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T hough the notion of path integration can be traced back to Wiener (1,[START_REF] Wiener | The Average value of a Functional[END_REF], it is fair to credit Feynman [START_REF] Feynman | Space-Time Approach to Non-Relativistic Quantum Mechanics[END_REF] for making path integrals one of the daily tools of theoretical physics. The idea is to express the transition amplitude of a particle between two states as an integral over all possible trajectories between these states with an appropriate weight for each of them. After such a formulation of quantum mechanics was proposed, path integrals turned out to provide a set of methods that are now ubiquitous in Physics (see [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF][START_REF] Kleinert | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets[END_REF] for reviews) and they have become the language of choice for quantum field theory. But path integrals reach out well beyond quantum physics and they are also a versatile instrument to study stochastic processes. Beyond Wiener's original formulation of Brownian motion, Onsager and Machlup [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF][START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF], followed by Janssen [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF][START_REF] Janssen | Field theoretical methods applied to critical dynamics in Lecture notes in Physics: Dynamical critical phenomena and related topics[END_REF], and De Dominicis [START_REF] Dominicis | Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques[END_REF][START_REF] De Dominicis | Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems[END_REF] [based on the operator formulation of Martin, Siggia and Rose [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF]], have contributed to establish path integrals as a useful tool, on equal footing with the Fokker-Planck and Langevin equations. Interestingly, mathematicians have mostly stayed a safe distance away from path integrals. Indeed, it has been known for many years that path integrals cannot be manipulated without extra caution in a vast category of problems. These problems, in the stochastic language, involve the notion of multiplicative noise (that we describe in detail below), and their counterpart in the quantum world has to do with quantization on curved spaces [START_REF] Bastianelli | Path Integrals and Anomalies in Curved Space[END_REF]. The late seventies witnessed an important step in the understanding of the subtleties of path integrals: the authors of [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF][START_REF] Graham | Path integral formulation of general diffusion processes[END_REF][START_REF] Graham | Covariant formulation of non-equilibrium statistical thermodynamics[END_REF][START_REF] Weiss | Operator ordering schemes and covariant path integrals of quantum and stochastic processes in Curved space[END_REF][START_REF] Kerler | Definition of path integrals and rules for non-linear transformations[END_REF][START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF] found how to modify a posteriori and phenomenologically path integrals to make them visually consistent with differential calculus. Yet, a path integral acquires a definite meaning only as the continuum limit of a discretized expression [START_REF] Fujiwara | Rigorous time slicing approach to Feynman path integrals[END_REF] and this step was not achieved. The goal of this article is to come up with the missing link: we construct path integrals for stochastic and/or quantum trajectories, free of any mathematical hitch, by a direct time-discretization procedure which endows them with a well-defined mathematical meaning.

Quantum or Classical Fluctuations and Path Integrals

Physical context. Multiplicative noise is involved in a flurry of physical problems ranging from soft matter (e.g., diffusion in microfluidic devices [START_REF] Grün | Thin-Film Flow Influenced by Thermal Noise[END_REF]), to condensed matter (e.g., super paramagnets [START_REF] Genovese | Mesoscopic description of the annealed Ising model, and multiplicative noise[END_REF][START_REF] Birner | Critical behavior of nonequilibrium phase transitions to magnetically ordered states[END_REF]) or even inflational cosmology [START_REF] Matacz | A new theory of stochastic inflation[END_REF][START_REF] Vennin | Correlation functions in stochastic inflation[END_REF]. It also appears in other areas of science where Langevin equation are present (e.g., Black-Scholes equation for option pricing [START_REF] Black | The Pricing of Options and Corporate Liabilities[END_REF]). Quantization on curved spaces (e.g., a particle on a sphere [START_REF] Cariñena | The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach[END_REF][START_REF] Cariñena | The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach[END_REF] or more generic manifolds [START_REF] Dewitt | Dynamical Theory in Curved Spaces. I. A Review of the Classical and Quantum Action Principles[END_REF][START_REF] Mclaughlin | Path Integrals in Curved Spaces[END_REF][START_REF] Gervais | Point canonical transformations in the path integral[END_REF][START_REF] Grosche | Path integrals on curved manifolds[END_REF]) pertains to the same mathematical class of problems, even though their physical motivation has a different origin. Connections between thermal and quantum noises were noted long ago by Nelson [START_REF] Nelson | Quantum fluctuations[END_REF], and it is therefore no surprise that our discussion addresses both class of problems simultaneously. To illustrate how deep-set the problem that path integrals suffer is, we now turn to the simplest conceivable example of such.

A simple example of a failure of path integrals. Consider a Brownian particle with position x(t) whose velocity ẋ(t) = v + η(t) is subjected to both a thermal noise η(t) and an external force imposing a constant velocity v. Here η is a Gaussian white noise with zero mean and correlations η(t)η(t ) = 2Dδ(t -t ) with D > 0. The path integral describing the trajectories is given in its Onsager-Machlup [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF] form by

Dx e -Sv [x] , Sv[x] = dt ( ẋ -v) 2 4D . [1]

Significance Statement

Path integrals are ubiquitous in theoretical physics because they allow for a vivid and technically efficient description of fluctuating objects, whether they are quantum or stochastic. However, it has been known almost since the beginning that path integrals do not lend themselves to the same intuitive rules as those used in ordinary differential calculus, based on derivatives and changes of variables. We identify what the hitherto overlooked missing ingredients are in constructing such well-behaved path integrals. With our construction, the validity of which we mathematically establish, one can thoughtlessly work with functional integrals over paths as one likes working with regular integrals of functions over the real axis. This opens the road for a sound path-integral based calculus.

