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Abstract

We show that the pair (rotor position, resistance) of a non-salient Permanent Magnet Syn-
chronous Motor (PMSM) is not observable in the sensorless setting, namely when only the
electrical signals (voltages and intensities) are measured. However, if the rotation speed ω and
the current in rotating frame id are not constantly zero, we prove that there only exist a max-
imum of six indistinguishable solutions, the resistance being the root of a polynomial of degree
six. Besides, in the particular case where ω, id and iq are constant, we show that the number of
possible solutions is reduced to two, with two well-identified possible values for the resistance.
Those two solutions can be dissociated if the sign of iq (namely the mode of use of the mo-
tor) is known. Inspired by the nonlinear Luenberger methodology, this property enables us to
propose an estimation algorithm which relies on a one-dimensional minimization of a criterion
involving the voltages and intensities filtered at three distinct sufficiently large frequencies. Its
performances are tested and illustrated in simulations on real data.

1 Introduction

For an observer to give an asymptotically converging estimate of the system state, this system
must be detectable if not observable. So for any application, before attempting any design of an
observer, observability should be studied. The application we are concerned with in this paper
is the estimation of the rotor position of a non-salient Permanent Magnet Synchronous Motors
(PMSM) with known inductance L , known magnet flux Φ, but unknown stator resistance R, and
in the so-called sensorless setting, namely when only electric variables – currents and voltages – are
measured.

1.1 Context

In order to reduce their cost and increase their sobriety and reliability, Permanent Magnet Syn-
chronous Motors (PMSM) are not always equipped with mechanical sensors. Their control and
supervision thus require observers to estimate the mechanical variables – rotor position and speed–
from the measurement of the electric variables only, and using a model of the dynamics which
typically involves R, L and Φ.

∗P. Bernard and L. Praly are with MINES ParisTech, PSL Research University, Paris, France. e-
mails:pauline.bernard@mines-paristech.fr, laurent.praly@mines-paristech.fr.
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A review of the first steps towards sensorless control was given in [1] and a Luenberger observer
was proposed in [2] in order to estimate the position of a PMSM from electrical measurements only.
Then, in [3], pursuing the same goal, was proposed a very simple gradient observer which turned
out to be extremely effective in practice. However, from a theoretical view point, it was proved in
[4] to be only conditionally convergent: it may admit several equilibrium points depending on the
rotation speed ω. Fortunately, later in [5], the authors showed how a minor modification enables
to achieve global asymptotic stability thanks to convexity arguments.

All these observers typically require the knowledge of the parameters R, Φ and L. Unfortunately,
while L may be considered known and constant (as long as there is no magnetic saturation), R and
Φ do vary significantly with the temperature and these variations should be taken into account in
the observer. That is why efforts have been made to look for position observers which do not rely
on the knowledge of those parameters, or even better, which also estimates them. For instance,
[6, 7] have proposed sensorless position observers which are independent from the magnet flux.
This line of research was completed in [8] by directly extending the gradient observer proposed in
[3] with the estimation of Φ. But as far as the resistance is concerned, we are not aware of any
sensorless observation algorithm with proved global convergence. A first attempt appeared in [9]
using an adaptive sliding mode scheme. Then, in [10, 11], and recently in [12, 13] observers/control
for PMSMs with unknown resistance were proposed, but guaranteeing only local stability. In [14],
the authors proposed a global adaptive observer to make the gradient observer from [3] independent
from the resistance, but only a qualitative convergence to a neighborhood of the solution is ensured;
quantitatively, there is no control on the size of this neighborhood.

Actually, along those attempts at observer design, we have not found any report on the study
of observability of the pair (rotor position, resistance) for a PMSM. Some observability studies
were carried out in the context of induction motors for instance in [15, 16, 17], the latter two
exhibiting pairs of indistinguishable trajectories in steady state when the torque or stator resistance
is unknown, thus explaining why most control/observer designs with parameter adaptations are
inherently local. We show in this paper that, in accordance with those observations for induction
machines, a PMSM with unknown resistance is not observable unless other information is added.
Nevertheless, it is a peculiar kind of non observability because we prove that when the rotation
speed and the current in rotating frame id are not constantly zero, there are at most six possible
values for the pair (rotor position, resistance). Besides, when the rotation speed and the currents
evaluated in the rotating frame are constant, the number of indistinguishable solutions is reduced
to two, and can be dissociated thanks to the extra knowledge of the motor mode of use (motor or
generator). This finiteness of the classes of indistinguishability, already described in [16, 17] could
not appear in a linear context where non observability necessarily implies an infinite number of
indistinguishable trajectories.

But then, can an observer be proposed when the system has classes of indistinguishability with
finite cardinality? A positive answer was given in [16, 18] when the system can be written in an
“observable-like” form which, due to unobservability, involves a set valued map that is considered in
the design as an unknown input. Here we propose another positive answer of a completely different
nature, relying on a nonlinear Luenberger design. This design consists in transforming the system
dynamics into asymptotically stable linear dynamics with the measurements as input, and this,
independently from the given system observability. Then, an estimate is obtained by inverting the
transformation, invertibility being here related to observability. This approach was first developed
by Luenberger himself for linear systems in [19], then extended to stationary nonlinear systems ([20,
21] and references therein), and finally to time-varying systems in [22, 23]. It was also successfully
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applied to the sensorless position estimation of a PMSM (with known resistance) in [5]. In all those
papers, this design is used for observable systems where the invertibility of the transformation is
guaranteed. But we show in this paper that it is still useful in the absence of observability and
invertibility. In our particular example, it enables to transform the problem of estimating the
pair (rotor position, resistance) from a single output equation valid at all times into the one of
solving at each time a set of three equations which are valid only asymptotically as time goes to
infinity, but exponentially fast. They involve the voltages and currents filtered at three distinct
sufficiently large frequencies. Because of non observability these three equations must have non
unique solutions. A key result that we establish is that there are at most six possible values of the
pair (rotor position, resistance). So we recover exactly the property of unobservability. Actually
these possible solutions can be a posteriori discriminated according to extra knowledge of those
quantities, such as bounds for the resistance, mode of use of the motor, etc.

Hence, by going with a Luenberger design, we get an observer with two components
• a dynamic component made of a cascade of linear filters,
• a static component, its output map, delivering the estimate computed from the filters’ states. It

is a set valued map since its image has in general 6 values.
This is to be compared for instance with the observer in [17] and [18], the dynamics of which are
a differential inclusion.

1.2 Problem statement

We consider a balanced three-phase wye-connected PMSM. Using Joule’s and Faraday’s laws, its
equivalent two-phase model expressed in a fixed stator frame reads (see [24, (7.69)])

Ψ̇ = u−R i (1)

where Ψ is the total flux generated by the stator windings and the permanent magnet, (u, i) are the
voltage and current, in the fixed stator frame, and R the stator winding resistance. The quantities
u, i and Ψ are two dimensional vectors. The way the total flux Ψ is related to the rotor angle θr
differs depending on the geometry of the rotor and stator. When the repartition of the windings
and the profile of the magnet are perfectly symmetric, the motor is said to be non-salient and the
total flux may be expressed simply as (see [24, (7.72)])

Ψ = L i+ Φ

(
cos θ
sin θ

)
(2)

where L is the stator inductance, Φ the magnet’s flux, and θ = npθr the electrical phase, with np
the number of poles (winding pairs) of the stator. Plugging (2) into (1) leads to the usual PMSM
model

L
︷̇︷
i = u−R i− Φnp ωr

(
− sin(npθr)
cos(npθr)

)
(3a)

θ̇r = ωr (3b)

I ω̇r = Φnp i
>
(
− sin(npθr)
cos(npθr)

)
− τL (3c)

where I is the inertia of the rotor and τL the load torque. But this operation makes ωr = θ̇r appear
in the model along with two new parameters I and τL which must be either known or estimated.
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Fortunately, as noticed in [2], (2) implies

|Ψ− L i|2 − Φ2 = 0 (4)

θ = arg(Ψ− L i) . (5)

So, according to (5), in the case where L and i are known, an estimate of θ can be simply recovered
from an estimate of the total flux Ψ. Therefore, as suggested in [2], it is preferable to consider the
model made of (1)-(4) instead of (3a), namely

Ψ̇ = u−R i , Φ2 − L2|i|2 = Ψ>Ψ− 2Li>Ψ (6)

with known inputs (u, i) and where the information given by (4) is used as a measurement. These
equations are independent from the parameters I and τL.

It is proved in [8] that it is possible to estimate both Ψ and Φ at the same time. In this paper,
we rather suppose that the flux Φ produced by the magnet is known, and the resistance R unknown.
We want to know if it is possible to estimate both Ψ (and thus θ) and R.

In Section 2, we show that the knowledge of (u, i), Φ and L is generally not enough to determine
uniquely Ψ and R. However, when the rotation speed and the currents evaluated in the rotating
frame are non zero, there are at most six possible solutions, which may be distinguished from one
another by the extra knowledge of the mode of use of the machine (motor or generator). Then, we
exploit this knowledge to propose an estimation algorithm for (Ψ, R) (and thus (θ,R)) based on a
nonlinear Luenberger observer design in Section 3. In Section 4, we propose a possible practical
implementation and study its robustness to measurement and model errors (such as the presence
of saliency) in Section 5. We finally illustrate its performance on a simulated scenario, as well as
on real data in Section 6.

Notations

1. the rotation matrix of angle θ

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
(7)

The particular one for θ = −π
2 is

J = R(−π
2

) =

(
0 1
−1 0

)
2. the current in a rotated frame of angle θ

Idq(θ) =

(
Id(θ)
Iq(θ)

)
= R(−θ) i (8)

Its evaluation along a solution is

idq(t) = Idq(θ(t)) =

(
id(t)
iq(t)

)
=

(
Id(θ(t))
Iq(θ(t))

)
3. the angle corresponding to a flux Ψ

Θ(Ψ) = arg(Ψ− Li) (9)
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2 Observability analysis

Inspired by (6) we consider the time-varying system
ẋ = u− x3 i
ẋ3 = 0

y = Φ2 − L2|i|2 = x>x− 2Li>x
(10)

with L, Φ, u and i given. The input time signals u and i are assumed to be consistent with this
model, i.e. such that x = Ψ and x3 = R is a particular solution. In the following (x(t), x3(t))
denotes a generic solution whereas (Ψ(t), R) is the notation for this particular solution. In some
cases, it will be appropriate to rewrite the last equation of (10) equivalently as

0 = |x− L i|2 − Φ2 . (11)

The output function h and its corresponding output y are then given by

h(x, t) = |x− L i(t)|2 − Φ2 , y = 0 . (12)

We want to know whether, given the time signals (u, i) and parameters (L,Φ), the particular
solution (Ψ, R) is the unique solution to System (10).

