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SCHRÖDINGER OPERATORS WITH DISTRIBUTIONAL

POTENTIALS AND BOUNDARY CONDITIONS DEPENDENT

ON THE EIGENVALUE PARAMETER

NAMIG J. GULIYEV

Abstract. We study various direct and inverse spectral problems for the one-

dimensional Schrödinger equation with distributional potential and boundary
conditions containing the eigenvalue parameter.
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1. Introduction

At the end of the last millennium, Savchuk and Shkalikov [26] initiated the study
of boundary value problems associated with differential equations of the form

−
(
y[1]
s

)′
(x)− s(x)y[1]

s (x)− s2(x)y(x) = λy(x) (1.1)

where s ∈ L2(0, π) and y
[1]
s (x) := y′(x) − s(x)y(x) denotes the quasi-derivative of

y with respect to s (the subscript is usually omitted from the notation, but we
keep it because in this paper we will consider several potentials simultaneously).
This equation formally corresponds to the one-dimensional Schrödinger equation
with the distributional potential s′ ∈ W−1

2 (0, π). Such potentials, especially those
describing the so-called point interactions, play an important role in quantum me-
chanics, solid state physics, atomic and nuclear physics, and electromagnetism [2],
[3], [21]. Direct and inverse spectral problems for boundary value problems gener-
ated by the equation (1.1) were studied by Savchuk and Shkalikov [25], [27], [28] and
Hryniv and Mykytyuk [17], [18]. More general second-order differential expressions
were later considered in [7], [8], [12], [24].

In this paper we study various direct and inverse spectral problems for boundary
value problems generated by the equation (1.1) and the boundary conditions

y
[1]
s (0)

y(0)
= −f(λ),

y
[1]
s (π)

y(π)
= F (λ), (1.2)

where

f(λ) = h0λ+ h+

d∑
k=1

δk
hk − λ

, F (λ) = H0λ+H +

D∑
k=1

∆k

Hk − λ
(1.3)

are rational Herglotz–Nevanlinna functions with real coefficients, i.e., h0, H0 ≥ 0,
δk,∆k > 0, h1 < . . . < hd, H1 < . . . < HD. We also include the case when the
first (respectively, the second) boundary condition is Dirichlet by writing f = ∞
(respectively, F = ∞). Similar problems for summable potentials were considered
in the author’s recent papers [14], [15], which we closely follow here. However, it is
worth emphasizing that, of the results proved in Sections 4 and 5, only the oscil-
lation theorem (see Subsection 4.2 below) genuinely generalizes the corresponding
result of [14]. The remaining results from [14], [15] depend crucially on the second-
order terms (i.e., the terms of order 1/n) in the asymptotic formulas for the square
roots of eigenvalues, and thus do not follow from the results of the current paper.

Eigenvalue problems with boundary conditions dependent on the eigenvalue pa-
rameter arise naturally in a variety of physical problems, including heat conduction,
diffusion, vibration and electric circuit problems (see [10], [11] and the references
therein). Direct and inverse spectral problems of this kind have been studied by
many authors (see, e.g., [4], [5], [6], [9], [13], [20], [22], [23] for a small selection). In
particular, we mention [1] in which a spectral problem describing oscillating systems
consisting of a continuous part coupled with a discrete part with a finite number of
degrees of freedom is studied, and it is shown that this problem is equivalent to a
boundary value problem generated by the equation (1.1) together with a constant
boundary condition at one endpoint and a boundary condition of the form (1.2),
(1.3) at the other endpoint.
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Unlike the case of summable potentials, a little extra care is needed when dealing
with inverse problems for distributional potentials. It is easy to see that by adding
a constant to s and f and by subtracting the same constant from F , we obtain
two problems of the form (1.1)-(1.2) with the same eigenvalues and eigenfunctions.
Therefore some restriction on the coefficients s, f and F is necessary. One possible
way to tackle this problem is, for example, in the case of constant boundary con-
ditions, to assume that one of (non-Dirichlet) boundary conditions is Neumann, as
is done in [17]. However for the purposes of this paper, it is more convenient to
impose a restriction on the coefficient s, by assuming

∫ π
0
s(x) dx = 0.

The paper is organized as follows. In Section 2 we introduce the necessary
notation and prove some preliminary lemmas. Section 3 is devoted to transfor-
mations between rational Herglotz–Nevanlinna functions and between boundary
value problems with distributional potentials having such functions in their bound-
ary conditions. In Subsection 3.1 we define a transformation between rational
Herglotz–Nevanlinna functions and study its properties. In the subsequent three
subsections we define direct and inverse transformations between boundary value
problems of the form (1.1)-(1.2), study properties of the spectral data under these
transformations, and show that these two transformations are, in a sense, inverses
of each other. Sections 4 and 5 are devoted to the solution of various direct and
inverse spectral problems. In Subsection 4.1 we obtain asymptotic formulas for
the eigenvalues and the norming constants (see Subsection 2.3 for the definition)
of the problem (1.1)-(1.2). In Subsection 4.2 we extend the Sturm oscillation the-
orem to boundary conditions of the form (1.2). In Subsection 4.3 we study further
properties of the eigenvalues of a pair of boundary value problems with a common
boundary condition and use them in Subsection 5.2 to solve the two-spectra in-
verse problem. In Subsection 5.1 we provide necessary and sufficient conditions for
two sequences of real numbers to be the eigenvalues and the norming constants of
a problem of the form (1.1)-(1.2). The final Subsection 5.3 is devoted to inverse
problems by one spectrum; namely, we consider symmetric boundary value prob-
lems and the Hochstadt–Lieberman theorem for boundary value problems of the
form (1.1)-(1.2).

2. Preliminaries

2.1. Notation. We start by recalling some notation introduced in [14]. To each
function f of the form (1.3) we assign two polynomials f↑ and f↓ by writing this
function as

f(λ) =
f↑(λ)

f↓(λ)
,

where

f↓(λ) := h′0

d∏
k=1

(hk − λ), h′0 :=

{
1/h0, h0 > 0,

1, h0 = 0.

We define the index of f as

ind f := deg f↑ + deg f↓.

If f =∞ then we just set

f↑(λ) := −1, f↓(λ) := 0, ind f := −1.
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It is straightforward to check that each nonconstant function f of the form (1.3) is
strictly increasing on any interval not containing any of its poles, and f(λ)→ ±∞
(respectively, f(λ) → h) as λ → ±∞ if its index is odd (respectively, even). We
denote the smallest pole of f (if it has any) by

π̊(f) :=

{
h1, ind f ≥ 2,

+∞, ind f ≤ 1,

and the total number of poles of this function not exceeding λ by

Πf (λ) :=
∑

1≤k≤d
hk≤λ

1.

For every nonnegative integer n we denote by Rn the set of rational functions of
the form (1.3) with ind f = n; we also introduce R−1 := {∞}, which corresponds
to the Dirichlet boundary condition. Then R0 consists of all constant functions, R1

consists of all increasing affine functions and so on. We also denote

R :=

∞⋃
n=−1

Rn.

We denote by AC[0, π] the set of absolutely continuous functions on [0, π]. We
also denote

L̊2(0, π) :=

{
g ∈ L2(0, π)

∣∣∣∣ ∫ π

0

g(x) dx = 0

}
.

The notation xn = yn+`2(1) means that
∑∞
n=0 |xn − yn|

2
<∞. Finally, we denote

by P(s, f, F ) the boundary value problem (1.1)-(1.2), and by λ̊(s, f, F ) the smallest
eigenvalue of this problem.

2.2. Characteristic function. Let ϕ(x, λ) and ψ(x, λ) be the solutions of (1.1)
satisfying the initial conditions

ϕ(0, λ) = f↓(λ), ϕ[1]
s (0, λ) = −f↑(λ), ψ(π, λ) = F↓(λ), ψ[1]

s (π, λ) = F↑(λ),
(2.1)

and C(x, λ) and S(x, λ) be the solutions of the same equation satisfying the initial
conditions

C(0, λ) = S[1]
s (0, λ) = 1, S(0, λ) = C [1]

s (0, λ) = 0.

Standard arguments show that the eigenvalues of the boundary value problem (1.1)-
(1.2), which coincide with the zeros of the characteristic function

χ(λ) := F↑(λ)ϕ(π, λ)− F↓(λ)ϕ[1]
s (π, λ) = f↓(λ)ψ[1]

s (0, λ) + f↑(λ)ψ(0, λ),

are real and simple, and for each eigenvalue λn there exists a unique number βn 6= 0
such that

ψ(x, λn) = βnϕ(x, λn). (2.2)

Writing ϕ(x, λ) as

ϕ(x, λ) = f↓(λ)C(x, λ)− f↑(λ)S(x, λ),
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and using the estimates (see, e.g., [27, Lemma 2.5])

C(π, λ) = cos
√
λπ + o

(
e| Im

√
λπ|
)
, S(π, λ) =

sin
√
λπ√
λ

+ o

(
e| Im

√
λπ|

√
λ

)
,

C [1]
s (π, λ) = −

√
λ sin

√
λπ + o

(√
λe| Im

√
λπ|
)
, S[1]

s (π, λ) = cos
√
λπ + o

(
e| Im

√
λπ|
)
,

we calculate

ϕ(π, λ) =
(√

λ
)ind f

(
cos

(√
λ+

ind f

2

)
π + o

(
e| Im

√
λπ|
))

, (2.3)

ϕ[1]
s (π, λ) = −

(√
λ
)ind f+1

(
sin

(√
λ+

ind f

2

)
π + o

(
e| Im

√
λπ|
))

. (2.4)

Thus

χ(λ) =
(√

λ
)ind f+indF+1

(
sin

(√
λ+

ind f + indF

2

)
π + o

(
e| Im

√
λπ|
))

. (2.5)

Using this estimate, from Hadamard’s theorem we obtain (see [15, Lemma A.1] for
details)

χ(λ) = −
∏
n<L

(λn − λ)
∏
n=L

π(λn − λ)
∏
n>L

λn − λ
(n− L)2

(2.6)

with

L :=
ind f + indF

2
.

