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Abstract—This paper addresses the problem of human action
recognition from sequences of 3D skeleton data. For this purpose,
we combine a deep learning network with geometric features
extracted from data lie on a non-Euclidean space, which have
been recently shown to be very effective to capture the geometric
structure of the human pose. In particular, our approach claims
to incorporate the intrinsic nature of the data characterized
by Lie Group into deep neural networks and to learn more
adequate geometric features for 3D action recognition problem.
First, geometric features are extracted from 3D joints of skeleton
sequences using the Lie group representation. Then, the network
model is built from stacked units of 1-dimensional CNN across the
temporal domain. Finally, CNN-features are then used to train an
LSTM layer to model dependencies in the temporal domain, and
to perform the action recognition.

The experimental evaluation is performed on three public
datasets containing various challenges: UT-Kinect, Florence 3D-
Action and MSR-Action 3D. Results reveal that our approach
achieves most of the state-of-the-art performance.

I. INTRODUCTION

Human action recognition is a hot topic in the computer
vision and pattern recognition fields. It is used for several
applications related to machine learning techniques and human
behavior as robotics, intelligent monitoring, human-computer
interaction, virtual reality and video games, among others.
The similarity of action due to the complexity of human
movement and the variety of the same actions performed by
distinct subjects are the fundamental challenges of actions
classification.

In recent years, many approaches dealing with human action
and activity recognition from depth sensors have received
growing attention. These approaches can be categorized into
3D skeleton approaches, depth-based approaches and hydride
approaches. In this paper, we focus on 3D skeleton data
because it gives richer information about human kinematics.
3D skeleton data record the trajectories of human body joints
and undergo less intra-class invariance compared to RGB and
depth [28]. It is robust to illumination change and invariant to
camera views. However, these skeletons are often noisy due
to the difficulty in localizing body-parts, self-occlusions and
sensor range errors [11]. Variety of techniques reformulating
computer vision problems over non-Euclidean spaces, such as
Riemannian manifolds, have received growing attention [20],
[23], [22], [4], [5], [1]. In this paper, we consider such a mani-
fold representation which considers the geometry of space, and

more particularly focus on Lie Group features [23], [22]. Lie
group is one of the manifold-based approaches that achieved the
best result on several public datasets [23], [22], [1]. The main
constraint of its representation is the misalignment of sequences
in time and that makes distance metric inexact. Dynamic
Time Warping (DTW) is the most common way to solve this
problem. This step cost supplemental time. In addition, features
are extracted per skeleton and then stacked, which makes
this representation extremely high-dimensional. Despite the
effectiveness of Lie group presentation, it is computationally
expensive and extracts only spatial information from skeleton
joints. Hence, temporal information needs to be exploited to
express the dynamics of human motion [7], [10].

The Convolutional Neural Networks (CNNs) are deep neural
network models, which have obtained state-of-the-art results
in many tasks due to their ability to act as translation-invariant
features extractors. They create a hierarchy of features,
progressively more abstract, thanks to the staked convolutional
operators. CNNs nowadays have achieved great success in
image classification and video action recognition [12], [3].
On the other hand, the Long Short Term Memory networks
(LSTMs) which are a special kind of the Recurrent Neural
Networks (RNN) [9], [28], [15], [6], [10], are capable of
learning long-term dependencies in time series problems like
action recognition. However, it is still difficult for LSTMs
to memorize the information of entire sequences with many
time steps [26] and to extract high-level features [17]. The
combination of CNNs and LSTMs has already been proposed
in literature domains (speech, text and image recognition).

This work has been motivated firstly by the powerful capabil-
ity of deep neural networks in learning compact and discrimi-
native representations for images and videos, and second by the
successful use of traditional manifold-based analysis in many
computer vision applications. In particular, we build a deep
neural network architecture performing action learning on Lie
Groups. The architecture of our proposed solution captures time
dependencies on more progressively abstract features extracted
by convolutional operations from the geometric representation
offered by Lie Groups.