Exploiting Galilean invariance, we change fields to x(t) = x(t) -vt and we arrive at a problem with action S0[x] = dt ẋ2 /4D that does not depend on v, as expected. Suppose now that our interest goes towards the quantity y(t) = 1 3 x(t) 3 . It is trickier but well-known how to handle y at the Langevin level. In Stratonovich discretization [START_REF] Stratonovich | Topics in the theory of random noise. 1: General theory of random processes. Nonlinear transformations of signals and noise, Mathematics and its applications[END_REF][START_REF] Ngv | Itô versus Stratonovich[END_REF] ẏ(t) = v[3y(t)]2/3 + [3y(t)] 2/3 η(t), and changing variables from

y to ỹ = 1 3 [x -vt] 3 = 1 3 ([3y] 1/3 -vt) 3 , a Galilean-invariant equation is recovered: ẏ(t) = [3ỹ(t)] 2/3 η(t).
Instead, the functional approach would be to apply existing recipes [START_REF] Janssen | Field theoretical methods applied to critical dynamics in Lecture notes in Physics: Dynamical critical phenomena and related topics[END_REF][START_REF] Graham | Statistical Theory of Instabilities in Stationary Nonequilibrium Systems with Applications to Lasers and Nonlinear Optics in Springer Tracts in Modern Physics[END_REF] to convert the Langevin equation for y to a Stratonovich-discretized path integral Dy e -Sv [y] with

Sv[y] = dt [ ẏ -v(3y) 2 3 +2D(3y) 1 3 ] 2
4D(3y)

4 3 + v(3y) -1 3 . [2]
One would expect that changing from y(t) to ỹ(t) the action for ỹ(t) be independent of v. However, this is not so,

Sv[ỹ] = dt ẏ[(3ỹ) 1 3 + vt] + 2D(3ỹ) 2 3 2 4D(3ỹ) 4 
3 (3ỹ)

1 3 + vt 2 + v [(3ỹ) 1 3 + vt] [3]
and the v-dependence that Galilean invariance tells us should disappear, simply remains (even if one adds to [START_REF] Feynman | Space-Time Approach to Non-Relativistic Quantum Mechanics[END_REF] the Jacobian of the change of variables, see SI for computational details). This means that Eq. [START_REF] Feynman | Space-Time Approach to Non-Relativistic Quantum Mechanics[END_REF] is not the correct action for ỹ(t).

Of course, none of the details of this example matter. The lesson to draw is actually simple: either one sticks to stochastic calculus and forgets about path integrals that cannot accommodate nonlinear changes of integration fields, or one attempts to cure path integrals. It is not clear, historically, when such problems with path integrals were first realized, but there is a long list of works that point to their occurrence [START_REF] Gervais | Point canonical transformations in the path integral[END_REF][START_REF] Edwards | Path integrals in polar co-ordinates[END_REF][START_REF] Salomonson | When does a non-linear point transformation generate an extra o( 2 ) potential in the effective Lagrangian?[END_REF][START_REF] Langouche | Functional integrals and the Fokker-Planck equation[END_REF][START_REF] Langouche | Comment on functional integration and the Onsager-Machlup Lagrangian in Riemannian geometries[END_REF][START_REF] Langouche | Functional integration and semiclassical expansions[END_REF][START_REF] Alfaro | Field transformations, collective coordinates and BRST invariance[END_REF][START_REF] Apfeldorf | Coordinate redefinition invariance and "extra" terms[END_REF][START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF][START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF]. Varied strategies [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF][START_REF] Graham | Path integral formulation of general diffusion processes[END_REF] have led to a modified action that is manifestly covariant upon continuous-time changes of variables, but only within a "phenomenological" (16) description. Despite some attempts [START_REF] Weiss | Operator ordering schemes and covariant path integrals of quantum and stochastic processes in Curved space[END_REF][START_REF] Kerler | Definition of path integrals and rules for non-linear transformations[END_REF][START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF], an unambiguous discretization scheme of such a modified action has not been achieved.

In this paper we construct a non-ambiguous covariant path integral. This not only requires to focus on hitherto overlooked contributions in slicing up time-evolution, but also to resort to a new adaptive slicing of time. It is the combination of these two ingredients that allows us to immunize path integrals against the problems caused by nonlinear manipulations.

In what follows, we first recall the well-known discretization problems encountered when providing multiplicative Langevin equations with a non-ambiguous definition. With this settled, we present the main outcome of our paper, a path-integral weight (that includes a carefully defined normalization prefactor) that allows one to use the standard rule of calculus inside the action when changing variables. The rest of the paper explains how such an action corresponds to an actual timediscrete path weight, that we construct following a procedure that relies on the identification of crucial discretization issues that go well beyond the usual Itō-Stratonovich dilemma.

Langevin equations and their covariant action

What we know on discretization issues, in a nutshell. Discussions of discretization issues are not commonly found in the quantum literature (see however [START_REF] Fujiwara | Rigorous time slicing approach to Feynman path integrals[END_REF]). This is a question that has to do with the writing and the manipulation of Langevin equations. For arbitrary functions f and g, the process x(t) evolving according to the Langevin equation ẋ(t) = f (x(t)) + g(x(t))η(t) [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF] where η(t)η(t ) = Dδ(t -t ), is simply not defined unless a specific way to understand the product in the right-hand side is given. An ambiguity-free writing of Eq. [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF] looks at a time evolution over an infinitesimal interval of duration ∆t: ∆x = x(t + ∆t) -x(t) = f (x(t))∆t + g(x(t))∆η [START_REF] Kleinert | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets[END_REF] where ∆η = t+∆t t dτ η(τ ) is Gaussian distributed with variance 2D∆t. This is called the Itō discretization of the Langevin equation and it is the mathematicians' favorite [START_REF] Øksendal | Stochastic differential equations: an introduction with applications[END_REF]. Another scheme adopted by physicists is the so-called Stratonovich rule, according to which Eq. [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF] represents an implicit equation for the increment ∆x = x(t + ∆t) -x(t)

∆x = f x(t) + 1 2 ∆x ∆t + g x(t) + 1 2 ∆x ∆η . [6]
Although the naive continuum limits of Eq. [START_REF] Kleinert | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets[END_REF] and Eq. [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF] may well be visually identical to Eq. [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF], they actually describe different physical processes, and their corresponding evolution equations for the probability distribution of x differ. We stress, however, that the ambiguity of Eq. [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF] is only superficial: a Langevin equation describes a limit process in which some time scales, related to memory and elimination of degrees of freedom, have been sent to zero. Hence, a physicist writing a Langevin equation with multiplicative noise as in Eq. [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF] knows how to understand the equation. This being said, once a Langevin equation is derived for a physical process, with a given discretization rule, we are free to transform the equation into some equivalent one endowed with an alternative discretization rule. For instance, Eq. [START_REF] Kleinert | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets[END_REF] is equivalent to a Stratonovich-discretized equation like Eq. [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF] in which f -Dg g is substituted for f [START_REF] Ngv | Itô versus Stratonovich[END_REF][START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF]. From a numerical standpoint, Eq. [START_REF] Kleinert | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets[END_REF] has an obvious advantage: solving for x(t + ∆t) can be done by simple recursion, while in the Stratonovich scheme, an implicit equation for ∆x must be solved at each time step. However, an important advantage of the Stratonovich discretization is that for an arbitrary function U (t) = u(x(t)), if x evolves according to Eq. [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF], one can write in the same Stratonovich discretization that

