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Abstract—We compare a recent dehazing method based on
deep learning, Dehazenet, with traditional state-of-the-art ap-
proaches, on benchmark data with reference. Dehazenet estimates
the depth map from transmission factor on a single color image,
which is used to inverse the Koschmieder model of imaging in
the presence of haze. In this sense, the solution is still attached to
the Koschmieder model. We demonstrate that the transmission
is very well estimated by the network, but also that this method
exhibits the same limitation than others due to the use of the
same imaging model.

I. INTRODUCTION

Dehazing aims at improving visibility in images captured
in a presence of haze. In general, methods can be classified in
two categories (Jessica El Khoury PhD [1], Chapter 3). One
is based on an image enhancement paradigm, and is usually
instances of local histogram equalization. The other category
aims at the inversion of the Koschmieder model [2] written in
Equation 1,

J(x) = I(x)t(x) +A∞(1− t(x)), (1)

which states that the image captured at a position x yields J(x)
that is a linear combination of the radiant image I(x) and the
contribution of the airlight A∞ weighted by a transmission
factor t(x). A∞ is defined as the light sent to the camera by
an object at infinite distance, i.e. the diffusion of the light
by the haze. The transmission factor is t(x) = exp(−βd(x)),
where β is the scattering coefficient of the haze and d(x) the
distance of the object from the camera. This is performed by
estimating t(x) and A∞ separately or jointly.

Recently, solutions using deep learning have been intro-
duced. They fall into this category. For instance Dehazenet [3]
focuses on the estimation of t(x), and AOD-Net [4] focuses of
the joint estimation of t(x) and A∞. Two limitations can be
observed: 1-the Koschmieder model seems to have a limited
validity for heavy amount of haze where the airlight contribu-
tion is predominant compared to the radiant signal (Jessica
El Khoury PhD [1]), 2-Networks are trained on simulated
material based on the Koschmieder model, which impacts
generalization capabilities and thus may limit performance
levels on real data. We perform a quantitative analysis of

the first point and compare Dehazenet with the state of the
art on the CHIC database [5], [6]. The methods selected for
comparison are: DCP [7], FAST [8] and CLAHE [9]; DCP is
based on the inversion of the Koschmieder model by use of
the Dark Channel to estimate t(x), FAST proposes a variation
of this by estimating an Athmospheric Veil which represents
the achromatic veil responsible for intensity changes in the
image due to the light interactions in the environment, and
finally CLAHE is based on applying contrast-limited adaptive
histogram equalization.

The remaining of the paper is organized as follows. Next
Section considers the description of the parameters estimation
by learning, Section III defines the experimental procedure.
Benchmarking results are presented in Section IV and demon-
strate that dehazenet exhibits the same limitations than other
state-of-the-art methods based on the Koschmieder model
despite a very good estimation of the transmission factor.

II. DEEP LEARNING FOR DEHAZING

Researchers have recently turned their attention to deep
learning in order to explore how well it performs in the
task of haze removal, inspired by the outstanding results of
Convolutional Neural Networks (CNN) in high-level vision
tasks such as image classification [10]. The main reasoning
behind these methods is the fact that the human brain can
quickly identify the hazy area from the natural scenery without
any additional information [3], so by the use of CNNs it
seems plausible to extract the features necessary to perform
the dehazing task. Although more efficient or vision inspired
formulation may rise in the future, the first attempts focus on
the inversion of the Koschmieder imaging model.

DehazeNet: Cai et al. [3] introduced DehazeNet, a deep
learning method for single image haze removal. DehazeNet
is, because of its principles, a method based on the inversion
of the Koschmieder model. It proposes a new approach to
estimate the transmission map t(x). Given a hazy image as
input, DehazeNet computes and output its corresponding t(x),
which can be then used to recover a haze-free image by
inversion of the model. DehazeNet is trained with thousands
of hazy image patches, which are synthesized from haze-free



versions of images taken from the Internet. Since the model
for generating these hazy patches is known, a ground truth
for the transmission map t(x) can be provided for training.
DehazeNet only estimates t(x), the estimation of the global
atmospheric light A∞ is done in a separate and independent
step. In fact it can be done by using any of the approaches used
in other methods. For the purpose of this study, we have used
the same A∞ estimation for all methods in the benchmark.

