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Path integrals are a central tool when it comes to describing quan-
tum or thermal fluctuations of particles or fields. Their success dates
back to Feynman who showed how to use them within the framework
of quantum mechanics. Since then, path integrals have pervaded all
areas of physics where fluctuation effects, quantum and/or thermal,
are of paramount importance. Their appeal is based on the fact that
one converts a problem formulated in terms of operators into one of
sampling classical paths with a given weight. Path integrals are the
mirror image of our conventional Riemann integrals, with functions
replacing the real numbers one usually sums over. However, unlike
conventional integrals, path integration suffers a serious drawback:
in general, one cannot make non-linear changes of variables without
committing an error of some sort. Thus, no path-integral based cal-
culus is possible. Here we identify which are the deep mathematical
reasons causing this important caveat, and we come up with cures
for systems described by one degree of freedom. Our main result is
a construction of path integration free of this longstanding problem.

Path integrals | Discretization | Functional calculus | Multiplicative
Langevin processes

Though the notion of path integration can be traced back to
Wiener (1, 2), it is fair to credit Feynman (3) for making

path integrals one of the daily tools of theoretical physics. The
idea is to express the transition amplitude of a particle between
two states as an integral over all possible trajectories between
these states with an appropriate weight for each of them. After
such a formulation of quantum mechanics was proposed, path
integrals turned out to provide a set of methods that are now
ubiquitous in Physics (see (4, 5) for reviews) and they have
become the language of choice for quantum field theory. But
path integrals reach out well beyond quantum physics and they
are also a versatile instrument to study stochastic processes.
Beyond Wiener’s original formulation of Brownian motion,
Onsager and Machlup (6, 7), followed by Janssen (8, 9), and
De Dominicis (10, 11) [based on the operator formulation of
Martin, Siggia and Rose (12)], have contributed to establish
path integrals as a useful tool, on equal footing with the Fokker–
Planck and Langevin equations. Interestingly, mathematicians
have mostly stayed a safe distance away from path integrals.
Indeed, it has been known for many years that path integrals
cannot be manipulated without extra caution in a vast category
of problems. These problems, in the stochastic language,
involve the notion of multiplicative noise (that we describe
in detail below), and their counterpart in the quantum world
has to do with quantization on curved spaces (13). The late
seventies witnessed an important step in the understanding
of the subtleties of path integrals: the authors of (14–19)
found how to modify a posteriori and phenomenologically path
integrals to make them visually consistent with differential
calculus. Yet, a path integral acquires a definite meaning only
as the continuum limit of a discretized expression (20) and this
step was not achieved. The goal of this article is to come up
with the missing link: we construct path integrals for stochastic

and/or quantum trajectories, free of any mathematical hitch,
by a direct time-discretization procedure which endows them
with a well-defined mathematical meaning.

Quantum or Classical Fluctuations and Path Integrals

Physical context. Multiplicative noise is involved in a flurry
of physical problems ranging from soft matter (e.g., diffusion
in microfluidic devices (21)), to condensed matter (e.g., super
paramagnets (22, 23)) or even inflational cosmology (24, 25).
It also appears in other areas of science where Langevin equa-
tion are present (e.g., Black–Scholes equation for option pric-
ing (26)). Quantization on curved spaces (e.g., a particle on a
sphere (27, 28) or more generic manifolds (29–32)) pertains to
the same mathematical class of problems, even though their
physical motivation has a different origin. Connections be-
tween thermal and quantum noises were noted long ago by
Nelson (33), and it is therefore no surprise that our discussion
addresses both class of problems simultaneously. To illustrate
how deep-set the problem that path integrals suffer is, we now
turn to the simplest conceivable example of such.

A simple example of a failure of path integrals. Consider a
Brownian particle with position x(t) whose velocity ẋ(t) = v+
η(t) is subjected to both a thermal noise η(t) and an external
force imposing a constant velocity v. Here η is a Gaussian
white noise with zero mean and correlations 〈η(t)η(t′)〉 =
2Dδ(t − t′) with D > 0. The path integral describing the
trajectories is given in its Onsager–Machlup (6) form by

∫
Dx e−Sv [x] , Sv[x] =

∫
dt (ẋ− v)2

4D . [1]
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Exploiting Galilean invariance, we change fields to x̃(t) =
x(t) − vt and we arrive at a problem with action S0[x̃] =∫
dt ˙̃x2/4D that does not depend on v, as expected.
Suppose now that our interest goes towards the quantity

y(t) = 1
3x(t)3. It is trickier but well-known how to handle y

at the Langevin level. In Stratonovich discretization (34, 35)
ẏ(t) = v[3y(t)]2/3 +[3y(t)]2/3η(t), and changing variables from
y to ỹ = 1

3 [x − vt]3 = 1
3 ([3y]1/3 − vt)3, a Galilean-invariant

equation is recovered: ˙̃y(t) = [3ỹ(t)]2/3η(t).
Instead, the functional approach would be to apply existing

recipes (9, 36) to convert the Langevin equation for y to a
Stratonovich-discretized path integral

∫
Dy e−Sv [y] with

Sv[y] =
∫

dt
{

[ẏ − v(3y) 2
3 +2D(3y) 1

3 ]2

4D(3y) 4
3

+ v(3y)−
1
3

}
. [2]

One would expect that changing from y(t) to ỹ(t) the action
for ỹ(t) be independent of v. However, this is not so,

Sv[ỹ] =
∫
dt
{[ ˙̃y[(3ỹ) 1

3 + vt] + 2D(3ỹ) 2
3
]2

4D(3ỹ) 4
3
[
(3ỹ) 1

3 + vt
]2 + v

[(3ỹ) 1
3 + vt]

}
[3]

and the v-dependence that Galilean invariance tells us should
disappear, simply remains (even if one adds to [3] the Jacobian
of the change of variables, see SI for computational details).
This means that Eq. [3] is not the correct action for ỹ(t).

