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Numerous functional neuroimaging studies in humans used

univariate group analyses to identify brain areas that show

increased activity across participants during specific tasks.

However, there is increasing evidence that group-level ana-

lyses may obscure important parts of the signal response

(Margulies, 2017; Poldrack, 2017). Here, we re-analyzed data

from our recent study (Hartwigsen et al., 2017) that investi-

gated functional reorganization in the language network. We

show that across-voxel pattern-learning approaches are

useful to isolate plastic changes in neural networks under-

lying cognitive functions at the individual subject level.

Using predictive machine-learning tools to identify and

exploit subject-specific neural activity patterns have been

argued to become an important cornerstone of precision

medicine in psychiatry and neurology (Arbabshirani, Plis,

Sui, & Calhoun, 2017; Bzdok & Meyer-Lindenberg, 2018;

Woo, Chang, Lindquist, & Wager, 2017).

Functional reorganization is a key process for language

recovery after lesions. However, current knowledge of plas-

ticity in language networks is insufficient (Turkeltaub, 2015).

Combining focal perturbations induced by transcranial mag-

netic stimulation (TMS) and fMRI in the healthy brain, we

recently provided insight into the reorganization potential of

language networks (Hartwigsen et al., 2017). Causal impair-

ment of a key node for the processing of themeaning of words

(semantic processing) in left angular gyrus (AG) entailed

decreased semantic activity in a large network, including the

targeted area. Despite this inhibition, there was no significant

performance deterioration. Strikingly, this inhibition resulted

in an upregulation of a neighboring network for phonological

processing (processing of the sound of words), including left

supramarginal gyrus (SMG) and adjacent superior parietal

lobe (SPL). These regions were not engaged during semantic

processing before TMS. This upregulationmight have partially

compensated for the disruption of the semantic network. In

contrast, TMS over the phonological node in SMG resulted in

strong inhibition of phonological regions and performance

deterioration, without any compensatory upregulation of

other areas. The difference in the activity patterns for both

tasks might reflect the differential potential of brain networks

for compensation of focal disruption that may be non-

identical in different individuals. Despite its role in phono-

logical processes, SMG/SPL appears to be capable of support-

ing semantic processing when task demands increase (after a

virtual lesion of AG). In contrast, there was no evidence for a

supportive function of the AG after perturbation of SMG.
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Fig. 1 e Multi-voxel single-subject analysis (MVPA) results from 5 representative individuals. The full data set is shown in

Supplementary Fig. 1. A) After sham TMS, discriminatory neural activity underlying semantic processing (natural vs man-

made word stimuli) was found in left AG. After effective TMS perturbation of AG during the same experimental task, we

observed a shift of discriminatory neural activity patterns from the AG to predictive voxels in left SMG and adjacent

superior parietal lobe. B) In the second MVPA, we tested for discriminability of effective TMS over AG against sham TMS

across all semantic stimuli. This analysis revealed areas that carried information about the presence versus absence of our

TMS intervention. To provide principled guidance to our data-driven analyses, we based our searchlight approach on a

topographical map of the left inferior/superior parietal lobe that was derived from neural activity information of two

experimental task contrasts devoted to contrast semantic activity versus rest (showing increased activity in left AG) or

phonological activity versus rest (showing increased activity in left SMG/SPL) in our original study (Hartwigsen et al., 2017).

Both contrasts were derived by thresholding at a lenient threshold of p < .01 uncorrected, and the respective clusters were

merged into a map that informed our searchlight approach. For visualization purposes, the depicted classification accuracy

maps were thresholded at a voxel accuracy of 57% correct task/intervention in unseen brain scans (i.e., out-of-sample

performance), showing only voxels with statistically relevant effects (cf. Bludau et al., 2016). The depicted results were

based on a searchlight radius set to 5 mm, but were virtually identical to analysis with a smaller (2.5 mm) or bigger (10 mm)

radius.
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These findings were only significant at the group level. How-

ever, group analyses may limit the detail, specificity, and

clinical utility of task-activation experiments (Gordon et al.,

2017b). Specifically, certain organizational features of brain

networks present in the individual were lost when averaging

across groups (Braga & Buckner, 2017). There is interest in

predicting subject-specific changes in neural activity (Braga &

Buckner, 2017; Gordon et al., 2017a; Gordon et al., 2017b).

Recent studies show increased use of sensitive multivariate

measures to detect such effects (Bzdok, 2017; Haynes, 2015).

Given its strength to detect changes in process-specific neural

response, a multi-voxel pattern analysis (MVPA) should reveal

intervention-specific effects on the single subject level (Haxby

et al., 2001). MVPA allows for testing whether distributed ac-

tivity patterns carry information about different stimulus

types (Schomers & Pulvermuller, 2016). To our knowledge,

MVPA has never been used to detail TMS-induced changes in

adaptive plasticity. To elaborate on our hypothesis that SMG

might functionally compensate for disruption of AG, we per-

formed two MVPA analyses on the individual subject level of

the original data (Supplementary Information).

