z,) and Ti(y,) are in the support of p¥(s,-) i.e. there exists i, j such that
Ty(xs) = w;(s) and Ty(ys) = zj(s). Moreover if i = j then YN ®(Ty(zs) — Ts(ys)) = 0.
Hence in all cases we have

‘(I)(xs - ys) - ¢N®(Ts($s) - Ts(ys))‘ S |(I)(xs - ys)| + WJN(I)(TS(:ES) - TS(yS))| )

1 1
<C ,
N <|l’5—y5| dﬁm( ))

applying the change of variable y, = X (¢, s, ys) we get

// dsp (t,dy;) < Hp HOO/ /
t—r1 ‘xs - 3 t—r Jec
= C/ / —dysds.

t—1 J X(t,s,°1) ‘l’s - ys‘

dytds,
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Denote K = X(t,s,I), as the flow X preserves the Lebesgue measure we have |K| = |I|.
For all s € [t — 7,t] and a > 0 a direct computation yields

1 1
/ dys - (/ +/ ) dysa
K |Ts — ysl KNB(zs,a) KNeB(x,a) [Zs — s
1
< Ca® + -|K|,
a
we choose then a® = |K| = |°I| < C ’fN(t)‘g 37 to get

t
(92) / / ;dsﬁN(t,dyt) <Cr [Nt et
el Jt—r |xs - ys|

For the remaining term we apply Theorem [I.2] and get for all t — 7 < s < ¢

// dsp (t,dy) < - // dsp™ (t, dy,),
t—7 mln dmln t—7

2¢ 37'L N
<C dN ‘f }

mll’l

Conclusion.
Gathering these bounds, there exists a constant K > 0 independent of N such that for 7
small enough and 0 <t <T

Y < =)+ TIEY Ol + K75 (@) |1+ () + 5 (0)

min

IfN(t)|2] |

We can now apply a discrete Gronwall argument: Note that at time ¢ = 0, assumption
and formula ensures the existence of a positive constant C; > 1 such that

N 2
C
L+ fY(0) + ‘;’;N (é‘) <

hence, we define T* < T as the maximal time for which

(93) L+ V() + |£N (y) ﬁ vt € [0, 7.

Note that T™ a priori depends on N, the purpose is to show that this is not the case. We
obtain for all ¢t € [0, 7]

YO < U= 1)+ Cr Y () + TIEY .

If 7 is small enough we can write

A <@-Cr) Nt —T1)+

T
1—017'

(Foud [
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iterating the formula we obtain for M € N*

N < (1 =) MN(E— M7) +TZ HENHOO,

< (1=Cyr)™MfN(t— Mr) + TZ@2ClTk"EN||OO.

k=1
2417 for 7 small enough. We set then t — M7 = 0 to get
t
FY® < (1= G )™M N0) ZeQ"“ | BNl

As €203k < 201t for all 1 < k < M the second term yields

M
t ¢
7 2¢O BN < 0| BV,

k=1
and for M sufficiently large

(1 _ 01%)_1\4 S 6201t.
Finally for all ¢ € [0, T™[
() < fH(0)e* + te* M| BN .

In particular we have for all ¢ € [0, 7%

AL
PO+ o)

fN(0)|26401t + HENHgOTQeMJlt

S fN(O)e201t + HENHOOTeZCIt +2|

inin (0) ’
< T (21T 4 27?) (fN(O) 1+ O ﬁg')EN“gﬁ |
Since we have fV(0) = O ()\N) and thanks to (77))
N( 2 N2 N2

which vanishes according to assumption and ([L1] . This shows that we can take N large
enough and depending on 7', K and C such that 7% — T and formula holds true up
to time 7. Hence, for N large enough we have for all ¢ € [0, T]

fN(t) < fN(O)eQC’lt + t€2C1t||EN||oo-
Using and the fact that W, (o™, o) < W (p™, pY) < ¥, this implies Lemmal6.1] O



54 AMINA MECHERBET

APPENDIX A. TECHNICAL LEMMAS

We state here an important lemma which is the extension of |13, Lemma 2.1] to the new
assumptions on the dilution regime introduced in [10]. We introduce p" an approximation
of pV defined as

LB (@i AN /3)
4 :_ o0 )
(94) Z| T N3]

pV is L™ and using , one can check that

95) 15|z < Sup# {i e {1,---, N} such that z; € By(z,A"/3)}

~ N|)\N|3
MN

<

<M.

Moreover, p"¥ is L' and we have ||p™||z1 = 1 by construction.