Of course, none of the details of this example matter. The
lesson to draw is actually simple: either one sticks to stochastic
calculus and forgets about path integrals that cannot accom-
modate nonlinear changes of integration fields, or one attempts
to cure path integrals. It is not clear, historically, when such
problems with path integrals were first realized, but there is a
long list of works that point to their occurrence (31, 37–45).
Varied strategies (14, 15) have led to a modified action that
is manifestly covariant upon continuous-time changes of vari-
ables, but only within a “phenomenological” (16) description.
Despite some attempts (17–19), an unambiguous discretization
scheme of such a modified action has not been achieved.

In this paper we construct a non-ambiguous covariant path
integral. This not only requires to focus on hitherto overlooked
contributions in slicing up time-evolution, but also to resort
to a new adaptive slicing of time. It is the combination of
these two ingredients that allows us to immunize path integrals
against the problems caused by nonlinear manipulations.

In what follows, we first recall the well-known discretization
problems encountered when providing multiplicative Langevin
equations with a non-ambiguous definition. With this settled,
we present the main outcome of our paper, a path-integral
weight (that includes a carefully defined normalization prefac-
tor) that allows one to use the standard rule of calculus inside
the action when changing variables. The rest of the paper
explains how such an action corresponds to an actual time-
discrete path weight, that we construct following a procedure
that relies on the identification of crucial discretization issues
that go well beyond the usual Itō-Stratonovich dilemma.

Langevin equations and their covariant action

What we know on discretization issues, in a nutshell. Discus-
sions of discretization issues are not commonly found in the
quantum literature (see however (20)). This is a question that
has to do with the writing and the manipulation of Langevin

equations. For arbitrary functions f and g, the process x(t)
evolving according to the Langevin equation

ẋ(t) = f(x(t)) + g(x(t))η(t) [4]

where 〈η(t)η(t′)〉 = Dδ(t− t′), is simply not defined unless a
specific way to understand the product in the right-hand side
is given. An ambiguity-free writing of Eq. [4] looks at a time
evolution over an infinitesimal interval of duration ∆t:

∆x = x(t+ ∆t)− x(t) = f(x(t))∆t+ g(x(t))∆η [5]

where ∆η =
∫ t+∆t
t

dτ η(τ) is Gaussian distributed with vari-
ance 2D∆t. This is called the Itō discretization of the Langevin
equation and it is the mathematicians’ favorite (46). Another
scheme adopted by physicists is the so-called Stratonovich rule,
according to which Eq. [4] represents an implicit equation for
the increment ∆x = x(t+ ∆t)− x(t)

∆x = f
(
x(t) + 1

2 ∆x
)
∆t+ g

(
x(t) + 1

2 ∆x
)
∆η . [6]

Although the naive continuum limits of Eq. [5] and Eq. [6]
may well be visually identical to Eq. [4], they actually de-
scribe different physical processes, and their corresponding
evolution equations for the probability distribution of x dif-
fer. We stress, however, that the ambiguity of Eq. [4] is only
superficial: a Langevin equation describes a limit process
in which some time scales, related to memory and elimina-
tion of degrees of freedom, have been sent to zero. Hence,
a physicist writing a Langevin equation with multiplicative
noise as in Eq. [4] knows how to understand the equation.
This being said, once a Langevin equation is derived for a
physical process, with a given discretization rule, we are free
to transform the equation into some equivalent one endowed
with an alternative discretization rule. For instance, Eq. [5] is
equivalent to a Stratonovich-discretized equation like Eq. [6]
in which f −Dg′g is substituted for f (35, 45). From a nu-
merical standpoint, Eq. [5] has an obvious advantage: solving
for x(t + ∆t) can be done by simple recursion, while in the
Stratonovich scheme, an implicit equation for ∆x must be
solved at each time step. However, an important advantage
of the Stratonovich discretization is that for an arbitrary
function U(t) = u(x(t)), if x evolves according to Eq. [6],
one can write in the same Stratonovich discretization that
U̇(t) = u′(x(t))ẋ(t) = u′(x(t))f(x(t)) + u′(x(t))g(x(t))η(t). In
short, within the Stratonovich discretization, the standard
chain rule of differential calculus can be used without caution
most of the time, even though none of the manipulated ob-
jects is actually differentiable! The celebrated Itō lemma (47)
teaches us how to modify the chain rule when working with
the Itō-discretized Eq. [5] instead. Other schemes exist and a
plethoric literature has been devoted to this subject (48–50).
Yet, the discretization of the integral appearing in the action
of the path integral has little been discussed, although it is
known that the expression of the action actually depends on
the scheme chosen to write it (45, 48, 51–53). We now give
the form of the action arising from our new adaptive covariant
discretization scheme, before explaining its construction.

Our result. The weight e−S[x] of a trajectory [x(t)]0≤t≤tf that
evolves according to the Langevin equation [4] understood in
the Stratonovich sense [6], if endowed with an action (14, 16)

S[x] =
∫ tf

0
dt
{

1
4D

[
ẋ− f(x)
g(x)

]2

+ 1
2f
′(x)− 1

2
g′(x)
g(x) f(x)

}
, [7]

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Cugliandolo et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


benefits from an essential feature: it is covariant under ar-
bitrary changes of variables, in the sense that the trajectory
weight of a process U(t) = u(x(t)) defined from x(t) is equal
to e−S[U ] with S[U ] inferred from the action Eq. [7] for x(t)
by merely passing from the variable x to U through the use
of the standard chain rule of calculus. This comes in obvious
contrast to the historical Stratonovich-discretised expression

∫ tf

0
dt
{

1
4D

[
ẋ− f(x) +Dg(x)g′(x)

g(x)

]2

+ 1
2f
′(x)
}

[8]

for the action (8, 36, 45, 51–53). As illustrated on the exam-
ple above, the latter does not enjoy the required covariance
property, while the covariant action [7] for y = 1

3x
3 does. It

now becomes Sv[y] =
∫
dt [ẏ−v(3y)2/3]2

4D(3y)4/3 instead of [2] and one

checks that the action for ỹ is Sv[ỹ] =
∫
dt ˙̃y2

4D(3ỹ)4/3 which, in
contrast to Eq. [3], verifies the Galilean invariance as well as
being covariant. Generalizing to any Langevin equation of the
form [4] one checks as in (14, 16) that the action [7] is indeed
covariant under an arbitrary invertible change of variables.