2.3. Hilbert space formulation and spectral data. In this subsection we will
introduce a Hilbert space and construct a self-adjoint operator in it in such a way
that the boundary value problem (1.1)-(1.2) will be equivalent to the eigenvalue
problem for this operator. The exact form of the space and the operator will depend
on the indices of the functions f and F . We will give the details only for odd ind f
and indF (i.e., h0, H0 > 0), and then discuss the changes needed in the other cases.
When h0 > 0 and H0 > 0 we consider the Hilbert space H = L2(0, π) ⊕ Cd+D+2

with inner product given by

〈Y,Z〉 :=

∫ π

0

y(x)z(x) dx+

d∑
k=1

ykzk
δk

+
yd+1zd+1

h0
+

D∑
k=1

ηkζk
∆k

+
ηD+1ζD+1

H0

for

Y =



y(x)
y1

...
yd+1

η1

...
ηD+1


, Z =



z(x)
z1

...
zd+1

ζ1
...

ζD+1


∈ H.
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In this space we define the operator

A(Y ) :=



−
(
y

[1]
s

)′
(x)− s(x)y

[1]
s (x)− s2(x)y(x)

δ1y(0) + h1y1

...
δdy(0) + hdyd

y
[1]
s (0) + hy(0)−

∑d
k=1 yk

H1η1 −∆1y(π)
...

HDηD −∆Dy(π)

y
[1]
s (π)−Hy(π)−

∑D
k=1 ηk


with

D(A) :=

{
Y ∈ H

∣∣∣∣ y, y[1]
s ∈ AC[0, π], −

(
y[1]
s

)′
− sy[1]

s − s2y ∈ L2(0, π),

yd+1 = −h0y(0), ηD+1 = H0y(π)

}
.

The necessary modifications for the other cases are as follows. We set H =
L2(0, π) ⊕ Cd+D+1 in the case when only one of these numbers equals zero, and
H = L2(0, π) ⊕ Cd+D otherwise. If h0 = 0 (respectively, H0 = 0) we omit the
(d+ 2)-th components (respectively, the last components) in the above paragraph,
and replace the condition yd+1 = −h0y(0) (respectively, ηD+1 = H0y(π)) by the

condition y
[1]
s (0) +hy(0)−

∑d
k=1 yk = 0 (respectively, y

[1]
s (π)−Hy(π)−

∑D
k=1 ηk =

0) in the definition of the domain of A. If ind f ≤ 0 (respectively, indF ≤ 0),
i.e., the first (respectively, the second) boundary condition is independent of the
eigenvalue parameter, then there are no yk (respectively, ηk) components at all, and

the condition y
[1]
s (0) = −hy(0) or y(0) = 0 (respectively, the condition y

[1]
s (π) =

Hy(π) or y(π) = 0) is added in the definition of the domain of A.
As in the case of summable potentials, one can prove that the operator A thus

defined is self-adjoint, its spectrum is discrete and coincides with the set of eigen-
values of the boundary value problem (1.1)-(1.2), and its eigenvectors

Φn :=



ϕ(x, λn)
δ1

λn−h1
ϕ(0, λn)
...

δd
λn−hd

ϕ(0, λn)

−h0ϕ(0, λn)
∆1

H1−λn
ϕ(π, λn)
...

∆D

HD−λn
ϕ(π, λn)

H0ϕ(π, λn)


are orthogonal (see, e.g., [6], [10]). Here, since λn = hm if and only if ϕ(0, λn) =
f↓(λn) = 0, the corresponding component of this vector is well-defined in this case
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too:
δm

λn − hm
ϕ(0, λn) = −h′0δm

∏
1≤k≤d
k 6=m

(hk − λ)

(and similarly for Hm).
We define the norming constants as

γn := ‖Φn‖2 =

∫ π

0

ϕ2(x, λn) dx+ f ′(λn)ϕ2(0, λn) + F ′(λn)ϕ2(π, λn)

=

∫ π

0

ϕ2(x, λn) dx+ f ′↑(λn)f↓(λn)− f↑(λn)f ′↓(λn)

+
1

β2
n

(
F ′↑(λn)F↓(λn)− F↑(λn)F ′↓(λn)

)
.

The numbers {λn, γn}n≥0 are called the spectral data of the problem P(s, f, F ).
We denote by γ̊(s, f, F ) the first norming constant of the problem P(s, f, F ) (i.e.,

the norming constant corresponding to the smallest eigenvalue λ̊(s, f, F ) of this
problem). As in the regular case, we have the identity ([14, Lemma 2.1])

χ′(λn) = βnγn. (2.7)

2.4. Smallest eigenvalues and nonexistence of zeros. Define a partial order
on the set R as follows: f 4 g if and only if either f = ∞, or f and g are two
functions satisfying f(λ) ≤ g(λ) for all λ < min{π̊(f), π̊(g)}.

Lemma 2.1. If f 4 f̃ and F 4 F̃ then λ̊(s, f, F ) ≥ λ̊(s, f̃ , F̃ ). Moreover, for f ,

F , f̃ , F̃ ∈ R−1 ∪ R0 equality is possible only if f = f̃ and F = F̃ .

Proof. We will only prove λ̊(s, f, F ) ≥ λ̊(s, f, F̃ ); the proof of λ̊(s, f, F̃ ) ≥ λ̊(s, f̃ , F̃ )
is similar. Let ν0 be the smallest zero of ϕ(π, λ). Dividing both sides of the identity

ϕ(π, λ)ϕ[1]
s (π, µ)− ϕ[1]

s (π, λ)ϕ(π, µ)

= f↑(λ)f↓(µ)− f↓(λ)f↑(µ) + (λ− µ)

∫ π

0

ϕ(t, λ)ϕ(t, µ) dt

by µ− λ and taking the limit as µ→ λ we obtain

d

dλ

(
ϕ

[1]
s (π, λ)

ϕ(π, λ)

)
= − 1

ϕ2(π, λ)

(
f2
↓ (λ)

df(λ)

dλ
+

∫ π

0

ϕ2(t, λ) dt

)
< 0

for λ ∈ (−∞, ν0). The asymptotics (2.3) and (2.4) and the definition of ν0 imply

lim
λ→−∞

ϕ
[1]
s (π, λ)

ϕ(π, λ)
= +∞, lim

λ→ν0−0

ϕ
[1]
s (π, λ)

ϕ(π, λ)
= −∞.

Thus ϕ
[1]
s (π, λ)/ϕ(π, λ) is strictly monotone decreasing from +∞ to −∞ as λ in-

creases from −∞ to ν0, and the claim of the lemma follows from the fact that

λ̊(s, f, F ) and λ̊(s, f, F̃ ) are the smallest values of λ for which ϕ
[1]
s (π, λ)/ϕ(π, λ) =

F (λ) and ϕ
[1]
s (π, λ)/ϕ(π, λ) = F̃ (λ) respectively. �

Remark 2.2. The above proof also shows that λ̊(s, f, F ) < min{π̊(f), π̊(F )}.

Lemma 2.3. If λ ≤ λ̊(s, f,∞) (respectively, λ ≤ λ̊(s,∞, F )) then the function
ϕ(x, λ) (respectively, ψ(x, λ)) has no zeros in (0, π).
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Proof. Let ν0 be defined as in the proof of the preceding lemma and denote by
Sπ(x, λ) the solution of (1.1) satisfying the initial conditions Sπ(π, λ) = 0 and

(Sπ)
[1]
s (π, λ) = 1. Since ϕ(x, ν0) and Sπ(x, ν0) are both eigenfunctions of the prob-

lem P(s, f,∞), they coincide up to a constant factor. The solution Sπ(x, λ) has no

zeros in (0, π) for values of λ not greater than the smallest eigenvalue λ̊(s,∞,∞)

of the Dirichlet problem for (1.1). By Lemma 2.1, ν0 ≤ λ̊(s,∞,∞). Thus Sπ(x, ν0)
and hence ϕ(x, ν0) has no zeros in (0, π).

Now suppose to the contrary that ϕ(x, λ) has zeros in (0, π) for some λ ≤ ν0,
and let x0 be its smallest positive zero. Remark 2.2 shows that ϕ(0, λ) = f↓(λ) > 0
and ϕ(0, ν0) = f↓(ν0) > 0. Thus ϕ(x, λ) > 0 and ϕ(x, ν0) > 0 for x ∈ (0, x0). Then

ϕ
[1]
s (x0, λ) < 0 (see, e.g., [29, Lemma 2]), and hence

0 > ϕ(x0, ν0)ϕ[1]
s (x0, λ)− ϕ[1]

s (x0, ν0)ϕ(x0, λ)

= f↓(λ)f↓(ν0) (f(ν0)− f(λ)) + (ν0 − λ)

∫ x0

0

ϕ(t, ν0)ϕ(t, λ) dt > 0.

This contradiction proves the lemma for ϕ. The proof for ψ is similar. �

2.5. A characterization of f↓ in terms of spectral data. The aim of this
subsection is to prove an auxiliary lemma that will be needed in Subsection 5.2.
This lemma characterizes the polynomial f↓ (up to a multiplicative constant) among
all nonzero polynomials.

Lemma 2.4. If ind f ≥ 2 (i.e., if f has at least one pole) then p(λ) = f↓(λ) is the
only nonzero polynomial, up to a multiplicative constant, that satisfies the identities

∞∑
n=0

λknp(λn)

γn
= 0, k = 0, . . . , d− 1.

Proof. From (2.1) and (2.2) we have

f↓(λn) = ϕ(0, λn) =
ψ(0, λn)

βn
.

Together with (2.7) this implies (for sufficiently large N)

N∑
n=0

λknf↓(λn)

γn
=

N∑
n=0

Resλ=λn

λkψ(0, λ)

χ(λ)
=

1

2πi

∫
CN

λkψ(0, λ)

χ(λ)
dλ,

where CN denotes the circle of radius(
N − ind f + indF − 1

2

)2

centered at the origin. Arguing as in Subsection 2.2 one obtains

ψ(0, λ) = O

(∣∣∣√λ∣∣∣indF

e| Im
√
λπ|
)
.