In the following, we answer this question depending on the properties of the particular solution
(Ψ, R). For that, we let θ be the unique time-signal such that

Ψ(t) = L i(t) + Φ

(
cos(θ(t))
sin(θ(t))

)
, (13)

and we denote

z(t) =

(
cos θ(t)
sin θ(t)

)
, idq(t) = Idq(θ(t)) , ω(t) = θ̇(t) .

Our starting point is the following result.

Theorem 1. If

a) for all t, ω(t) = 0

or

b) there exists t such that ω(t) 6= 0, but for all t, id(t) = 0, and ω
iq

(t) is defined and constant,

then there exists an infinite number of solutions to System (10).
Otherwise, there exist at most 6 solutions.

Proof. Consider a solution (x, x3) to System (10). x is necessarily of the form

x(t) = x0 +

∫ t

0
u(τ)dτ − x3

∫ t

0
i(τ)dτ

with
ẋ0 = 0 , ẋ3 = 0 ,
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and finding (x, x3) is equivalent to finding (x0, x3). From (11), it follows for all t

0 = |x(t)− Li(t)|2 − |x0 − Li(0)|2

= [x(t)− x0 − L(i(t)− i(0))]>[x(t) + x0 − L(i(t) + i(0))]

= η̃(x3, t)
>[2(x0 − Li(0)) + η̃(x3, t)]

where we have defined the following affine function of x3

η̃(x3, t) =

∫ t

0
u(τ)dτ − x3

∫ t

0
i(τ)dτ − L(i(t)− i(0)) . (14)

We deduce that for any time t,

2η̃(x3, t)
>(x0 − Li(0)) = −η̃(x3, t)

>η̃(x3, t) = −|η̃(x3, t)|2 . (15)

Therefore, unless x3 makes η̃(x3, t1) and η̃(x3, t2) colinear for any (t1, t2), there exits at most one
possible value of x0 for each x3.

The rest of the proof then consists in showing that:

1. for x3 such that the function t 7→ η̃(x3, t) is not constant, there exist couples (t1, t2) such
that η̃(x3, t1) and η̃(x3, t2) are not colinear. x0 is then uniquely determined, as a rational
fraction of x3 with a numerator of degree 3 and a denominator of degree 2, and is solution
of |x0 − Li(0)|2 = Φ2. This implies that x3 must be the root of a polynomial of degree 6.
Therefore, there are at most 6 solutions (x, x3) such that the function t 7→ η̃(x3, t) is not
constant.

2. to the values of x3 such that the function t 7→ η̃(x3, t) is constant, is associated an infinite
number of solutions (x, x3).

3. x3 makes the function t 7→ η̃(x3, t) constant if and only if it satisfies for all t

(R− x3)id(t) = 0

(R− x3)iq(t) = −ω(t)Φ . (16)

This is in particular the case for x3 = R when ω(t) = 0 for all t.

Let us start by Point 1. Take x3 such that η̃(x3, .) is not constant. There exists t1 such that
η̃(x3, t1) 6= 0. Thus, for some t2 6= t1, η̃(x3, t2) colinear to η̃(x3, t1) implies that there exists λ such
that η̃(x3, t2) = λη̃(x3, t1). But then,we have

2λη̃(x3, t1)>(x0 − Li(0)) = −λ2|η̃(x3, t1)|2 = −λ|η̃(x3, t1)|2

and necessarily λ = 1 or λ = 0, i-e η̃(x3, t2) = η̃(x3, t1) or η̃(x3, t2) = 0. But, since η̃(x3, .)
is continuous and not constant, there exists t2 such that η̃(x3, t2) 6= η̃(x3, t1) and η̃(x3, t2) 6= 0.
Actually, still by continuity, we can even say that there exist two intervals I1 and I2 such that for
all (t1, t2) in I1 × I2, we have η̃(x3, t1) 6= 0, η̃(x3, t2) 6= 0 and η̃(x3, t2) 6= η̃(x3, t1), i-e such that
η̃(x3, t1) and η̃(x3, t2) are not colinear. For each such couple (t1, t2), x0 is uniquely determined by
the value of x3. Indeed, from (15) we have

2

(
η̃(x3, t1)>

η̃(x3, t2)>

)
(x0 − Li(0)) = −

(
|η̃(x3, t1)|2
|η̃(x3, t2)|2

)
6



and denoting

J =

(
0 1
−1 0

)
,

it can be checked that

det

(
η̃(x3, t1)>

η̃(x3, t2)>

)
= η̃(x3, t1)>Jη̃(x3, t2) 6= 0

and (
η̃(x3, t1)>

η̃(x3, t2)>

)−1

=
−1

η̃(x3, t1)>Jη̃(x3, t2)
J (η̃(x3, t1) , η̃(x3, t2)) J

so that necessarily

x0 = Li(0) +
1

2

J (η̃(x3, t1) , η̃(x3, t2))

η̃(x3, t1)>Jη̃(x3, t2)

(
|η̃(x3, t2)|2
−|η̃(x3, t1)|2

)
.

Replacing this expression in the constraint

|x0 − Li(0)|2 − Φ2 = 0 ,

we obtain a polynomial of degree 6 in x3 for each couple (t1, t2) in I1 × I2. In order to deduce
that there are at most 6 solutions x3 making η̃(x3, .) not constant, we need to prove that at least
one of these polynomials is not a constant. It is possible to show that the coefficient of highest
degree is given by I(t1)2I(t2)2(I(t1) − I(t2)) with I(t) =

∫ t
0 i(τ)dτ . If I(t1) = 0 for all t1 in I1,

then i =
·︷︷
I is zero on I1 which is excluded by assumption, thus there exists t1 in I1 such that

I(t1) 6= 0. Now assume I(t2) = I(t1) or I(t2) = 0 for all t2 in I2. Again this means that i is zero on
I2, which is impossible. We conlude that there exists (t1, t2) in I1× I2 such that the corresponding
polynomial is ”truly” of order 6 (i-e with a nonzero coefficient of order 6) and therefore, there are
at most 6 solutions x3 making η̃(x3, .) not constant, and for each of these values, there is a unique
corresponding x0. This characterizes at most 6 solutions (x, x3).

Now, for Point 2., take x3 such that η̃(x3, .) is constant. Since η̃(x3, 0) = 0, η̃(x3, t) = 0 for all t.
It follows that any x0 verifying |x0−Li(0)| = Φ is solution, and there exists an infinity of solutions
associated to this value of x3.

Finally, for Point 3., x3 makes t 7→ η̃(x3, t) constant if and only if for all t, differentiating with
respect to time,

u(t)− x3i(t)− L
︷̇︷
i (t) = 0 .

But differentiating (13) with respect to time, we also know that

u(t)−Ri(t) = L
︷̇︷
i (t) + ωΦ

(
− sin(θ(t))
cos(θ(t))

)
so that, by combining the two equations and multiplying by R(−θ(t)), we get system (16).

We can thus distinguish the following cases:

- if ω(t) = 0 for all t, the function t 7→ η̃(R, t) is constant and, from 2), there is an infinite
number of solutions (x, x3).
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- if there exists t such that ω(t) 6= 0, and for all t, id(t) = 0 and ω(t)
iq(t)

is defined and constant,

then x3 = R+ ωΦ
iq

is the only solution to System (16) for all t and from 2) there is an infinity

of solutions (x, x3).

- otherwise, there exist no solution to System (16). Therefore, η̃(x3, ·) cannot be constant and
from 1) there are at most 6 solutions (x, x3) to our observability problem.

The fact that the system is not observable when the rotating speed is zero is not surprising since
it is well-known even when R is known. But, in the usual case where ω and id are not constantly
zero, this result says that there exist at most six possible solutions (x, x3). To get more information
about those roots, one could study in detail this polynomial of degree six obtained in the proof. But
its expression is too complex. In the next section, we show that the study of a stronger differential
observability gives more hindsight about those solutions.

2.1 Differential observability of order 3

We consider now the following more stringent observability question expressed using the notation
(12) for the output:
How many solutions in (x, x3) may the following equation have

H3(x, x3, t) = 0 =


h(x, t)

˙︷ ︷
h(x, t)

¨︷ ︷
h(x, t)

 ? (17)

If there is only one solution the system is said differentially observable of order 3. Of course, in
the cases of non observability identified in Theorem 1, the answer is more than 1. But we want
to study in more details what happens in the other cases, in particular when there exists a time t
such that

ω(t) 6= 0 and id(t) 6= 0 .

By differentiations in (11), we obtain

H3(x, x3, t) =

 |x− L i(t)|2 − Φ2

2η(x3, t)
>(x− L i(t))

2η̇(x3, t)
>(x− L i(t)) + 2|η(x3, t)|2

 ,

where we have denoted

η(x3, t) = u(t)− x3i(t)− L
︷̇︷
i (t) . (18)

We have the following result:

Theorem 2. Consider a time t such that ω(t) 6= 0 and id(t) 6= 0. There are as many solutions
(x, x3) to the equation

H3(x, x3, t) = 0 ,
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as the number of distinct real roots of the following polynomial of degree six:

P (x3, t) = ω(t)6Φ6


1− (R− x3)

ω(t)Φ

 ˙︷ ︷(
id
ω

)
(t)− 2iq(t)

+
(R− x3)2

ω(t)2Φ2
µ(t)|i(t)|2

2

−
(

1 +
(R− x3)

ω(t)Φ
2iq +

(R− x3)2

ω(t)2Φ2
|i(t)|2

)3
 (19)

where1

µ(t) =
1

ω(t)

[
i(t)>J

˙︷ ︷
i(t)

]
|i(t)|2

.

If besides iq(t) 6= −
˙︷ ︷(
id
ω

)
(t), then P (x3, t) admits at least two distinct real roots.

Proof. It is interesting to note that η(x3, t) =
·︷ ︷

η̃(x3, t), where η̃ is defined in (14), so that what is
done in this proof is somehow the differential version of the proof of Theorem 1. To study how
many solutions in (x, x3) the equation (17) has, we remark that the second and third component
of H3 give a linear system in x− L i. So our approach is to solve this system and replace it in the
first component. This gives a function of x3 only. Hence the first question is invertibility of the
linear system, i.e. colinearity of η(x3, t) and η̇(x3, t).

Assume that, for t given in the statement and some x3, η(x3, t) is non zero and colinear with
η̇(x3, t), namely η̇(x3, t) = λη(x3, t). Then, (17) gives

η(x3, t)
>(x− Li(t)) = 0 , λη(x3, t)

>(x− Li(t)) = −|η(x3, t)|2

and necessarily η(x3, t) = 0 which is a contradiction. Therefore, colinearity can only happen if
η(x3, t) = 0. But differentiating (13) with respect to time and combining this expression with (18),
we get

η(x3, t) = −ω(t)ΦJz(t) + (R− x3)i(t) . (20)

By imposing η(x3, t) to be zero and multiplying by R(−θ), we obtain (R − x3)id(t) = 0 and
(R − x3)iq(t) = −ω(t)Φ, which is impossible since ω(t) 6= 0 and id(t) 6= 0. Therefore, for all x3,
η(x3, t) and η̇(x3, t) are not colinear.