AOD-Net: More recently Li et al. introduced the All-in-One
Dehazing Network (AOD-Net) [4]. Unlike DehazeNet, AOD-
Net is based on a reformulation of the Koschmieder model,
where all parameters are encapsulated into one variable. This
enables the joint implicit estimation of the transmission map
and the atmospheric light to invert the model. For the training
of AOD-Net, the authors created synthesized hazy images,
using the ground-truth images with depth metadata from the
indoor NYU2 Depth Database [11], which contains around
30,000 images. Different atmospheric light and β values are
set to generate a new set of hazy images which are fed as input
to AOD-Net. The output of the network is then compared
to the original haze-free image and trained to minimize the
error between the output and the original images prior haze
simulation. They also used a set of natural hazy images to
evaluate visually the general performance. Since the AOD-
Net has been published after our experiment, we developed
the analysis around Dehazenet in this paper. AOD-Net will be
investigated in further work.

III. EXPERIMENT

The objective of our work is to perform an objective
comparison between deep learning based methods such as
DehazeNet and traditional haze removal methods. We opted
for different approaches to perform the comparison. We made
use of the CHIC database introduced by El Khoury et al. [5],
[6]. CHIC stands for ”Color Hazy Image for Comparison”. The
database consists of two different scenes that include numerous
objects with different shapes, colors, positions, surface types
(glossy or rough surfaces) and textures. The scenes also
include four Macbeth color checkers at different distances for
color accuracy checks. A set of high-resolution images of the
same scene is acquired under a controlled environment with
the same light conditions; first without any haze (haze-free
image) and then under 9 different levels of fog density which is
introduced by using a fog machine. Each image has a uniform
fog level. Level 9 is the lowest fog density while level 1 is
the highest. In addition to this, for each scene the distances
of the four color checkers to the camera are known, the fog
properties, such as the scattering coefficient (β) are also known
and the lighting conditions remain constant.

Due to the high resolution of the images and because of
the limitations in our computing power it was not possible to
give the full image as an input to DehazeNet, to overcome
this issue we decided to crop a region of the original image
and use it as input for DehazeNet and the other reference
methods. We chose this option because we were concerned
about the possibility that resizing processes could introduce

artifacts in the image, which might have an impact on the
Koschmieder model and the results. The particular region of
the scene of the CHIC database shown in Figure 1. We selected
this region of the scene due to the presence of the color checker
in the back of the scenes, which will be used for comparison.
Also it covers objects at different depths and being the furthest
(with more depth) part of the scene it proves to be a more
challenging task for the different haze removal methods.

Fig. 1. Selected regions of the scene to do the comparisons.

The A∞ is measured on the dataset and given to all the
algorithms, which enable a fair comparison.

A set of state-of-the-art dehazing methods is considered for
comparison for different levels of haze : DCP [7], FAST [8],
CLAHE [9] and Dehazenet. For this, the pre-trained Caffe
implementation provided by Zlinker [12] is used.

We compute a selection of metrics for dehazing evaluation
[13], which mostly indicates how well edges are recovered
or enhanced (e [14], r [14], FADE [15] and VSI [16]). We
perform a color analysis of the results based on a color
checker, which indicates how well color are recovered (similar
to [17]). We also investigate how well DehazeNet estimates
the transmission factor t(x).

IV. EVALUATING DEHAZENET

A. Transmission map estimation analysis

DehazeNet performs an estimation of the transmission map
t(x). We propose to evaluate this directly compared to mea-
sured values from the benchmark. We also compare with the
transmission map obtained by DCP under different levels of
haze. We only compared with DCP because FAST is based on
a different variation of the model and CLAHE does not try to
estimate the transmission map.

The distance between the color checkers and the camera
serves as a ground truth to compare the two considered meth-
ods. Since an approximation of the scattering coefficient β is
available for each scene, a ground truth t(x) = exp(−βd(x))
can be computed for each of those color checkers to bench-
mark the considered methods.