On the other hand, from (2.5) we get

1

χ(λ)
= O

(∣∣∣√λ∣∣∣−(ind f+indF+1)

e−| Im
√
λπ|
)
, λ ∈

⋃
N

CN ,
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and thus

λkψ(0, λ)

χ(λ)
= O

(
1

N ind f−2k+1

)
, λ ∈

⋃
N

CN

with ind f − 2k + 1 ≥ 3. Hence

lim
N→∞

∫
CN

λkψ(0, λ)

χ(λ)
dλ = 0,

and thus f↓(λ) does indeed satisfy the identities in the statement of the lemma.
To prove the uniqueness (up to a multiplicative constant) part let

p(λ) = λd + pd−1λ
d−1 + . . .+ p1λ+ p0

be a monic polynomial satisfying the identities in the statement of the lemma. It
is easy to see from the asymptotics of the eigenvalues and the norming constants
(see Theorem 4.1, the proof of which does not use the present lemma) that for each
k = 0, . . ., d− 1 the series

sk :=

∞∑
n=0

λkn
γn

converges absolutely. The identities in the statement of the lemma imply the fol-
lowing identities between the numbers pi and sj :

d−1∑
i=0

pisi+k = −sd+k, k = 0, 1, . . . , d− 1. (2.8)

We consider them as a system of linear equations (with respect to the numbers pi),
the matrix of which is the following Hankel matrix:

s0 s1 . . . sd−1

s1 s2 . . . sd
...

...
. . .

...
sd−1 sd . . . s2d−2

 .

The quadratic form corresponding to this matrix is positive definite:

d−1∑
i,j=0

si+jξiξj =

d−1∑
i,j=0

∞∑
n=0

λi+jn ξiξj
γn

=

∞∑
n=0

d−1∑
i,j=0

λi+jn ξiξj
γn

=

∞∑
n=0

1

γn

(
d−1∑
i=0

λinξi

)2

≥ 0

with equality if and only if
∑d−1
i=0 λ

i
nξi = 0 for all n, i.e. ξ0 = . . . = ξd−1 = 0. Thus

the determinant of the above matrix is strictly positive and hence the system (2.8)
has a unique solution. �

3. Transformations

In this section, we introduce Darboux-type transformations between problems
of the form (1.1)-(1.2). We will apply these transformations in Sections 4 and 5 to
the solution of several direct and inverse spectral problems for (1.1)-(1.2).
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3.1. Transformation of Nevanlinna functions. But first we start with trans-
formations between rational Herglotz–Nevanlinna functions. These transformations
allow one to shift the index of such a function by one in either direction. Note that in
the case of distributional potentials we need slightly more general transformations
than those defined in [14].

We denote

S := {(µ, τ, ρ, f) ∈ R× R× R× R | µ < π̊(f), τ ≥ f(µ) if ind f ≥ 0} ,

and define the transformation

Θ : S → R, (µ, τ, ρ, f) 7→ f̂

by

f̂(λ) :=
µ− λ

f(λ)− τ
+ ρ.

In the particular case when f(λ) ≡ τ (respectively, f = ∞) this is understood as

f̂ :=∞ (respectively, f̂(λ) := ρ). One sees immediately from this definition that

Θ(µ, ρ, τ,Θ(µ, τ, ρ, f)) = f (3.1)

and (for f(λ) 6≡ τ)

f̂(µ) ≤ ρ (3.2)

with equality if and only if τ > f(µ). The other main properties of this transfor-
mation are summarized in the following lemma.

Lemma 3.1. The transformation Θ is well-defined, i.e., f̂ := Θ(µ, τ, ρ, f) ∈ R.

The poles of f and f̂ interlace if ind f ≥ 2 and ind f̂ ≥ 2 (i.e., if both f and f̂ have

poles); moreover, π̊(f) < π̊(f̂) if τ = f(µ), and π̊(f) > π̊(f̂) if τ > f(µ). Also, if

τ = f(µ) then ind f̂ = ind f − 1,

f̂↑(λ) =
ρf↑(λ)− (λ− µ+ τρ) f↓(λ)

λ− µ
, f̂↓(λ) =

f↑(λ)− τf↓(λ)

λ− µ
, (3.3)

while if τ > f(µ) then ind f̂ = ind f + 1,

f̂↑(λ) = −ρf↑(λ) + (λ− µ+ τρ) f↓(λ), f̂↓(λ) = −f↑(λ) + τf↓(λ).

Proof. The cases ind f = −1, 0, 1 are trivial, so we assume that ind f ≥ 2. We can

write f̂ as

f̂(λ) =
f↓(λ)(λ− µ)

τf↓(λ)− f↑(λ)
+ ρ,

where the polynomials f↑ and f↓, and thus f↓ and τf↓− f↑ have no common roots.

When τ = f(µ) the polynomial τf↓(λ)− f↑(λ) is divisible by λ− µ, and hence f̂ is

a rational function whose poles ĥ1, ĥ2, . . ., ĥd̂ coincide with the set {λ 6= µ | f(λ) =
τ}. Recall that f is strictly increasing on each of the intervals (−∞, h1), (h1, h2),

. . . , (hd−1, hd), (hd,+∞). Hence ĥk ∈ (hk, hk+1) for k = 1, . . ., d − 1. Therefore

d̂ = d− 1 or d̂ = d, depending on whether the function f takes the value τ on the
interval (hd,+∞) or not. If ind f = 2d then f(λ) ↗ h < f(µ) = τ as λ → +∞,
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and thus d̂ = d − 1. Since the degree of the polynomial (τf↓(λ)− f↑(λ)) /(λ − µ)

also equals d− 1, the function f̂ can be written as

f̂(λ) = ĥ0λ+ ĥ+

d̂∑
k=1

δ̂k

ĥk − λ
.

Here ĥ0 > 0 since f̂(λ)→ +∞ as λ→ +∞, and δ̂k > 0 since f(λ)↗ τ as λ↗ ĥk.

Therefore f̂ ∈ R with ind f̂ = 2d̂ + 1 = ind f − 1. Finally, the consideration of
the leading coefficients of the polynomials (λ− µ+ τρ) f↓(λ)−ρf↑(λ) and τf↓− f↑
yields the identities (3.3). If ind f = 2d+ 1 then f̂ has one more pole in (hd,+∞),

so d̂ = d. Also, since f(λ)/λ → h0 as λ → +∞, we obtain that limλ→+∞ f̂(λ) is

finite, i.e. ĥ0 = 0, and ind f̂ = 2d̂ = ind f − 1.
The case τ > f(µ) can be analyzed in a similar way by taking into account the

fact that the set of poles of f̂ is now {λ ∈ R | f(λ) = τ}. �

3.2. Direct transformation between problems. We now introduce our first
transformation between boundary value problems of the form (1.1)-(1.2), and study
its properties. This transformation reduces the index of each non-Dirichlet bound-
ary coefficient by one. Hence, by applying it a sufficient number of times to a
boundary value problem of the form (1.1)-(1.2), we will eventually arrive at a prob-
lem with boundary conditions independent of the eigenvalue parameter.

The domain Ŝ of our transformation consists of all possible boundary value
problems of the form (1.1)-(1.2), excluding the case when both boundary conditions
are Dirichlet:

Ŝ :=

{
(s, f, F )

∣∣∣∣ s ∈ L̊2(0, π), f, F ∈ R, ind f + indF ≥ −1

}
.

We define the transformation

T̂ : Ŝ → L̊2(0, π)× R× R, (s, f, F ) 7→ (ŝ, f̂ , F̂ )

by

ŝ := s− 2v′

v
+

2

π
ln
v(π)

v(0)
, f̂ := Θ

(
Λ,−v

[1]
s (0)

v(0)
,−v

[1]
s (0)

v(0)
+

2

π
ln
v(π)

v(0)
, f

)
,

F̂ := Θ

(
Λ,
v

[1]
s (π)

v(π)
,
v

[1]
s (π)

v(π)
− 2

π
ln
v(π)

v(0)
, F

)
,

(3.4)
where

Λ :=

{
λ0, f, F 6=∞,
λ0 − 2, otherwise

and v(x) :=

{
ϕ(x,Λ), f 6=∞,
ψ(x,Λ), f =∞

(3.5)

(the motivation for choosing this particular value for Λ can be found in [14, Re-
mark 3.4]). That this transformation is well-defined follows from Remark 2.2, Lem-

mas 2.1, 2.3, 3.1 and the identity s− 2v′/v = −s− 2v
[1]
s /v.

By Lemma 3.1, ind f̂ = ind f − 1 if ind f ≥ 0, and ind f̂ = 0 if ind f = −1. The

same is true for F and F̂ . Thus we denote

I := ind f − ind f̂ =

{
1, ind f ≥ 0,

−1, ind f = −1
(3.6)



12 NAMIG J. GULIYEV

and

J :=
ind f + indF

2
− ind f̂ + ind F̂

2
=

{
1, ind f, indF ≥ 0,

0, otherwise.
(3.7)

Theorem 3.2. If {λn, γn}n≥0 is the spectral data of the problem P(s, f, F ) and

(ŝ, f̂ , F̂ ) = T̂(s, f, F ) then the spectral data of the transformed problem P(ŝ, f̂ , F̂ )
is {

λn,
γn

(λn − Λ)I

}
n≥J

.