A first MVPA aimed at identifying neural activity patterns

underlying semantic processing in left AG and SMG after

placebo or effective TMS. This analysis addressed the

following question: Which parts of the brain exhibit neural

activity patterns that predict the presence of two semantic

stimulus types (natural vs man-made categories in our stim-

uli) after TMS of AG in a single individual? Our searchlight

analysis (Kriegeskorte, Goebel, & Bandettini, 2006) elucidated

that after sham TMS, predominantly voxels located in AG

predicted differences in activity, supporting its role in se-

mantic processing (Binder, Desai, Graves, & Conant, 2009).

After effective TMS, discriminability focus shifted from AG to

the phonological region in SMG (Fig. 1A & SIFig. 1A).

The second MVPA addressed a distinct question: Which

voxels can predict plasticity patterns across stimulus types

with versus without TMS of AG?We used TMS type (effective vs

sham) as targeted conditions that were predicted. This anal-

ysis identified voxels that successfully distinguished TMS-

induced changes in neural plasticity patterns during seman-

tic processing. Results confirmed that effective TMS altered

processing in AG. Outside of the TMS focus, the strongest ef-

fect was found in SMG (Fig. 1B & SIFig. 1B). This confirms our

hypothesis that plastic changes in SMG are reliably induced by

TMS over AG.

Notably, the MVPA results were only informative at the

individual subject level. Due to inter-individual variability,

extracted predictive patterns were not robust at the group

level. This finding further emphasizes the importance of

single-subject analyses to map particularly fine-grained neu-

ral responses.

Both MVPAs strengthen our hypothesis of SMG-mediated

compensation in single subjects after disruption of AG. The

univariate results indicated that AG perturbation led to

compensatory changes in neural activity level or extent in SMG.

The multivariate results show that AG perturbation also in-

duces changes in neural activity patterns carrying semantic

information. Both support the notion that AG perturbation

induces compensatory processing in SMG. These results

point to a generic mechanism of network plasticity, arguing

for a flexible redistribution of function. Our results help to

identify adaptive patterns of reorganization after a lesion to a

cognitive core region. Particularly, multivariate approaches

might inform future studies to select areas for the

application of TMS to facilitate language recovery after brain

lesions. Based on our findings, we speculate that facilitation

of neighboring regions might help supporting language

recovery.

Despite only 60 stimuli per semantic condition and the fact

that neural patterns underlying cognitive processes tend to be

subject-specific (Saygin et al., 2011), we successfully isolated

predictive patterns in all subjects. Future studies may provide

insight from larger data sets and optimized experimental de-

signs. Such studies would advance the current knowledge of

plasticity in cognitive networks and ultimately help to un-

derstand how the brain reorganizes after lesions to process-

specific nodes. The combination of TMS and machine-

learning statistics has the potential for new insight into

plastic changes on the individual subject level that might be

used for outcome prediction and therapeutic intervention in

future personalized medicine.

Supplementary data

Supplementary data related to this article can be found at

https://doi.org/10.1016/j.cortex.2018.06.013.

r e f e r e n c e s

Arbabshirani, M. R., Plis, S., Sui, J., & Calhoun, V. D. (2017). Single
subject prediction of brain disorders in neuroimaging:
Promises and pitfalls. Neuroimage, 145(Pt B), 137e165. https://
doi.org/10.1016/j.neuroimage.2016.02.079.

Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009).
Where is the semantic system? A critical review and meta-
analysis of 120 functional neuroimaging studies. Cerebral
Cortex, 19, 2767e2796.

Bludau, S., Bzdok, D., Gruber, O., Kohn, N., Riedl, V., Sorg, C.,
et al. (2016). Medial prefrontal aberrations in major
depressive disorder revealed by cytoarchitectonically
informed voxel-based morphometry. The American Journal of
Psychiatry, 173, 291e298. https://doi.org/10.1176/
appi.ajp.2015.15030349.

Braga, R. M., & Buckner, R. L. (2017). Parallel interdigitated
distributed networks within the individual estimated by
intrinsic functional connectivity. Neuron, 95(2), 457e471.
https://doi.org/10.1016/j.neuron.2017.06.038. e455.

Bzdok, D. (2017). Classical statistics and statistical learning in
imaging neuroscience. Frontiers in Neuroscience, 11, 543. https://
doi.org/10.3389/fnins.2017.00543. eCollection 2017. Review.

Bzdok, D., & Meyer-Lindenberg, A. (2018). Machine learning for
precision Psychiatry: Opportunities and challenges. Biological
Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(3),
223e230. https://doi.org/10.1016/j.bpsc.2017.11.007.

Gordon, E. M., Laumann, T. O., Adeyemo, B., Gilmore, A. W.,
Nelson, S. M., Dosenbach, N. U. F., et al. (2017a). Individual-
specific features of brain systems identified with resting state
functional correlations. Neuroimage, 146, 918e939. https://
doi.org/10.1016/j.neuroimage.2016.08.032.

Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J.,
Greene, D. J., Berg, J. J., et al. (2017b). Precision functional

c o r t e x x x x ( 2 0 1 8 ) 1e4 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

CORTEX2346_proof ■ 18 July 2018 ■ 3/4

Please cite this article in press as: Hartwigsen, G., & Bzdok, D., Multivariate single-subject analysis of short-term reorganization in the
language network, Cortex (2018), https://doi.org/10.1016/j.cortex.2018.06.013

https://doi.org/10.1016/j.cortex.2018.06.013
https://doi.org/10.1016/j.neuroimage.2016.02.079
https://doi.org/10.1016/j.neuroimage.2016.02.079
https://doi.org/10.1176/appi.ajp.2015.15030349
https://doi.org/10.1176/appi.ajp.2015.15030349
https://doi.org/10.1016/j.neuron.2017.06.038
https://doi.org/10.3389/fnins.2017.00543
https://doi.org/10.3389/fnins.2017.00543
https://doi.org/10.1016/j.bpsc.2017.11.007
https://doi.org/10.1016/j.neuroimage.2016.08.032
https://doi.org/10.1016/j.neuroimage.2016.08.032
https://doi.org/10.1016/j.cortex.2018.06.013
https://doi.org/10.1016/j.cortex.2018.06.013


mapping of individual human brains. Neuron, 95(4), 791e807.
https://doi.org/10.1016/j.neuron.2017.07.011. e797.

Hartwigsen, G., Bzdok, D., Klein, M., Wawrzyniak, M., Stockert, A.,
Wrede, K., et al. (2017). Rapid short-term reorganization in the
language network. Elife, 6. https://doi.org/10.7554/eLife.25964.

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L.,
& Pietrini, P. (2001). Distributed and overlapping
representations of faces and objects in ventral temporal
cortex. Science, 293(5539), 2425e2430. https://doi.org/10.1126/
science.1063736.

Haynes, J.-D. (2015). Aprimer onpattern-basedapproaches to fMRI:
Principles, pitfalls, and perspectives. Neuron, 87(2), 257e270.

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-
based functional brain mapping. Proceedings of the National
Academy of Sciences USA, 103(10), 3863e3868. https://doi.org/
10.1073/pnas.0600244103.

Margulies, D. S. (2017). Unraveling the complex tapestry of
association networks. Neuron, 95(2), 239e241. https://doi.org/
10.1016/j.neuron.2017.07.006.

Poldrack, R. A. (2017). Precision neuroscience: Dense sampling of
individual brains. Neuron, 95(4), 727e729. https://doi.org/
10.1016/j.neuron.2017.08.002.

Saygin, Z. M., Osher, D. E., Koldewyn, K., Reynolds, G.,
Gabrieli, J. D., & Saxe, R. R. (2011). Anatomical connectivity
patterns predict face selectivity in the fusiform gyrus. Nature
Neuroscience, 15(2), 321e327. https://doi.org/10.1038/nn.3001.

Schomers, M. R., & Pulvermuller, F. (2016). Is the sensorimotor
cortex relevant for speech perception and understanding? An
integrative review. Frontiers in Human Neuroscience, 10, 435.
https://doi.org/10.3389/fnhum.2016.00435.

Turkeltaub, P. E. (2015). Brain stimulation and the role of the right
hemisphere in aphasia recovery. Current Neurology and
Neuroscience Reports, 15(11), 72. https://doi.org/10.1007/s11910-
015-0593-6.

Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017).
Building better biomarkers: Brain models in translational
neuroimaging. Nature Neuroscience, 20(3), 365e377. https://
doi.org/10.1038/nn.4478.

c o r t e x x x x ( 2 0 1 8 ) 1e44

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

CORTEX2346_proof ■ 18 July 2018 ■ 4/4

Please cite this article in press as: Hartwigsen, G., & Bzdok, D., Multivariate single-subject analysis of short-term reorganization in the
language network, Cortex (2018), https://doi.org/10.1016/j.cortex.2018.06.013

https://doi.org/10.1016/j.neuron.2017.07.011
https://doi.org/10.7554/eLife.25964
https://doi.org/10.1126/science.1063736
https://doi.org/10.1126/science.1063736
https://doi.org/10.1073/pnas.0600244103
https://doi.org/10.1073/pnas.0600244103
https://doi.org/10.1016/j.neuron.2017.07.006
https://doi.org/10.1016/j.neuron.2017.07.006
https://doi.org/10.1016/j.neuron.2017.08.002
https://doi.org/10.1016/j.neuron.2017.08.002
https://doi.org/10.1038/nn.3001
https://doi.org/10.3389/fnhum.2016.00435
https://doi.org/10.1007/s11910-015-0593-6
https://doi.org/10.1007/s11910-015-0593-6
https://doi.org/10.1038/nn.4478
https://doi.org/10.1038/nn.4478
https://doi.org/10.1016/j.cortex.2018.06.013
https://doi.org/10.1016/j.cortex.2018.06.013

	Multivariate single-subject analysis of short-term reorganization in the language network
	Appendix A. Supplementary data
	References