The rest of this paper is organized as follows. Section 2
presents the related work on skeleton-based action recognition.
In Section 3, our approach is described and then Lie group



representation and proposed deep network architecture are
introduced. Section 4 presents the experimental results and
finally Section 5 concludes the paper.

II. RELATED WORKS

3D action recognition has been a widely explored topic in
computer vision. We will focus then in reviewing the works we
consider relevant to two main categories: handcrafted geometric
and deep learning methods based on skeleton data.

a) Handcrafted geometric approaches: Before the recent
advent of deep learning techniques, most of the works focused
on the design of a traditional chain, including handcrafted
feature extraction from motion, dynamic modeling and classifi-
cation. The first type of methods performed action recognition
from direct measures of 3D joint parameters of the human
body. Indeed, Wang et al. [24] developed an algorithm based
on key pose mining of each action, which is considered as
a set of ordered poses which is required to be close but
not necessarily adjacent in the action sequences. The action
classification was then performed by matching into the motif
of each class and taking the maximum of matching score.
Luvizon et al. [16] proposed a new framework to extract
spatial and temporal features from subgroups of joints. Then,
they aggregated features using k-means classifier, and finally,
combined them using a metric learning method.

Besides, many other approaches have been recently proposed
to exploit the differential geometry to represent skeleton data,
so as to consider the non-linear nature of human motion. In
[22], [23], the authors represented each skeleton as one element
on the Lie Group, and the action sequence corresponded
thus to a curve on this manifold. To handle rate variability
among curves, DTW was employed to temporally align the
curves. Finally, Fourier temporal pyramid representation is
applied before a linear classification by SVM. The manifold
assumption was computationally expensive, that is why [11]
tried a new representation of data. They proposed a method
catching the maximum of relationships between skeleton joints.
They proposed two kernel tensor representations; Sequence
Compatibility Kernel (SCK) and Dynamics Compatibility Ker-
nel (DCK). SCK captured the spatiotemporal compatibility of
joints in one sequence against those in the other. DCK explicitly
modeled the action dynamics of a sequence. Tensors formed
from these kernels were used to train an SVM. Slama et al. [20],
[19] exploited no-Euclidean geometric properties to express
the time series of skeletons as one point on a Grassmann
manifold, where the classification is performed benefiting from
the Riemannian geometry of this manifold. Similarly, Devanne
et al. [4] extended this idea to represent a spatiotemporal motion
characterized by full human skeleton trajectory. These motion
trajectories are extracted from 3D joints and expressed in R60.
The action recognition is performed using a K-NN classifier
using geodesic distances obtained in open curve shape space.

b) Deep learning approaches: After the recent progress in
deep learning techniques, many applications of computer vision
field, including action recognition, have shown a change of
paradigm. Veeriah et al. [21] proposed a differential Recurrent

Neural Network (dRNN) which represented a gating scheme for
the LSTM. Their dRNN emphasized the change in information
gain caused by the salient motions between the successive
frames. Instead of using the whole skeleton sequence, Du
et al. [6] divided it into five parts according to the human
physical structure. Then, they fed each part separately into
bidirectional RNNs/LSTMs. As the number of layers increased,
the representations extracted by the subnets were hierarchically
fused to build a higher-level representation. The final repre-
sentation of the skeleton sequences were fed into a single-
layer perceptron, and the temporally accumulated output of the
perceptron formed the final decision. Liu et al. [15] proposed
a spatiotemporal LSTM (ST-LSTM) to explicitly model the
dependencies between the joints and apply recurrent analysis
over spatial and temporal domains. Besides, they introduced
a trust gate mechanism to make LSTM robust to noisy input
data. Zhang et al. [28] investigated a set of simple geometric
features using 3-layer LSTMs, and showed that using joint-line
distances as input requires less data for training. Lee et al. [13]
proposed a new representation of data and they used a Temporal
Sliding LSTM (TS-LSTM). In the first step, they transformed
the coordinate system of all skeleton using translation, scale and
rotation. Then, they extracted salient motion from the new data
representation. Finally, they used a TS-LSTM network which
calculated the average of multiple parts – short-term, medium
term and long term – to get final features.