U (t) = u (x(t)) ẋ(t) = u (x(t))f (x(t)) + u (x(t))g(x(t))η(t).
In short, within the Stratonovich discretization, the standard chain rule of differential calculus can be used without caution most of the time, even though none of the manipulated objects is actually differentiable! The celebrated Itō lemma [START_REF] Itô | Stochastic integral[END_REF] teaches us how to modify the chain rule when working with the Itō-discretized Eq. [START_REF] Kleinert | Path integrals in quantum mechanics, statistics, polymer physics, and financial markets[END_REF] instead. Other schemes exist and a plethoric literature has been devoted to this subject [START_REF] Janssen | On the renormalized field theory of nonlinear critical relaxation in From Phase Transitions to Chaos[END_REF][START_REF] Ngv | Stochastic processes in physics and chemistry, North-Holland personal library[END_REF][START_REF] Gardiner | Handbook of stochastic methods for physics, chemistry, and the natural sciences[END_REF].

Yet, the discretization of the integral appearing in the action of the path integral has little been discussed, although it is known that the expression of the action actually depends on the scheme chosen to write it [START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF][START_REF] Janssen | On the renormalized field theory of nonlinear critical relaxation in From Phase Transitions to Chaos[END_REF][START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF][START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF][START_REF] Itami | Universal Form of Stochastic Evolution for Slow Variables in Equilibrium Systems[END_REF]. We now give the form of the action arising from our new adaptive covariant discretization scheme, before explaining its construction.

Our result.

The weight e -S[x] of a trajectory [x(t)] 0≤t≤t f that evolves according to the Langevin equation [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF] understood in the Stratonovich sense [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF], if endowed with an action [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF][START_REF] Graham | Covariant formulation of non-equilibrium statistical thermodynamics[END_REF])

S[x] = t f 0 dt 1 4D ẋ -f (x) g(x) 2 + 1 2 f (x) - 1 2 g (x) g(x) f (x) , [7]
benefits from an essential feature: it is covariant under arbitrary changes of variables, in the sense that the trajectory weight of a process U (t) = u(x(t)) defined from x(t) is equal to e -S[U ] with S[U ] inferred from the action Eq. [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] for x(t) by merely passing from the variable x to U through the use of the standard chain rule of calculus. This comes in obvious contrast to the historical Stratonovich-discretised expression

t f 0 dt 1 4D ẋ -f (x) + D g(x)g (x) g(x) 2 + 1 2 f (x) [8]
for the action [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF][START_REF] Graham | Statistical Theory of Instabilities in Stationary Nonequilibrium Systems with Applications to Lasers and Nonlinear Optics in Springer Tracts in Modern Physics[END_REF][START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF][START_REF] Lau | State-dependent diffusion: Thermodynamic consistency and its path integral formulation[END_REF][START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF][START_REF] Itami | Universal Form of Stochastic Evolution for Slow Variables in Equilibrium Systems[END_REF]. As illustrated on the example above, the latter does not enjoy the required covariance property, while the covariant action [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] for

y = 1 3 x 3 does. It now becomes Sv[y] = dt [ ẏ-v(3y) 2/3 ] 2 4D(3y) 4/3
instead of [START_REF] Wiener | The Average value of a Functional[END_REF] and one checks that the action for ỹ is Sv[ỹ] = dt ẏ2 4D(3ỹ) 4/3 which, in contrast to Eq. [START_REF] Feynman | Space-Time Approach to Non-Relativistic Quantum Mechanics[END_REF], verifies the Galilean invariance as well as being covariant. Generalizing to any Langevin equation of the form [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF] one checks as in [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF][START_REF] Graham | Covariant formulation of non-equilibrium statistical thermodynamics[END_REF]) that the action [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] is indeed covariant under an arbitrary invertible change of variables.

Yet, in the same way as a Langevin equation must be endowed with a discretization rule, the covariant action [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] acquires a definite meaning only if endowed with a (yet unknown) discretization. Our main result is to fill this gap by building a complete description of the path weight with action [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF].

Covariant discretization

What is a covariant discretization? . Constructing a path integral invariably involves some discretization procedure in which time is divided into tiny slices. Our goal is to resort to a scheme that is fully consistent with the rules of differential calculus (like the chain rule or integration by parts), also at the level of paths. The naive answer, based on the Stratonovich scheme, simply fails to possess the required property, as illustrated by the example in the introduction. The reason is rather subtle [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF][START_REF] Apfeldorf | Coordinate redefinition invariance and "extra" terms[END_REF] and was identified only recently [START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF]. It has been known for decades that a path integral is more sensitive to discretization issues than, say, a Fokker-Planck equation (as discussed by Janssen [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF][START_REF] Janssen | On the renormalized field theory of nonlinear critical relaxation in From Phase Transitions to Chaos[END_REF]). But it has been realized only very recently that the Stratonovich discretization, which allows for the blind use of differential calculus at the level of a Langevin equation, actually fails to extend its properties to path integration [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF][START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF]. Moreover, establishing the compatibility of the chain rule with the Stratonovich discretization at the level of a Langevin equation only works to leading order in the discretization timescale ∆t. Since the path-integral formulation requires higher orders in ∆t to be included, it appears natural that this discretization will poorly fare regarding changes of variables and differentiation inside path integrals. What we need, thus, is a discretization scheme that is consistent with the chain rule to a high-enough order (up to the order needed in constructing a path integral). Fortunately, such a scheme can be found, and this is our first important result. The inspiration comes from the field of calculus with Poisson point processes [START_REF] Paola | Stochastic Response on Non-Linear Systems under Parametric Non-Gaussian Agencies in Nonlinear Stochastic Mechanics[END_REF][START_REF] Paola | Stochastic Dynamics of Nonlinear Systems Driven by Nonnormal Delta-Correlated Processes[END_REF][START_REF] Paola | Ito and Stratonovich integrals for delta-correlated processes[END_REF][START_REF] Kanazawa | Stochastic Energetics for Non-Gaussian Processes[END_REF], though our solution departs from anything that has already been proposed. Let us postulate that Eq. [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF] is to be understood in the form ∆x = T f,g f (x(t))∆t + T f,g g(x(t))∆η [START_REF] Janssen | Field theoretical methods applied to critical dynamics in Lecture notes in Physics: Dynamical critical phenomena and related topics[END_REF] where the operator T f,g acts on an arbitrary function h as

