
HAL Id: hal-01823866
https://hal.science/hal-01823866

Submitted on 9 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing Images by the Gromov-Hausdorff
Distances Between Derived Hierarchies
Amin Fehri, Santiago Velasco-Forero, Fernand Meyer

To cite this version:
Amin Fehri, Santiago Velasco-Forero, Fernand Meyer. Characterizing Images by the Gromov-
Hausdorff Distances Between Derived Hierarchies. International Conference on Image Processing
(ICIP), Oct 2018, Athens, Greece. �hal-01823866�

https://hal.science/hal-01823866
https://hal.archives-ouvertes.fr


CHARACTERIZING IMAGES BY THE GROMOV-HAUSDORFF DISTANCES BETWEEN
DERIVED HIERARCHIES

Amin Fehri, Santiago Velasco-Forero and Fernand Meyer

MINES ParisTech, PSL Research University, CMM - Center of Mathematical Morphology
{amin.fehri,santiago.velasco,fernand.meyer@mines-paristech.fr}

ABSTRACT

A hierarchy is a series of nested partitions in which a coarser
partition results from merging regions of finer ones. Each hi-
erarchy derived from an image provides a particular structural
description of the image content, depending upon the criteria
for merging neighboring regions. Distinct hierarchies derived
from a same image reflect its various facets and the distances
between them nicely characterize its content. In this paper the
hierarchies are constructed with the versatile stochastic water-
shed algorithm and their inter-distances are measured with the
Gromov-Hausdorff distance. Experiments conducted on im-
ages simulated by dead leaves model illustrate the advantages
of our approach in terms of learning efficiency and under-
standability of the results.

Index Terms— Gromov-Hausdorff Distance, Hierar-
chies, Stochastic Watershed, Texture, Classification

1. INTRODUCTION

Hierarchical segmentation is a multi-scale image analysis
technique that provides contours valuations proposals, with
respect to given properties to enhance. It has been one of the
fruitful approaches to perform segmentation tasks. The goal
then is to find the hierarchical segmentation from which it is
easier to find a suitable segmentation [1, 2, 3, 4, 5]. How-
ever, these different hierarchical segmentation approaches are
application-dependent, and their efficiency depends on the
types of structures present in the images. In this paper, we
propose a new approach to take advantage of such multi-scale
analysis. The main idea is to quantify the distance between
different hierarchical representations to characterize images.
In the proposed approach, we only use selected morpholog-
ical hierarchical segmentation methods [6]. However, any
hierarchical method can fall within its scope.

First, we remind the reader of ways to generate hierar-
chical segmentations, which basically consist in progressive
merging of images regions such that the regions we are in-
terested in are the last to merge with their neighbors. Then
starting from a set of hierarchies and a given image, we show
how we can compute a distance between them: we use this

representation to characterize classes of images in an analyti-
cal way. Finally, we illustrate the discriminative and explana-
tory power of these features on generated shape images. An
overview of the process can be found in Fig. 1. Our main
contributions are: (i) The use of the Gromov-Hausdorff dis-
tance to quantify the relative contributions of each hierarchy
of segmentation, (ii) The introduction of image features in the
form of interhierarchy distance matrices.

Fig. 1. Overview of our approach A: We start from an image
and a set of morphological hierarchical segmentations tech-
niques. B: Each of these techniques highlight different con-
tours of the image, and we can quantify their relative contribu-
tion using the Gromov-Hausdorff distance. C: We proposed
to use the interhierarchy Gromov-Hausdorff distance matrices
as features.

2. MORPHOLOGICAL HIERARCHIES

2.1. Hierarchies of Segmentations

Hierarchical segmentation is a low-level image analysis often
used to make easier the obtention of a suitable segmentation.
In this work, we limit ourselves to morphological hierarchies
that can efficiently be obtained in a graph-based framework
[7]. For the sake of brevity, the reader is invited to refer to
the section 2. of [8] for a description of this process. Mak-
ing use of such approaches, we have several ways to generate
an indexed hierarchy of partitions (H,λ), with H a chain of
nested partitions H = {π0, π1, . . . , πn|∀j, k, 0 ≤ j ≤
k ≤ n ⇒ πj v πk}, with πn the single-region partition, π0



the finest partition on the image and πi v πj if all regions
of πi are included in regions of πj , and λ : H → R+ being
an ultrametric stratification index verifying λ(π) < λ(π′) for
two nested partitions π ⊂ π′. This increasing map allows us
to value each contour according to the level of the hierarchy
for which it disappears: this is the saliency of the contour [5].
A contour then has various saliencies for various hierarchies.
An example of this is shown in Fig. 1B.