Proof. It is straightforward to verify that for every n ≥ J (i.e., λn 6= Λ) the function

ϕ′(x, λn)− v′(x)

v(x)
ϕ(x, λn) = ϕ[1]

s (x, λn)− v
[1]
s (x)

v(x)
ϕ(x, λn)

is an eigenfunction of P(ŝ, f̂ , F̂ ) corresponding to the eigenvalue λn. Hence the
numbers λn for n ≥ J are eigenvalues of this boundary value problem. In or-
der to prove that there are no other eigenvalues, we first observe that if ŷ is an

eigenfunction of P(ŝ, f̂ , F̂ ) corresponding to an eigenvalue λ 6= Λ then ŷ′ + ŷv′/v
is an eigenfunction of P(s, f, F ) corresponding to the same eigenvalue λ. Thus no

λ /∈ {Λ}∪
⋃
n≥J{λn} is an eigenvalue of P(ŝ, f̂ , F̂ ). It remains to show that Λ is not

an eigenvalue of P(ŝ, f̂ , F̂ ) either. Suppose the contrary. Since the general solution

of the equation −
(
ŷ

[1]
ŝ

)′
− ŝŷ[1]

ŝ − ŝ
2y = Λŷ is of the form

ŷ(x) :=
1

v(x)

(
A+B

∫ x

0

v2(t) dt

)
for some constants A and B, we have

ŷ
[1]
ŝ (0)

ŷ(0)
=
v

[1]
s (0)

v(0)
− 2

π
ln
v(π)

v(0)
+
Bv2(0)

A
,

ŷ
[1]
ŝ (π)

ŷ(π)
=
v

[1]
s (π)

v(π)
− 2

π
ln
v(π)

v(0)
+

Bv2(π)

A+B
∫ π

0
v2(t) dt

.

Then from (3.2) we obtain

Bv2(0)

A
≥ 0,

Bv2(π)

A+B
∫ π

0
v2(t) dt

≤ 0

with equality in the first inequality (respectively, in the second inequality) if and
only if f = ∞ (respectively, F = ∞); in the case when one of these denominators
is zero the corresponding inequality should be omitted. Since at least one of f and
F is not ∞, this is a contradiction.

For the part concerning the norming constants, we observe that the eigenfunction

ϕ̂n(x) :=


1

Λ− λn

(
ϕ

[1]
s (x, λn)− v

[1]
s (x)

v(x)
ϕ(x, λn)

)
, ind f ≥ 0,

ϕ
[1]
s (x, λn)− v

[1]
s (x)

v(x)
ϕ(x, λn), ind f = −1

(3.8)
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satisfies the initial condition ϕ̂n(0) = f̂↓(λn) and thus

γ̂n :=

∫ π

0

ϕ̂2
n(x) dx+ f̂ ′(λn)f̂2

↓ (λn) + F̂ ′(λn)ϕ̂2
n(π) =


γn

λn − Λ
, ind f ≥ 0,

γn(λn − Λ), ind f = −1

(see the proof of [14, Theorem 3.3] for details). �

3.3. An expression for γ̊(s, f, F ). When at least one of f and F is ∞ the last

theorem expresses the spectral data of the problems P(s, f, F ) and P(ŝ, f̂ , F̂ ) in
terms of each other. But if f 6= ∞ and F 6= ∞ then the information about the
smallest eigenvalue λ0 of P(s, f, F ) and the corresponding norming constant γ0 is
lost. We will see in the next subsection that they can be given almost arbitrarily;
“almost” here means that λ0 should of course be strictly smaller than the smallest

eigenvalue of the problem P(ŝ, f̂ , F̂ ) and γ0 should be positive. In this subsection

we will obtain an expression for γ0 in terms of the transformed problem P(ŝ, f̂ , F̂ ).

Let Ĉ(x, λ) and Ŝ(x, λ) be the solutions of the equation

−
(
y

[1]
ŝ

)′
(x)− ŝ(x)y

[1]
ŝ (x)− ŝ2(x)y(x) = λy(x) (3.9)

satisfying the initial conditions

Ĉ(0, λ) = Ŝ
[1]
ŝ (0, λ) = 1, Ŝ(0, λ) = Ĉ

[1]
ŝ (0, λ) = 0.

It is easy to see that the function 1/ϕ(x, λ0) satisfies the equation (3.9) and the
initial conditions

1

ϕ(0, λ0)
=

1

f↓(λ0)
,

(
1

ϕ

)[1]

ŝ

(0, λ0) = − ρ

f↓(λ0)
,

where

ρ := f(λ0) +
2

π
ln
ϕ(π, λ0)

f↓(λ0)
.

Thus
1

ϕ(x, λ0)
=

1

f↓(λ0)

(
Ĉ(x, λ0)− ρŜ(x, λ0)

)
. (3.10)

Since Ŝ(x, λ0) and 1/ϕ(x, λ0) are both solutions of the equation (3.9), their Wron-
skian is constant:

Ŝ
[1]
ŝ (x, λ0)

1

ϕ(x, λ0)
− Ŝ(x, λ0)

(
1

ϕ

)[1]

ŝ

(x, λ0)

= Ŝ
[1]
ŝ (0, λ0)

1

ϕ(0, λ0)
− Ŝ(0, λ0)

(
1

ϕ

)[1]

ŝ

(0, λ0) =
1

f↓(λ0)
. (3.11)

From here one readily obtains (for a.e. x ∈ [0, π])

ϕ2(x, λ0) = f↓(λ0)
(
Ŝ(x, λ0)ϕ(x, λ0)

)′
,

and hence (note that the function in parentheses is absolutely continuous)∫ π

0

ϕ2(x, λ0) dx = f↓(λ0)Ŝ(π, λ0)ϕ(π, λ0).
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If ind f ≥ 1 and indF ≥ 1 then we have

f ′(λ0) =
1

ρ− f̂(λ0)

and

F ′(λ0) =

(
ϕ

[1]
s (π, λ0)

ϕ(π, λ0)
− 2

π
ln
ϕ(π, λ0)

f↓(λ0)
− F̂ (λ0)

)−1

=

(
(1/ϕ)

[1]
ŝ (π, λ0)

1/ϕ(π, λ0)
− F̂ (λ0)

)−1

.

Therefore∫ π

0

ϕ2(x, λ0) dx+ F ′(λ0)ϕ2(π, λ0)

= ϕ(π, λ0)

f↓(λ0)Ŝ(π, λ0) + ϕ(π, λ0)

(
(1/ϕ)

[1]
ŝ (π, λ0)

1/ϕ(π, λ0)
− F̂ (λ0)

)−1
 .

Using (3.10) and (3.11) we can write the expression in parentheses as

f↓(λ0)Ŝ(π, λ0) + ϕ(π, λ0)

(
(1/ϕ)

[1]
ŝ (π, λ0)

1/ϕ(π, λ0)
− F̂ (λ0)

)−1

=

(
(1/ϕ)

[1]
ŝ (π, λ0)

1/ϕ(π, λ0)
− F̂ (λ0)

)−1

×

(
f↓(λ0)Ŝ(π, λ0)

(1/ϕ)
[1]
ŝ (π, λ0)

1/ϕ(π, λ0)
− f↓(λ0)F̂ (λ0)Ŝ(π, λ0) + ϕ(π, λ0)

)

= f↓(λ0)

(
(1/ϕ)

[1]
ŝ (π, λ0)

1/ϕ(π, λ0)
− F̂ (λ0)

)−1 (
Ŝ

[1]
ŝ (π, λ0)− F̂ (λ0)Ŝ(π, λ0)

)
=

f2
↓ (λ0)

(κ − ρ)ϕ(π, λ0)
,

where

κ :=
Ĉ

[1]
ŝ (π, λ0)− Ĉ(π, λ0)F̂ (λ0)

Ŝ
[1]
ŝ (π, λ0)− Ŝ(π, λ0)F̂ (λ0)

.

Taking into account (3.3), we finally obtain

γ0 = f ′(λ0)f2
↓ (λ0) +

∫ π

0

ϕ2(x, λ0) dx+ F ′(λ0)ϕ2(π, λ0)

=
f2
↓ (λ0)

ρ− f̂(λ0)
−
f2
↓ (λ0)

ρ− κ
= f̂2
↓ (λ0)

(
f̂(λ0)− κ

) ρ− f̂(λ0)

ρ− κ

The above identity can be written as

γ0 =
(
f̂↑(λ0)− κf̂↓(λ0)

) ρf̂↓(λ0)− f̂↑(λ0)

ρ− κ
, (3.12)
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and in this form it will also hold for the case ind f = 0. If F is constant then

F̂ =∞, and the above expression for κ is understood as

κ :=
Ĉ(π, λ0)

Ŝ(π, λ0)
.

3.4. Inverse transformation between problems. Our aim in this subsection is

to invert the action of the transformation T̂. As we will see shortly, this cannot be
done in a unique way, and in order to determine the original problem one needs some
more information, e.g., its smallest eigenvalue λ0 and the corresponding norming
constant γ0. Theorem 3.2 shows that the smallest eigenvalue is not removed if and
only if one of the boundary conditions of the original problem is Dirichlet. In this
case the corresponding norming constant is multiplied (respectively, divided) by two
if and only if the first (respectively, the second) boundary condition is Dirichlet.

With these considerations in mind, we consider the union

S̃ := S̃1 ∪ S̃2 ∪ S̃3

of the three disjoint sets

S̃1 :=
{

(µ, ν, s, f, F ) : s ∈ L̊2(0, π), f, F ∈ R, µ < λ̊(s, f, F ), ν > 0
}
,

S̃2 :=
{

(µ, ν, s, f, F ) : s ∈ L̊2(0, π), f ∈ R0, F ∈ R,

µ = λ̊(s, f, F ), ν = γ̊(s, f, F )/2
}
,

and

S̃3 :=
{

(µ, ν, s, f, F ) : s ∈ L̊2(0, π), f ∈ R, F ∈ R0,

µ = λ̊(s, f, F ), ν = 2γ̊(s, f, F )
}
.