Yet, in the same way as a Langevin equation must be
endowed with a discretization rule, the covariant action [7] ac-
quires a definite meaning only if endowed with a (yet unknown)
discretization. Our main result is to fill this gap by building a
complete description of the path weight with action [7].

Covariant discretization

What is a covariant discretization?. Constructing a path inte-
gral invariably involves some discretization procedure in which
time is divided into tiny slices. Our goal is to resort to a
scheme that is fully consistent with the rules of differential
calculus (like the chain rule or integration by parts), also at the
level of paths. The naive answer, based on the Stratonovich
scheme, simply fails to possess the required property, as il-
lustrated by the example in the introduction. The reason is
rather subtle (19, 43) and was identified only recently (45).
It has been known for decades that a path integral is more
sensitive to discretization issues than, say, a Fokker–Planck
equation (as discussed by Janssen (8, 48)). But it has been
realized only very recently that the Stratonovich discretiza-
tion, which allows for the blind use of differential calculus at
the level of a Langevin equation, actually fails to extend its
properties to path integration (44, 45). Moreover, establish-
ing the compatibility of the chain rule with the Stratonovich
discretization at the level of a Langevin equation only works
to leading order in the discretization timescale ∆t. Since the
path-integral formulation requires higher orders in ∆t to be
included, it appears natural that this discretization will poorly
fare regarding changes of variables and differentiation inside
path integrals. What we need, thus, is a discretization scheme
that is consistent with the chain rule to a high-enough order
(up to the order needed in constructing a path integral). For-
tunately, such a scheme can be found, and this is our first
important result. The inspiration comes from the field of calcu-
lus with Poisson point processes (54–57), though our solution
departs from anything that has already been proposed. Let
us postulate that Eq. [4] is to be understood in the form

∆x = Tf,gf(x(t))∆t+ Tf,gg(x(t))∆η [9]

where the operator Tf,g acts on an arbitrary function h as

Tf,gh(x) = eD(x) d
dx − 1

D(x) d
dx

h(x) =
∑

n≥0

(
D(x) d

dx

)n
(n+ 1)! h(x) . [10]

Here∗ D(x) = f(x)∆t + g(x)∆η acts as an operator, and it
does not commute with d

dx . When acting on f the operator
Tf,g leaves us with a complicated function of both x(t) and ∆η,
which, in an implicit fashion through Eq. [9], is then a function
of x(t) and ∆x = x(t+ ∆t)− x(t). As is perhaps less obvious
than in previous discretization schemes, the ∆t→ 0 limit also
gets us back to Eq. [4]. This is because ∆η, which is of order
∆t1/2, also typically goes to 0. The complex appearance of
this discretization rule should not conceal its central property:
it is consistent with the chain rule for any finite ∆t. In other
words, when the evolution of x is understood with Eq. [9],
one can manipulate a function U(t) = u(x(t)) as if it were
differentiable, and U̇ = dU

dt = u′(x)ẋ holds in the sense that

U(t+ ∆t)− U(t)
∆t = TF,GF (U(t)) + TF,GG(U(t))∆η [11]

where F (U) and G(U) are the force and the noise amplitude of
the Langevin equation verified by U(t), defined as F (u(x)) =
u′(x)f(x) and G(u(x)) = u′(x)g(x).

The unpleasant feature of the discretization rule in Eq. [10]
is that it is expressed in terms of ∆η rather than in terms of
∆x, as we did in Eq. [6]. This means that such a discretization
cannot be used as such in the definition of the path integral in
which the noise η(t) is eliminated in favor of x(t). We would
rather express Eq. [9] in terms of a function δ(∆x) such that

Tf,gh(x) = h(x+ δ(∆x)) . [12]

Though this cannot be done explicitly to arbitrary order, an
expansion of δ in powers of ∆x can be found:

δ(∆x) = α∆x+ β(x)∆x2 + γ(x)∆x3 + . . . [13]

where α = 1
2 , β = βg = 1

24
g′′
g′ −

1
12
g′
g
, and γ = γg = − g′′

24g +
g′2

24g2 + g(3)

48g′ −
g′′2

48g′2 , etc. We shall henceforth keep the functional
dependence of these functions on g explicit. Keeping in mind
that ∆x = O(∆t1/2) as ∆t → 0, at minimal order δ(∆x) =
1
2 ∆x and we recover the Stratonovich discretization [6]. For
the Stratonovich discretization, the chain rule in Eq. [11] is
valid with up to an error of order ∆t1/2, while including the β
term in Eq. [13] with β = βg renders the error of order ∆t (and
so on when increasing the order of the expansion). Terms of
order higher than β in [13] will prove useless for our purpose.