T f,g h(x) = e D(x) d dx -1 D(x) d dx h(x) = n≥0 D(x) d dx n (n + 1)! h(x) . [10]
Here * D(x) = f (x)∆t + g(x)∆η acts as an operator, and it does not commute with d dx . When acting on f the operator T f,g leaves us with a complicated function of both x(t) and ∆η, which, in an implicit fashion through Eq. [START_REF] Janssen | Field theoretical methods applied to critical dynamics in Lecture notes in Physics: Dynamical critical phenomena and related topics[END_REF], is then a function of x(t) and ∆x = x(t + ∆t) -x(t). As is perhaps less obvious than in previous discretization schemes, the ∆t → 0 limit also gets us back to Eq. [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF]. This is because ∆η, which is of order ∆t 1/2 , also typically goes to 0. The complex appearance of this discretization rule should not conceal its central property: it is consistent with the chain rule for any finite ∆t. In other words, when the evolution of x is understood with Eq. [START_REF] Janssen | Field theoretical methods applied to critical dynamics in Lecture notes in Physics: Dynamical critical phenomena and related topics[END_REF], one can manipulate a function U (t) = u(x(t)) as if it were differentiable, and U = dU dt = u (x) ẋ holds in the sense that [START_REF] De Dominicis | Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems[END_REF] where F (U ) and G(U ) are the force and the noise amplitude of the Langevin equation verified by U (t), defined as

U (t + ∆t) -U (t) ∆t = TF,GF (U (t)) + TF,GG(U (t))∆η
F (u(x)) = u (x)f (x) and G(u(x)) = u (x)g(x).
The unpleasant feature of the discretization rule in Eq. [START_REF] Dominicis | Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques[END_REF] is that it is expressed in terms of ∆η rather than in terms of ∆x, as we did in Eq. [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF]. This means that such a discretization cannot be used as such in the definition of the path integral in which the noise η(t) is eliminated in favor of x(t). We would rather express Eq. [START_REF] Janssen | Field theoretical methods applied to critical dynamics in Lecture notes in Physics: Dynamical critical phenomena and related topics[END_REF] in terms of a function δ(∆x) such that T f,g h(x) = h(x + δ(∆x)) . [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF] Though this cannot be done explicitly to arbitrary order, an expansion of δ in powers of ∆x can be found: 2 + γ(x)∆x 3 + . . . [START_REF] Bastianelli | Path Integrals and Anomalies in Curved Space[END_REF] where α = 1 2 , β = βg = 1 24 g g -1

δ(∆x) = α∆x + β(x)∆x
12 g g , and

γ = γg = -g 24g + g 2 24g 2 + g (3)
48g -g 2 48g 2 , etc. We shall henceforth keep the functional dependence of these functions on g explicit. Keeping in mind that ∆x = O(∆t 1/2 ) as ∆t → 0, at minimal order δ(∆x) = 1 2 ∆x and we recover the Stratonovich discretization [START_REF] Onsager | Fluctuations and Irreversible Processes[END_REF]. For the Stratonovich discretization, the chain rule in Eq. [START_REF] De Dominicis | Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems[END_REF] is valid with up to an error of order ∆t 1/2 , while including the β term in Eq. [START_REF] Bastianelli | Path Integrals and Anomalies in Curved Space[END_REF] with β = βg renders the error of order ∆t (and so on when increasing the order of the expansion). Terms of order higher than β in [START_REF] Bastianelli | Path Integrals and Anomalies in Curved Space[END_REF] will prove useless for our purpose.

Covariant discretization for the path integral. We thus have shown that a discretization scheme of the form

Tgh(x) = h x + 1 2 ∆x + βg(x)∆x 2 [14] βg(x) = 1 24 g (x) g (x) - 1 12 
g (x) g(x) [START_REF] Graham | Path integral formulation of general diffusion processes[END_REF] yields a Langevin equation for which the chain rule [START_REF] De Dominicis | Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems[END_REF] is valid up to order ∆t, namely one more order in ∆t 1/2 than the Stratonovich one. Such a scheme, that we call covariant discretization, will serve as a starting point for our construction Onsager-Machlup and MSRJD actions [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] and [START_REF] Matacz | A new theory of stochastic inflation[END_REF]. Such a use of the chain rule would be incorrect in the traditional Stratonovich-discretized actions [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF] and [START_REF] Vennin | Correlation functions in stochastic inflation[END_REF].

of the path integral, where every function in the action is understood as discretized according to Eq. [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF]. It is truncated after order ∆x 2 compared with the full expansions of Eqs. [START_REF] Dominicis | Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques[END_REF] or [START_REF] Bastianelli | Path Integrals and Anomalies in Curved Space[END_REF], but we will prove that the additional contribution βg(x)∆x 2 in Eq. [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF] is sufficient to cure the path integral from its problems upon changing paths. As we now explain, the covariant discretization scheme yields, in the ∆t → 0 limit, a path integral which possesses the modified action in Eq. [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] instead with the Stratonovich-discretised one in Eq. [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF].

From the infinitesimal propagator to the path integral

Using the notation xt for the variable defined in discrete time t = 0, ∆t, 2∆t, . . . the path-integral weight of a trajectory is inferred from the infinitesimal propagator P(x ∆t |x0) ≡ P(x ∆t , ∆t|x0, 0) for the first time step, defined as the conditional probability of x ∆t at time ∆t, given x0 at time 0.