III. APPROACH

For the problem of human action recognition in the 3D joint
space, we propose a deep network architecture, which we refer
to as the Long-term Recurrent Convolutional Network on Lie
Groups (LRCNLG), to learn the Lie group representations of
skeletal data. The network model is then built from stacked
units of 1-dimensional CNN across the temporal domain. Then
we use the CNN-features to train a LSTM model to recognize
action categories. The architecture of the deep neural network
of our approach is presented in Figure 1.

A. Lie Group Representation for 3D Skeletal Data

Lie group is a topological group and a smoothed manifold
presented as a vector space [8]. As presented by Vemulapalli et
al. [22], the human action can be represented by the movement
of the rigid body part. The relative geometry T between two
body parts can be described using the 3D rotation R and
translation d required to take one body part to the position
and orientation of the other. Mathematically, the relative ge-
ometry between body parts is presented as a point in Lie
group space (SE(3)× ...× SE(3)), and the relative geometry
between all pairs of body parts is then presented as a curve in
SE(3)× ...×SE(3). However, the classification of the curves
in SE(3) × ... × SE(3) into different action categories is a
difficult task due to the non-Euclidean nature of the space.
That’s why the authors in [22], [23] map between Lie Group
and Lie Algebra as presented in the equation (1).

LexpG(u) = eu, LlogG(g) = log(g) (1)



Fig. 1. The architecture of our LRCNLG model. The network model is built from stacked units of 1-dimensional CNN on Lie Group points across the temporal
domain

where G represents the Lie Group, g its Lie Algebra, u the
tangent space vector, e and log respectively represent the usual
matrix exponential and logarithm. The Lie Algebra curve from
Lie Group is given by an 6M(M − 1) vector, where M is
the number of body parts. The action is then represented as
temporal evolution of d-dimensional vector.

B. Our LRCNLG model

To learn the features extracted from Lie Groups, we develop
a LRCNLG model. The properties of our model follow those of
classical CNN and LSTM ones. The LRCNLG model, trainable
with stochastic gradient descent (forward and backward), takes
as input Lie Group curves (ζ1(t)...ζn(t) where t=0,1,....T).
This input is presented as a 3D tensor for variable-length
sequences of (m, f )-dimensional vectors where m represent the
maximum length for sequences and f is the feature dimension.
More precisely, the model is built from stacked units of 1-
dimensional CNN across the temporal domain followed by
LSTMs. The different layers of our model are described below.

First, a layer of Batch Normalization (BN) allows to nor-
malize data and to act like a scale-warping step. It restricts
the inputs to follow a normal distribution. Then, a convolution
layer is applied across the temporal domain. It is responsible for
applying a mathematical computation of discrete convolution
on the input feature (X) as 1-dimensional filters (K) presented
in the equation (3):

(k ∗X)i =
∑
m

Xi−mkm (2)

The 1-dimensional filter height is fixed to the feature size
f and its width to the length m. The kernel size is flipped
to obtain the commutative property of convolution operations
which leads to less variation of valid values. There are three
hyper-parameters which control the output size of convolution
layer: the kernel size which controls the number of neurons
in the convolution layer that connects to the same region of
the input tensor (its size is fixed to 8 in our model), the stride
which specifies how many positions apart a filter is moved
across the input, and the zero-padding which represents the
size of the extending border values outside with 0s. In this
implementation, the stride is always equal to 1 and there is
no zero-padding performed. After sliding the filter over all the

locations, we use a Rectified Linear Activation (ReLu) to the
output in order to introduce nonlinearities and to leaves the size
of the volume unchanged into the model. It is evaluated to 0 for
negative inputs, and positive values remain untouched. ReLUs
smooth approximations to the sum of many logistic units and
they produce sparse activity vectors. Below is the equation of
the ReLu function:

y = max{0,
n∑

i=0

wixi + x0} (3)

The last layer in the CNN part of our model is a max-pooling
one, which performs a down-sampling operation along the
spatial dimensions. The 1-dimensional max-pooling partitions
the input tensor data into 1D sub-tensors along the dimension,
selects an element with the maximal numeric value in each
sub-tensor, and transforms the input tensor to the output tensor
by replacing each sub-tensor with its maximum element. In our
model, we use four convolution and pooling layers.