Covariant discretization for the path integral. We thus have
shown that a discretization scheme of the form

Tgh(x) = h
(
x+ 1

2 ∆x+ βg(x)∆x2) [14]

βg(x) = 1
24
g′′(x)
g′(x) −

1
12
g′(x)
g(x) [15]

yields a Langevin equation for which the chain rule [11] is
valid up to order ∆t, namely one more order in ∆t1/2 than
the Stratonovich one. Such a scheme, that we call covariant
discretization, will serve as a starting point for our construction

∗ In the study of Poisson point-processes with multiplicative noise, the appropriate discretization
restricts toD(x) = g(x)∆η, but in our context the supplemental term f(x)∆t is needed.
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Fig. 1. Schematic representation, for a change of variables x 7→ u(x), of how the
covariant discretization scheme allows one to use the same rules of calculus for
a Stratonovich-discretized Langevin equation and for their corresponding covariant
Onsager–Machlup and MSRJD actions [7] and [24]. Such a use of the chain rule
would be incorrect in the traditional Stratonovich-discretized actions [8] and [25].

of the path integral, where every function in the action is
understood as discretized according to Eq. [14]. It is truncated
after order ∆x2 compared with the full expansions of Eqs. [10]
or [13], but we will prove that the additional contribution
βg(x)∆x2 in Eq. [14] is sufficient to cure the path integral
from its problems upon changing paths. As we now explain,
the covariant discretization scheme yields, in the ∆t→ 0 limit,
a path integral which possesses the modified action in Eq. [7]
instead with the Stratonovich-discretised one in Eq. [8].

From the infinitesimal propagator to the path integral

Using the notation xt for the variable defined in discrete
time t = 0, ∆t, 2∆t, . . . the path-integral weight of a trajec-
tory is inferred from the infinitesimal propagator P(x∆t|x0) ≡
P(x∆t,∆t|x0, 0) for the first time step, defined as the condi-
tional probability of x∆t at time ∆t, given x0 at time 0.

On the importance of the prefactor. Following a well-known
route (36), one finds that

P(x∆t|x0)
Tg= N
|g(x̄0)| e

− 1
2

∆t
2D

[
∆x
∆t
−f(x̄0)+D g(x̄0)g′(x̄0)

g(x̄0)

]2
− 1

2 ∆tf ′(x̄0)

× e−4D∆t βg(x̄0)g(x̄0)g′(x̄0) [16]

with N = 1/(4πD∆t)1/2, where
Tg= indicates that a function

h(x̄t) is evaluated in the covariant discretization [14], i.e.

x̄t = xt + 1
2∆x+ βg(xt)∆x2 with ∆x = xt+∆t − xt . [17]

Compared with the standard Stratonovich scheme (βg ≡ 0)
one observes that an additional contribution arises from the
βg term. . The second line in [16] is thus a signature of the
higher sensitivity of the path integral to the details of the
discretization. Had we kept a γ(x)∆x3 in the expansion of
Eq. [14], this would not have changed the form of the propa-
gator [16] to the order relevant for the path integral (namely,
up to O(∆t) included). The covariant discretization [14] thus
goes up to the optimal order in powers of ∆x.

The prefactor of the exponential in Eq. [16] was arbitrarily
discretized at x̄0 following a standard convention, but this
choice actually presents a bothering practical drawback. In-
deed, when changing paths from xt to Ut = u(xt) according to

P(x∆t|x0) = |u′(x∆t)| PU (U∆t|U0) [18]

(where PU is the propagator for the process Ut), the Jacobian
|u′(x∆t)| brings a contribution into the exponential weight of
Eq. [16] whereas we require the continuous-time limit we wish
to establish to exhibit none. We found that our results are
better formulated when adopting an endpoint discretization
for the prefactor. We will then use N

|g(x∆t)| rather than
N

|g(x̄0)|
in Eq. [16] (this induces extra terms in the exponential of the
infinitesimal propagator, see SI). With the βg in Eq. [15],

P(x∆t|x0)
Tg= N
|g(x∆t)| e

− 1
2

∆t
2D

[
∆x
∆t
−f(x̄0)

g(x̄0)

]2

× e−
1
2 ∆t
[
f ′(x̄0)− g′(x̄0)

g(x̄0) f(x̄0)
]
. [19]

The integration measure: path integral in time slices. Putting
these bits together, one writes

∏

0≤t<tf/∆t

dxt P(xt+∆t, t+ ∆t|xt, t)
∆t→0−→ DxN [x] e−S[x] [20]

which defines the Onsager–Machlup probability of a path
[x(t)]0≤t≤tf :

Prob[x] = N [x] e−S[x] . [21]

Here S[x] is the action announced in Eq. [7] and its argument
is evaluated in Tg-discretization according to Eq. [19], and
N [x] is a normalization prefactor that is endpoint-evaluated:

N [x] =
∏

0≤t<tf/∆t

1√
4πD∆t

1
|g(xt+∆t)|

. [22]

The average of a functional F [x] is given by
〈
F [x]

〉
=∫

DxF [x] Prob[x]Pi
(
x(0)

)
and is interpreted in the Feynman

sense (3): a sum over all possible trajectories in discrete time.
The initial condition is sampled by Pi.

The time-discrete framework provided in this paragraph
fully describes what we believe to be the most natural covari-
ant path-integral representation of the trajectory weight of a
multiplicative Langevin process. However the core part of the
path we started to follow awaits one further step on our side:
We must now prove that changing variables in the infinitesimal
propagator [19] is equivalent to changing variables by a blind
application of the chain rule in the continuous-time action [7].

Covariance of the time-discrete weight. Let us then prove the
covariance of the action under a change of path x(t) 7→ U(t) =
u(x(t)), proceeding, for convenience, backwards from U to x
(see Fig. 1). We have to show that the time-discrete propagator
PU (U∆t|U0) for the variable U(t) yields back the correspond-
ing propagator [19] for the variable x(t). This has to hold
irrespective of whether one follows the correct time-discrete
procedure to change variables or the naive continuous-time
chain rule. Starting from the now TG-discretized expression†

PU(U∆t|U0)
TG= N
|G(U∆t)| e

− 1
2

∆t
2D

[
∆U
∆t
−F (Ū0)

G(Ū0)

]2

× e−
1
2 ∆t
[
F ′(Ū0)−G′(Ū0)

G(Ū0) F (Ū0)
]
, [23]

one first notices (15) using [18] that the prefactor of the propa-
gator becomes the expected one of Eq. [19] for the variable x(t),