It follows that we can get x from the second and third components of H3, namely

(x− L i(t))>η(x3, t) = 0

(x− L i(t))>η̇(x3, t) = −|η(x3, t)|2 (21)

i.e.

x− L i(t) =
|η(x3, t)|2

η(x3, t)>Jη̇(x3, t)
Jη(x3, t) . (22)

1µ is the ratio between ω and the rotation speed of i.

9



Inserting this expression in the first component of H3 gives

Φ2 =

∣∣∣∣ |η(x3, t)|2

η(x3, t)>Jη̇(x3, t)
Jη(x3, t)

∣∣∣∣2
=

|η(x3, t)|6

[η(x3, t)>Jη̇(x3, t)]2

so that x3 is a root of the following polynomial

P (x3, t) = Φ2[η(x3, t)
>Jη̇(x3, t)]

2 − |η(x3, t)|6 .

Differentiating (20), we get

η̇(x3, t) = −ω̇(t)ΦJz(t)− ω(t)2Φz(t) + (R− x3)
︷̇︷
i (t) , (23)

which yields

η(x3, t)
>Jη̇(x3, t) = det(η(x3, t) , η̇(x3, t))

= ω3Φ2 − (R− x3)Φ

[
ω2i>Jz − ω̇ i>z + ω

︷̇︷
i
>
z

]
+ (R− x3)2 i>J

︷̇︷
i

= ω3Φ2 − (R− x3)Φω2

−2iq +

˙︷ ︷(
id
ω

)+ (R− x3)2 i>J
︷̇︷
i (24)

where we have used the fact that i>z = id and i>Jz = −iq. Inserting those expressions in the
expression of P , we get the polynomial (19). The coefficient of degree 6 is |i|6 which is non zero by
assumption. Since the value of x is imposed by that of x3, we get the first statement.

R is one real root of P (x3, t). Because P has an even degree, there is at least another real root.

But we have ∂P
∂x3

(R, t) = 0 iff iq(t) = −
˙︷ ︷(
id
ω

)
(t). Therefore, if this condition is not satisfied, R is a

simple root and there exist at least two distinct real roots.

With this result, we recover the fact that there exist at most 6 possible values for (x, x3). Also,

because iq(t) = −
˙︷ ︷(
id
ω

)
(t) is likely to happen for specific inputs only, we can expect the system to

be generally not differentially observable, with at least two candidates for (x, x3) at each time t.
We may wonder if P admits other real roots, or if its other 4 roots are complex. To answer this
question, we restrict our attention to the particular case where ω, id and iq are constant.

2.2 Particular case where ω, id and iq are constant

In this case, we already see from Theorem 2 that differential observability is possible only if iq = 0.
Let us describe more precisely the roots of P .

Corollary 1. If ω, id and iq are constant with ω 6= 0 and id 6= 0, then the polynomial P in (19)
has only two roots in x3 given by

x3 = R , x3 = R+
2Φω iq
|i|2

. (25)
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Therefore, the equation H3(x, x3, t) = 0 admits one solution if iq = 0 and two distinct solutions if
iq 6= 0.

Proof. We have:

i>J
︷̇︷
i = i>qdR(−θ)R(−π

2
)

˙︷ ︷
R(−θ)idq

So when idq is constant, we obtain:

i>J
︷̇︷
i = i>dqR(−θ)R(−π

2
)

˙︷ ︷
R(−θ)idq

= ω i>dqR(−θ)R(−π
2

)R(
π

2
)R(θ)idq

= ω|idq|2 = ω|i|2 .

This implies µ(t) = 1 and

P (x3) = −ω6Φ6

(
1 +

(R− x3)

ωΦ
2iq +

(R− x3)2

ω2Φ2
|i|2
)2

(R− x3)

ωΦ

(
2iq +

(R− x3)

ωΦ
|i|2
)
.

The polynomial 1 + 2iqX + X2|i|2 has a discriminant equal to −4i2d < 0 and does not admit any
real root. The conclusion follows. Note that in this case, according to (24), P also writes

P (x3) = −Φ2 det
(
η(x3) , η̇(x3)

)2
× (R− x3)

ωΦ

(
2iq +

(R− x3)

ωΦ
|i|2
)
. (26)

This theorem says that the system is not differentially observable of order 3 unless iq = 0.
This does not mean that the system is not observable because the solution corresponding to x3 =
R +

2Φω iq
|i|2 may not be admissible for System (10). Actually, it turns out that both solutions are

truly indistinguishable:

Theorem 3. Assume ω, id and iq are constants such that ω 6= 0 and id 6= 0. There exist exactly
two indistinguishable solutions (x, x3) to System (10). They are of the form (Ψ, R) and (Ψδ, Rδ)
with

Rδ = R+
2Φω iq
|i|2

, id,δ = id , iq,δ = −iq ,

ωδ = θ̇δ = θ̇ = ω ,

Ψδ(t) = L i(t) +
|η(Rδ, t)|2

η(Rδ, t)>Jη̇(Rδ, t)
Jη(Rδ, t) , (27)

with η defined in (18), θδ = Θ(Ψδ) and idq,δ = Idq(θδ). Besides, if (R̂, θ̂) is one of the solutions
(R, θ) or (Rδ, θδ), then the other solution isR̂+

2Φω̂
︷̂︷
iq

|i|2
, θ̂ + arctan2

2

︷̂︷
iq
︷̂︷
id
|i|2

, 1− 2

︷̂︷
iq

2

|i|2


 , (28)

where
︷̂ ︷
idq = Idq(θ̂) and ω̂ =

˙̂
θ.
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Proof. See Appendix .1.

We conclude that the system is not observable if iq 6= 0, but with only two possible solutions.
It is interesting to observe that they actually correspond to those recently exhibited in [17] in the
context of induction motors, once we apply the letter swap proposed in [12] to go from an induction
motor model to a PMSM one. Those two indistinguishable trajectories can be dissociated with the
additional information of the sign of iq. In fact, the sign of iq determines the mode of use of the
machine: if iq > 0, the torque is positive and the machine acts as a motor, whereas if iq < 0,
the torque is negative and the machine acts as a generator. In other words, both solutions can be
distinguished if we know the mode of use of the motor.

This result also says that, in practice, if an estimation R̂ among {R,Rδ} is available (for
instance thanks to an observer), it is possible to find the other candidate. However for this, we
need as estimation of the rotation speed ω. This will be exploited in the estimation algorithm
presented below.

Remark 1. In fact, from a physical point of view, those two values of R correspond to two systems
with same total energy but with different energy repartition. Indeed, the total energy is

E =
L

2
|i|2 +

I
2
ω2
r

From (3) and the fact that ω = npωr, it satisfies:

Ė = −R|i|2 + u>i− ω

np
τL

When id, iq and ω are constant, E is constant and we have:

−R|i|2 + u>i− 1

np
ωτL = 0 , Φnpiq = −Φnpi

>Jz = τL

So when u, i and ω are known but the sign of the mechanical power ω
np
τL = Φiqω is unknown, there

are two possible values for R

R =
u>i− Φ|iq||ω|

|i|2
or

u>i+ Φ|iq||ω|
|i|2

The difference 2
Φ|iq ||ω|
|i|2 between the two values is exactly what we have found above. And the fact

that u>i
|i|2 is larger or smaller than R depends only the sign the mechanical power.

We conclude from this observability analysis that System (10) is not observable when ω or id
remains at 0. However, when ω and id are nonzero, the number of indistinguishable trajectories is
reduced to maximum six: the possible values of R are the roots of a polynomial P of degree six
given by (19). This polynomial is likely to have at least two real roots in the general case, and
only two if ω, id and iq are constant. In that latter case, there are exactly two indistinguishable
trajectories and they can be distinguished with the additional information of the sign of iq. Note
that by continuity, if ω, id and iq vary slowly, we may expect P to have only two real roots at each
time t.
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3 From solving a single equation at different times to several equa-
tions at the same time

With the observability study in hand, we would like to design an estimation algorithm. For this, we
follow the Luenberger methodology. It consists in finding a transformation (x, x3, t) 7→ T (x, x3, t)
that maps the system dynamics (10) into a Hurwitz form

ż = Az +B(y)

of a certain dimension with A a Hurwitz matrix. Indeed, implementing

˙̂z = Aẑ +B(y)

for any initial conditions then gives an estimate ẑ which asymptotically converges to z = T (x, x3, t).
If (x, x3) 7→ T (x, x3, t) is besides injective (uniformly in time t), it is possible to deduce an estimate
(x̂, x̂3) of (x, x3) by inverting the transformation. Although the injectivity of T typically requires
the observability of the system [23], this design may still be fruitful in the context of non observable
systems like the PMSM under study here.

In fact, in the present context, the output map defined in (12) remains zero at all times.
Therefore, using this output map in the Luenberger design and B linear gives ż = Az. It follows
that a possible estimate is simply ẑ = 0, which becomes valid exponentially fast, and the Luenberger
design comes back to solving online T (x̂(t), x̂3(t), t) = 0 at all times. More precisely, choosing A
diagonal leads us to take T = (Tλ1 , · · · , Tλm) for some complex numbers λ1, ..., λm with positive
real part, and Tλ : R2 × R+ × R→ R of the form

Tλ(x, x3, t) = λ2 x>x+ λ cλ(t)>x+ λx3 bλ(t)>x+ aλ(t)x3 + dλ(t)x2
3 − eλ (29)

with aλ, bλ, cλ, dλ, and eλ the outputs of the following filters

ȧλ = −λ (aλ − c>λ i+ b>λ u) (30a)

ḃλ = −λ (bλ − 2i) (30b)

ċλ = −λ (cλ + 2u+ 2λLi) (30c)

ḋλ = −λ (dλ − b>λ i) (30d)

ėλ = −λ (eλ − c>λ u+ λ2L2|i|2 − λ2Φ2) . (30e)

We have the following result.

Lemma 1. For any complex number λ with strictly positive real part, for any initial conditions in
the filters (30), any solution (Ψ, R) to System (10) verifies

Tλ(Ψ(t), R, t) = exp(−λt)Tλ(Ψ(0), R, 0) .

Proof. Straightforward computations show that the function t → Tλ(Ψ(t), R, t) is solution to ż =
−λ z, hence the result.

This means that, up to neglecting terms decaying with time t as exp(−λt), we can replace the
single measurement equation

Φ2 − L|i(t)|2 = x>x− 2Li(t)>x ,

13



exact at each time t, by as many following equations as the number of λ we choose to pick

Tλ(x, x3, t) = 0

which (exponentially fast) become exact as t goes to infinity.
This leads to the following question: can we choose some number m of λi, such that, given t,

(x, x3) 7→ T (x, x3, t) = (Tλ1(x, x3, t), ..., Tλm(x, x3, t)) is injective? Indeed, in this case, along any
solution we would have for this t, the implication

T (x, x3, t) = T (Ψ, R, t) =⇒ x = Ψ , x3 = R .