Concerning the RNN part of our model, a typical LSTM
is adopted to get the contextual dependency in the temporal
domain. In our LRCNLG model, We concatenate two LSTM
layers, and a dropout layer is then introduced to avoid over-
fitting problem. Finally, we used dense layer with a softmax
function to transform the output codes to probability values of
class labels. A dense layer represents a matrix vector multipli-
cation. The values in the matrix are the trainable parameters
which get updated during backpropagation. As a result we get
a c-dimensional vector as output with c classes.

IV. EXPERIMENTAL RESULTS

This section summarizes all obtained results and provides an
analysis of the performances of our proposed approach tested
on three public 3D action recognition datasets – UTKinect-
Action [27], Florence 3D-Action [18] and MSR-Action 3D [14]
– and compared with state-of-the-art methods.

A. Implementation Settings

For the feature extraction, we use the code of [22], [23] to
represent action sequence as a Lie Group curve. Each action
sequence is then represented as a matrix of 6*M(M-1) lines and
f columns, where M is the number of joints per skeleton (20 for
MSR-Action 3D and UTKinect, 15 for Florence 3D Action) and



f a fixed number of the sequence length (normalized as in [22],
[23] to 76, 74 and 35 respectively for the 3 datasets). We used
an initial learning rate of 0.01, stochastic gradient descent with
nesterov acceleration with a momentum of 0.9 and a dropout
with rate 0.5 after all activation layers to prevent overfitting.
We used the Keras deep learning framework with a TensorFlow
backend [2] on a laptop with an i5-2320 (3.00GHz) without
GPU.

B. Human Action Datasets

UTKinect-Action [27]: In this dataset, skeletons were ex-
tracted using a single stationary Kinect with Microsoft SDK.
Totally, there are 199 sequences whose length varies from 5 to
120 frames. These sequences were recorded from 10 subjects: 9
males, 1 female; one was left-handed. Each subject performed
each action twice. There are 10 actions. UTKinect gives infor-
mation regarding 20 joint locations for the 3D skeleton data.
It is a challenging dataset due to the different variations of
the views among records and its high intra-class variability.
Furthermore, the human object interactions and the absence of
some body parts in the view cause different occlusions.

Florence 3D-Action [18]: This dataset was collected using
a stationary Kinect sensor at the University of Florence. It
includes 9 actions, each one is performed by 10 subjects several
times leading to a total of 215 sequences. The sequences were
acquired using the OpenNI SDK, skeletons are represented by
15 joints. The main challenges of this dataset are the similarity
between actions, the human object interactions and the diverse
ways of representing the same action. The later generates a high
intra-class variation, for example, the same action is performed
using left hand in some sequences and right hand in other
sequences.

MSR-Action 3D [14]: This dataset was captured using a
depth sensor similar to Kinect at Microsoft research. It contains
totally 567 sequences consisting of 20 actions presented by
10 persons facing the camera. Each action is performed 2
or 3 times. It is the most common dataset for 3D action
recognition. It contains 20 joints to represent skeleton. Contrary
to UTKinect and Florence, there is no interaction between
persons and objects for all actions. Actions are taken in
the context of gaming which induces many variations of the
motions of the legs, arms, torso and their combination. In our
experimentations, we use only 557 sequences because there are
10 actions that contain missing information and are erroneous
[25]. This dataset is challenging due to the strong inter-class
similarity and the speed variations for the execution of actions.