†withG(U) = u′(u−1(U))G(u−1(U)) where u−1 is the inverse function of u.
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Situation
Required
discretization

x(t) is differentiable Any can work
x(t) is a Langevin process, Eq. [4] Stratonovich, Eq. [6]
x(t) is a path in the covariant action, Eq. [7] or [24] Covariant, Eq. [14]
x(t) is a path in the standard action, Eq. [8] or [25] None works

Table 1. Minimal required discretization for the chain rule of standard
calculus to hold upon a change of variables U(t) = u(x(t)).

thanks to the end-point discretized prefactor we have chosen.
Then, the difficulty is to shift from the TG-discretized variable
U(t) to the Tg-discretized variable x(t), but this only requires
a correct expansion at O(∆t). With the recipe presented in
the Methods, one compares the two following routes:

(a) in Eq. [23], express Ū0 as a function of x̄0 and ∆x; expand
in powers of ∆x = O(∆t1/2) up to order O(∆t); use
substitution rules (derived in Ref. (45) and recalled in SI)
in order to handle powers of ∆x of degree higher than 1;

(b) naively replace ∆U
∆t in Eq. [23] by u′(x̄0) ∆x

∆t ; F (Ū0) by
u′(x̄0)f(x̄0); and G(Ū0) by u′(x̄0)g(x̄0).

Route (b) is in principle completely faulty because it misses
many terms of orders O(∆t1/2) and O(∆t), as discussed in
Ref. (45). However, for the chosen covariant discretization
of Eq. [14] it correctly matches the outcome of route (a) –
which happens to be the expected infinitesimal propagator
P(x∆t|x0) of Eq. [19]. This completes the proof that the covari-
ant action [7], formally introduced in Refs. (14, 15), actually
corresponds to a non-ambiguous time-discrete weight. For
other choices of time discretization, including the Stratonovich
one, route (b) does not yield the correct result, which is illus-
trated by the failure of the manipulations of our toy example.

Since taking route (b) amounts to using the standard rules
of calculus in the action, we have thus shown that, for the
covariant discretization scheme of Eq. [14], the correct rules
of calculus in the infinitesimal propagator at small but finite
∆t become identical to the standard rules of calculus in the
action [7] when taking the continuous-time limit ∆t→ 0. Such
a limiting procedure, which is simple for differentiable func-
tions, and significantly more intricate in a Langevin equation
(where discretization issues matter), has demanded an even
higher degree of caution in order to manipulate fields inside
the action, through the use of the covariant discretization [14]
(see Table 1). We now describe how this procedure extends
to a formally different but physically equivalent path integral
formulation of the same original problem.

Martin–Siggia–Rose–Janssen–de Dominicis (MSRJD)
path-integral formulation

Since the early formulation of quantum mechanics in terms of
path integrals, there have been two equivalent expressions for
the transition amplitudes. One, that we have just discussed
extensively, involves a single position field. An alternative
one also involves a conjugate momentum field. The latter
can be removed or included at will by Gaussian integration.
A mirror image of the auxiliary momentum field exists for
stochastic dynamics: the alternative to the original Onsager–
Machlup formulation is the MSRJD approach (8, 10–12, 58)
and involves an additional so-called response field. The pur-
pose of this section is to extend our findings in the two-field

path integral formalism. Again, we adopt the language of
stochastic dynamics, but our results equally apply to quantum
mechanics.

Response fields as an answer to non-linearities. In the
MSRJD approach one introduces a response field x̂(t) to rep-
resent the trajectory weight in a manner that allows one, for
instance, to get rid of some non-linearities of the action [7].
Physics-wise, this setting facilitates the study of correlations
and response functions on an equal footing, and to linearize (to
some extent) possible symmetries of the process under scrutiny
(time-reversal, rapidity reversal, etc). We now present our re-
sult for the covariant MSRJD action before describing its
construction and its full time-discrete implementation.

In the covariant discretization scheme of Eq. [14], the action

S[x̂, x]
Tg=
∫ tf

0
dt
{
x̂
(
ẋ− f(x) +Dg(x)g′(x)

)
−Dg(x)2x̂2

+ 1
2f
′(x) + 1

4g
′(x)2 + 1

2
g′(x)
g(x) ẋ

}
[24]

describes the path measure as ∝ DxDx̂ e−S[x̂,x].
In this path integral one can directly change variables

covariantly using the standard chain rule and avoiding any
Jacobian contribution. In continuous time, this property is
tediously checked by direct computation using the chain rule of
calculus together with the correspondence x̂(t) = u′(x(t)) Û(t)
between response fields. In contrast, the historically derived
MSRJD action in Stratonovich discretization reads
∫ tf

0
dt
{
x̂
(
ẋ− f(x) +Dg(x)g′(x)

)
−Dg(x)2x̂2+ 1

2f
′(x)
}

[25]

and applying the chain rule to it leads to inconsistencies (52).

Sketch of the derivation of the covariance. The actual deriva-
tion of the covariance property involves a careful handling
of the time-discrete infinitesimal propagator, by analyzing
the contributions that arise order by order in powers of ∆t
upon the change of variables U(t) = u(x(t)). To construct the
MSRJD representation, one rewrites the infinitesimal propaga-
tor [19] by using at every time step a Hubbard–Stratonovich
transformation of the form

√
2π/a e− 1

2
b2
a =

∫
iR dx̂ e 1

2ax̂
2−bx̂

for the following choice of parameters a and b

a = 2Dg(x̄t)2 ∆t , b =
[∆x

∆t − f(x̄t)
]

∆t . [26]

The infinitesimal propagator for the first time step, as inferred
from Eq. [19], is now represented as

P(x∆t|x0)
Tg=
∣∣ g(x̄0)
g(x∆t)

∣∣
∫

iR
dx̂0 e−δS[x̂0,x̄0] , [27]