Unfortunately, as we have established, when ω, id and iq are constant, two solutions (Ψ, R) and
(Ψδ, Rδ) are not distinguishable by the dynamics, and thus necessarily, whatever m is, we have

T (Ψ(t), R, t) = T (Ψδ(t), Rδ, t) ∀t .

This means that it is hopeless to prove the injectivity of T , but it may still be possible to recover
the (at least two and at most six) possible values of (Ψ, R).

3.1 Inversion of T

As observed in [21, 22], there usually is a tight link between the Luenberger map T of dimension
m and the map Hm made of the output map and its m − 1 derivatives. Inspired by the study of
differential observability in Section 2, we therefore select m = 3 and take λ1, λ2, λ3 as positive
real numbers to simplify the notations. We could as well pick one real number and one complex
number.

We denote:

T (x, x3, t) =

 Tλ1(x, x3, t)
Tλ2(x, x3, t)
Tλ3(x, x3, t)

 (31)

= mλ x
>x+ Λ (c(t) + x3 b(t))x+ a(t)x3 + d(t)x2

3 − e(t)

where

Λ =

 λ1 0 0
0 λ2 0
0 0 λ3



mλ =

 λ2
1

λ2
2

λ2
3

 , a =

 aλ1
aλ2
aλ3

 , b =

 b>λ1
b>λ2
b>λ3



c =

 c>λ1
c>λ2
c>λ3

 , d =

 dλ1
dλ2
dλ3

 , e =

 eλ1
eλ2
eλ3


Because of Lemma 1, we are interested in finding the solutions (x, x3) to:

T (x, x3, t) = 0 (32)
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at each time t. To compact the notations, we let

Mλ =

(
λ2

2 −λ2
1 0

0 λ2
3 −λ2

2

)
which is such that

Mλmλ = 0 , (33)

and introduce the following functions of (x3, t)

M(x3, t) = MλΛ
(
c(t) + x3 b(t)

)
(34a)

χ(x3, t) =M(x3, t)
−1Mλ

(
e(t)− a(t)x3 − d(t)x2

3

)
(34b)

J(x3, t) = m>λ

(
e(t)− T (χ(x3, t), x3, t)

)
. (34c)

For (x, x3, t) verifying (32) and such that M(x3, t) is invertible, we have

J(x3, t) = 0 , x = χ(x3, t)

i.e., the roots of J(·, t) give the possible values of x3 and χ(x3, t) the corresponding value of x.
In fact, for all times t, except maybe for the unlikely ones where both det(MλΛc(t)) and

det(MλΛb(t)) are zero, the determinant of the 2× 2-matrixM(x3, t), affine in x3, is a polynomial
of degree 2 in x3. Therefore, M(x3, t) is invertible for all x3 except maybe for at most two
bad values denoted {x3a(t), x3b(t)}. Then, χ(x3, t) is a two-dimensional matrix made of rational
fractions in x3 with numerator of degree 3 and denominator of degree 2, defined everywhere except
at {x3a(t), x3b(t)}. Similarly J(x3, t) is a rational fraction in x3, with numerator of degree 6 and
denominator of degree 4 defined everywhere except maybe at {x3a(t), x3b(t)}. We have the following
result.

Theorem 4. Consider any (λ1, λ2, λ3) in (R>0)3, any initial conditions of the filters (30). Assume
the input (u, i) is bounded. Then, any solution (Ψ, R) to System (10) such that there exist positive
real numbers t̄ and δ such that ∣∣∣det

(
M(R, t)

)∣∣∣ ≥ δ > 0 ∀ t ≥ t̄

verifies
lim

t→+∞
Ψ(t)− χ(R, t) = 0 , lim

t→+∞
J(R, t) = 0 .

Proof. See Appendix .2.

This result says that, if M(R, t) is invertible for all t, our model is equivalent, at least asymp-
totically (and exponentially fast) to {

0 = J(R, t)
Ψ = χ(R, t)

(35)

We have thus replaced the scalar equation y(t) = h(Ψ(t), t), written with the compact notation
(12), valid at all times t, by the three equations in (35) to be solved at each time t. Because Ψ is
explicitly given by the last two equations, the problem of estimating (Ψ, R) reduces to finding the
roots of x3 7→ J(x3, t) at each time t.

In order to deduce from this a possible estimation algorithm, we must therefore answer the
following two questions:
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- Is the matrix M(R, t), involved in the expression of χ(R, t), invertible, or, more precisely, is∣∣∣det
(
M(R, t)

)∣∣∣ lower-bounded at least after a certain time?

- If yes, is R the only root of J(·, t) (on its domain of definition) at least after a certain time?
If not, which are the other solutions?

It turns out that the observability analysis carried out above gives some insight about those ques-
tions.

3.2 Link with observability

The following technical lemma shows that there is a tight link betweenM(x3, t) and J on one side
and (η(x3, t), η̇(x3, t)) and P encountered during the observability study on the other.

Lemma 2. Assume the inputs (u, i) and their time derivatives are bounded. We have the following
relations

det
(
M(x3, t)

)
= O(λ5) det

(
η(x3, t) , η̇(x3, t)

)
+O(λ4) , (36)

and if (x3, t) is such that the matrices M(x3, t) and (η(x3, t), η̇(x3, t)) are invertible(
η(x3, t)

>

η̇(x3, t)
>

)
(χ(x3, t)− Li) =

(
0

−|η(x3, t|2
)

+O

(
1

λ

)
(37)

J(x3, t) = O(λ4)
P (x3, t)

det
(
η(x3, t) , η̇(x3, t)

)2 +O(λ3) (38)

with η defined in (18), P in (19), and the notation O(λk) indicates a term f(λ1, λ2, λ3, x3, t) such
that, for any fixed (λ1, λ2, λ3, x3), t 7→ f(λ1, λ2, λ3, x3, t) is bounded and for any t ≥ 0,

lim sup
α→+∞

∣∣∣∣f(αλ1, αλ2, αλ3, x3, t)

αk

∣∣∣∣ < +∞ .

Proof. This is obtained by expanding the filter solutions as (positive or negative) powers of λ. See
Appendix .3.

It follows that, when the λi are sufficiently large, M is tightly related to
(
η(x3, t) , η̇(x3, t)

)
and J is tightly related to P . We can thus hope to transfer the known properties of those functions
to M and J .

3.2.1 About Equation (36)

From (36), we get the impression that the invertibility ofM(x3, t) is related to that of
(
η(x3, t) , η̇(x3, t)

)
,

at least for λi sufficiently large. Actually, we have a more precise result.

Theorem 5. Assume the inputs (u, i) and their derivatives are bounded. Pick three distinct positive
real numbers (λ̃1, λ̃2, λ̃3) and select the λi in the observer as

(λ1, λ2, λ3) = (αλ̃1, αλ̃2, αλ̃3) ,
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with α a positive real number to be tuned. Then, for any initial conditions in the filters, there exists
t̄ : R+ → R+ satisfying

lim
α→+∞

t̄(α) = 0 ,

and,
1.) for each x3 and each d, satisfying for all t,∣∣∣det

(
η(x3, t) , η̇(x3, t)

)∣∣∣ ≥ d > 0 ,

there exists α > 0 and δ > 0, such that for any α ≥ α,∣∣∣det
(
M(x3, t)

)∣∣∣ ≥ δ ∀ t ≥ t̄(α) .

2.) If there exists ω > 0 such that |ω(t)| ≥ ω for all t, there exists α > 0 and δ > 0 such that, for
any α ≥ α, ∣∣∣det

(
M(R, t)

)∣∣∣ ≥ δ ∀ t ≥ t̄(α) .

In particular, if ω, id and iq are constant with ω 6= 0 and id 6= 0, then, for any 0 < ε < 1, there

exists α > 0 such that for all α ≥ α and for all t ≥ t̄(α), the only two roots of det
(
M(x3, t)

)
are

complex and located in the annulus2 C(R, rε, rε) with

rε =
ωΦ

|i|
(1− ε) , rε =

ωΦ

|i|
(1 + ε)

Proof. This is done by bounding the terms O(λk) in Lemma 2 uniformly in time, and applying
Rouché’s theorem. See Appendix .4.

We conclude that, if ω is lower-bounded away from zero, it is possible to guarantee the invert-
ibility of M(R, t) at least after a certain time t̄ by taking the λi sufficiently large. Also, the larger
the λi, the shorter the time needed before M(R, t) becomes invertible. Therefore, at least after
some time, any value of x3 making M(x3, t) non invertible (and thus J(x3, t) not defined) cannot
be R and can be put aside in the algorithm. Note that according to Theorem 5, if ω, id and iq
are constant with ω 6= 0 and id 6= 0, M(x3, t) becomes invertible for all x3 in R for all t ≥ t̄ and
J(x3, t) is then defined also for all x3 in R.

3.2.2 About Equation (37)

(37) implies that χ(x3, t) is solution to the same system (21) (at the first order of 1
λ) as x in the

observability analysis. Therefore, whenever (η(x3, t), η̇(x3, t)) is invertible, χ(x3, t) corresponds to
x in the observability analysis, and further

∣∣|χ(x3, t)− Li|2 − Φ2
∣∣ corresponds to P (x3, t), still at

the first order in 1
λ . Thus, in order to find x3, one could minimize

∣∣|χ(x3, t)− Li|2 − Φ2
∣∣ instead of

finding the roots of J . But the injection of the input i in the criterion increases its sensitivity to
noise.

2The annulus C(a, r0, r1) is the set of points such that r0 < |x− a| < r1.
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3.2.3 About Equation (38)

(38) implies that, for large values of λi, the J(x3, t) can be approximated by
P (x3, t)

det
(
η(x3, t) , η̇(x3, t)

)2

which is also a rational fraction with numerator of degree 6 and denominator of degree 4. Therefore,
we can hope that, by choosing λi sufficiently large, one can ensure that J does not have more roots
than P , and the roots of J are close to those of P . Since P is perfectly known with Corollary 1
when ω, id and iq are constant, it is possible to state the following result.

Theorem 6. Assume the inputs (u, i) and their derivatives are bounded, and that ω, id and iq are

constant with ω 6= 0 and id 6= 0. Pick three distinct positive real numbers (λ̃1, λ̃2, λ̃3) and select the
λi in the observer as

(λ1, λ2, λ3) = (αλ̃1, αλ̃2, αλ̃3) .

with α a positive real number to be tuned. Then, for any initial conditions in the filters, there exists
t̄0 > 0, and for any 0 < ε < 1, there exist α > 0, such that for all α ≥ α, for all t ≥ t̄0

lnα
α , by

defining rε as in Theorem 5, the function x3 7→ J(x3, t) admits in [R− rε, R+ rε]

- only one zero R̂1(t) if iq >
1−ε

2 |i| ;

- two distinct zeros (R̂1(t), R̂2(t)) if 0 < iq <
1−ε

2 |i|.