On the importance of the prefactor. Following a well-known route [START_REF] Graham | Statistical Theory of Instabilities in Stationary Nonequilibrium Systems with Applications to Lasers and Nonlinear Optics in Springer Tracts in Modern Physics[END_REF], one finds that

P(x ∆t |x0) Tg = N |g(x 0 )| e -1 2 ∆t 2D ∆x ∆t -f (x 0 )+D g(x 0 )g (x 0 ) g(x 0 ) 2 -1 2 ∆tf (x 0 )
× e -4D∆t βg(x 0 )g(x 0 )g (x 0 ) [START_REF] Graham | Covariant formulation of non-equilibrium statistical thermodynamics[END_REF] with N = 1/(4πD∆t) 1/2 , where Tg = indicates that a function h(xt) is evaluated in the covariant discretization [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF], i.e.

xt = xt + 1 2 ∆x + βg(xt)∆x 2 with ∆x = x t+∆t -xt . [17]
Compared with the standard Stratonovich scheme (βg ≡ 0) one observes that an additional contribution arises from the βg term. . The second line in [START_REF] Graham | Covariant formulation of non-equilibrium statistical thermodynamics[END_REF] is thus a signature of the higher sensitivity of the path integral to the details of the discretization. Had we kept a γ(x)∆x 3 in the expansion of Eq. [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF], this would not have changed the form of the propagator [START_REF] Graham | Covariant formulation of non-equilibrium statistical thermodynamics[END_REF] to the order relevant for the path integral (namely, up to O(∆t) included). The covariant discretization [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF] thus goes up to the optimal order in powers of ∆x. The prefactor of the exponential in Eq. [START_REF] Graham | Covariant formulation of non-equilibrium statistical thermodynamics[END_REF] was arbitrarily discretized at x0 following a standard convention, but this choice actually presents a bothering practical drawback. Indeed, when changing paths from xt to Ut = u(xt) according to

P(x ∆t |x0) = |u (x ∆t )| PU (U ∆t |U0) [18]
(where PU is the propagator for the process Ut), the Jacobian |u (x ∆t )| brings a contribution into the exponential weight of Eq. [START_REF] Graham | Covariant formulation of non-equilibrium statistical thermodynamics[END_REF] whereas we require the continuous-time limit we wish to establish to exhibit none. We found that our results are better formulated when adopting an endpoint discretization for the prefactor. We will then use

N |g(x ∆t )| rather than N |g(x 0 )|
in Eq. [START_REF] Graham | Covariant formulation of non-equilibrium statistical thermodynamics[END_REF] (this induces extra terms in the exponential of the infinitesimal propagator, see SI). With the βg in Eq. [START_REF] Graham | Path integral formulation of general diffusion processes[END_REF],

P(x ∆t |x0) Tg = N |g(x ∆t )| e -1 2 ∆t 2D ∆x ∆t -f (x 0 ) g(x 0 ) 2 × e -1 2 ∆t f (x 0 )- g (x 0 ) g(x 0 ) f (x 0 ) . [19]
The integration measure: path integral in time slices. Putting these bits together, one writes

0≤t<t f /∆t dxt P(x t+∆t , t + ∆t|xt, t) ∆t→0 -→ Dx N [x] e -S[x] [20]
which defines the Onsager-Machlup probability of a path [x(t)] 0≤t≤t f :

Prob[x] = N [x] e -S[x] . [21]
Here S[x] is the action announced in Eq. [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] and its argument is evaluated in Tg-discretization according to Eq. [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF], and N [x] is a normalization prefactor that is endpoint-evaluated:

N [x] = 0≤t<t f /∆t 1 √ 4πD∆t 1 |g(x t+∆t )| . [22]
The average of a functional F[x] is given by F

[x] = Dx F[x] Prob[x] Pi x(0)
and is interpreted in the Feynman sense (3): a sum over all possible trajectories in discrete time. The initial condition is sampled by Pi.

The time-discrete framework provided in this paragraph fully describes what we believe to be the most natural covariant path-integral representation of the trajectory weight of a multiplicative Langevin process. However the core part of the path we started to follow awaits one further step on our side: We must now prove that changing variables in the infinitesimal propagator [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF] is equivalent to changing variables by a blind application of the chain rule in the continuous-time action [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF].

Covariance of the time-discrete weight. Let us then prove the covariance of the action under a change of path x(t) → U (t) = u(x(t)), proceeding, for convenience, backwards from U to x (see Fig. 1). We have to show that the time-discrete propagator PU (U ∆t |U0) for the variable U (t) yields back the corresponding propagator [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF] for the variable x(t). This has to hold irrespective of whether one follows the correct time-discrete procedure to change variables or the naive continuous-time chain rule. Starting from the now TG-discretized expression † PU(U ∆t |U0)

T G = N |G(U ∆t )| e -1 2 ∆t 2D ∆U ∆t -F ( Ū0 ) G( Ū0 ) 2 × e -1 2 ∆t F ( Ū0 )- G ( Ū0 ) G( Ū0 )
F ( Ū0 ) , [START_REF] Birner | Critical behavior of nonequilibrium phase transitions to magnetically ordered states[END_REF] one first notices (15) using [START_REF] Kerler | Definition of path integrals and rules for non-linear transformations[END_REF] that the prefactor of the propagator becomes the expected one of Eq. [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF] for the variable x(t),

Situation

Required discretization x(t) is differentiable

Any can work

x(t) is a Langevin process, Eq. [START_REF] Chaichian | Stochastic processes and quantum mechanics[END_REF] Stratonovich, Eq.

x(t) is a path in the covariant action, Eq. [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] or [START_REF] Matacz | A new theory of stochastic inflation[END_REF] Covariant, Eq. [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF] x(t) is a path in the standard action, Eq. [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF] or [START_REF] Vennin | Correlation functions in stochastic inflation[END_REF] None works Table 1. Minimal required discretization for the chain rule of standard calculus to hold upon a change of variables U (t) = u(x(t)).

thanks to the end-point discretized prefactor we have chosen.