δS[x̂0, x̄0]
Tg= ∆t

{
x̂0
[∆x

∆t − f(x̄0)
]
−Dg(x̄0)2x̂2

0

+ 1
2f
′(x̄0)− 1

2
g′(x̄0)
g(x̄0) f(x̄0)

}
, [28]

which completely encodes the continuous-time expression

S̃[x̂, x]
Tg=
∫ tf

0
dt
{
x̂
(
ẋ− f(x)

)
−Dg(x)2x̂2

+ 1
2f
′(x)− 1

2
g′(x)
g(x) f(x)

}
. [29]
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Note from Eq. [27] the appearance, in the discretized expression
for the probability of a path, of a normalization prefactor
NMSR[x(t)] =

∏
0≤t<tf/∆t

∣∣ g(x̄t)
g(xt+∆t)

∣∣ in front of the exponential
weight. This NMSR warrants that a change of path in the
action [24] induces no spurious contribution coming from the
Jacobian of [18]. Up to a translation of the field x̂(t) by
g′/(2g), one recovers Eq. [24]. The symbol Tg over the equality
sign means that functions of the variable x are Tg-discretized,
i.e. evaluated at x̄t. The field x̂(t) is not discretized: a variable
x̂t is introduced at each t and merely associated to x̄t.

One proves that only for the covariant discretization it is
valid to naively change variables: namely, going from the fields
(Û , U) to (x̂, x), one can replace ∆U

∆t by u′(x̄0) ∆x
∆t , F (Ū0) by

u′(x̄0)f(x̄0), and G(Ū0) by u′(x̄0)g(x̄0). Such operations, com-
bined with Û0 = x̂0/u

′(x̄0), would normally yield an incorrect
result by missing essential contributions of order O(∆t1/2) and
O(∆t). Satisfactorily, these manipulations are correct for our
chosen covariant discretization. The proof follows a procedure
similar to the one we presented for the Onsager–Machlup case
by comparing a correct route (a) with a naive route (b), with
three important caveats: (i) One has to pay attention to the
fact that x̂t ∼ ∆t−1/2 at every time step, as inferred from the
scaling of a in the Hubbard–Stratonovich transform [26], im-
plying that the expansions in powers of O(∆t) bring in terms
that one can be tempted to throw away at first sight; (ii) One
has to design additional substitution rules in order to handle
powers of x̂0 larger than 1. This is done following a procedure
similar to the one of Ref. (45) (see SI); (iii) Unexpectedly,
in contrast to the Onsager–Machlup case exposed previously,
the prefactor

∣∣ g(x̄0)
g(x∆t)

∣∣ in [27] brings a Jacobian contribution
into the action upon the time-discrete change of variables of
route (a), which compensates precisely a term that is missing
when naively substituting ∆U

∆t by u′(x̄0) ∆x
∆t along route (b).

To summarize, we have shown that changing variables in the
MSRJD action [24] can be done following the standard rules
of differential calculus, provided that the discrete-time con-
struction of the path-integral weight is performed according to
the covariant discretization [14] – leading to a modified action
as compared to the historical Stratonovich-discretized one.

Summary and outlook

When dealing with fluctuating signals as encountered in quan-
tum mechanics or stochastic processes, physicists rely on a
triptych of methods: solving a linear problem involving an
operator (Schrödinger or Fokker–Planck equations), resorting
to stochastic calculus (Langevin equations), or using path
integrals (field theory). As we have discussed, there is a vast
number of operations for which path integrals have been known
to be badly flawed. This surely explains why path integrals
never became a tool of choice for mathematicians working
on similar problems. What we have shown in the present
work is how to construct a path-integral calculus devoid of
what we view as its biggest flaw. It is now possible to ma-
nipulate well-defined path integrals with nonlinear changes
of fields making no errors. It is our belief that our proposed
construction should not only trigger a revival of interest on the
mathematics side, but also on the physics one. Mathematics-
wise, though we would not blush with embarrassment about
our physicist’s derivation, it is almost certain that many more
steps are needed to bring path integrals on a rigorous par
with other aspects of stochastic calculus. Physics-wise, we

see immediate consequences, and open questions. Among the
former, given the pedagogical importance of path integrals in
higher education, we would advocate strongly in favor of our
presentation (which time and efforts will surely smoothen and
hopefully simplify) rather than in existing ones which suffer
from well-known obvious problems (we refer to the telling ex-
ample of our introduction). Second, given the lack of control,
so far, in nonlinear manipulations of fields, which have been
put to work in some many areas, it seems like a necessity to
return to these and sort out whether and how path-integral
based results are altered by taking our corrected formalism into
account. Transformations of the action based on the chain rule,
as simple as integrations by parts for instance, are in principle
forbidden unless one uses the covariant discretization. This is
especially important in areas of physics where no alternative
to path integrals exist (like in path-integral based quantization
issues). This brings us to future research directions, which
we briefly list: What about higher space dimensions?, What
about supersymmetries?, What about field theories expressed
in second quantized form with coherent-states fields?

Methods

We explain here the methodology used to manipulate the infinitesi-
mal propagator in the small ∆t limit, following Ref. (45).