Lemma A.1. For all k € [0,2], under assumptions , , if N s large enough, there
exists a positive constant C' > 0 such that for all fired 1 < i < N:

(96) 121 < CM ATP + M*B,
N&dy = 7

min

Moreover, if k = 3 we have

N
—Zd3 <CM (||dN - =+ [log(M'AN)| + 1)

‘]7£’L min

Proof. We fix i = 1 and the same holds true for all 1 < i < N. We use the following
shortcut

T, :={j€{l,---,N} such that |z, — 7;]0 < AV},
The sum can be written as follows:
1 1 1 1 1 1
BN Dy 0
N#l dlj Njez1 dlj Nj(ﬂ1 dlj
j#1

1 MY 1 1
SN NLT
N| m1n|k N]€11 dlj
_ |>\N’3
<M
|dm1n N% 1]

For the second term in the right hand side, note that, for all y € By (x;, AN /3), j & T we
have

71— Yloo > |71 — Tj|oe — |75 — Yl > 2/3XY,
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this yields
N
|71 = Tjloe 2 11 = Yloo = A /3 = |11 — yloo/2.
Hence, we have for all constant L > 2/3\N

1 1
dy,
NZ Z /Boo(x]-,w/a | Boo (25, AN /3)| |21 — y|*

3¢ J i1

1 N
< / —p (t,dy),
cB(x1,2/3AN) |1 — 9|

L
_ _ L
g I e e )
2/3|AN| ¢B(wz1,L) 21—y

_ 3—k ~
L — )™ 15

< 1PN || oo
< 15" r, _—
B L3—k 1
<M =
ST T T
One can show that the optimal constant L > 2/3\N is L = M1/3 Since lim AN = 0, this
N—oo
choice of L is possible for N large enough such that AV < M1 s—17s- Hence, we obtain

1 1 4—k -
Mk/3
dekNS—/{:

i€

If k = 3, we integrate the term r~! keeping the same value for L as before

1
1 1 . w73 dr _
NZdT < ||PN||L°°/ - +/ ) mpN(t,dy),
jg_’[l 1j 2/3|)‘N| CB(xlrbfll/g) 1 y
1 _
< 20(|log(MM*A\V)] + 1),
for N large enough to ensure % < 1\711/+\,\N| U

The following results are used for the control of the particle concentration M :

MY (t) .= Sup{#{i € {1,---, N} such that x;(t) € BOO(:U,)\N)}}.

z€R3

We recall the definition of L introduced in (71)):
LY (t) :== max# {j € {1,..., N} such that |z;(t) — z;(t)]c < AV}.
The following lemma shows that the two definitions are equivalent.

Lemma A.2. We have
LN(t) < MY (t) < 8LN(1).
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Proof. The first inequality is trivial. To prove the second one note that we have:

sup{#{i € {1,---, N} such that z; € m}} <

z€R3

8 sup{#{i € {1,---, N} such that x; € Boo(.r,)\N/Q)}}.

z€R3
Indeed, for all z € R? there exists zj, k = 1,--- , 8 such that
8

— AN
Boo (5177 >\N) C UBoo <2Ek, 7)7

k
this yields

{ie{1,---, N} such that z; Em}
C O{Z € {1,---, N} such that ; € Boo (74, \V/2) }.
k
Taking the supremum in the right hand side and then in the left one we obtain
(97) sup{#{z’ € {l,---, N} such that z; € m}} <

z€eR3

8 sup{#{i € {1,---, N} such that x; € Boo(m,)\N/Q)}}.

T€ER3
Moreover, we remark that the supremum in the right hand side over all z € R3 can be

reduced to the supremum over | JBy (xl, 5 AY). Now consider = € UB (25, 2 ), there exists
7

1 <'ip < N such that |z — 2|00 < we have then for all j # i such that [ — 2] < ’\N

27
|2 — Tigloo < |75 — Tloo + |7 — Tig|oo < AV,

which means that for all z € | JBeo(z;, 2 5 ) there exists 1 < 79 < N such that
{1 <j <N, such that z; € Bo(z, \N/2)}

C {1 <j <N, such that |z; — z;,|o < AV}

Taking the maximum over all ¢y in the right hand side, and then the supremum over all
T € UB (x4, % AY) we obtain
(98) sup{ {ie{1,---, N} such that z; € B(, )\N/Q)}} <

max# {j € {1,..., N} \ {i} such that |z; — zj]c <A"}.
Gathering inequality and concludes the proof. [l
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More generally we define for all g > 0:
LY (t) = max# {j €{1,...,N} such that |z;(t) — 2;(t)|c < BAV},

and
ME(t) == ngpB{#{i € {1,---, N} such that x;(t) € Boo(x,ﬁ)\N)}},
with the notation
MY t) .= MN(t) , LY(t) = LN(t).

The previous results yields
Corollary A.3. For all > 0 and all « > 1 we have

Lys(t) < 8[al’Lg (1),
where [-] denotes the ceiling function.

Proof. For sake of clarity we set f = 1 and the proof remains the same for all 5 > 0. The
idea is to show an equivalent formula for M*" and use Lemma . Analogously to the
proof of Lemma [A.2] for all z € R? there exists ik, k=1,---,|\]3 such that

a

By (z, a)\N U (T, )\N

This yields, with the definition of MJ':
MY < [a]?M™(t).

«

Finally, we apply Lemma to get
Ly (t) < MJ'(t) < [a]? MY (t) < 8[a]’LY (1),
which completes the proof. [l
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