We decided to perform the quantitative comparison only
for level 5 and above, where the model inversion permits to



improve the visibility of the scene. Levels below 5 destroy so
much the scene that the transmission map, as formulated, is
not relevant. Figure 2 shows an example of the transmission
maps obtained by DehazeNet and DCP for level 9. Already
visually, we could spot differences.

Fig. 2. Examples of transmission maps. a) Transmission map estimated by
Dehazenet for haze level 9. b) Transmission map estimated by DCP for haze
level 9.

In order to get an estimation of the transmission of the
whole color checker we segment it out and take all the pixels
in the region, we exclude the highest and lowest 15% values,
then calculate the mean of the remaining 70%. We do this
in order to avoid the effect of noise and outliers due to bad
estimations. The obtained estimation is then compared to the
values obtained using the ground truth data for the scene (color
checker on the back is located 7 m from the camera and the
one on the table at 4.35 m from the camera). Tables I and II
show the scattering coefficients (β) used, the transmission
values obtained from both DehazeNet and DCP, along with the
expected values calculated using the ground truth data, for the
color checker on the back and the color checker of the table,
respectively. We observe that DehazeNet clearly outperforms
DCP with results fairly close to the measured ground truth.
This is especially true for stronger haze.

B. Color accuracy

Several haze-removal methods are known to make colors
significantly more colorful, and most methods disregard the

TABLE I
RESULTS OF TRANSMISSION ESTIMATION ANALYSIS FOR THE COLOR

CHECKER PLACED ON THE BACK OF THE SCENE.

Haze
Level β DehazeNet DCP Ground

truth
5 103.69 0.559 0.133 0.484
7 83.57 0.618 0.255 0.557
9 17.84 0.855 0.617 0.883

TABLE II
RESULTS OF TRANSMISSION ESTIMATION ANALYSIS FOR THE COLOR

CHECKER PLACED ON THE TABLE ON THE SCENE.

Haze
Level β DehazeNet DCP Ground

truth
5 103.69 0.624 0.262 0.637
7 83.57 0.700 0.432 0.695
9 17.84 0.872 0.725 0.925

color accuracy of the restored images. In addition, the color
reliability is an aspect that most visibility metrics do not take
into account. We propose to investigate on the color accuracy
of the restored images by making use of the Macbeth Color
Checkers in the scene and of the haze-free reference images,
which are provided in the CHIC database.

Fig. 3. Labels for the 24 GretagMacbeth ColorChecker patches.

We select several patches of the color checker and plot
on a rg chromaticity diagram the color for the hazy image,
the haze-free image, and the color restored by DehazeNet
and the benchmarking algorithms. This allows us to make
a comparison of the color between the different methods.
In Figure 3, we present the labeled patches. We only show
the results for low densities of haze because with level 5
and lower, the restored colors have values close to the ones
of the achromatic patches. For those levels, visualization is
meaningless. In practice, we select 8 patches (2, 6, 7, 13,
14, 16, 17, 19). These patches were chosen to cover different
regions of the space. Only one of the achromatic patches were
selected because their results are very similar.

We present an example of the results and its interpretation
in Figure 4. We can observe that for level 9, the restored colors
are close to those of the ground truth, DehazeNet comes in
second place after FAST with an average distance of 0.081



units. We can also observe that DCP tends to over-enhance
the results, as we will see later for other levels of haze.

Fig. 4. Results example of for haze level 9. We can observe a similar trend
for the results with DCP (in red) showing a significant over-estimation of
colorfulness.

In Figure 5 (b) - (c) we present, for representative levels
of haze, the rg chromaticity of the obtained colors for the
selected patches by using DehazeNet in order to compare with
those obtained using DCP, FAST and CLAHE, for a complete
comparison we also include the colors of the haze-free image
and the hazy image.

For other levels of haze we can observe different phenom-
ena: for level 5 the restored colors are still mostly pale grayish,
so the real colors are still quite far from the ground truth,
in this case DehazeNet comes in second place, only behind
FAST, with an average distance of 0.227 units. For level 5,
the restored colors by all methods seem to approach closer to
those of the ground truth. In this case, DehazeNet falls behind
DCP and FAST with an average distance of 0.153 units.