Then, the difficulty is to shift from the TG-discretized variable U (t) to the Tg-discretized variable x(t), but this only requires a correct expansion at O(∆t). With the recipe presented in the Methods, one compares the two following routes:

(a) in Eq. [START_REF] Birner | Critical behavior of nonequilibrium phase transitions to magnetically ordered states[END_REF], express Ū0 as a function of x0 and ∆x; expand in powers of ∆x = O(∆t 1/2 ) up to order O(∆t); use substitution rules (derived in Ref. [START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF] and recalled in SI) in order to handle powers of ∆x of degree higher than 1;

(b) naively replace ∆U ∆t in Eq. [START_REF] Birner | Critical behavior of nonequilibrium phase transitions to magnetically ordered states[END_REF] by u (x0) ∆x ∆t ; F ( Ū0) by u (x0)f (x0); and G( Ū0) by u (x0)g(x0).

Route (b) is in principle completely faulty because it misses many terms of orders O(∆t 1/2 ) and O(∆t), as discussed in Ref. [START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF]. However, for the chosen covariant discretization of Eq. [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF] it correctly matches the outcome of route (a)which happens to be the expected infinitesimal propagator P(x ∆t |x0) of Eq. [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF]. This completes the proof that the covariant action [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF], formally introduced in Refs. [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF][START_REF] Graham | Path integral formulation of general diffusion processes[END_REF], actually corresponds to a non-ambiguous time-discrete weight. For other choices of time discretization, including the Stratonovich one, route (b) does not yield the correct result, which is illustrated by the failure of the manipulations of our toy example.

Since taking route (b) amounts to using the standard rules of calculus in the action, we have thus shown that, for the covariant discretization scheme of Eq. [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF], the correct rules of calculus in the infinitesimal propagator at small but finite ∆t become identical to the standard rules of calculus in the action [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] when taking the continuous-time limit ∆t → 0. Such a limiting procedure, which is simple for differentiable functions, and significantly more intricate in a Langevin equation (where discretization issues matter), has demanded an even higher degree of caution in order to manipulate fields inside the action, through the use of the covariant discretization [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF] (see Table 1). We now describe how this procedure extends to a formally different but physically equivalent path integral formulation of the same original problem.

Martin-Siggia-Rose-Janssen-de Dominicis (MSRJD) path-integral formulation

Since the early formulation of quantum mechanics in terms of path integrals, there have been two equivalent expressions for the transition amplitudes. One, that we have just discussed extensively, involves a single position field. An alternative one also involves a conjugate momentum field. The latter can be removed or included at will by Gaussian integration. A mirror image of the auxiliary momentum field exists for stochastic dynamics: the alternative to the original Onsager-Machlup formulation is the MSRJD approach [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF][START_REF] Dominicis | Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques[END_REF][START_REF] De Dominicis | Field-theory renormalization and critical dynamics above Tc: Helium, antiferromagnets, and liquid-gas systems[END_REF][START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF][START_REF] Kubo | Fluctuation and relaxation of macrovariables[END_REF] and involves an additional so-called response field. The purpose of this section is to extend our findings in the two-field path integral formalism. Again, we adopt the language of stochastic dynamics, but our results equally apply to quantum mechanics.

Response fields as an answer to non-linearities.

In the MSRJD approach one introduces a response field x(t) to represent the trajectory weight in a manner that allows one, for instance, to get rid of some non-linearities of the action [START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF]. Physics-wise, this setting facilitates the study of correlations and response functions on an equal footing, and to linearize (to some extent) possible symmetries of the process under scrutiny (time-reversal, rapidity reversal, etc). We now present our result for the covariant MSRJD action before describing its construction and its full time-discrete implementation.

In the covariant discretization scheme of Eq. [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF], the action

S[x, x]

Tg = t f 0 dt x ẋ -f (x) + D g(x)g (x) -Dg(x) 2 x2 + 1 2 f (x) + 1 4 g (x) 2 + 1 2 g (x) g(x) ẋ [24]
describes the path measure as ∝ Dx Dx e -S [x,x] .

In this path integral one can directly change variables covariantly using the standard chain rule and avoiding any Jacobian contribution. In continuous time, this property is tediously checked by direct computation using the chain rule of calculus together with the correspondence x(t) = u (x(t)) Û (t) between response fields. In contrast, the historically derived MSRJD action in Stratonovich discretization reads [START_REF] Vennin | Correlation functions in stochastic inflation[END_REF] and applying the chain rule to it leads to inconsistencies [START_REF] Aron | Dynamical symmetries of Markov processes with multiplicative white noise[END_REF].

t f 0 dt x ẋ -f (x) + D g(x)g (x) -Dg(x) 2 x2 + 1 2 f (x)
Sketch of the derivation of the covariance. The actual derivation of the covariance property involves a careful handling of the time-discrete infinitesimal propagator, by analyzing the contributions that arise order by order in powers of ∆t upon the change of variables U (t) = u(x(t)). To construct the MSRJD representation, one rewrites the infinitesimal propagator [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF] The infinitesimal propagator for the first time step, as inferred from Eq. [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF], is now represented as [START_REF] Cariñena | The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach[END_REF] which completely encodes the continuous-time expression

P(x ∆t |x0) Tg = g(x 0 ) g(x ∆t ) iR dx0 e -δS[x 0 ,x 0 ] , [27] δS[x0, x0] Tg = ∆t x0 ∆x ∆t -f (x0) -Dg(x0) 2 x2 0 + 1 2 f (x0) - 1 2 g (x0) g(x0) f (x0) ,

S[x, x]

Tg = t f 0 dt x ẋ -f (x) -Dg(x) 2 x2 + 1 2 f (x) - 1 2 g (x) g(x) f (x) . [29]
Note from Eq. [START_REF] Cariñena | The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach[END_REF] the appearance, in the discretized expression for the probability of a path, of normalization prefactor NMSR[x(t)] = 0≤t<t f /∆t g(x t )

g(x t+∆t ) in front of the exponential weight. This NMSR warrants that a change of path in the action [START_REF] Matacz | A new theory of stochastic inflation[END_REF] induces no spurious contribution coming from the Jacobian of [START_REF] Kerler | Definition of path integrals and rules for non-linear transformations[END_REF]. Up to a translation of the field x(t) by g /(2g), one recovers Eq. [START_REF] Matacz | A new theory of stochastic inflation[END_REF]. The symbol Tg over the equality sign means that functions of the variable x are Tg-discretized, i.e. evaluated at xt. The field x(t) is not discretized: a variable xt is introduced at each t and merely associated to xt.