We define the transformation

T̃ : S̃ → L̊2(0, π)× R× R, (µ, ν, s, f, F ) 7→ (s̃, f̃ , F̃ )

by

s̃ := s− 2u′

u
+

2

π
ln
u(π)

u(0)
, f̃ := Θ

(
Λ,−u

[1]
s (0)

u(0)
,−u

[1]
s (0)

u(0)
+

2

π
ln
u(π)

u(0)
, f

)
,

F̃ := Θ

(
Λ,
u

[1]
s (π)

u(π)
,
u

[1]
s (π)

u(π)
− 2

π
ln
u(π)

u(0)
, F

)
,

(3.13)
where

Λ :=

{
µ, (µ, ν, s, f, F ) ∈ S̃1,

µ− 2, (µ, ν, s, f, F ) ∈ S̃2 ∪ S̃3

and

u(x) :=


C(x, µ)− ρS(x, µ), (µ, ν, s, f, F ) ∈ S̃1,

ϕ(x, µ− 2), (µ, ν, s, f, F ) ∈ S̃2,

ψ(x, µ− 2), (µ, ν, s, f, F ) ∈ S̃3
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with

ρ :=
νκ + f↑(µ) (κf↓(µ)− f↑(µ))

ν + f↓(µ) (κf↓(µ)− f↑(µ))
, κ :=

C
[1]
s (π, µ)− C(π, µ)F (µ)

S
[1]
s (π, µ)− S(π, µ)F (µ)

.

The well-definedness of this transformation on S̃1 can be justified as follows; the

two other cases are similar and even simpler. Lemma 2.1 implies µ < λ̊(s, f, F ) ≤
λ̊(s,∞, F ), i.e., µ is not an eigenvalue of the problem P(s,∞, F ). Since the de-
nominator of the above expression for κ is zero only at the eigenvalues of the
problem P(s,∞, F ), κ is well-defined. Arguing as in the proof of Lemma 2.1 we

see that P(s,κ, F ) has only one eigenvalue not exceeding λ̊(s,∞, F ), and hence

µ = λ̊(s,κ, F ). The same proof also shows that if f 6=∞ then

f(µ) < f
(
λ̊(s, f, F )

)
= −

ψ
[1]
s

(
0, λ̊(s, f, F )

)
ψ
(

0, λ̊(s, f, F )
) < −ψ

[1]
s (0, µ)

ψ(0, µ)
= κ.

Thus the denominator of ρ is strictly positive and f(µ) < ρ < κ. Lemma 2.1

implies that µ = λ̊(s,κ, F ) < λ̊(s, ρ,∞), and hence Lemma 2.3 shows that u has no
zeros on [0, π]. Moreover, if F 6= ∞ then using the asymptotics of the solutions S

and S
[1]
s we obtain that the denominator of the expression for κ is strictly positive,

and thus ρ < κ implies F (µ) < u
[1]
s (π)/u(π). This shows that the arguments of Θ

in the expressions for both f̃ and F̃ in (3.13) belong to its domain.
Now we prove that, in a sense, the two transformations that we defined in this

and the previous subsections are inverses of each other.

Theorem 3.3. The transformations T̂ and T̃ are inverses of each other in the

sense that if (s, f, F ) ∈ Ŝ and (ŝ, f̂ , F̂ ) = T̂(s, f, F ) then

T̃
(
λ̊(s, f, F ), γ̊(s, f, F ), ŝ, f̂ , F̂

)
= (s, f, F ),

and conversely if (µ, ν, s, f, F ) ∈ S̃ then T̂T̃(µ, ν, s, f, F ) = (s, f, F ).

Proof. The main idea of the proof is to show that the solutions v and u, used in
(3.4) and (3.13) respectively, are inverses of each other up to a constant factor. We
will give the details for the first statement when f , F 6= ∞; the remaining cases
and the second statement can be analyzed in an analogous manner.

Denote λ0 := λ̊(s, f, F ) and (s̃, f̃ , F̃ ) := T̃
(
λ0, γ̊(s, f, F ), ŝ, f̂ , F̂

)
. In our case,(

λ0, γ̊(s, f, F ), ŝ, f̂ , F̂
)
∈ S̃1 and v(x) = ϕ(x, λ0). Comparing the definition of T̃

with the expression (3.12) for γ̊(s, f, F ), we conclude that both f↓(λ0)/v(x) and
u(x) satisfy the equation (3.9) with λ = λ0 and the same initial conditions, and
hence u(x) = f↓(λ0)/v(x). Thus

s̃ = ŝ− 2u′

u
+

2

π
ln
u(π)

u(0)
= s− 2v′

v
+

2

π
ln
v(π)

v(0)
− 2u′

u
+

2

π
ln
u(π)

u(0)
= s.

Finally, the identity (3.1) implies f̃ = f and F̃ = F . �

We can also prove an analogue of Theorem 3.2 for the transformation T̃.
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Theorem 3.4. If {λn, γn}n≥0 is the spectral data of the problem P(s, f, F ) and

(s̃, f̃ , F̃ ) = T̃(µ, ν, s, f, F ) then the spectral data of the problem P(s̃, f̃ , F̃ ) is{
λn, γn(λn − Λ)I

}
n≥−J ,

where

I := ind f̃ − ind f, J :=
ind f̃ + ind F̃

2
− ind f + indF

2
,

and we denote λ−1 := µ and γ−1 := ν in the case when J = 1.

Proof. By Theorem 3.3, T̂(s̃, f̃ , F̃ ) = (s, f, F ). Thus the part of the claim concern-
ing the eigenvalues and the norming constants with nonnegative indices immedi-

ately follows from Theorem 3.2. It only remains to consider the case µ < λ̊(s, f, F ),
i.e., J = 1. It is straightforward to verify in this case that µ is an eigenvalue of

the problem P(s̃, f̃ , F̃ ) corresponding to the eigenfunction 1/u. Again, compar-

ing the definition of T̃ with (3.12) we obtain that ν is the corresponding norming
constant. �

4. Direct spectral problems

4.1. Asymptotics of eigenvalues and norming constants. In the case of con-
stant boundary conditions the eigenvalues of the problem P(s, f, F ) have the asymp-
totics ([25, Theorem 1], [17, Lemma 7.1])√

λn = n+
ND

2
+ `2(1),

where ND is the number of Dirichlet boundary conditions. The norming constants
have the asymptotics

γn =
π

2

(
n+
ND

2

)−2

(1 + `2(1))

if the first boundary condition is Dirichlet, and

γn =
π

2
(1 + `2(1))

otherwise (see [17, Lemmas 2.4 and 7.2] but note that the norming constants are

defined differently there). Our next theorem shows that the transformation T̂
allows us to extend these results to the case of boundary conditions dependent on
the eigenvalue parameter and write them in a unified manner.

Theorem 4.1. The spectral data of the problem P(s, f, F ) have the asymptotics√
λn = n− ind f + indF

2
+ `2(1),

γn =
π

2

(
n− ind f + indF

2

)2 ind f

(1 + `2(1)) .

Proof. According to the discussion at the beginning of the subsection, these formu-
las hold in the case of constant boundary conditions. Consider now the chain of
problems P(s(k), f (k), F (k)) defined by

(s(0), f (0), F (0)) := (s, f, F ),

(s(k), f (k), F (k)) := T̂(s(k−1), f (k−1), F (k−1)), k = 1, 2, . . . ,K,
(4.1)
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where K := max{ind f, indF}. Then the last problem P(s(K), f (K), F (K)) has
constant boundary conditions, and hence its eigenvalues have the asymptotics√

λ
(K)
n = n− ind f (K) + indF (K)

2
+ `2(1).

Let I and J be defined by (3.6)-(3.7) with f and F replaced by f (K−1) and F (K−1)

respectively. Using Theorem 3.2 we calculate√
λ

(K−1)
n =

√
λ

(K)
n−J = n− J − ind f (K) + indF (K)

2
+ `2(1)

= n− ind f (K−1) + indF (K−1)

2
+ `2(1).

Repeating this argument K − 1 more times we get the above asymptotics for
√
λn.

In a similar manner, from

γ(K)
n =

π

2

(
n− ind f (K) + indF (K)

2

)2 ind f(K)

(1 + `2(1)) ,

Theorem 3.2 and the asymptotics of the eigenvalues we obtain

γ(K−1)
n = γ

(K)
n−J

(
λ(K−1)
n − µ

)I
=
π

2

(
n− J − ind f (K) + indF (K)

2

)2 ind f(K)

×
(
n− ind f (K−1) + indF (K−1)

2

)2I

(1 + `2(1))

=
π

2

(
n− ind f (K−1) + indF (K−1)

2

)2 ind f(K−1)

(1 + `2(1)) .

Again, repeating this argument K − 1 more times yields the above asymptotics for
the sequence γn. �

4.2. Oscillation of eigenfunctions. As is shown in [29, Theorem 1] (see also [16,
Theorem 4.4]), the Sturm oscillation theorem holds also in the case of distributional
potentials with constant boundary conditions, i.e., an eigenfunction corresponding
to the n-th eigenvalue of the problem P(s, f, F ) with ind f , indF ≤ 0 has exactly

n zeros in the open interval (0, π). By using the transformation T̂, we will now
extend this result to the case of arbitrary ind f and indF . But first we need the
following auxiliary result.

Lemma 4.2. Let J and ϕ̂n be defined by the formulas (3.7) and (3.8) respectively.
If the function ϕ̂n(x) has N zeros in (0, π) then the function ϕ(x, λn) has exactly
N + J + Πf̂ (λn) + ΠF̂ (λn)−Πf (λn)−ΠF (λn) zeros in (0, π).

Proof. We give the proof for the case f 6=∞; in the case when f =∞ we only need
to consider ψ instead of ϕ. Let Λ be defined by (3.5). Denote by x1, . . ., xN the
zeros of the function ϕ̂n(x) in (0, π). Then for each k = 1, . . ., N − 1 we have∫ xk+1

xk

ϕ(x, λn)ϕ(x,Λ) dx = ϕ̂n(xk+1)ϕ(xk+1,Λ)− ϕ̂n(xk)ϕ(xk,Λ) = 0
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and hence the function ϕ(x, λn) has a zero in (xk, xk+1). Similarly we obtain that
between any two zeros of ϕ(x, λn) there is a zero of ϕ̂n(x). This implies that the
zeros of these two functions strictly interlace; in particular, they have no common
zeros. Thus ϕ(x, λn) has N − 1 zeros in (x1, xN ).