C. Action Recognition Analysis

To fairly compare our approach with the state-of-the-
art methods, we follow the same experimental setup and
evaluation protocol presented in these methods. Then, we
present our result separately for each dataset.

1) Florence 3D-Action: The two most used protocols
for this dataset are Leave-one-subject-out-cross-validation
(LOOCV) [16] and cross-validation protocol [22], [11] for
which half of the subjects is used for training and the other

Method Protocol Accuracy (%)
Lie groups [22] cross validation 90.88
Kernel Linearization [11] cross validation 95.23
shape analysis [4] LOOCV 87.04
Mining key pose [24] LOCCV 92.25
Feature combination [16] LOOCV 94.39
Ours LOOCV 95.37
Ours cross validation 92.55

TABLE I
RESULTS OBTAINED ON FLORENCE 3D-ACTION USING TWO DIFFERENT

PROTOCOLS.

Fig. 2. Confusion matrix for our approach on Florence 3D Action using (a)
LOOCV protocol and (b) cross-validation protocol

half is used for testing. To evaluate our proposed method,
we choose to use both of protocols to be more extensive.
As summarized in Table I, our approach achieves the best
accuracy of 95.37% using LOOCV protocol. However,
using the cross-validation protocol, it achieves an accuracy
of 92.55%, just below the best one which used a kernel
Linearization and reported in [11]. They used a combination
of two methods the SCK and DCK kernels making their
approach complex. As shown from the confusion matrix in
Figure 2, despite the high accuracies for most actions, there
are little confusions, like between answer phone and drink
from a bottle as they have visually the same trajectory, or
between read watch and clap hand, where both need two
hands to perform the action.

2) MSR 3D-Action: There are two basic protocols used by
the state-of-the-art methods for this dataset: cross-validation
protocol and 5-fold protocol which uses subjects 1, 3, 5, 7, 9
for the training while the subjects 2, 4, 6, 8, 10 are used for the
testing. In our experiments, we choose to use cross-validation
protocol because using the average between 10 splits is more
precise than using just one split.

MSR Action 3D is a challenging database that is why
generally authors divide it into three subsets and then calculate
the average to get the accuracy of this dataset. Action presented
in the first subset (AS1) are Horizontal arm wave, Hammer,
Forward punch, High throw, Hand clap, Bend, Tennis serve,
Pickup and throw. High arm wave, Hand catch, Draw x, Draw
tick, Draw circle, Two hand wave, Forward kick, Side boxing
are the actions in subset two (AS2). Finally, actions of the
subset three (AS3) are High Throw, Forward kick, Side kick,
Jogging, Tennis swing, Tennis serve, Golf swing, Pickup and



Fig. 3. Confusion matrix for our approach on MSR Action 3D dataset: (left) AS1, (center) AS2 (right) AS3.

Method Protocol Accuracy (%)
Lie groups [22] cross validation 93.52
Kernel Linearization [11] cross validation 93.96
Grassmann Manifold [20] cross validation 91.21
dRNN [21] cross validation 92.03
shape analysis [4] cross validation 92.1
Mining key pose [24] 5-fold 94.40
Feature combination [16] 5-fold 97.1
HBRNN-L[6] 5-fold 94.49
TS-LSTM [13] 5-fold 97.22
Ours cross validation 94.27

TABLE II
OBTAINED RESULTS ON MSR 3D ACTION DATASET

throw. Table II presents the accuracies of our approach obtained
on this dataset, compared to the most relevant state-of-the-art
methods using different protocols.

As shown, our approach achieve the best accuracy (94.27%)
using the cross validation protocol, with 96.64% in AS1,
87.52% in AS2 and 98.71% in AS3. Our accuracy is however,
outperformed by [13], [16] where they used only the 5-fold
protocol. The confusion matrix presented in Figure 3 gives
us more information on each action. Indeed, in AS1, we get
the high accuracies for most actions (e.g. Pickup and Throw,
Tennis serve), but Hammer is the worst classified action with
83.7% which has been confused with a similar one namely
Horizontal arm wave. In AS2, there are many actions that are
not perfectly classified e.g., Hand catch with 66.2% and High
arm wave with 72.7%. In AS3, all actions are practically well
classified with an accuracy over 95%.