One proves that only for the covariant discretization it is valid to naively change variables: namely, going from the fields ( Û , U ) to (x, x), one can replace ∆U ∆t by u (x0) ∆x ∆t , F ( Ū0) by u (x0)f (x0), and G( Ū0) by u (x0)g(x0). Such operations, combined with Û0 = x0/u (x0), would normally yield an incorrect result by missing essential contributions of order O(∆t 1/2 ) and O(∆t). Satisfactorily, these manipulations are correct for our chosen covariant discretization. The proof follows a procedure similar to the one we presented for the Onsager-Machlup case by comparing a correct route (a) with a naive route (b), with three important caveats: (i) One has to pay attention to the fact that xt ∼ ∆t -1/2 at every time step, as inferred from the scaling of a in the Hubbard-Stratonovich transform [START_REF] Black | The Pricing of Options and Corporate Liabilities[END_REF], implying that the expansions in powers of O(∆t) bring in terms that one can be tempted to throw away at first sight; (ii) One has to design additional substitution rules in order to handle powers of x0 larger than 1. This is done following a procedure similar to the one of Ref. [START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF] (see SI); (iii) Unexpectedly, in contrast to the Onsager-Machlup case exposed previously, the prefactor g(x 0 ) g(x ∆t ) in [START_REF] Cariñena | The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach[END_REF] brings a Jacobian contribution into the action upon the time-discrete change of variables of route (a), which compensates precisely a term that is missing when naively substituting ∆U ∆t by u (x0) ∆x ∆t along route (b). To summarize, we have shown that changing variables in the MSRJD action [START_REF] Matacz | A new theory of stochastic inflation[END_REF] can be done following the standard rules of differential calculus, provided that the discrete-time construction of the path-integral weight is performed according to the covariant discretization [START_REF] Horsthemke | Onsager-Machlup Function for one dimensional nonlinear diffusion processes[END_REF] -leading to a modified action as compared to the historical Stratonovich-discretized one.

Summary and outlook

When dealing with fluctuating signals as encountered in quantum mechanics or stochastic processes, physicists rely on a triptych of methods: solving a linear problem involving an operator (Schrödinger or Fokker-Planck equations), resorting to stochastic calculus (Langevin equations), or using path integrals (field theory). As we have discussed, there is a vast number of operations for which path integrals have been known to be badly flawed. This surely explains why path integrals never became a tool of choice for mathematicians working on similar problems. What we have shown in the present work is how to construct a path-integral calculus devoid of what we view as its biggest flaw. It is now possible to manipulate well-defined path integrals with nonlinear changes of fields making no errors. It is our belief that our proposed construction should not only trigger a revival of interest on the mathematics side, but also on the physics one. Mathematicswise, though we would not blush with embarrassment about our physicist's derivation, it is almost certain that many more steps are needed to bring path integrals on a rigorous par with other aspects of stochastic calculus. Physics-wise, we see immediate consequences, and open questions. Among the former, given the pedagogical importance of path integrals in higher education, we would advocate strongly in favor of our presentation (which time and efforts will surely smoothen and hopefully simplify) rather than in existing ones which suffer from well-known obvious problems (we refer to the telling example of our introduction). Second, given the lack of control, so far, in nonlinear manipulations of fields, which have been put to work in some many areas, it seems like a necessity to return to these and sort out whether and how path-integral based results are altered by taking our corrected formalism into account. Transformations of the action based on the chain rule, as simple as integrations by parts for instance, are in principle forbidden unless one uses the covariant discretization. This is especially important in areas of physics where no alternative to path integrals exist (like in path-integral based quantization issues). This brings us to future research directions, which we briefly list: What about higher space dimensions?, What about supersymmetries?, What about field theories expressed in second quantized form with coherent-states fields?

Methods

We explain here the methodology used to manipulate the infinitesimal propagator in the small ∆t limit, following Ref. [START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF].

Changing variables while respecting the discretization. When passing from one infinitesimal propagator to another, one needs to reconstitute the Tg-discretization of the variable x(t) in P(x ∆t |x 0 ) (Eq. [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF]) from the T G -discretization of the variable U (t) in P U (U ∆t |U 0 ) (Eq. [START_REF] Birner | Critical behavior of nonequilibrium phase transitions to magnetically ordered states[END_REF]). The idea is to express the time-discrete values U 0 = u(x 0 ), U dt = u(x ∆t ) and Ū0 appearing in the r.h.s. of Eq. [START_REF] Birner | Critical behavior of nonequilibrium phase transitions to magnetically ordered states[END_REF] as a function of x0 and ∆x, using Ū0 = u(x 0 ) + 1 2 [u(x ∆t ) -u(x 0 )] + β G (u(x 0 )) [u(x ∆t ) -u(x 0 )] 2 , x 0 = x0 -1 2 ∆x -βg(x 0 ) ∆x 2 , [START_REF] Mclaughlin | Path Integrals in Curved Spaces[END_REF] x ∆t = x0 + 1 2 ∆x -βg(x 0 ) ∆x 2 .

[31]

The strategy is the following: first, one uses these expressions in Eq. [START_REF] Birner | Critical behavior of nonequilibrium phase transitions to magnetically ordered states[END_REF]; second, one expands this equation in powers of ∆t and ∆x, keeping in mind that the latter is O(∆t 1/2 ). The result takes the form N |g(x 0 )| e -1 2 ∆x 2 2Dg(x 0 ) 2 ∆t × 1 + polynomial in ∆x and ∆t [START_REF] Grosche | Path integrals on curved manifolds[END_REF] The fraction in the exponential is O(∆t 0 ) and cannot be expanded; in fact, it defines the dominant order O(∆t 1/2 ) of ∆x. The polynomial contains terms of the form ∆t n ∆x m which are of order O(∆t 1/2 ) and O(∆t). Higher-order terms (O(∆t 3/2 ) and higher) can be discarded because they do not contribute to the action. Many of the terms in the polynomial do not present an obvious ∆t → 0 limit (e.g. ∆x 4 ∆t -1 ) but the substitution rules derived in [START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF] allow one to take the continuous-time limit. For completeness, these are recalled (and slightly reformulated) in the SI. The last stage of the procedure consists in reexponentiating the resulting factor [1 + . . .] obtained from Eq. [START_REF] Grosche | Path integrals on curved manifolds[END_REF]. One then recovers the expected propagator P(x ∆t |x 0 ) of Eq. [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF] as announced.