Overall, DehazeNet’s performance in regards to color ac-
curacy is good, giving in most cases the first or second-
closest method (most times second, since FAST normally gives
the closest one) to the original haze-free color and without
showing significant over-enhancements, unlike DCP. This is to
put in relation with the excellent estimation of the transmission
map.

C. Image analysis. Model limitations

El Khoury et al. [1] took advantage of the CHIC database
to verify the assumptions and limitations of the Koschmieder
model. Having the color checkers as reference points, they
divided the scene into four different parts and, by using the
known distances of the color checkers in the scene, they were
able to calculate the transmission map for each part of the
scene, which they would later use to obtain a ”haze-free”
version of the scene as seen in Figure 6.

Fig. 5. Image of the rg chromaticity for the 8 selected patches in a)the
original haze-free image, b) under haze level 5, c) under haze level 7 and d)
under haze level 9.

Fig. 6. Evaluation of the Koschmieder model limitations under different
levels of haze. The upper row shows the original images, while the bottom
row shows the dehazed versions. Note that below level 5 the color checker
in the back can no longer be restored. Image reproduced from [1].

This, in a way, presents the limits of the inversion model
itself, since the transmission is calculated using known depths
instead of only an estimate. So, as a validation step, we
evaluated the results of DehazeNet under different levels of
haze. Our idea was to judge visually how good DehazeNet
performs by having the ”limit results” of the model for
comparison. In Figure 7, we show the results obtained for
all the methods.

The results show an improvement in the overall quality of
the image for all the different haze levels above 3. In level 3 we
can still see a slight improvement of the visibility particularly
in the book on the left and the tennis balls on the right side of
the table. We can observe that the color checker on the back



Fig. 7. Results obtained by applying the selected haze removal methods on the selected cropped region of the scene under different levels of haze. From
top to bottom: hazy input image, DehazeNet results, DCP results, FAST results and CLAHE results.

is no longer visible in the restored images of level 3 haze
for any of the methods. This is coherent with the limitations
of the Koschmieder model [1]. Although, when comparing
with the results seen in Figure 6, there is still possibility
for improvement. So we concluded that the performance of
DehazeNet is on par with other state-of-the-art methods, but
still constrained by the limitation of the Koschmeider model.

D. Image analysis. Metrics
The final comparison consists in using a set of metrics

which are normally used for the quality assessment of visibility
enhancement algorithms. For this comparison the following
metrics were chosen based on the recommendations by El
Khoury et al. [13]:
• e and r: this metric compares the restored image to a

reference hazy image. The e index evaluates the ability of

the method to restore edges which were not visible in the
reference image but are in the restored image, while the r
index is an indicator of restoration quality. The scores of
these indexes refer to the gain of visibility, higher score
means better results obtained [14].

• FADE: Fog Aware Density Evaluator. This is a reference-
less metric. It is based on natural scene statistics. They
create a model based on extracted features observed in
500 natural hazy and 500 haze-free images. By using this
model the metric estimates the ”fog density” in the image,
therefore lower scores represent a better restored image.
It performs particularly well at assessing color recovery
assessment [15].

• VSI: Visual Saliency-based Index. This is one of the
few metrics that compares the restored image to the



original haze-free image. It is a metric based on the
assumption that an images Visual Saliency map has a
close relationship with its perceptual quality. It is based
on their own Saliency Detection by combining Simple
Priors (SDSP) method [18] that works by integrating
prior knowledge from frequency, color and location. VSI
outperforms the other two metrics significantly when it
comes to sharpness recovery assessment [16].

Fig. 8. Results of the selected metrics under the different available haze
levels. Note that the performance varies depending on the haze level, but
DehazeNet (in red) tends to perform poorly across all metrics (note: for FADE
values lower is better).

The results of using these metrics are shown in Figure 8,
when appropriate, we include the results for the original hazy
image as well. Note that we do not present the results of the
e index for levels under 5, because due to the low visibility
conditions any change in the image results in very high values
for all methods, which are difficult to compare. The results
show that in general (across all the four metrics), over most
of the different levels of haze, DehazeNet performs worse
than all the other methods. So, by considering the results
of these metrics, we can conclude that DehazeNet performs
poorly in terms of edge visibility and structural sharpness
restoration, either being the worst or second-worst performer
in the majority of cases. The results of those metrics should
not be generalized to the overall evaluation of the methods
since it has been demonstrated that none of them correlate
perfectly with the visual observation on this database [13].