Consider now the interval (0, x1). It is obvious that if f↓(λn) = ϕ(0, λn) = 0 then

ϕ(x, λn) does not have a zero in (0, x1), and if f̂↓(λn) = ϕ̂n(0) = 0 then ϕ(x, λn)

has a zero in (0, x1). In the case when f̂↓(λn)f↓(λn) 6= 0 we see that if ϕ(x, λn)
does not have a zero in (0, x1) then∫ x1

0

ϕ(x, λn)ϕ(x,Λ) dx = −f̂↓(λn)f↓(Λ)

and ϕ(0, λn)ϕ(0,Λ) = f↓(λn)f↓(Λ) must have the same sign, and if ϕ(x, λn) has a
zero x0 ∈ (0, x1) then ∫ x0

0

ϕ̂n(x)

ϕ(x,Λ)
dx = − f↓(λn)

(Λ− λn)f↓(Λ)

and ϕ̂n(0)/ϕ(0,Λ) = f̂↓(λn)/f↓(Λ) must have the same sign (recall that Λ < λn).

Therefore the function ϕ(x, λn) has a zero in (0, x1) if and only if f̂↓(λn)f↓(λn) > 0

or f̂↓(λn) = 0, i.e., if and only if the functions f and f̂ have the same number
of poles not exceeding λn. Thus the number of zeros of ϕ(x, λn) in (0, x1) equals

1−
(
Πf (λn)−Πf̂ (λn)

)
.

A similar assertion holds for the interval (xN , π) and the functions F and F̂ if the
boundary condition at π is not Dirichlet (i.e., J = 1). Otherwise, if the boundary
condition at π is Dirichlet (i.e., J = 0), the function ϕ(x, λn) does not have a zero
in (xN , π), but ΠF (λn) = ΠF̂ (λn) = 0. Thus the number of zeros of ϕ(x, λn) in

(xN , π) equals J −
(
ΠF (λn)−ΠF̂ (λn)

)
. This concludes the proof. �

We can now proceed to our main oscillation result.

Theorem 4.3. An eigenfunction of the problem P(s, f, F ) corresponding to the
eigenvalue λn has exactly n−Πf (λn)−ΠF (λn) zeros in (0, π).

Proof. Consider again the problems P(s(k), f (k), F (k)) defined by (4.1). Since the
last problem P(s(K), f (K), F (K)) has constant boundary conditions, its eigenfunc-

tion corresponding to the eigenvalue λ
(K)
m has m zeros in the open interval (0, π)

for each m ≥ 0. On the other hand, the constancy of f (K) and F (K) implies
Πf(K)(λ) ≡ 0 and ΠF (K)(λ) ≡ 0, and hence the statement of the theorem holds

in this case. Let J (k) be defined by (3.7) with f and F replaced by f (k) and
F (k) respectively. By successive applications of Theorem 3.2, it follows that λn =

λ
(K)
n−J′ , where J ′ :=

∑K−1
k=0 J (k). Applying Lemma 4.2 successively to the prob-

lems P(s(K−1), f (K−1), F (K−1)), . . ., P(s(0), f (0), F (0)), we finally obtain that an
eigenfunction of P(s, f, F ) corresponding to the eigenvalue λn has

n− J ′ +
K−1∑
k=0

(
J (k) + Πf(k+1)(λn) + ΠF (k+1)(λn)−Πf(k)(λn)−ΠF (k)(λn)

)
= n−Πf (λn)−ΠF (λn)

zeros in (0, π). �
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4.3. On problems with a common boundary condition. Let α 6= 0 be some
real number and together with the problem P(s, f, F ) consider the problem P(s, f+
α, F ). Denote the eigenvalues of the latter problem by µn. Theorem 4.1 shows
that they have the same asymptotics as λn. In this subsection we study further
properties of these two sequences. We will use these results in Subsection 5.2.

Throughout this subsection we assume that ind f ≥ 0 so that the problems
P(s, f, F ) and P(s, f + α, F ) are different. We also assume that no eigenvalue of
P(s, f, F ) is a pole of f or, which is the same, the spectra of the problems P(s, f, F )
and P(s, f+α, F ) do not intersect. Obviously, µn are the zeros of the (characteristic)
function

ξ(λ) := F↑(λ)θ(π, λ)− F↓(λ)θ[1]
s (π, λ) = f↓(λ)ψ[1]

s (0, λ) + (f↑(λ) + αf↓(λ))ψ(0, λ),

where θ(x, λ) is the solution of (1.1) satisfying the initial conditions

θ(0, λ) = f↓(λ), θ[1]
s (0, λ) = −f↑(λ)− αf↓(λ). (4.2)

Together with the expression for χ from Subsection 2.2 this gives

ξ(λ)− χ(λ) = αf↓(λ)ψ(0, λ). (4.3)

The function

m(λ) := − ξ(λ)

χ(λ)

satisfies the identity m(λ) = m(λ) and is a meromorphic function with poles at λn
and zeros at µn. For nonreal values of λ the solution

y(x, λ) := θ(x, λ) +m(λ)ϕ(x, λ)

satisfies the boundary condition

F↑(λ)y(π, λ)− F↓(λ)y[1]
s (π, λ) = 0.

Taking into account (2.1) and (4.2), we obtain

(λ− µ)

∫ π

0

y(x, λ)y(x, µ) dx =
(
y(x, λ)y[1]

s (x, µ)− y[1]
s (x, λ)y(x, µ)

)∣∣∣∣π
0

= (F (µ)− F (λ)) y(π, λ)y(π, µ) + αf↓(λ)f↓(µ) (m(λ)−m(µ))

+ (f↓(λ)f↑(µ)− f↓(µ)f↑(λ)) (1 +m(λ)) (1 +m(µ)) .

For µ = λ this implies

α
Imm(λ)

Imλ
=

1

|f↓(λ)|2
∫ π

0

|y(x, λ)|2 dx

+

∣∣∣∣y(π, λ)

f↓(λ)

∣∣∣∣2 ImF (λ)

Imλ
+ |1 +m(λ)|2 Im f(λ)

Imλ
> 0.

Thus αm(λ) is a Herglotz–Nevanlinna function, and hence its zeros µn and poles
λn interlace.

Using (2.1), (2.2) and the constancy of the Wronskian we obtain

ξ(λn) = F↑(λn)θ(π, λn)− F↓(λn)θ[1]
s (π, λn)

= βn

(
ϕ[1]
s (π, λn)θ(π, λn)− ϕ(π, λn)θ[1]

s (π, λn)
)

= βn

(
ϕ[1]
s (0, λn)θ(0, λn)− ϕ(0, λn)θ[1]

s (0, λn)
)

= αβnf
2
↓ (λn).
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Together with (2.7) this yields

γn =
αf2
↓ (λn)χ′(λn)

ξ(λn)
.

We will need this formula in order to solve the two-spectra inverse problem in
Subsection 5.2, but for now we will use it to obtain more refined asymptotics for
the difference

√
λn −

√
µn. The mean value theorem implies

ξ(λn) = ξ(λn)− ξ(µn) =
(√

λn −
√
µn

)(√
λn +

√
µn

)
ξ′(ζn) (4.4)

for ζn ∈ [λn, µn]. Thus√
λn −

√
µn =

αf2
↓ (λn)χ′(λn)(√

λn +
√
µn
)
γnξ′(ζn)

.

Using the infinite product representations

χ(λ) = −
∏
n<L

(λn − λ)
∏
n=L

π(λn − λ)
∏
n>L

λn − λ
(n− L)2

and

ξ(λ) = −
∏
n<L

(µn − λ)
∏
n=L

π(µn − λ)
∏
n>L

µn − λ
(n− L)2

we obtain (see [15, Appendix A] and [18, Lemma 3.2] for details)

χ′(λn) = (−1)n (n− L)
2L
(π

2
+ `2(1)

)
, ξ′(ζn) = (−1)n (n− L)

2L
(π

2
+ `2(1)

)
,

(4.5)
where

L :=
ind f + indF

2
.

Now using the asymptotics of γn from Theorem 4.1, we finally obtain√
λn −

√
µn = (n− L)

−2r−1

(
α (h′0)

2

π
+ `2(1)

)
,

where

r := ind f − 2d =

{
1, ind f is odd,

0, ind f is even.

5. Inverse spectral problems

5.1. Inverse problem by eigenvalues and norming constants. Theorem 4.1
shows that the spectral data of a problem of the form (1.1)-(1.2) necessarily satisfies
the conditions

λ0 < λ1 < λ2 < . . . , γn > 0, n ≥ 0 (5.1)

and√
λn = n− M +N

2
+ `2(1), γn =

π

2

(
n− M +N

2

)2M

(1 + `2(1)) (5.2)

for some integers M , N ≥ −1. The aim of this subsection is to prove that these
necessary conditions are also sufficient for sequences of real numbers {λn}n≥0 and
{γn}n≥0 to be the eigenvalues and the norming constants of a problem of the form
(1.1)-(1.2).
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If {λn}n≥0 and {γn}n≥0 are two sequences of real numbers satisfying the above
conditions with −1 ≤M , N ≤ 0, then there exists a unique boundary value problem
P(s, f, F ) with constant boundary conditions having these sequences as its spectral
data (see, e.g., [17, Corollary 5.4 and Theorem 7.4]). The transformations defined
in Section 3 allow us to extend this result to the case of boundary conditions (1.2).

Theorem 5.1. Let {λn}n≥0 and {γn}n≥0 be sequences of real numbers satisfying
the conditions (5.1) and (5.2). Then there exists a unique boundary value problem
P(s, f, F ) having the spectral data {λn, γn}n≥0.