The same procedure allows one to change variables in the historical action [START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF] but this involves rules of calculus sharing little kindred with the standard ones [see Ref. [START_REF] Cugliandolo | Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager-Machlup approach[END_REF]]. The covariant discretization, instead, yields back the usual chain rule as ∆t → 0.
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 1 Fig. 1. Schematic representation, for a change of variables x → u(x), of how the covariant discretization scheme allows one to use the same rules of calculus for a Stratonovich-discretized Langevin equation and for their corresponding covariant Onsager-Machlup and MSRJD actions[START_REF] Machlup | Fluctuations and Irreversible Process. II. Systems with Kinetic Energy[END_REF] and[START_REF] Matacz | A new theory of stochastic inflation[END_REF]. Such a use of the chain rule would be incorrect in the traditional Stratonovich-discretized actions[START_REF] Janssen | On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties[END_REF] and[START_REF] Vennin | Correlation functions in stochastic inflation[END_REF].
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Supplementary information

Leticia F. Cugliandolo 1 , Vivien Lecomte 1 Some details on the toy model calculations

Model, action, and change of variables

The evolution equation of the position

One considers the non-linear change of variables y(t) = 1 3 x(t) 3 . In Stratonovich discretization, the variable y(t) is governed by the Langevin equation ẏ = v(3y) 2/3 + (3y) 2/3 η(t)

(2)

It takes the generic form ẏ = F (y) + G(y)η(t) with F (y) = v(3y) 2/3 and G(y) = (3y) 2/3 . The Galilean invariance of the underlying variable x(t) tells us that ỹ = 1 3 (xvt) 3 = 1 3 [(3y) 1/3vt] 3 should be independent of v; and indeed the variable ỹ is governed by the Langevin equation ẏ = (3ỹ) 2/3 η(t) .

(3)

(Historical) action for the variable y(t)

The path-integral weight for the multiplicative Langevin process y(t) is now

with the associated normalization prefactor

which is Stratonovich-discretized (as the symbol S = denotes). 

which still depends on v and does not respect the Galilean invariance. Note that this action also factorizes as

ẏ[(3ỹ)

This is the result of Eq. [START_REF] Feynman | Space-Time Approach to Non-Relativistic Quantum Mechanics[END_REF] in the main text. One may of course complain that the normalization prefactor ( 5) and the Jacobian of the change of path measure induce supplementary terms in the action, two contributions that we analyze next.

Determination of the contributions arising from the Jacobian and from the normalization prefactor

Let us denote the change of variables between y and ỹ by y = Y (ỹ) = 1 3 [(3ỹ) 1/3 + vt] 3 . Going to the infinitesimal propagator, one has, for the first time step (of duration ∆t), P(ỹ ∆t |ỹ 0 ) = |Y (ỹ ∆t )| P(y ∆t |y 0 ) where generically

P is the propagator of the process y(t) and P is the propagator of the process ỹ(t). Denoting δS and δ S the infinitesimal actions corresponding to these propagators, one obtains

We thus see that when passing from the infinitesimal action for y to the one for ỹ,

The function G(ỹ) is obtained as follows: differentiating y(t) = Y (ỹ(t)) with respect to time t, one derives ẏ = ẏ Y (ỹ(t)), from which one infers that the noise amplitude of ỹ(t

To compute this "Jacobian shift" ∆δS as a function of the Stratonovich-discretized variable ȳ(t) one then uses

With these expressions, one then writes [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF] as a function of the Stratonovich-discretized variable ȳ0 and the increment ∆ỹ only. Noting that ∆ỹ = ỹ∆t -ỹ0 = O(∆t 1/2 ), we can expand [START_REF] Martin | Statistical Dynamics of Classical Systems[END_REF] up to order ∆t included, to obtain

Here we can use the substitution rule (see Sec. 2 below)

2

Finally, using the explicit expressions of the functions G(y) and Y (ỹ) one obtains

to which corresponds a contribution in the action of the form

Incorporating the ∆S contribution to the action

Reading from the infinitesimal decomposition (10), we thus deduce a candidate for the action on the variable ỹ(t)

(3ỹ(t)) 2/3 2 + 5D

2 vt + (3ỹ(t))

where we have added the expressions ( 6) and [START_REF] Deininghaus | Nonlinear point transformations and covariant interpretation of path integrals[END_REF] to write the second line. This expression still depends on v, meaning that even taking into account correctly how the normalization prefactor and the Jacobian of the change of variables add a shift contribution to the action, it is still impossible to change variable naively by applying the chain rule, when working with the action (4).

Substitution rules

Denoting ∆x 2 = 2Dg(x 0 ) 2 ∆t, the substitution rules deduced in [1] can be reformulated as follows

Note that, as discussed in Ref. [1], the substitution rule ( 22) cannot be used inside the exponential of the infinitesimal propagator; indeed, since ∆x

) and the second term of this expansion would be wrong if one had first applied the rule ( 22) and then expanded. This is the trivial but shrouded reason why the procedure exposed in the Methods of the main text has to be performed by expanding the terms of order ∆t >0 outside of the exponential of the infinitesimal propagator of Eq. [START_REF] Birner | Critical behavior of nonequilibrium phase transitions to magnetically ordered states[END_REF] in the main text. This reflects the fact, known to mathematicians, that the validity of the continuous-time chain rule is relatively weak, even in the Stratonovich discretization: it cannot be manipulated without care by, for instance, taking its square and exponentiating it -as one would do by naively using it in the Onsager-Machlup action.

For further discussion on this subject, see Ref. [1].

An example: changing the discretization of the normalization prefactor

The change of discretization of the prefactor from N |g(x0)| to N |g(x ∆t )| is obtained by following the following one uses the representation in the Methods of the main text to change the discretization point and to