3) UTKinect-Action: In this dataset, we kept the same
protocols used for Florence 3D-Action dataset. As presented in
Table III, our approach achieves the best performance (98.5%)
using the LOOCV protocol, compared to all other skeleton-
based approaches. As presented in Figure 4-a, all actions have
been correctly classified (100%) expect throw (85%). These
results prove the robustness of our approach against different
challenges of the database. Using cross-validation protocol, we
get a performance comparable to [28] and [13] with an accuracy
of 96.68%, but stills 0.4% less than [22].

If we compare accuracies obtained by our approach to those
obtained by the original Lie group representation [22], we note

Method Protocol Accuracy (%)
Feature combination [16] LOOCV 98
St-LSTM+trust gate [6] LOOCV 97
Grassmann Manifold [20] LOOCV 88.5
JLd+RNN [28] cross validation 95.96
TS-LSTM [13] cross validation 96.97
Lie groups [22] cross validation 97.08
Kernel Linearization [11] cross validation 98.2
Ours LOOCV 98.5
Ours cross validation 96.68

TABLE III
OBTAINED RESULTS ON UTKINECT-ACTION DATASET USING TWO

DIFFERENT PROTOCOLS.

Fig. 4. UTKinect Confusion matrix using (a) LOOCV protocol and (b) cross-
validation protocol

that our approach outperforms them for all actions, except for
three ones: Pick up, Carry and Clap hands. These actions
involve an interaction with objects and variations in viewpoint
which make the classification harder. Note that results reported
in [22] using the LOOCV protocol have showed a lower accu-
racy of 96.5% compared to our approach. It can be concluded
that the LOOCV protocol is the more suitable one for deep
learning models as a sufficient quantity of data sequences is
needed for training subset, contrary to the case where only
half of data is used for training.

D. Effectiveness of Geometric Lie Group Features

To assess the effectiveness of Lie Group features combined
with our deep network model, we have repeated all experiments
using our model applied directly on the 3D coordinates of



Dataset Method Protocol Accuracy (%)
UTKinect LRCN LOOCV 95.50

cross validation 89.45
LRCNLG LOOCV 98.50

cross validation 96.68
Florence LRCN LOOCV 89.43

cross validation 85.88
LRCNLG LOOCV 95.37

cross validation 92.55
MSR LRCN cross validation 92.4
Action 3D LRCNLG cross validation 94.27

TABLE IV
OBTAINED ACCURACIES BY OUR MODEL ON LIE GROUP REPRESENTATION

(LRCNLG) COMPARED TO THE SAME MODEL ON SKELETON
COORDINATES IN R3 (LRCN).

skeleton data represented in R3 Euclidean space. We note here
that we have performed a view normalization prior to feeding
the 3D coordinates into the model. The results obtained by
LRCNLG model are superior to those obtained by the model
on R3 for all the datasets and using the two protocols. Table
IV summarizes all the results obtained by our LRCNLG model
on Lie Group features compared to those obtained by the same
model, we call LRCN, on skeleton coordinates in R3, using two
different protocols tested on all datasets. This can be explained
by the fact that our LRCNLG model learns more adequate
geometric features than traditional ones [22] but also than that
with original Euclidean coordinates, for 3D action recognition
task.

V. CONCLUSION

This paper addressed the problem of human action recogni-
tion in the 3D joint space. We introduced a novel framework,
in which we built a neural network model to deeply learn
geometric feature captured by Lie Group representations of
skeletal data. We then formulated our learning architecture as
a hierarchy of spatial CNN features extracted from each Lie
Group point, followed by the LSTMs to model dependencies
in the Lie Group curve representing the action sequence on
a Riemannian manifold. Experimental results on 3 human
action datasets consistently demonstrated the effectiveness of
the proposed approach.
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