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INTRODUCTION 

We propose a framework for automated segmentation of Multiple Sclerosis (MS) lesions 

from MR brain images. It integrates a priori tissues and MS lesions information into a Graph-

Cuts algorithm for improved segmentation results. 

 

METHOD  

Pre-processing. The method requires three MR sequences per subject: T1-w, T2-w and 

FLAIR. MR images are first denoised
1
, rigidly registered towards the T1-w image

2
, skull-

stripped
3
 and bias corrected

4
. Then, their intensities are normalized by applying the decile 

normalization method proposed by Nyul et al.
5,6

. 

A probabilistic atlas (i.e. CSF, WM, GM and MS lesion probability maps intensity 

normalized for the four classes, Figure 1) is registered into the subject space. The T1-w 

template image is registered to the T1-w subject image using a linear registration, based on a 

block-matching algorithm
2
, followed by a dense non-linear registration

7
.  

Segmentation method. We adopt a Graph-Cuts segmentation approach, where the two 

terminal nodes, source and sink, respectively represent the MS lesions, or object class, and 

the Normal Appearing Brain Tissues (NABT), or background class
8
. Given the set of nodes I 

and the set of connections N between two nodes {i, j}, the GC algorithm minimizes an energy 

function E(V), where V is the object segmentation: 

 

E(V)=∑ 𝐵{𝑖,𝑗}{𝑖,𝑗}∈𝑁 +α∑ 𝑅𝑖(𝑉𝑖)𝑖∈𝐼  . 

 

The boundary term 𝐵{𝑖,𝑗} reflects the similarity of neighbouring voxels {i,j}, and the regional 

term 𝑅𝑖(. ) refers to the probability for i to fit into the object and background models. We 



compute the boundary weights using the spectral gradient
8
 and the object and background 

weights as described below.  

We model the NABT with a 3-class Gaussian Mixture Model. We estimate the NABT GMM 

using tissue probability maps with a robust EM
9
, which optimizes a trimmed likelihood to be 

robust to the presence of outliers (i.e. lesions). Then, we evaluate the Mahalanobis distance Z
2 

between each voxel i and each tissue class m. Assuming that Z
2 

follows a χ
2

m distribution, the 

p-value for a voxel i is obtained as 

 

pim=1-Fχ
2

m(Z
2
)   

 

pim represents the probability that the voxel i does not fit into a class m of the NABT GMM. 

Voxels that fit into the NABT GMM must have a high background weight WiB. We formulate 

the equation for computing WiB to include both pim and a priori MS lesion information PiMS as 

 

WiB=β(1.0–min(pim))+(1- β)(1.0-PiMS) , 

 

where the parameter β controls the amount of information from the Mahalanobis distance and 

the  prior. min(pim) is the lowest p-value among the m classes for a voxel i. The parameter β 

was set to 70%. 

We formulate the object weights to include information from the MS lesion prior, the 

Mahalanobis distance and the hyper-intensities on T2-w and FLAIR images: 

  

Woi=min(PiO,WT2,Wflair)  , 

 

where 

 

PiO=βmin(pim)+(1-β)PiMS 

 

WT2,Wflair are fuzzy weights derived from the T2-w and FLAIR hyper-intensities
8
.  

Post-processing. A candidate lesion is discarded if one of the following conditions is verified: 

i) it is not sufficiently located within the WM, ii) it touches the brain mask border, iii) its size 

is lower than 3mm
3
. 

 

RESULTS 



We evaluated the method on 37 MS subjects. Each subject included T1-w, T2-w and FLAIR 

images. The ground truth was computed using the LOP STAPLE method
12

 on six 

independent manual segmentations per patient. Results are illustrated in Figure 2. The 

average Dice Similarity Coefficient (DSC) was 0.578, the average Positive Predictive Value 

(PPV) was 0.711. An example of segmentation result (without and with priors) is illustrated in 

Figure 3. 

The computation time to process a subject on a laptop with an Intel Core i7 CPU 2.40GHz (8 

cores) was approximately 10 minutes.  

 

DISCUSSION 

Results indicate good performance of the proposed method. Three of the MS subjects with 

low lesion load and low number of lesions obtained a DSC lower than 0.3. This can be 

partially explained by the low experts’ agreement, which becomes more relevant for a small 

lesion load. When compared to a Graph-Cuts approach that does not include knowledge from 

MS lesion priors, our approach shows generally improved performance (average DSC=0.480 

on the same dataset). 

 

CONCLUSION 

We propose a framework that incorporates tissues and MS lesions probability maps into a 

Graph-Cuts approach for MS lesions segmentation. Results indicate that integrating a priori 

information with the information derived from the images can improve the segmentation 

outcome. The performance of the proposed method relies on the accuracy of the probabilistic 

atlas and parameters that must be accurately tuned on a training dataset. The method can be 

easily adapted to be used with different MR sequences (e.g. PD images). 
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Figure 1.  MS lesion probability map overlaid the WM probability map. MS lesion priors 

were generated from 89 subjects with manually annotated lesions, with lesion loads from 

0.1cm
3
 to 64cm

3
 and a total number of lesions equal to 7927. The dataset included the 15 MS 

subjects from the MICCAI’16 training database
10

 and 74 MS subjects from an MS-SPI 

database. Tissue priors were generated using the method proposed by Guimond et al.
11

, which 

construct models representing the average intensity and shape of the images. Registration 

involved a linear registration, based on a block-matching algorithm
2
, followed by a dense 

non-linear registration
7
.  

 

Figure 2.  MS lesions as segmented using the proposed method, without (top) and with 

(bottom) MS lesion priors in the computations of the term weights. Results are overlaid the 

FLAIR image. With the use of the MS lesion priors missing lesions (red arrows) can be 

detected (green arrows) and false positive (orange arrows) can be removed. 



 

Figure 3.   a) DSC (blue markers), PPV (green markers) and Total lesion load (TLL) per 

patient. Lesion loads varied from 0.1cm
3
 to 46cm

3
. b) DSC (blue markers), PPV (green 

markers) and number of lesions per patient.  

 

 