2.2. A wide range of hierarchies

Based on the framework described in the previous section,
one can generate several types of hierarchies that highlight
different contours in the image. In particular, the model of the
stochastic watershed (SWS) hierarchies [6] , based upon the
seminal work of [9] is able to adapt to the specific object prop-
erties to enhance (e.g. elongation, surfaces equilibrium, con-
trast) for segmentation tasks [8]. It can also take spatial prior
information into account in its making [10]. If we consider
our image as a topographic relief, flooding this image leads to
watershed lines, i.e. to a segmentation. By spreading random
flooding sources multiple times and flooding the image ac-
cordingly, one can characterize each contour of the image by
its frequency of appearance in the associated segmentations.
By only choosing high-level parameters such as the density
governing the distribution of markers or their shape and size,
we can then generate at will various multilevel representations
of the images highlighting various types of regions. Thanks
to this versatility, specific hierarchies can be built: for exam-
ple, we can favor certain shapes in the images by considering
a surface-based SWS hierarchy in which the measured areas
are the ones of regions eroded with anisotropic structuring el-
ements. An example of this is shown in Fig. 2: vertical struc-
tures are highlighted in (c), and horizontal ones in (d). An ad-
ditional layer of supplementary complexity can be added via
the possibility to combine hierarchies to obtain new ones. It
can notably be done through the use of subdominant ultramet-
rics to obtain the supremum, infimum or a linear combination
of two hierarchies [11, 7]. In this work, when saliencies are
probability values (as it is the case of stochastic hierarchies),
the same procedure can lead to probabilistic combinations of
hierarchies of the type AND(H1,H2) and OR(H1,H2). In
Fig. 2(f), the circular and cross shapes are highlighted, as
they respect the horizontal and vertical property. We argue
that this wealth of controlled understandable options can lead
to powerful features, through the use of a distance between
hierarchies: the Gromov-Hausdorff distance.

3. FEATURES ON HIERARCHIES USING
GROMOV-HAUSDORFF DISTANCE

Indeed, once provided with a family of hierarchies, one may
wonder if there are ways to use the different information they
provide to characterize images. The usual approach to do so

(a) (b) (c)

(d) (e) (f)

Fig. 2. Saliency maps for different hierarchies (in-
verted for better visualization). (a) Image, (b) Dy-
namics, (c) Hsurf−V ertSE , (d) Hsurf−HorizSE , (e)
HOR = OR(Hsurf−V ertSE ,Hsurf−HorizSE) (f) HAND =
AND(Hsurf−V ertSE ,Hsurf−HorizSE)

it to extract information at various levels of the hierarchies,
which often requires a hard parameter-tuning [12]. Further-
more, it obliterates the interesting property that hierarchical
segmentations are more informative than flat segmentations
as they capture simultaneously cluster structure at all levels of
granularity. The study of most of the useful existing hierarchi-
cal clustering methods is made complex by the fact that they
are defined algorithmically. The morphological hierarchies
that we use fall within this scope. To study the properties
of such hierarchies, works define a distance between hierar-
chical clusterings called Gromov-Hausdorff distance [13, 14],
and use it to study their stability and convergence [15]. In this
work, we make use of this distance to build a feature space
that capture the relative information brought by several hier-
archies applied on the same image.

3.1. Gromov-Hausdorff distance

In [13] (translated in English in [14]), the authors propose a
distance, called Gromov-Hausdorff (GH) distance, to mea-
sure how far two compact metric spaces are from being
isometric. It gives a very useful and natural way to distin-
guish between metric spaces. By reducing this distance to the
subclass of ultrametric spaces, we can in particular quantify
the relative contributions of different hierarchical clusterings.
This distance, used intensively in several fields such as phylo-
genetics and data mining [16], has also notably been used in
image processing as a way to estimate the similarity between
two points clouds [17]. Let us consider two metric spaces
(X1, uα) and (X2, uβ). One supposes that we have defined
two functions f : X1 → X2 and g : X2 → X1 that are maps
from one space to the other. The GH-distance is expressed



as:

dGH(X1, X2) :=
1

2
min
f,g

max(dis(f), dis(g), dis(f, g))