Changing variables while respecting the discretization. When pass-
ing from one infinitesimal propagator to another, one needs to
reconstitute the Tg-discretization of the variable x(t) in P(x∆t|x0)
(Eq. [19]) from the TG-discretization of the variable U(t) in
PU(U∆t|U0) (Eq. [23]). The idea is to express the time-discrete
values U0 = u(x0), Udt = u(x∆t) and Ū0 appearing in the r.h.s. of
Eq. [23] as a function of x̄0 and ∆x, using

Ū0 = u(x0) + 1
2 [u(x∆t)− u(x0)] + βG(u(x0)) [u(x∆t)− u(x0)]2 ,

x0 = x̄0 − 1
2 ∆x− βg(x̄0) ∆x2 , [30]

x∆t = x̄0 + 1
2

∆x− βg(x̄0) ∆x2 . [31]

The strategy is the following: first, one uses these expressions in
Eq. [23]; second, one expands this equation in powers of ∆t and
∆x, keeping in mind that the latter is O(∆t1/2). The result takes
the form

N
|g(x̄0)| e

− 1
2

∆x2
2Dg(x̄0)2∆t ×

[
1 + polynomial in ∆x and ∆t

]
[32]

The fraction in the exponential is O(∆t0) and cannot be expanded;
in fact, it defines the dominant order O(∆t1/2) of ∆x. The poly-
nomial contains terms of the form ∆tn∆xm which are of order
O(∆t1/2) and O(∆t). Higher-order terms (O(∆t3/2) and higher)
can be discarded because they do not contribute to the action. Many
of the terms in the polynomial do not present an obvious ∆t→ 0
limit (e.g. ∆x4 ∆t−1) but the substitution rules derived in (45)
allow one to take the continuous-time limit. For completeness, these
are recalled (and slightly reformulated) in the SI. The last stage
of the procedure consists in reexponentiating the resulting factor
[1 + . . .] obtained from Eq. [32]. One then recovers the expected
propagator P(x∆t|x0) of Eq. [19] as announced.

The same procedure allows one to change variables in the histori-
cal action [8] but this involves rules of calculus sharing little kindred
with the standard ones [see Ref. (45)]. The covariant discretization,
instead, yields back the usual chain rule as ∆t→ 0.
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1 Some details on the toy model calculations
1.1 Model, action, and change of variables
The evolution equation of the position x(t) is ẋ(t) = v + η(t) with η a centered Gaussian white noise of
correlation function 〈η(t)η(t′)〉 = 2Dδ(t− t′). The Onsager–Machlup path-integral measure is

Dx e−Sv[x], Sv[x] =
∫ tf

0
dt (ẋ− v)2

4D . (1)

One considers the non-linear change of variables y(t) = 1
3x(t)3. In Stratonovich discretization, the

variable y(t) is governed by the Langevin equation

ẏ = v(3y)2/3 + (3y)2/3η(t) (2)

It takes the generic form ẏ = F (y) + G(y)η(t) with F (y) = v(3y)2/3 and G(y) = (3y)2/3. The Galilean
invariance of the underlying variable x(t) tells us that ỹ = 1

3 (x − vt)3 = 1
3 [(3y)1/3 − vt]3 should be

independent of v; and indeed the variable ỹ is governed by the Langevin equation
˙̃y = (3ỹ)2/3η(t) . (3)

1.2 (Historical) action for the variable y(t)
The path-integral weight for the multiplicative Langevin process y(t) is now

DyJ [y] e−Sv [y], Sv[y] =
∫ tf

0
dt
{[
ẏ − v(3y)2/3 + 2D(3y)1/3]2

4D(3y)4/3 + v (3y)− 1
3

}
(4)

with the associated normalization prefactor

J [y] S=
∏

0≤t<tf/∆t

{
1√

4πD∆t
1

|G(ȳt)|

}
(5)

which is Stratonovich-discretized (as the symbol S= denotes).
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3 Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS/P7, Université Paris Diderot, 10 rue Alice Domon et
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1.3 Naive change of variable from y to ỹ

Changing variable from y to ỹ, one can naively compute via the usual change of variables

Sv[y]
∣∣
y= 1

3 [(3ỹ)1/3+vt]3 =
∫ tf

0
dt
{ ˙̃y2

4D(3ỹ)4/3 +
˙̃y

vt (3ỹ)2/3 + 3ỹ + v(3ỹ)1/3 +D + v2t
(
(3ỹ)1/3 + vt

)2
}

(6)

which still depends on v and does not respect the Galilean invariance. Note that this action also factorizes
as

Sv[y]
∣∣
y= 1

3 [(3ỹ)1/3+vt]3 =
∫ tf

0
dt
{

1
4D

[ ˙̃y[(3ỹ) 1
3 + vt] + 2D(3ỹ) 2

3

(3ỹ) 2
3 [(3ỹ) 1

3 + vt]

]2
+ v

(3ỹ) 1
3 + vt

}
. (7)

This is the result of Eq. [3] in the main text. One may of course complain that the normalization
prefactor (5) and the Jacobian of the change of path measure induce supplementary terms in the action,
two contributions that we analyze next.

1.4 Determination of the contributions arising from the Jacobian and from
the normalization prefactor

Let us denote the change of variables between y and ỹ by y = Y (ỹ) = 1
3 [(3ỹ)1/3 + vt]3. Going to the

infinitesimal propagator, one has, for the first time step (of duration ∆t),

P̃(ỹ∆t|ỹ0) = |Y ′(ỹ∆t)| P(y∆t|y0) where generically yt = Y (ỹt) , (8)

P is the propagator of the process y(t) and P̃ is the propagator of the process ỹ(t). Denoting δS and δS̃
the infinitesimal actions corresponding to these propagators, one obtains

1
|G̃(¯̃y0)| e

−δS̃ S= |Y ′(ỹ∆t)|
1

|G(ȳ0)| e
−δS . (9)

We thus see that when passing from the infinitesimal action for y to the one for ỹ,

δS̃ = δS|
y 7→ỹ

+ ∆δS , (10)

∆δS = − ln
{
|Y ′(ỹ∆t)|

|G̃(¯̃y0)|
|G(ȳ0)|

}
. (11)

The function G̃(ỹ) is obtained as follows: differentiating y(t) = Y (ỹ(t)) with respect to time t, one
derives ẏ = ˙̃y Y ′(ỹ(t)), from which one infers that the noise amplitude of ỹ(t) is G̃(ỹ) = G(Y (ỹ))/Y ′(ỹ).
Hence