Proof. With Theorem 3.2 in mind, we denote K := max{M,N}, and consider the

numbers M (k), N (k) and the sequences {λ(k)
n }n≥0, {γ(k)

n }n≥0 for k = 0, 1, . . ., K
defined by

M (0) := M, N (0) := N, λ(0)
n := λn, γ(0)

n := γn

and
M (k) := M (k−1) − I, N (k) := N (k−1) + I − 2J,

λ(k)
n := λ

(k−1)
n−J , γ(k)

n :=
γ

(k−1)
n−J

(λ
(k−1)
n−J − λ

(k−1)
0 + 2− 2J)I

,

where

I :=

{
1, M (k−1) ≥ 0,

−1, M (k−1) = −1,
J :=

{
1, M (k−1), N (k−1) ≥ 0,

0, otherwise

(we omit the indices of I and J here to avoid double indices). One easily verifies
that they satisfy the conditions (5.1) and (5.2) with M , N , λn and γn replaced

by M (k), N (k), λ
(k)
n and γ

(k)
n respectively. Moreover, one of the numbers M (K)

and N (K) is always 0, while the other one is either 0 or −1. Hence there ex-
ists a boundary value problem P(s(K), f (K), F (K)) (with constant boundary con-

ditions) having {λ(K)
n , γ

(K)
n }n≥0 as its spectral data. Now we successively define

P(s(K−1), f (K−1), F (K−1)), . . . , P(s(0), f (0), F (0)) by

(s(k−1), f (k−1), F (k−1)) := T̃(λ
(k−1)
0 , γ

(k−1)
0 , s(k), f (k), F (k)).

Theorem 3.4 ensures at each step that the spectral data of P(s(k), f (k), F (k)) is

{λ(k)
n , γ

(k)
n }n≥0, and hence the existence part of the theorem follows.

In order to prove the uniqueness part we assume that P(s, f, F ) and P(s̃, f̃ , F̃ )

have the same spectral data. Then Theorem 4.1 implies ind f = ind f̃ and indF =

ind F̃ , and we denote K := max{ind f, indF}. Together with P(s(k), f (k), F (k))

defined by (4.1) we consider the problems P(s̃(k), f̃ (k), F̃ (k)) defined by

(s̃(0), f̃ (0), F̃ (0)) := (s̃, f̃ , F̃ ),

(s̃(k), f̃ (k), F̃ (k)) := T̂(s̃(k−1), f̃ (k−1), F̃ (k−1)), k = 1, 2, . . . ,K.
(5.3)

Theorem 3.2 yields that P(s(k), f (k), F (k)) and P(s̃(k), f̃ (k), F̃ (k)) have the same

spectral data. In particular, P(s(K), f (K), F (K)) and P(s̃(K), f̃ (K), F̃ (K)) are two
problems with constant boundary conditions and the same spectral data. Therefore,
according to the discussion preceding the theorem, we have (s(K), f (K), F (K)) =

(s̃(K), f̃ (K), F̃ (K)), and successive applications of Theorem 3.3 concludes the proof.
�
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5.2. Inverse problem by two spectra. The results of Subsection 4.3 show that
if two disjoint sequences {λn}n≥0 and {µn}n≥0 are the eigenvalues of two problems
of the form P(s, f, F ) and P(s, f+α, F ), then they interlace and satisfy asymptotics
of the form√

λn = n− L+ `2(1),
√
λn −

√
µn = (n− L)−2r−1 (ν + `2(1)) (5.4)

for some integer or half-integer L ≥ −1/2, ν ∈ R \ {0} and r ∈ {0, 1}, with the
exception of the case when L = −1/2 and r = 1 (because of our assumption
ind f ≥ 0, if L = −1/2 then necessarily ind f = 0, and consequently r = 0). We
are now going to prove that these conditions are also sufficient for two sequences to
be the eigenvalues of two such problems. Note that one cannot directly apply the
transformations of Section 3 as in the previous subsection, because a pair of bound-
ary value problems with a common boundary condition is transformed to a pair of
boundary value problems with no common boundary conditions. Therefore we will
first reduce our two-spectra inverse problem to the one solved in Subsection 5.1.

As Theorem 5.1 shows, the inverse problem by spectral data with boundary con-
ditions of the form (1.2), (1.3) is completely analogous to the one with constant
boundary conditions in the sense that a boundary value problem is uniquely deter-
mined by its eigenvalues and norming constants. It turns out, however, that unlike
the case of constant boundary conditions, a pair of problems of the form P(s, f, F )
and P(s, f +α, F ) is not uniquely determined by their eigenvalues. One also needs
to specify the poles of the function f . These poles (i.e., the zeros of f↓) are among
the zeros of the difference of the corresponding characteristic functions (see (4.3)),
and our next theorem shows that they can be chosen arbitrarily among these ze-
ros. The difference between these two kinds of inverse problems can be explained
intuitively by the fact that the information about f↓ is already incorporated into
the definition of norming constants.

Theorem 5.2. Let {λn}n≥0 and {µn}n≥0 be two interlacing sequences satisfying
the asymptotics (5.4). Then there exists a pair of problems of the form P(s, f, F )
and P(s, f+α, F ) having the eigenvalues {λn}n≥0 and {µn}n≥0 respectively. More-
over, there is a one-to-one correspondence between such pairs of problems and sets
of nonnegative integers of cardinality not exceeding L+ (1− r)/2.

Proof. Define the functions

χ(λ) := −
∏
n<L

(λn − λ)
∏
n=L

π(λn − λ)
∏
n>L

λn − λ
(n− L)2

and

ξ(λ) := −
∏
n<L

(µn − λ)
∏
n=L

π(µn − λ)
∏
n>L

µn − λ
(n− L)2

.

Let d be an integer with

0 ≤ d ≤ L+
1− r

2
,

and let i1, i2, . . ., id be integers (indices) with 0 ≤ i1 < i2 < . . . < id. Define the
polynomial

p(λ) :=

d∏
k=1

(τik − λ),
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where τ0 < τ1 < . . . are the zeros of the function χ(λ) − ξ(λ). The use of the fact
that λn and µn interlace together with (4.4) and (4.5) (which is legitimate since
the derivation of these estimates used only the infinite product representations of
χ and ξ and the asymptotics of λn and ζn) implies that the numbers γn defined by

γn :=
πνp2(λn)χ′(λn)

ξ(λn)

are all positive and have the asymptotics

γn = (n− L)
4d+2r

(π
2

+ `2(1)
)
.

By Theorem 5.1, there exists a boundary value problem P(s, f, F ) having the eigen-
values {λn}n≥0 and the norming constants {γn}n≥0. Moreover, ind f = 2d+ r ≥ 0

and indF = 2L − 2d − r ≥ −1. Denote α := πν/ (h′0)
2

with h′0 defined as at the
beginning of Section 2. It only remains to show that the problem P(s, f +α, F ) has
the eigenvalues µn. But first we show that the polynomials f↓(λ) and p(λ) coincide
up to a constant factor. Arguing as in the proof of Lemma 2.4 we have

∞∑
n=0

λknp(λn)

γn
=

∞∑
n=0

λknξ(λn)

πνp(λn)χ′(λn)
=

1

2π2νi
lim
N→∞

∫
CN

λk (ξ(λ)− χ(λ))

p(λ)χ(λ)
dλ = 0,

where CN is the same as in that proof. Thus, by the same lemma, f↓(λ) = h′0p(λ).
Denote the eigenvalues of the boundary value problem P(s, f + α, F ) by µ̂n.

They coincide with the zeros of the function

ξ̂(λ) := F↑(λ)θ(π, λ)− F↓(λ)θ[1]
s (π, λ),

where θ(x, λ) is defined as in (4.2). Using the results of Subsection 4.3, we obtain

ξ̂(λn) =
αf2
↓ (λn)χ′(λn)

γn
=
πνp2(λn)χ′(λn)

γn
= ξ(λn), n ≥ 0.

This and the asymptotics of χ, ξ and ξ̂ show that
(
ξ̂(λ)− ξ(λ)

)
/χ(λ) is an entire

function satisfying the estimate

ξ̂(λ)− ξ(λ)

χ(λ)
= o(1)

on
⋃
N CN and hence by the maximum principle on the whole plane. Then the

Liouville theorem yields that this function is identically zero. Thus ξ̂(λ) ≡ ξ(λ)
and hence µ̂n = µn, n ≥ 0.

So far, we have constructed two problems P(s, f, F ) and P(s, f + α, F ) with the
eigenvalues {λn}n≥0 and {µn}n≥0 respectively, and such that the poles of f are
i1’s, i2’s, . . ., id’s zeros of χ(λ) − ξ(λ). To prove that such a pair of problems is

unique, we assume that the problems P(s, f, F ) and P(s̃, f̃ , F̃ ) have the eigenvalues

{λn}n≥0, and the problems P(s, f + α, F ) and P(s̃, f̃ + α̃, F̃ ) have the eigenvalues

{µn}n≥0. We also assume that the poles of f (respectively, f̃) are i1’s, i2’s, . . ., id’s

zeros of χ− ξ (respectively, χ̃− ξ̃). Then χ ≡ χ̃ and ξ ≡ ξ̃ by the definition of these

functions, and hence (h′0)
−1
f↓ ≡

(
h̃′0

)−1

f̃↓. On the other hand, the asymptotics

of the eigenvalues yields α (h′0)
2

= α̃
(
h̃′0

)2

(see the formula for
√
λn −

√
µn at the
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end of Subsection 4.3). Thus

γn =
αf2
↓ (λn)χ′(λn)

ξ(λn)
=
α̃f̃2
↓ (λn)χ̃′(λn)

ξ̃(λn)
= γ̃n.