- only one zero R̂1(t) if iq = 0

Proof. The proof of this result relies on Rouché’s theorem. See Appendix .5.

Remark 2. Unfortunately, we cannot say anything about the number of zeros of x3 7→ J(x3, t)
outside of [R − rε, R + rε]. Indeed, x3 7→ J(x3, t) admits (complex) poles outside of Brε(R) (the
roots of x3 7→ det(M(x3, t))), and Rouché’s theorem would only tell us that it admits at most 6
zeros, which we already know.

We conclude from this study that when |ω| is lower-bounded away from zero, the invertibility

ofM(R, t) (and lower-boundedness of
∣∣∣det

(
M(R, t)

)∣∣∣) is ensured arbitrarily fast by taking the λi

sufficiently large. According to Theorem 4, this means that limt→+∞ J(R, t) = 0, so that R appears
among the roots of J after a certain time.

In particular, when ω, id and iq are constant with ω 6= 0 and id 6= 0, J has only one or two
zeros in the vicinity of R. Note that (Ψ, R) and (Ψδ, Rδ) identified in Corollary 1 are both solution
to the dynamics. Therefore, Theorem 4 apply to both and we have in fact:

lim
t→+∞

J(R, t) = lim
t→+∞

J(Rδ, t) = 0 .

This means that the two zeros of J expected with Theorem 6 are likely to be R and Rδ = R+
2ωΦiq
|i|2

asymptotically. In fact, although we are not able to prove it theoretically at this point, simulations
seem to indicate that P (·, t) has always only two roots, as soon as id(t) 6= 0 and ω(t) 6= 0. Therefore,
J(·, t) has, at least after a certain time, also two roots, with one converging to R.
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4 Estimation algorithm

Following the results of the previous section, our algorithm consists of two parts :

• a dynamic component made of the filters (30) implemented for three distinct sufficiently large
positive real numbers λ1, λ2, λ3 and from any initial condition at t = 0,

• a static component which solves (35) at each time t, namely

1. extracts the roots of x3 7→ J(x3, t) with J defined in (34c), giving the possible estimates
R̂(t) of R

2. computes χ(R̂(t), t) for each candidate R̂(t), with χ defined in (34b), to obtain the
possible estimates Ψ̂(t) of Ψ, and Θ(Ψ̂(t)) of θ, with Θ defined in (9).

3. selects the most probable estimate based on the sign of iq or on any other a priori known
knowledge.

This algorithm can be multi-valued since it returns the at most 6 possible values of the state. What
is crucial to remark is that the dynamic part of the observer is completely independent from the
static part. This means that any errors committed in the latter have no impact on the former and
a good estimate can always be recovered at the next try.

From a numerical point of view, only the root search/selection in the static part of the algorithm
is delicate and we dedicate the rest of this section to its practical implementation. Since x3 is one-
dimensional and we often have a fairly good idea of the interval in which R lies, this can be managed
with a one-dimensional grid, which can either be fixed around the initial guess R̂(0) or placed at
each iteration around the previously found value R̂(t). This latter option enables to follow the slow
variations of R with the temperature. Also, unlike Ψ̂ (and thus θ̂) which must be computed at
every time, it may not be necessary to update R̂ at each iteration since R is fairly constant: it is
enough to search for the roots of J(·, t) only every dtR > 0.

Also, note that, as seen in Theorem 5, depending on the initial conditions of the filters, a
certain time has to elapse before M(R, t) becomes invertible and thus J(R, t) defined. A solution
is to launch the dynamic part at t = 0, and wait for a time t̄ after which the filters have reached
their steady state and “forgotten” their initial condition to start the static part. This happens
exponentially fast, depending on the chosen eigenvalues in the filters.

Remark 3. The dynamic part of our estimation strategy necessitates the implementation of 7 filters
(bλ and cλ of dimension 2, and aλ, dλ and eλ of dimension 1) for three values of λ, namely 21
filters. An alternative solution with only 14 filters exists, but with a criterion J which explicitly
depends on the input i. Therefore, in presence of noise, the invertibility of χ and the estimation of
R̂ and Ψ̂ may be deteriorated, and a compromise between computational burden and robustness to
noise must be found.

4.1 Static part based on root search on fixed grid

Assume that the resistance is known to belong and remain in an interval [Rm, RM ] of R≥0. Choose
a positive real number dtR and a grid G of the interval [Rm, RM ]. We assume to know the mode of
use of the machine, namely the sign s ∈ {1,−1} of iq. The static algorithm can be built as followed.
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- At each time t ≥ t̄, computation of

Ψ̂(t) = χ(R̂, t) , θ̂(t) = Θ(Ψ̂(t)) ,

given the current value of R̂, with Θ defined in (9).

- Every dtR > 0, browse the grid G in search of the roots of J(x3, t). When a root R̂i is
detected, compute

Ψ̂i = χ(R̂i, t)
θ̂i = Θ(Ψ̂i)
iq,i = Iq(θ̂i)

If iq,i is of the right sign, i.e. iq,is ≥ 0, take R̂ = R̂i. Otherwise, carry on to next root. If no

root is found take R̂ = Argminx3∈G |J(x3, t)|.

The root detection can be carried out by detecting a change of sign of J . This algorithm is based
on the fact that R ∈ [Rm, RM ] and limt→+∞ J(R, t) = 0 according to the previous section. It also
assumes that R is the only root giving iq of the right sign. This is guaranteed by Theorem 3 when ω
and idq are constant, and this has always been verified in simulations when they are not. Actually,
even if two roots with iq of same sign appear, they will be close to one another by continuity, if
ω and idq do not vary too fast, so that the error made by choosing the wrong one is small. The
algorithm can also easily be changed to return all the possible values of R, or use extra knowledge
to discriminate them.

A drawback of this algorithm is that the grid is constant and may need to be wide if little is
known on the evolution of R. Achieving the required precision on R may thus necessitate to take a
grid of very large dimension, with a heavy computational cost. In the following section, we propose
a solution with a possibly smaller dynamical grid and without root search.

4.2 Static part based on the estimation of ω̂ =
˙̂
θ

In the previous algorithm, we do not take advantage of (28) which gives the expression for the other
root, when the wrong root is found. In this section, we propose to use this information to avoid
the root search and move the grid when no appropriate root is found. This requires the estimation

of
˙̂
θ. More precisely, choose positive real numbers G and dtR and a grid G of the interval [−G,G].

We still assume the sign s of iq is known. The static algorithm can be built as followed.

- At each time t ≥ t̄, computation of

Ψ̂(t) = χ(R̂, t) , θ̂(t) = Θ(Ψ̂(t)) ,

given the current value of R̂, with Θ defined in (9).

- At each time t, estimation of ω̂(t) =
˙̂
θ(t) (see below).

- Every dtR > 0, update of the value of R̂ with the following algorithm:

R̂1 = Argminx3∈R̂+G |J(x3, t)|
Ψ̂1 = χ(R̂1, t)
θ̂1 = Θ(Ψ̂1)
iq,1 = Iq(θ̂1)
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if iq,1s ≥ 0 then

R̂ = R̂1

else
R̂2 = R̂1 +

2Φω̂(t)iq,1
|i(t)|2

δ = R̂2 − R̂1

if |δ| > G then
R̂ = R̂2

else if δ > 0 then
R̂ = Argminx3∈R̂+(G∩[ δ2 ,G]) |J(x3, t)|

else
R̂ = Argminx3∈R̂+(G∩[−G, δ2 ]) |J(x3, t)|

end if
end if

In other words, the minimum of J is computed on the grid R̂ + G centered at the current value
R̂ and, if the corresponding iq is of right sign, this value is kept. Otherwise, we take the other
candidate given by Theorem 3, or rather, if this other value is in the grid where J has already
been computed, we take the true minimum of J around that value. This latter option offers the
possibility of correcting the estimate given by Theorem 3 when ω, id and iq are not constant and/or
when ŵ is not exact.

In order to implement this algorithm, ω̂ =
˙̂
θ needs to be estimated. But observe that it is

enough to have an approximate estimation of ω̂ since its value is only used to know in which part
of the grid the other root is, or to move the grid to a place where R is more likely to be at the
next iteration. An estimator for ω̂ can be designed neglecting its dynamics in numerous ways,
including dirty derivatives, exact differentiators etc. See [25, (18)] for example. Here to exploit the
fact that θ̂ lives in a circle and not in the real line, we design our estimator from the model

χ̇s = −` χs − [`2 + ω̂2] sin(θ̂) ,

χ̇c = −` χc − [`2 + ω̂2] cos(θ̂) ,
˙̂ω = 0 ,

(39)

obtained from
˙̂
θ = ω̂, ˙̂ω = 0 and the coordinates

χc = −ω̂ sin(θ̂) − ` cos(θ̂) , χs = ω̂ cos(θ̂) − ` sin(θ̂) .

The interest of the model (39) is twofold. One, when ω̂ is known and (sin(θ̂), cos(θ̂)) is an input,
an observer for (χs, χc) is obtained by simply copying the dynamic and choosing ` strictly positive.
Second, we can obtain ω̂ as

ω̂2 = χ2
c + χ2

s − `2 or ω̂ = χs cos(θ̂)− χc sin(θ̂) . (40)

Then an estimation of ω̂ is given by
˙̂χs = −` χ̂s − [`2 + $̂] sin(θ̂) ,
˙̂χc = −` χ̂c − [`2 + $̂] cos(θ̂) ,

˙̂$ = k
(

[χ̂c cos(θ̂) + χ̂s sin(θ̂)] + `
)
,

ω̂e = χ̂s cos(θ̂)− χ̂c sin(θ̂)

(41)

obtained from (39) and (40) via a very basic Lyapunov design of adaptive observers.
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Lemma 3. If ω̂ =
˙̂
θ is constant, for any positive scalars k and `, any solution to (41) verifies

limt→+∞ ω̂e − ω̂ = 0. Otherwise, for any positive scalars ωm, dωm, ε and k0, there exists `∗ > 0
such that for any ` ≥ `∗, any solution to (41) with k = `αk0, α ∈ (0, 1], |ω̂| ≤ ωm and | ˙̂ω| ≤ dωm
verifies |ω̂e − ω̂| ≤ ε after a certain time.