V. CONCLUSION

DehazeNet performs comparable to other state of the art
algorithms. We observed better results for transmission map
estimation and color accuracy, but worse for improvements in
edge visibility and structural sharpness. This analysis is based
only on an image across several level of one type of fog.
We nevertheless can predict that eventually, deep learning will
permit to recover the parameters of the model the best possible.
AOD already improved a lot on the Airlight estimation, if
it is re-tuned for real scenes, it may become optimal. Those
proposals still face the limitations of the imaging model, and
investigations in the reformulation of the model of haze are
required to create a breakthrough in performance.
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[2] K. Harald, “Theorie der horizontalen sichtweite: Kontrast und sichtweite,
vol. 12,” Keim & Nemnich, Munich, 1924.

[3] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “Dehazenet: An end-to-end
system for single image haze removal,” IEEE Transactions on Image
Processing, vol. 25, no. 11, pp. 5187–5198, 2016.

[4] B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “Aod-net: All-in-one
dehazing network,” in The IEEE International Conference on Computer
Vision (ICCV), Oct 2017.

[5] J. El Khoury, J.-B. Thomas, and A. Mansouri, “A color image database
for haze model and dehazing methods evaluation,” in Image and Signal
Processing, A. Mansouri, F. Nouboud, A. Chalifour, D. Mammass,
J. Meunier, and A. Elmoataz, Eds. Cham: Springer International
Publishing, 2016, pp. 109–117.

[6] ——, “A database with reference for image dehazing evaluation,”
Journal of Imaging Science and Technology, vol. 62, no. 1, 2018.

[7] K. He, J. Sun, and X. Tang, “Single image haze removal using dark
channel prior,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 12, pp. 2341–2353, 2011.

[8] J.-P. Tarel and N. Hautiere, “Fast visibility restoration from a single color
or gray level image,” in Computer Vision, 2009 IEEE 12th International
Conference on. IEEE, 2009, pp. 2201–2208.

[9] Z. Xu, X. Liu, and N. Ji, “Fog removal from color images using
contrast limited adaptive histogram equalization,” in Image and Signal
Processing, 2009. CISP’09. 2nd International Congress on. IEEE,
2009, pp. 1–5.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[11] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from rgbd images,” in European Conference on
Computer Vision. Springer, 2012, pp. 746–760.

[12] “zlinker - dehazenet,” https://github.com/zlinker/DehazeNet, accessed:
2017-12-05.

[13] J. El Khoury, S. Le Moan, J.-B. Thomas, and A. Mansouri,
“Color and sharpness assessment of single image dehazing,”
Multimedia Tools and Applications, Sep 2017. [Online]. Available:
https://doi.org/10.1007/s11042-017-5122-y

[14] N. Hautière, J.-P. Tarel, D. Aubert, and E. Dumont, “Blind contrast
enhancement assessment by gradient ratioing at visible edges,” Image
Analysis & Stereology, vol. 27, no. 2, pp. 87–95, 2011.

[15] L. K. Choi, J. You, and A. C. Bovik, “Referenceless prediction of per-
ceptual fog density and perceptual image defogging,” IEEE Transactions
on Image Processing, vol. 24, no. 11, pp. 3888–3901, 2015.

[16] L. Zhang, Y. Shen, and H. Li, “Vsi: A visual saliency-induced index
for perceptual image quality assessment,” IEEE Transactions on Image
Processing, vol. 23, no. 10, pp. 4270–4281, 2014.

[17] J. El Khoury, J.-B. Thomas, and A. Mansouri, “Haze and convergence
models: Experimental comparison,” in AIC 2015, Tokyo, Japan, May
2015. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01202989

[18] L. Zhang, Z. Gu, and H. Li, “Sdsp: A novel saliency detection method
by combining simple priors,” in Image Processing (ICIP), 2013 20th
IEEE International Conference on. IEEE, 2013, pp. 171–175.