Therefore the uniqueness part of Theorem 5.1 implies that s = s̃ a.e. on [0, π],

f = f̃ and F = F̃ . Finally, f = f̃ yields α = πν/ (h′0)
2

= πν/
(
h̃′0

)2

= α̃. �

Remark 5.3. In particular, this proof shows that the problems P(s, f, F ) and P(s, f+
α, F ) are uniquely determined by their spectra and the poles of f . Theorem 5.2
also yields that the two spectra determine these problems uniquely if and only if
indF ≤ 0 ≤ ind f ≤ 1 (i.e., the second boundary condition does not contain the
eigenvalue parameter at all and the first boundary condition may depend on it only
linearly).

5.3. Inverse problems by one spectrum. Theorems 5.1 and 5.2 show that the
spectrum of a boundary value problem of the form (1.1)-(1.2) does not uniquely
determine this problem. In order for the unique determination by one spectrum
to work, one has to impose some additional restrictions. In this subsection we will
consider two types of such restrictions. We will call a boundary value problem
of the form P(s, f, f) symmetric if s(x) + s(π − x) = 0 (which, for differentiable

s ∈ L̊2(0, π), is equivalent to s′(x) = s′(π − x)). In the first part of the subsection
we will prove that the spectrum alone determines the symmetric problem P(s, f, f).

We start by studying the properties of symmetric problems. Theorem 4.1 shows
that the eigenvalues of P(s, f, f) satisfy the asymptotics√

λn = n− L+ `2(1), (5.5)

where L := ind f . Since our problem is symmetric, it follows from (2.1) that
ψ(x, λ) = ϕ(π−x, λ). Then (2.2) implies ψ(x, λn) = β2

nψ(x, λn), and hence β2
n = 1.

Using Theorem 4.3 we obtain βn = (−1)n. Thus (2.7) implies

γn = (−1)nχ′(λn). (5.6)

Since L is now an integer, the formula (2.6) takes the form

χ(λ) = −π
L∏
n=0

(λn − λ)

∞∏
n=L+1

λn − λ
(n− L)2

. (5.7)

Now we are ready to state the first result of this subsection.

Theorem 5.4. Let {λn}n≥0 be a strictly increasing sequence of real numbers sat-
isfying the asymptotics (5.5) for some integer L ≥ −1. Then there exists a unique
symmetric boundary value problem P(s, f, f) having the spectrum {λn}n≥0.

Proof. Define χ by (5.7) and then γn by (5.6). The expression (5.7) and the use of
(4.5) in (5.6) imply that γn are strictly positive numbers satisfying the asymptotics

γn =
π

2
(n− L)2L (1 + `2(1)) .

The rest of the proof now follows from Theorem 5.1. �

Another type of inverse problems where one spectrum is sufficient for the unique
determination is a class of problems known under the names of problems with mixed
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given data, problems with partial information on the potential or half-inverse prob-
lems. For problems with summable potentials and constant boundary conditions,
the Hochstadt–Lieberman theorem states that the knowledge of the potential on
[0, π/2] together with the boundary coefficient at 0 and the spectrum uniquely de-
termines the other boundary coefficient and the potential a.e. on [π/2, π]. Hryniv
and Mykytyuk [19, Theorem 2.1] showed that this result holds also in the case of
distributional potentials with constant boundary conditions. In our notation, (the
uniqueness part of) [19, Theorem 2.1] states that if the spectra of the problems

P(s, h,H) and P(s̃, h̃, H̃) with constant h, H, h̃, H̃ coincide and s(x)−h = s̃(x)− h̃
a.e. on [0, π/2], then s(x)−h = s̃(x)− h̃ a.e. on [π/2, π] and H+h = H̃+ h̃. In this
subsection we will generalize this result to the case of boundary value problems of
the form (1.1)-(1.2).

We start with an auxiliary lemma.

Lemma 5.5. Suppose that P(s1, f1, F1) and P(s2, f2, F2) with f1 6= ∞ 6= f2 have

the same spectra, (ŝ1, f̂1, F̂1) = T̂(s1, f1, F1), (ŝ2, f̂2, F̂2) = T̂(s2, f2, F2), and a ∈
(0, π] is an arbitrary real number. Then f1(λ)− f2(λ) = const = s1(x)− s2(x) for

a.e. x ∈ [0, a] if and only if f̂1(λ)− f̂2(λ) = const = ŝ1(x)− ŝ2(x) for a.e. x ∈ [0, a].

Proof. To prove the necessity we notice that f1(λ)− f2(λ) = const yields ind f1 =
ind f2, and hence the asymptotics of the eigenvalues (see Theorem 4.1) implies
indF1 = indF2. Denote

Λ :=

{
λ̊(q1, f1, F1), F1 6=∞,
λ̊(q1, f1, F1)− 2, F1 =∞

=

{
λ̊(q2, f2, F2), F2 6=∞,
λ̊(q2, f2, F2)− 2, F2 =∞.

Then the solutions v1(x) and v2(x) of the initial value problems

−
(
y[1]
s1

)′
− s1y

[1]
s1 − s

2
1y = Λy, v1(0) = (f1)↓ (Λ), (v1)

[1]
s1

(0) = − (f1)↑ (Λ)

and

−
(
y[1]
s2

)′
− s2y

[1]
s2 − s

2
2y = Λy, v2(0) = (f2)↓ (Λ), (v2)

[1]
s2

(0) = − (f2)↑ (Λ)

coincide on [0, a]. Therefore (3.4) implies

f̂1(λ)− f̂2(λ) =
2

π
ln
v1(π)

v2(π)
= ŝ1(x)− ŝ2(x) for a.e. x ∈ [0, a].

The sufficiency can be proved similarly. �

Applying this lemma successively to the problems defined by (4.1) and (5.3) with
a = π/2, using the above-mentioned result of Hryniv and Mykytyuk, and applying
the lemma again to (4.1) and (5.3) in reverse order with a = π, we obtain the
following generalization of the Hochstadt–Lieberman theorem.

Theorem 5.6. If the spectra of the problems P(s, f, F ) and P(s̃, f, F̃ ) with ind f ≥
indF coincide and s(x) = s̃(x) a.e. on [0, π/2], then s(x) = s̃(x) a.e. on [π/2, π]

and F (λ) = F̃ (λ).



SCHRÖDINGER OPERATORS WITH DISTRIBUTIONAL POTENTIALS 27

References

[1] S. Albeverio, P. Binding, R. Hryniv and Ya. Mykytyuk, Inverse spectral problems for coupled
oscillating systems, Inverse Problems 23 (2007), no. 3, 1181–1200.

[2] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable models in quantum

mechanics, AMS Chelsea Publishing, Providence, RI, 2005.
[3] S. Albeverio and P. Kurasov, Singular perturbations of differential operators. Solvable

Schrödinger type operators, Cambridge University Press, Cambridge, 2000.

[4] R. Kh. Amirov, A. S. Ozkan and B. Keskin, Inverse problems for impulsive Sturm–Liouville
operator with spectral parameter linearly contained in boundary conditions, Integral Trans-

forms Spec. Funct. 20 (2009), no. 7-8, 607–618.
[5] P. A. Binding, P. J. Browne and B. A. Watson, Sturm–Liouville problems with boundary

conditions rationally dependent on the eigenparameter. I, Proc. Edinb. Math. Soc. (2) 45

(2002), no. 3, 631–645.
[6] P. A. Binding, P. J. Browne and B. A. Watson, Sturm–Liouville problems with boundary

conditions rationally dependent on the eigenparameter. II, J. Comput. Appl. Math. 148

(2002), no. 1, 147–168.
[7] J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Weyl–Titchmarsh theory for Sturm–

Liouville operators with distributional potentials, Opuscula Math. 33 (2013), no. 3, 467–563.

arXiv:1208.4677
[8] J. Eckhardt, F. Gesztesy, R. Nichols, and G. Teschl, Inverse spectral theory for Sturm–

Liouville operators with distributional potentials, J. Lond. Math. Soc. (2) 88 (2013), no. 3,

801–828. arXiv:1210.7628
[9] G. Freiling and V. Yurko, Inverse problems for Sturm–Liouville equations with boundary

conditions polynomially dependent on the spectral parameter, Inverse Problems 26 (2010),
no. 5, 055003, 17 pp.

[10] C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in

the boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), no. 3-4, 293–308.
[11] C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the bound-

ary conditions, Proc. Roy. Soc. Edinburgh Sect. A 87 (1980), no. 1-2, 1–34.

[12] A. Goriunov and V. Mikhailets, Regularization of singular Sturm–Liouville equations, Meth-
ods Funct. Anal. Topology 16 (2010), no. 2, 120–130. arXiv:1002.4371

[13] N. J. Guliyev, Inverse eigenvalue problems for Sturm–Liouville equations with spectral pa-

rameter linearly contained in one of the boundary conditions, Inverse Problems 21 (2005),
no. 4, 1315–1330. arXiv:0803.0566

[14] N. J. Guliyev, Essentially isospectral transformations and their applications, preprint.

arXiv:1708.07497
[15] N. J. Guliyev, On two-spectra inverse problems, preprint. arXiv:1803.02567

[16] M. Homa and R. Hryniv, Comparison and oscillation theorems for singular Sturm–Liouville
operators, Opuscula Math. 34 (2014), no. 1, 97–113.

[17] R. O. Hryniv and Ya. V. Mykytyuk, Inverse spectral problems for Sturm–Liouville operators

with singular potentials, Inverse Problems 19 (2003), no. 3, 665–684. arXiv:math/0211247
[18] R. O. Hryniv and Ya. V. Mykytyuk, Inverse spectral problems for Sturm–Liouville opera-

tors with singular potentials. II. Reconstruction by two spectra, Functional analysis and its
applications, Elsevier, Amsterdam, 2004, pp. 97–114. arXiv:math/0301193

[19] R. O. Hryniv and Ya. V. Mykytyuk, Half-inverse spectral problems for Sturm–Liouville

operators with singular potentials, Inverse Problems 20 (2004), no. 5, 1423–1444.

arXiv:math/0312184
[20] Ch. G. Ibadzadeh and I. M. Nabiev, Reconstruction of the Sturm–Liouville operator with

nonseparated boundary conditions and a spectral parameter in the boundary condition (Rus-
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