Proof. If ω̂ is constant, the claim is a direct consequence of

˙︷ ︷
[χ̂c − χc]2 + [χ̂s − χs]2 +

1

k
[$̂ − ω̂2]2 = − 2`

(
[χ̂c − χc]2 + [χ̂s − χs]2

)
which ensures that lim χ̂c−χc = 0, lim χ̂s−χs = 0, so that lim ω̂e = ω̂. This then also implies that
lim $̂ = ω̂2. Let us now consider the general case where ω̂ is not necessarily constant. Assume
though that ω̂ and ˙̂ω are bounded. Letting eχc = χ̂c − χc, eχs = χ̂s − χs, e$ = $̂ − ω̂2, we are
going to show the practical convergence of eχc and eχs by taking k and ` sufficiently large. The
practical convergence of ω̂e will follow. Denoting e = (eχc , eχs , e$), we have

ė = A(t)e+ ∆

with

A(t) =

(
−`I −b
kb> 0

)
, I =

(
1 0
0 1

)
, b =

(
cos θ̂

sin θ̂

)
, ∆ =

 ˙̂ω sin θ̂

− ˙̂ω cos θ̂

−2ω̂ ˙̂ω


with

|b| = 1 , |ḃ| ≤ ωm .

Consider the two-dimensional vector v solution to

v̇ = −`v − b− k b>v v , v(0) = −b(0)

`

and the change of variable

z =

(
eχc
eχs

)
− e$ v .

The error system is transformed into

ż = −`z − kvb>z + ∆z

ė$ = kb>v e$ + kb>z + ∆$ ,

namely it is triangularized, with

|∆z| ≤ dωm + 2ωmdωm|v| , ∆$ ≤ 2ωmdωm .

The first step is to show that v is bounded and more precisely

v = −b
`

+O

(
1

`2

)
.

So denote

δv = v +
b

`
,
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which verifies

δ̇v = −(`− k

`
)δv + rv , δv(0) = 0

with

rv =
k

`
bb>δv −

k

`2
b− kδvb>δv +

ḃ

`
.

Consider µ > 0. Since δv(0) = 0, there exists T ∈ R>0 ∪ {+∞} such that [0, T ) is the maximal
interval such that δv(t) < µ for all t ∈ [0, T ). Then, for all t ∈ [0, T ),

|rv| ≤
k

`
µ+

k

`2
+ kµ2 +

ωm
`

so that

|δv(t)| <
k
`µ+ k

`2
+ kµ2 + ωm

`

`− k
`

.

Then, necessarily, T = +∞ if
k
`µ+ k

`2
+ kµ2 + ωm

`

`− k
`

≤ µ .

This is verified with

µ =
`− 2k

` −
√(

`− 2k
`

)2 − 4k
(
k
`2

+ ωm
`

)
2k

> 0

if (
`− 2k

`

)2

> 4k

(
k

`2
+
ωm
`

)
. (42)

Using the formula
a1 − a2

a3
=

a2
1 − a2

2

a3(a1 + a2)
,

we get

µ =
2
(
k
`2

+ ωm
`

)(
`− 2k

` +

√(
`− 2k

`

)2 − 4k
(
k
`2

+ ωm
`

)) ≤ 2(k` + ωm)

`2(1− 2k
`2

)
,

if (42) holds. So choosing k = k0`
α, α ∈ (0, 1], there exist `∗0, µ0 : R → R and µ0,m > 0 such that

for all ` ≥ `∗0, µ is well-defined and

δv(t) ≤
µ0(t)

`2
, µ0(t) ≤ µ0,m ∀t

So there exists ∆m such that for all ` ≥ `∗0, |∆z(t)| ≤ ∆m for all t, and the error system can be
rewritten as

ż = −`z +
k0

`1−α
bb>z − k0

`2−α
µ0b
>z + ∆z

ė$ = − k0

`1−α
eγ +

k0

`2−α
b>µ0 e$ + k0`

αb>z + ∆$ .
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It is straightforward to see that z̃ = `z verifies

1

`
˙̃z = −z̃ +

k0

`2−α
bb>z̃ − k0

`3−α
µ0b
>z̃ + ∆z

whose trajectories can be bounded independently from ` for ` sufficiently large (with a reasoning
similar to the one with µ above). It follows that

ė$ = − k0

`1−α
e$ +

k0

`2−α
b>µ0 e$ +

k0

`1−α
b>z̃ + ∆$ ,

so that ẽ$ = e$
`1−α verifies

`1−α ˙̃e$ = −k0 ẽ$ +
k0

`
b>µ0 ẽ$ +

k0

`1−α
b>z̃ + ∆$ ,

whose trajectories can be bounded independently from ` for ` sufficiently large in the same way.
Finally, we conclude that (

eχc
eχs

)
=
z̃

`
+ ẽ$ (− b

`α
+

µ0

`1+α
) ∀t ,

with z̃, b, ẽ$ and µ0 bounded independently from `, we conclude that eχc and eχs can be made
arbitrarily small by taking k = k0`

α with α ∈ (0, 1] and ` sufficiently large. The result follows for
ω̂e. Note that on the other hand, e$ = `1−αẽ$ cannot be made small, and even increases with `.

When ω̂ is not constant, practical convergence is obtained for χ̂c and χ̂s, but not for $̂, hence
the interest of (40).

Notice that θ̂ is used to estimate ω̂ which in turn is used in the estimation algorithm of θ.
This may appear circular. However, the estimate of ω̂ is only used to move the grid and “switch”

the basin of attraction when the sign of
︷̂︷
iq is not right. This is in particular useful when R is

not in the grid and thus enables to take a smaller grid width and have more precision with fewer
computations. Actually, to use even less this estimation, we could also combine both algorithms,
namely carry out a root search on the grid and use (28) only as a security escape if no root with
appropriate sign of iq can be found in the grid.

5 Robustness

5.1 Noise/delays in input signals

The inputs u and i entering the algorithm are likely to contain noise and phase shifts due to the
dynamics of the sensors, as exhibited in [25].

The dynamic part of the algorithm behaves well in presence of noise thanks to the low-pass
filters (30) whose eigenvalues can be chosen as part of the design. Regarding the static part, it is
important to notice that the criterion J and the map χ depend only on those filtered versions of
the inputs u and i. Therefore, the root search and the computation of Ψ̂ are little impacted by the
noise. Only the computation of θ̂ with (9) and of îq relies on a direct injection of the noisy signal

i. It follows that the root selection based on the sign of îq could be compromised for small values
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of iq, but (25) suggests that in that case, the two roots are close to each other, thus resulting in

a small error on R̂. Finally, another source of noise exists in the algorithm of Section 4.2 through

the use of
2Φω̂(t)iq,1
|i(t)|2 . However, as pointed out above, this quantity is only used for a rough grid

positioning or to determine which side of the grid is likely to contain the right root, and a small
noise on that quantity have no impact on the estimation.

As for the impact of delays or other disturbances like errors on the parameters Φ and L, a more
precise study should be carried out. In this paper, we address those issues only implicitly in Section
6.2 when applying our observer to real data.

5.2 Modelling errors

The model on which our observer is based, is only an approximation of reality. For example, L
and Φ are actually not constant, (6) is not valid if the electric signals are not balanced, or if the
repartition of the windings and the geometry of the magnet are not perfectly symmetric, namely if
the machine is salient. The effects of all these disturbances should be studied, but in this paragraph
we concentrate our attention to the effect of saliency. According to [26], this means that (13) is
not verified and is replaced by

Ψ = L0i+ L1

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
i+ Φ

(
cos θ
sin θ

)
(43)

with L0 and L1 given by

L0 =
Ld + Lq

2
, L1 =

Ld − Lq
2

,

where Ld and Lq are the inductances in the rotating frame. When there is no saliency, Ld = Lq,
L1 = 0 and we recover our model (13). But as noticed in [8], (43) is equivalent to

Ψ = (L0 − L1)i+ (Φ + 2L1id(θ))

(
cos θ
sin θ

)
(44)

and therefore, when id is constant, (Ψ, R) is still solution to our model (10) provided we replace L
and Φ by

Ls = L0 − L1 , Φs = |Φ + 2L1id| ,

namely
|Ψ− Lsi|2 − Φ2

s = 0 . (45)

Therefore, we could adapt our algorithm replacing L by Ls and Φ by Φs. The problem is that Φs

is unknown because id depends on the unknown θ. However, it was observed in [8] that for any Ψ,
there exists a unique θ = Θs(Ψ) verifying (44) which can be computed without the knowledge of
Φs by3:

Θs(Ψ) =

{
arg(Ψ− Lsi) , if Φ− 2L1Id(arg(Ψ− Lsi)) > 0
arg(Ψ− Lsi) + π , otherwise

(46)

We can thus consider the following modified function

T̃λ(x, x3, t) = Tλ(x, x3, t) +mλ(Φ2 − Φs(x)2)

3The sign of Φ + 2L1id is unknown, so θ = arg(Ψ− Lsi) is no longer true.
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where
Φs(x) = |Φ + 2L1Id(Θs(x))| .

We can check that, if Ψ verifies (45) instead of (13) with Φs (i.e. id) constant, t → T̃λ(Ψ(t), R, t)
defined above verifies the dynamics (30e) when taking Ls instead of L. It follows that

lim
t→+∞

Zλ(t)− T̃λ(Ψ(t), R, t) = 0 .

Now, because Mλmλ = 0, MλT̃λ = MλTλ and Theorem 4 still holds with the same function χ
defined in (34b) and criterion

J̃(x3, t) = m>λ

(
Z(t)− T̃λ(χ(x3, t), x3, t)

)
(47)

instead of (34c). Therefore, we can implement the algorithm presented in Section 4.1 but replacing

- L by Ls everywhere

- criterion |J | by |J̃ |

- the function Θ by Θs .

Of course, in presence of saliency, the convergence is ensured only for solutions (Ψ, R) giving a
constant (or slowly varying) id. This is illustrated in Section 6.2 on real data.

6 Simulations

6.1 Ideal data with non-salient model

We start by testing our observer on ideal data produced by a PMSM model of the type (3), under a
plausible torque scenario and where the input u is chosen to follow the rotation speed scenario ωR
shown on Figure 1. The corresponding voltages and currents are plotted in Figure 2 in the rotating
frame. Note that at t = 3, although the speed setpoint is constant, an external torque is added,
resulting in a transient behavior in the signals. This torque then remains constant throughout the
simulation.

The results of the simulations are presented in Figure 4, for two resistance grids with amplitude
G = 1 and G = 0.1 respectively. At the beginning, we wait for 0.5s before starting the estimation,
to let the filters reach their steady state. The estimation of ω̂ (and thus ω) uses observer (41) with
` = 1000 and k = 500 and is shown in Figure 1 .

Observe that with G = 1, the algorithm finds the right value of R in two iterations only, whereas
with G = 0.1, it takes a longer time before R can appear in the grid. In fact, for a same precision,
the broader the grid, the higher the chances of R appearing in it, but the larger the number of
points and computation time, and also the higher the chances of having several minima in the grid.
In practice, one know roughly well the initial value of the resistance, so that a grid with small
amplitude around the initial guess can be chosen, which then follows R throughout the experiment
(if it evolves due to temperature for instance).

