Multivariate single-subject analysis of short-term reorganization in the language network - Archive ouverte HAL
Article Dans Une Revue Cortex Année : 2018

Multivariate single-subject analysis of short-term reorganization in the language network

Résumé

Numerous functional neuroimaging studies in humans used univariate group analyses to identify brain areas that show increased activity across participants during specific tasks. However, there is increasing evidence that group-level analyses may obscure important parts of the signal response (Margulies, 2017; Poldrack, 2017). Here, we re-analyzed data from our recent study (Hartwigsen et al., 2017) that investigated functional reorganization in the language network. We show that across-voxel pattern-learning approaches are useful to isolate plastic changes in neural networks underlying cognitive functions at the individual subject level. Using predictive machine-learning tools to identify and exploit subject-specific neural activity patterns have been argued to become an important cornerstone of precision medicine in psychiatry and neurology.
Fichier principal
Vignette du fichier
Hartwigsen_Bzdok_Cortex_proof.pdf (792.99 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01824229 , version 1 (19-07-2018)

Identifiants

Citer

Gesa Hartwigsen, Danilo Bzdok. Multivariate single-subject analysis of short-term reorganization in the language network. Cortex, 2018, pp.4. ⟨10.1016/j.cortex.2018.06.013⟩. ⟨hal-01824229⟩
186 Consultations
233 Téléchargements

Altmetric

Partager

More