(1)
With the distorsion dis(f) and the joint distorsion dis(f, g)
defined as:{
dis(f) := max(x,x′)∈X2

1
|uα(x, x′)− uβ(f(x), f(x′))|

dis(f, g) := maxx∈X1,x′∈X2
|uα(x, g(x′))− uβ(x′, f(x))|

(2)
Intuitively, it measures how close can we get to an isometric
(distance-preserving) embedding between two metric spaces.
As it is shown in [13, 14, 15], to determine (1) for two hierar-
chies defined over different sets, one must match data points
before any distance computation, which is a computationally
heavy operation that leads some authors to provide heuris-
tics to approximate it in specific configurations [17, 18]. In
our case we are dealing with structures that are much sim-
pler: instead of considering objects-to-objects distances, we
compute them for hierarchies based upon the same fine par-
tition of an image. So the considered metric spaces differ
only by their metrics and not by the space they cover, which
means that the two distortions are symmetrical and equal to
the joint-distortion as well. Thus, the GH distance (1) simply
becomes:

dGH((X,uα), (X,uβ)) = max
x,x′∈X

|uα(x, x′)− uβ(x, x′)|.
(3)

3.2. Ultrametric Normalization

To make sense of GH distances, one must be sure that ul-
trametric values are commensurable and of the same order
of magnitude. Accordingly, we propose a way to normal-
ize these values with respect to the number of regions in
each level of the hierarchy. Let (H,λ) be an ultramet-
ric hierarchy, with λ : X 7→ R+ which is strictly in-
creasing with the inclusion order over H. Let us denote
N = card(H), (H0, ...,HN ) the nested series of cluster-
ing associated with the hierarchy, which are numbers of
regions in successive levels of the hierarchy (n0, ..., nN ),
with 0 < n0 ≤ n1 ≤ ... ≤ nN = N . Then we take as a
normalized ultrametric:

λ̃ :

{
H → [0, 1]
Hi 7→ N−ni

N

(4)

3.3. An interhierarchy distance matrix as hierarchical
feature

Provided with such a distance, we can now quantify the
relative contributions of different hierarchies built upon the
same image. This provides us with a condensed representa-
tion leveraging the information provided by all the different

levels of these different hierarchies. To do so, let us con-
sider an image I and a set of complementary hierarchies
((H1,λ1), . . . , (HN ,λN )) built upon this image. As we
have seen in the previous section, it is then straightforward to
compute the GH-distance between these hierarchies, as they
constitute ultrametric spaces upon the same set. We take ad-
vantage of it by building the following symmetrical distance
matrix:

M(I, (H1, . . . ,HN )) =
[
dGH(λi,λj)

]
(i,j)∈{1,...,N}2 (5)

Since this matrix is symmetrical, we retain for each image its
upper triangular part only. This constitutes a descriptor of the
image for which we only had to specify the high-level param-
eters governing the hierarchies generation. Summarizing, an
overview of the proposed process to extract features from a
family of hierarchies can be found in Fig. 1.

4. EXPERIMENTAL RESULTS

In this section, we present some experimental results high-
lighting the properties of the descriptors we have proposed in
the previous section.

4.1. Dead leaves process classification

In a first experiment, we highlight the discriminative power
of the unsupervised hierarchical features we introduced, as
long as their understandability. In the spirit of [19], we want
to test if these features capture pertinent information leading
to a quicker understanding of the images. To do so, we con-
sider a classification problem on a set of simulated images
from different dead leaves process [20][21]. In a dead leaves
model, two dimensional textured surfaces (which are called
“leaves” or ”primary grains”) are sampled from a shape and
size distribution and then placed on the image plane at ran-
dom positions, occluding one another to produce an image. It
is well-known that such a model creates images which share
many properties with natural images such as scale invariance
and other statistics properties [22][23]. In our experiment,
we have simulated five classes with 100 images each, by us-
ing dead leaves model with different primary grains: circles,
crosses, flowers, horizontal and vertical lines. Examples of
simulated images can be found in Fig.3. Note that we have
included different sizes and orientations tweaks to increase
the difficulty of the identification. For each of these images,
we compute the following hierarchies: dynamics, surface-
based SWS hierarchies with structuring elements of various
sizes and forms (cross, circle, diagonals, horizontal and ver-
tical lines), as long as probabilistic AND and OR of these
SWS hierarchies. Then we generate for each of these images
the interhierarchy distance matrices of equation 5. We can
then use these matrices as features in a classical classification
pipeline using a linear support vector machines (SVM) to
classify images of each class. We notice that the system can