The evolution of the criterion J during the simulation with G = 1 is shown in Figure 3. One
can see that the minimum is well marked around R = 1.45Ω.

As for the estimation of θ, it naturally converges once R̂ has converged. It is interesting to
observe the peak in the error around t = 3 (which in turn appears on ω̂) shown on Figure 1). This
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Figure 1: Ideal data: Rotation speed ω = θ̇ and estimated rotation speed ω̂ =
˙̂
θ. The estimation

algorithm starts at t̄ = 0.5.

is due to the sudden addition of a torque which destabilizes id and ω and makes them go through
0. We have seen that in this case, observability is lost and M(R, t) is likely to be non invertible
(the assumption of Theorem 5 is no longer verified). This event is not visible on R̂ because it is
not updated at those precise moments. A very interesting feature here is that this anomaly is not
propagated in time. This is because it does not appear in the dynamics of the observer but only
in its (static) output function transforming the observer state (aλi , bλi , cλi , dλi , eλi) in the estimate

R̂1 and θ̂1.

6.2 Real data

In order to test the robustness of our algorithm with respect to noise and saliency, we apply it
in open-loop (and offline) to real data obtained from a PMSM used in a test bed at IFPEN. For
this motor, an identification of the parameters involved in the model (1) with (43) has led to
Ld = 0.72mH, Lq = 0.78mH, Φ = 8.94mWb, and R = 0.151Ω. Note that this motor presents
saliency because Ld 6= Lq. The experiment from which the data comes from aimed at keeping the
rotation speed constant at a regime of wr = 150 rpm (with np = 10, this gives ω = 157 rad/s). We
have at our disposal the measurement of the rotor position θm for verification and transformations
between rotating and fixed frame: it is not used in the algorithm. The recorded measurements of
voltages and currents are plotted in Figure 5 in the rotating frame.

The results of a simulation of the observer using the modifications discussed in Section 5.2
to take saliency into account, are presented in Figure 7. The observer manages to reconstruct R̂
rapidly and then θ̂ − θ converges to 0, with some oscillations due to the noise. The amplitude
of these oscillations depends on the chosen eigenvalues λi, and a more thorough analysis of this
phenomenon should be carried out in order to select those parameters optimally.

Finally, the evolution of the criterion |J̃ | during the simulation is shown in Figure 6. Because
ω, id and iq are constant, the criterion |J̃(·, t)| tends to a constant criterion which has two roots

given by R and Rδ = R+
2Φsω iq
|i|2 as predicted by Theorems 3 and 6.
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Figure 2: Ideal data: currents and voltages in the rotating frame.

7 Conclusion

Unlike the pair (Ψ,Φ), the pair (Ψ, R) is not observable for the electric equations (6) of the PMSM
model. However, we have proved that when ω and id are not constantly zero, only a finite number
of indistinguishable trajectories may exist, and they are reduced to two when ω, id and iq are
constant. Such a property is very different from what we would get if the system was linear
and could motivate theoretical research on the fact that this finiteness is generic or rare. Also,
our estimation strategy is inspired from the well-established nonlinear Luenberger methodology
and enables to recover the maximum 6 indistinguishable candidates. This is interesting because
there is currently no theoretical result saying that the inversion of the transformation attached
to the Luenberger design enables to recover the indistinguishable trajectories in the absence of
observability. This may motivate future research on the generality of this peculiar property.

From a more practical point of view, the important robustness to saliency requires in our
design either the saliency to be small or that id be constant/slowly-varying. A way to avoid those
assumptions and obtain a more general design would be to carry out the same observability analysis
but directly on the salient model (43). Note that simulations of our observer with a salient model
in the case where id is not constant indicate that the criterion obtained in this paper still has a
finite number of roots, with R among them. But we do not know how to distinguish them yet.

As for the impact of the noise, the choice of the eigenvalues λi plays an important role and a
detailed analysis could help to determine how to choose those parameters optimally. More generally,
the impact of unmodelled effects such as delays in u and i needs to be more precisely investigated.

.1 Proof of Theorem 3

Consider a solution to System (10). According to Corollary 1, since y(t) = ẏ(t) = ÿ(t) = 0, it is
necessarily (Ψ, R) or (Ψδ, Rδ) where, according to (22), Ψδ is given by (27). It remains to show
that (Ψδ, Rδ) is a solution to System (10).

Using (20), we get

|η(x3, t)|2 = ω2Φ2 + 2(R− x3)Φω iq + (R− x3)2 |i|2
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(b) Zoom around R = 1.45

Figure 3: Ideal data: Plot of the criterion J(·, t) on the grid with G = 1 at each iteration where R̂
is updated, i.e. every dtR = 0.1.
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Figure 4: Ideal data: Results of the observer algorithm discussed in Section 4.1 with λ1 = 20,
λ2 = 30, λ3 = 40, dtR = 0.1, and two grids with amplitude G = 1 and G = 0.1 respectively. The
estimation starts at t̄ = 0.5.
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Figure 5: Real data: currents and voltages in the rotating frame.

Figure 6: Real data: Plot of the criterion |J(·, t)| on the grid with G = 1 at each iteration where
R̂ is updated, i.e. every dtR = 0.1.
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Figure 7: Real data: Results of the observer algorithm discussed in Section 5.2, with λ1 = 40,
λ2 = 50, λ3 = 60, dtR = 0.1, and a grid with amplitude G = 1. The estimation starts at t = 0.5.

and thus, |η(Rδ, t)| = ωΦ. It follows that there exists θδ such that

η(Rδ, t) = ωΦ

(
− sin θδ
cos θδ

)
= −ωΦJzδ

where we denote zδ =

(
cos θδ
sin θδ

)
. We deduce according to (20) that

−ωΦJzδ = −ωΦJz + (R−Rδ)i

= −ωΦJz − 2Φω iq
|i|2

i

and after a rotation of angle −θ, we have

J

(
cos(θδ − θ)
sin(θδ − θ)

)
=

(
0
−1

)
+

2 iq
|i|2

idq . (48)

Therefore, θδ − θ is a constant and
wδ = θ̇δ = w .

It follows that xδ defined by
xδ = L i+ Φzδ

verifies the dynamics:

ẋδ = L
︷̇︷
i − ΦωδJzδ = L

︷̇︷
i − ΦωJzδ = L

︷̇︷
i + η(Rδ, t) = u−Rδ i

and 0 = y = |xδ − L i|2 − Φ. Thus, (xδ, Rδ) is a solution to (10), which must appear among
{(Ψ, R), (Ψδ, Rδ)}, i.e. it is necessarily (Ψδ, Rδ). Therefore, (Ψ, R) and (Ψδ, Rδ) are the only two
indistinguishable solutions.
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Now, according to (48),

cos(θδ − θ) = 1− 2
i2q
|i|2

, sin(θδ − θ) = 2
iqid
|i|2

But after a rotation of −θδ instead of θ, we would have obtained:(
0
−1

)
= J

(
cos(θ − θδ)
sin(θ − θδ)

)
+

2 iq
|i|2

idq,δ

i.e.

cos(θδ − θ) = 1 + 2
iqiq,δ
|i|2

, sin(θδ − θ) = 2
iqid,δ
|i|2

,

which gives the result.
Now, if R̂ = Rδ, one can find R by computing

R = R̂− 2Φω iq
|i|2

= R̂+
2Φω̂

︷̂︷
iq

|i|2

and if R̂ = R, one can find Rδ by computing

Rδ = R̂+
2Φω iq
|i|2

= R̂+
2Φω̂

︷̂︷
iq

|i|2
.

Similarly, if θ̂ = θδ, then θ = θ̂ + ∆ with ∆ defined by

cos(∆) = 1− 2
i2q
|i|2 = 1− 2

︷̂︷
iq

2

|i|2

sin(∆) = −2
iqid
|i|2 = 2

︷̂︷
iq
︷̂︷
id
|i|2

and if θ̂ = θ, then θδ = θ̂ −∆ with −∆ defined by

cos(−∆) = 1− 2
i2q
|i|2 = 1− 2

︷̂︷
iq

2

|i|2

sin(−∆) = 2
iqid
|i|2 = 2

︷̂︷
iq
︷̂︷
id
|i|2 .

Hence the result.

.2 Proof of Theorem 4

Observe that

Mλ T (x, x3, t) = MλΛ
(
c(t) + x3 b(t)

)
x+Mλa(t)x3 +Mλd(t)x2

3 −Mλe(t)

is linear in x. This means that for any x3 and any t such that the matrix M(x3, t) is invertible, x
is solution of:

x =M(x3, t)
−1Mλ

(
T (x, x3, t)−Mλa(t)x3 −Mλd(t)x2

3 + e(t)
)
.

Thus, (x, x3) = (Ψ(t), R) satisfies this equation for all t ≥ t̄ and we have

|Ψ(t)− χ(R, t)| ≤
∣∣M(R, t)−1

∣∣ |Mλ||T (Ψ(t), R, t)| .
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Lemma 1 gives the result if ∣∣M(R, t)−1
∣∣ =

1∣∣∣det
(
M(R, t)

)∣∣∣ |M∗(R, t)|
is upper-bounded in time, whereM∗(R, t) is the comatrix ofM(R, t). t 7→ M∗(R, t) is a continuous
function of the coefficients of c and b which are filtered versions of the bounded input (u, i) and

which are thus bounded. Since
∣∣∣det

(
M(R, t)

)∣∣∣ is lower-bounded away from 0, the conclusion

follows.

.3 Proof of Lemma 2

It is straightforward to check that the quantity

µλ(x3, t) = −(cλ + x3 bλ + 2λLi) (49)

verifies
˙︷ ︷

µλ(x3, t) = −λ(µλ(x3, t)− 2 η(x3, t)) (50)

with η defined in (18). This means that µλ is a filtered version of 2η. Besides, denoting µ =

(µλ1 , µλ2 , µλ3)> we have

Λµ(x3, t) = −(Λc+ x3 Λb+ 2Lmλi
>)

and thus since Mλmλ = 0,
M(x3, t) = −MλΛµ(x3, t) . (51)

Let us further investigate the link between µ and η. According to the dynamics (50), µλ can be
developed in the following way:

µλ(x3, t) = 2η(x3, t)−
2η̇(x3, t)

λ
+

2rµ,λ(x3, t)

λ2
(52)

where the remainder rµ,λ follows the dynamics:

˙︷ ︷
rµ,λ(x3, t) = −λ(rµ,λ(x3, t)− η̈(x3, t)) . (53)

This yields
|rµ,λ(x3, t)| ≤ exp(−λt)|rµ,λ(x3, 0)|+ sup

s∈[0,t]
|η̈(x3, s)| (54)

Since η̈ is a polynomial in x3 with coefficients depending on the bounded signals (ü,
︷̈︷
i , i(3)), we

obtain

µλ(x3, t) = 2η(x3, t)−
2η̇(x3, t)

λ
+O

(
1

λ2

)
.