∆δS = − ln
∣∣∣∣
Y ′(ỹ∆t)
Y ′(¯̃y0)

G(Y (¯̃y0))
G(ȳ0)

∣∣∣∣ . (12)

To compute this “Jacobian shift” ∆δS as a function of the Stratonovich-discretized variable ¯̃y(t) one
then uses

ȳ0 = y0 + 1
2 [y∆t − y0] = Y (ỹ0) + 1

2 [Y (ỹ∆t)− Y (ỹ0)] , (13)
ỹ0 = ¯̃y0 − 1

2∆ỹ , (14)
ỹ∆t = ¯̃y0 + 1

2∆ỹ . (15)

With these expressions, one then writes (12) as a function of the Stratonovich-discretized variable ¯̃y0
and the increment ∆ỹ only. Noting that ∆ỹ = ỹ∆t− ỹ0 = O(∆t1/2), we can expand (12) up to order ∆t
included, to obtain

∆δS = − Y
′′(¯̃y0)

2Y ′(¯̃y0)
∆ỹ + 1

8

[G′(Y (¯̃y0))Y ′′(¯̃y0)
G(Y (¯̃y0))

+ Y ′′(¯̃y0)2 − Y ′(¯̃y0)Y (3)(¯̃y0)
Y ′(¯̃y0)2

]
∆ỹ2 . (16)

Here we can use the substitution rule (see Sec. 2 below)

∆ỹ2 7→ 2D G̃(¯̃y0)2∆t . (17)
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Finally, using the explicit expressions of the functions G(y) and Y (ỹ) one obtains

∆δS = vt

3vt¯̃y0 + (3¯̃y0)4/3 ∆ỹ + D

2

[ 3
(vt+ (3¯̃y0)1/3)2 −

3
(3¯̃y0)2/3

]
∆t (18)

to which corresponds a contribution in the action of the form

∆S S=
∫ tf

0
dt
{

vt

3vtỹ + (3ỹ)4/3
˙̃y + D

2

[ 3
(vt+ (3ỹ)1/3)2 −

3
(3ỹ)2/3

]}
. (19)

1.5 Incorporating the ∆S contribution to the action
Reading from the infinitesimal decomposition (10), we thus deduce a candidate for the action on the
variable ỹ(t)

Snaive
v [ỹ] = Sv[y]|

y 7→ỹ
+ ∆S

=
∫ tf

0
dt
{ ˙̃y2

4D(3ỹ)4/3 + 5D
2(tv + (3ỹ(t))1/3)2 + v

tv + (3ỹ(t))1/3 −
3D

2(3ỹ(t))2/3 +
˙̃y(t)

3ỹ(t)

}

=
∫ tf

0
dt
{

1
4D

[ ˙̃y(t) + 2D(3ỹ(t)) 1
3

(3ỹ(t))2/3

]2
+ 5D

2
(
vt+ (3ỹ(t)) 1

3
)2 + v

vt+ (3ỹ(t)) 1
3
− 5D

2(3ỹ(t)) 2
3

}
(20)

where we have added the expressions (6) and (19) to write the second line. This expression still depends
on v, meaning that even taking into account correctly how the normalization prefactor and the Jacobian
of the change of variables add a shift contribution to the action, it is still impossible to change variable
naively by applying the chain rule, when working with the action (4).

2 Substitution rules
Denoting d∆x2c = 2Dg(x̄0)2∆t, the substitution rules deduced in [1] can be reformulated as follows

∆x2 7→ d∆x2c , (21)
∆x3 ∆t−1 7→ 3 ∆x d∆x2c∆t−1 , (22)
∆x4 ∆t−1 7→ 3 d∆x2c2 ∆t−1 , (23)
∆x6 ∆t−2 7→ 15 d∆x2c3 ∆t−2 . (24)

Note that, as discussed in Ref. [1], the substitution rule (22) cannot be used inside the exponential of the
infinitesimal propagator; indeed, since ∆x3 ∆t−1 = O(∆t1/2) one has eh(x)∆x3 ∆t−1 = 1+h(x)∆x3 ∆t−1+
1
2 [h(x)∆x3 ∆t−1]2 + O(∆t3/2) and the second term of this expansion would be wrong if one had first
applied the rule (22) and then expanded. This is the trivial but shrouded reason why the procedure
exposed in the Methods of the main text has to be performed by expanding the terms of order ∆t>0

outside of the exponential of the infinitesimal propagator of Eq. [23] in the main text. This reflects the
fact, known to mathematicians, that the validity of the continuous-time chain rule is relatively weak,
even in the Stratonovich discretization: it cannot be manipulated without care by, for instance, taking
its square and exponentiating it – as one would do by naively using it in the Onsager–Machlup action.
For further discussion on this subject, see Ref. [1].

3 An example: changing the discretization of the normalization
prefactor

The change of discretization of the prefactor from N
|g(x̄0)| to

N
|g(x∆t)| is obtained by following the following

one uses the representation in the Methods of the main text to change the discretization point and to

3



expand the resulting prefactor in powers of ∆x up to order O(∆t)

1
g(x̄0) = 1

g(x∆t)
g(x∆t)
g(x̄0) (25)

= 1
g(x∆t)

[
1 + g′(x̄0)

2g(x̄0)∆x+
1
4g
′′(x̄0)− 2βg(x̄0)g′(x̄0)

2g(x̄0) ∆x2
]

= 1
g(x∆t)

e
g′(x̄0)∆x

2g(x̄0) +D
[
g(x̄0)

(
1
4 g
′′(x̄0)−2βg(x̄0)g′(x̄0)

)

− 1
4 g
′(x̄0)2

]
∆t .

To obtain the last equality, we used the substitution rule (21) for ∆x2 before exponentiating. The
argument of the exponential is then added to the argument of the exponential in the original infinitesimal
propagator to obtain Eq. [19] of the main text.
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