Fig. 3. False-color representation of simulated images by
dead leaves model with different primary grains.

learn with very few examples how to discriminate properly
these five classes. In order to have a comparison point, we
conduct the same experiment using a Convolutional Neural
Network (CNN) with a two-layer architecture1 without image
augmentation to make a fair comparison. In Fig. 4 are rep-
resented for both experiments the evolutions of the average
f-score with the percentage of images used in the training
set. In the first experiment (using the distance matrices as
features), using only 5% of them (so 25 images out of 500)
already leads to a 85% percentage of good classification over
the remaining images, and this figure quickly goes up. In the
CNN experiment, the number of required training images to
get to the same results is bigger. It is thus as if, on the con-

(a) Linear SVM (b) CNN

Fig. 4. Evolution of the classification error with the number
of images in the training set: (a) Linear SVM on proposed
features, (b) CNN.

trary to CNN that have a black-box behavior, our approach
shows what is often referred to as an “aha moment”, i.e. a
moment of sudden realization and comprehension [19]. This
translates a form of understanding of the content of the im-
age, which is corroborated by the study of the importance of
which specific interhierarchy distances were the more useful
to discriminate between two types of classes. For exam-
ple, discriminating between horizontal and vertical lines will
mainly be due to dGH(Hsurf−V ertSE , Hsurf−HorizSE),
while discriminating between crosses and circles will mainly
be due to dGH(Hsurf−CrossSE , Hsurf−HexSE). A visu-
alization of the quality of the feature space thus generated
can be found in Fig. 5(a), where we project the features in
a space of two dimensions using the t-SNE algorithm [24].
Furthermore, using the variable selection method L1-SVM

1(12 Conv + 12 Conv + MaxPolling(3× 3) + Dropout(0.3) ) + (24 filters
+ 24 filters + MaxPolling(3 × 3)+ Dropout(.5) ) + FullyCon64 + Dropout
(.5) + SoftMax. Categorical cross-entropy as loss function and adaptive gra-
dient (Adagrad) as optimizer. The code used to train the CNN and scripts to
generate the synthetic images are available online at https://github.com/./.

(a)2D scatterplot by t-SNE(b)SD scatterplot by L1-SVM

Fig. 5. (a) We notice that the classes “Flowers” and “Hori-
zontal Lines” are not well separated (b) These two distances
between hierarchies provide a geometrical understanding of
the images content.

[25], we can isolate the more discriminative distances for
two specific classes to separate. For example, the t-SNE
visualization in Fig. 5(a) shows us that discriminating be-
tween the classes “Flowers” and “Horizontal Lines” is not
straightforward. The more discriminative variable between
these two classes is the distance between Hsurf−V ertSE and
HAND(surf−V ertSE,surf−HexSE): this is a geometrical in-
terpretation of the image content, as they respectively capture
straight lines and lines with a protuberance (i.e. flowers).
Projecting the distance features onto the subspace of the two
more discriminative variables properly separates these two
classes, as can be seen in Fig. 5(b). We are thus provided
with a good way to control and understand features gener-
ation to be further used in vision-based system, especially
when we have prior information about the type of objects
we are looking for in images, and/or when we have very few
training examples and want to maximize their usefulness.

5. CONCLUSIONS AND DISCUSSIONS

In this work, we have proven the efficiency of features created
by estimating the differences between different hierarchical
segmentations of the same images. The proof-of-concept ex-
periments we conducted show that these features can provide
a geometrical interpretation of the image content, and help
to analyze images classes with very few examples. Further-
more, this approach can be extended to any type of hierarchies
to capture various types of information. We see three ways
to use such information. First, if we know well the type of
images we want to discriminate, we can generate at will the
hierarchies that will be the more discriminative. Secondly, if
we build a sufficiently wide range of complementary hierar-
chies for an unknown class of images, we can characterize
these images by looking at the way they react to these opera-
tors through the study of interhierarchy distances. In line with
classical morphological approaches, we can thus gain knowl-
edge about images by studying the way they react to given
operators. Finally, many methods exist to extract a segmen-
tation out of a hierarchical segmentation, and our approach
provides a way to identify the hierarchies that will lead to the
best results in such a process.
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