It follows that µλ can be approximated by 2η − 2η̇

λ
for large values of λ. Therefore,
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M=−2MλΛ


η − η̇

λ1
+O

(
1
λ21

)
η − η̇

λ2
+O

(
1
λ22

)
η − η̇

λ3
+O

(
1
λ23

)


=−2

(
λ1λ2(λ2 − λ1) λ2

1 − λ2
2

λ2λ3(λ3 − λ2) λ2
2 − λ2

3

)(
η>

η̇>

)
+O(λ) ,

(55)

and straightforward computations give

det
(
M(x3, t)

)
= 4λ2

2(λ1 − λ2)(λ2 − λ3)(λ3 − λ1) det
(
η(x3, t) , η̇(x3, t)

)
+O(λ4)

i.e. (36).
Let us now develop χ(x3, t) with respect to λ. To do that, we define ρλ with

ρλ(x3, t) = −eλ + aλx3 + dλx
2
3 − λLµ>λ i− λ2L2|i|2 + λ2Φ2 , (56)

which follows the dynamics

˙︷ ︷
ρλ(x3, t) = −λ(ρλ(x3, t)− µλ(x3, t)

>η(x3, t)) . (57)

In other words, by denoting (ρλ1 , ρλ2 , ρλ3)>, we obtain

ρ(x3, t) = −e(t) + a(t)x3 + d(t)x2
3 − LΛµ i−mλL

2|i|2 +mλΦ2 . (58)

When M is invertible, by definition of χ in (34b), we have

M(x3, t)χ(x3, t) = Mλ(e(t)− a(t)x3 − d(t)x2
3)

and thus since Mλmλ = 0 and (51),

M(x3, t)(χ(x3, t)− Li) = −Mλ ρ . (59)

As we did above for µ, it is possible to develop ρ thanks to (57). Indeed, it is straightforward to
check that

ρλ(x3, t) = 2|η(x3, t)|2 +
rρ,λ(x3, t)

λ

with
˙︷ ︷

rρ(x3, t) = −λ(rρ(x3, t) + 6η(x3, t)
>η̇(x3, t)) .

In other words

ρλ(x3, t) = 2|η(x3, t)|2 +O

(
1

λ

)
(60)
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and we have with (55)(
η>

η̇>

)
(χ(x3, t)− Li)

=
1

2

(
λ1λ2(λ2 − λ1) λ2

1 − λ2
2

λ2λ3(λ3 − λ2) λ2
2 − λ2

3

)−1

Mλ ρ+O

(
1

λ

)
=

(
λ1λ2(λ2 − λ1) λ2

1 − λ2
2

λ2λ3(λ3 − λ2) λ2
2 − λ2

3

)−1

Mλ

(
|η|2
|η|2

)
+O

(
1

λ

)
=

(
0
−1

)
|η|2 +O

(
1

λ

)
.

Finally, according to the definitions (31), (49) and (58), it is straightforward to check that

T (χ(x3, t), x3, t) = mλ

(
|χ(x3, t)− Li|2 − Φ2

)
− Λµ(x3, t) (χ(x3, t)− Li) + ρ(x3, t) .

It follows that for x3 and t making
(
η(x3, t) , η̇(x3, t)

)
invertible

J(x3, t) =−(λ4
1 + λ4

2 + λ4
3)
(
|χ(x3, t)− Li|2 − Φ2

)
+O(λ3)

= (λ4
1 + λ4

2 + λ4
3)

P (x3, t)

det
(
η(x3, t) , η̇(x3, t)

)2 +O(λ3) .

.4 Proof of Theorem 5

Assume
∣∣∣det

(
η(x3, t) , η̇(x3, t)

)∣∣∣ ≥ d. In order to deduce from (36) that
∣∣∣det

(
M(x3, t)

)∣∣∣ ≥ δ for

all t, if α is sufficiently large, we need to bound the term O(λ4) uniformly in time. In the present
case (54) is

|rµ,λ̃(x3, t)| = |rµ,λ̃(x3, 0)|e−αλ̃t + sup
t∈[0,t]

|η̈(x3, t)| .

And, since η̈ is a polynomial in x3 with coefficients depending on the bounded signals (ü,
︷̈︷
i , i(3)),

there exists a polynomial Rr (time and α independent) such that

|rµ,λ̃(x3, t)| ≤ |rµ,λ̃(x3, 0)|e−αλ̃t + Rr(|x3|) .

But (52) gives

rµ,λ̃(x3, 0) = α2

[
λ̃2[µ(x3, 0)− 2η(x3, 0)]

2

]
+ αλ̃η̇(x3, 0)

So with (49), if α ≥ 1, there exists a polynomial Rr,0 depending only on λ̃, the initialization of the
filters and the input, such that

|rµ,λ̃(x3, t)| ≤ α2 Rr,0(|x3|)e−αλ̃t + Rr(|x3|) .

Therefore, there exist t̄0 and a polynomial R̄r, both depending only on λ̃i and the initial conditions
in the filters, such that, denoting t̄(α) = t̄0

lnα
α ,

|rµ,λ̃(x3, t)| ≤ R̄r(|x3|) ∀ t ≥ t̄(α) .
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Following this term in (55), and then in its determinant (36), the reader can check that O(λ4) in
(36) is also a polynomial in x3 with bounded (in time) coefficients, at least after t̄. Thus, there
exists a polynomial R (time and α independent) such that for all α ≥ 1 and all t ≥ t̄(α)

1

α5

∣∣∣det
(
M(x3, t)

)∣∣∣ ≥ 4λ̃2
2(λ̃1 − λ̃2)(λ̃2 − λ̃3)(λ̃3 − λ̃1) d− R(|x3|)

α
(61)

which is positive when α is sufficiently large.
If besides |ω(t)| ≥ ω > 0, according to (24),∣∣∣det

(
η(R, t) , η̇(R, t)

)∣∣∣ = |ω3Φ2| ≥ ω3Φ2 > 0

for all t, hence the second point of the result.
Assume now that ω, id and iq are constant, with ω 6= 0 and id 6= 0. As seen in the proof of

Corollary 1, det(η , η̇) and P are time independent polynomials with

det
(
η , η̇

)
(x3) = ω3Φ2

(
1 +

(R− x3)

ωΦ
2iq +

(R− x3)2

ω2Φ2
|i|2
)

P (x3) = −Φ2 det
(
η(x3) , η̇(x3)

)2 (R− x3)

ωΦ

(
2iq +

(R− x3)

ωΦ
|i|2
)
.

Therefore, the roots of det
(
η(x3) , η̇(x3)

)
are the complex numbers Φω

|i|2 (−iq ± j id), both situated

on the circle with center R and radius Φω
|i| , and

Q(x3) =
P (x3)

det
(
η(x3) , η̇(x3)

)2

= −Φ2 (R− x3)

ωΦ

(
2iq +

(R− x3)

ωΦ
|i|2
)

is a polynomial of degree 2, with the two roots (R,Rδ) =
(
R,R+

2ωΦiq
|i|2

)
identified in Corollary 1.

Now, take any ε > 0 and consider Γrε(R) and Γrε(R), the circles with center R and radius

rε and rε respectively. The polynomial det
(
η(x3) , η̇(x3)

)
has no root on those circles so that it

can be lower-bounded by some d > 0. Also, R introduced in (61) is continuous on those compact
sets and is bounded by some R. Choosing (λ1, λ2, λ3) as suggested in the theorem and denoting
γ = 4λ̃2

2(λ̃1 − λ̃2)(λ̃2 − λ̃3)(λ̃3 − λ̃1), we have for all t ≥ t̄(α) and all x3 in Γrε(R) ∪ Γrε(R),∣∣∣∣ 1

α5
det
(
M(x3, t)

)
− γ det

(
η(x3) , η̇(x3)

)∣∣∣∣ ≤ R(|x3|)
α

≤ R

α
≤ γ d ≤

∣∣∣γ det
(
η(x3) , η̇(x3)

)∣∣∣
for α sufficiently large. Both functions being holomorphic (polynomials), according to Rouché’s

theorem, det
(
M(x3, t)

)
and det

(
η(x3) , η̇(x3)

)
have the same number of roots in4 Brε(R) (resp

Brε(R)), namely no roots in Brε(R) (resp 2 roots in Brε(R)). Since we know det
(
M(x3, t)

)
is a

polynomial of degree 2, we deduce that its only two roots are situated in the annulus C(R, rε, rε).

4Br(a) denotes the ball with center a and radius r.
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Besides, since det
(
η(x3) , η̇(x3)

)
does not admit any real roots, its modulus is lower-bounded on

the real axis and according to (61), one can make det
(
M(x3, t)

)
positive for x3 in the compact

set [R− rε, R− rε] ∪ [R+ rε, R+ rε] by choosing α sufficiently large. In that case, its roots are in
C(R, rε, rε), but not in C(R, rε, rε) ∩ R: they are necessarily complex.

.5 Proof of Theorem 6

The result is proved by applying Rouché’s theorem on (38) with path Γrε(R). To do this, we need to

lower-bound |Q(x3)| and upper-bound the term O(λ3) in (38). When |iq| 6= 1−ε
2 |i|, Q does not have

any root on Γrε(R) and |Q| can thus be lower-bounded in this set by some d2 > 0. As for the term

O(λ3), by following the proof of Lemma 2, the reader can check that it is actually a rational function
in x3 whose coefficients are bounded in time, at least for t ≥ t̄1 lnα

α (with t̄1 some scalar independent

from α) and whose denominator is necessarily of the form det
(
M(x3, t)

)k1
det
(
η(x3) , η̇(x3)

)k2
(coming from the inversion of the corresponding matrices). On Γrε(R), det

(
η(x3) , η̇(x3)

)
does

not have any root and can be lower-bounded. The same thing holds for det
(
M(x3, t)

)
uniformly

in time for t ≥ t̄0 lnα
α by taking α sufficiently large according to (61). Therefore, the term O(λ3) in

(38) can be upper-bounded by a polynomial of |x3| for t ≥ t̄(α) = max{t̄0, t̄1} lnα
α . More precisely,

denoting γ2 = λ̃4
1 + λ̃4

2 + λ̃4
3, there exists a polynomial R2 (time and α independent) such that for

all t ≥ t̄ and all x3 in Γrε(R), ∣∣ 1
α4J(x3, t)− γ2Q(x3)

∣∣ ≤ R2(|x3|)
α

≤ R2

α
≤ γ2 d2 ≤ |γ2Q(x3)| .

Since M(·, t)−1 is defined on Brε(R) (where its determinant does not have any root), J(·, t) is
holomorphic on that set and according to Rouché’s theorem, it admits as many zeros as Q on
Brε(R), i.e. either one or two depending on iq.
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