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Abstract—HPC systems are facing more and more variability
in their behavior, related to e.g., performance and power con-
sumption, and the fact that they are less predictable requires
more runtime management. This can be done in an Autonomic
Management feedback loop, in response to monitored informa-
tion in the systems, by analysis of this data and utilization
of the results in order to activate appropriate system-level or
application-level feedback mechanisms (e.g., informing sched-
ulers, down-clocking CPUs).

One such problem is found in the context of CiGri, a simple,
lightweight, scalable and fault tolerant grid system which exploits
the unused resources of a set of computing clusters. Computing
power left over by the execution of a main HPC application
scheduling is used to execute smaller jobs, which are injected as
much as the global system allows.

This paper presents first results addressing the problem of
automated resource management in an HPC infrastructure, using
techniques from Control Theory to design a controller that
maximizes cluster utilization while avoiding overload. We put
in place a mechanism for feedback (Proportional Integral, PI)
control system software, through a maximum number of jobs to
be sent to the cluster, in response to system information about
the current number of jobs processed.

Keywords: High performance computing, resource man-
agement, self-adaptive systems, autonomic computing, control
theory

I. INTRODUCTION

A. Need for autonomic administration in HPC

HPC systems are facing more and more variability in their
behavior, related to e.g. performance and power consumption,
and the fact that they are less predictable requires more
runtime management. Some examples in HPC can be:

• uncertainties concerning actual runtime performances
(e.g. execution times) compared to evaluations which
were used for off-line scheduling.

• variations in data access times due to e.g. more and more
elaborate cache mechanisms.

• variations related to the values in the data e.g. number
of iterations or depth of computation depending on vari-
ables’ precision.

Coping with such phenomena must be done at run time,
based upon measurements performed during the execution.
This can be done in response to monitored information in the
systems, by analysis of this data and utilization of the results

in order to activate appropriate system-level or application-
level feedback mechanisms (e.g. informing schedulers, down-
clocking CPUs).

One such problem is found in the context of CiGri, a
simple, lightweight, scalable and fault tolerant grid system
which exploits the unused resources of a set of computing
clusters. Computing power left over by the execution of a
main HPC application scheduling is used to execute smaller
jobs, which are injected as much as the global system allows.

B. Control theory for Autonomic HPC

Such feedback mechanisms rely on extensive monitoring
and analysis, and involve decisions and their execution. These
feedback loops, in the domain of Computer Science, are the
object of Autonomic Computing [1], which emerged mainly
from distributed and Cloud systems at IBM.

One approach in designing feedback loops is naturally
Control Theory, which is extremely widespread in all domains
of engineering, but only quite recently and scarcely applied
to regulation in computing systems [2], [3]. It can bring to
systems designers methodologies to conceive and implement
feedback loops with well-mastered and guaranteed behavior
in order to obtain automated management with goals of opti-
mization of resources or avoidance of crashes and overloads.

Different control designs have been proposed in the past,
aiming to solve different classes of control problems and
involving different classes of dynamical models. Classical
control addresses quantitative dynamics, using continuous
models based on differential equations. Discrete Event Sys-
tems concern systems where the dynamics involves a set of
discrete, logical states (possibly finite), and events causing
transitions: they are commonly modelled using Petri nets or
finite state automata. Probabilistic aspects can be addressed
with e.g., Markov Decision Processes. The control problems
encountered in complex computing systems can be of various
kinds, and represent a new application domain for Control
Theory, for which research is still identifying and evaluating
modelling approaches.

C. Contributions

This paper presents first results addressing automated re-
source management using Control Theory. More precisely,



it attacks the regulation of the injection of jobs into a grid
system, in such a way that it maximizes its utilization, by
leaving only a minimum of resources unsused, while at the
same time avoiding to overshoot the bounds leading to a
system overload, and hence avoiding the firing of costly safety
mechanisms.

Our method proceeds with the following phases:
1) analysis of the system and identification of its dynamics

and the overload problems to be tackled.
2) design of a feedback controller, with P (Proportional)

and PI (Proportional+Intregral) regulation, through a
maximum number of jobs to be sent to the cluster, in
response to the current number of jobs processed. The
control objective is to maximize cluster utilization while
avoiding overload.

3) implementation and experimental results, in an emulated
environment, comparing the new control scheme with
the previously used, more ad hoc solution.

In the remainder of this paper, background is given in
Section II on Autonomic Computing and its control, and
on the overall Architecture of the system to be controlled,
and its current, ad-hoc regulation mechanism. Analysis and
modeling of the system, leading to the design of a first
proportional controller, and then a PI controller, is described
in Section III. Then Section IV shows experimental validation
of our approach. Finally, Section V concludes and draws
perspectives.

II. BACKGROUND

A. Autonomic Computing and its control
1) Autonomic administration: Autonomic Computing (AC)

[1] aims at making computing systems able of self-
management, w.r.t. self-configuration (deployment), self-
optimization (resource management), self-healing (fault tol-
erance) and self-protection (security). The management of
system administration is automated so as to replace, as
much as possible, human intervention, for motivations of
facing complexity or fast response. AC has been proposed
in distributed systems and particularly in the area of Cloud
computing. Recently, the perspectives of self-adaptive systems
and autonomic management have also been considered in
HPC. AC relies on a structure of feedback loop, where a
controller, separate from the system to be managed, runs in
parallel to it: the well known MAPE-K loop [4] involves
components to Monitor (through probes and sensors), Analyze
(extracting relevant information from data, and take decisions),
Plan (transform decisions into adaptation actions) and Execute
(perform adaptation actions). All this is done using Knowledge
on the system (reified representation, data-base).

2) Control-based approaches: The classical MAPE-K AC
loop can be considered in the perspective of Control Theory
[4], and its feedback loop represented in Figure 1. In this
domain, a deep and long history of research and practice
has been developed, applied to most domains of engineering,
but only quite recently to management issues in computing
systems [2], [3], [5], [6].

Target
System

Controller
InputReference Output

Disturbance

+
−

Error

Fig. 1. Block diagram for a simplistic control loop [6].

In short, the design of control functions is based on ap-
proximated models (a perfect model is not necessary, nor
is it always feasible) of the dynamics of the process to be
controlled (Target System in Figure 1), in order to derive con-
trollers with guaranteed concerning convergence, avoidance of
oscillations, mastering of overshoot effects, etc. This process
implies the identification of certain variables of interest in the
infrastructure:

• The output, which is a measurable indicator of the state
of the system.

• The reference, the objective value to which we want to
drive the output.

• The input, the action through which the output can be
modified or regulated to match the reference value.

• The error, the difference between the reference value and
the system’s output, as a measure of deviation.

• The disturbance, an external agent that affects the sys-
tem’s dynamics in an unpredictable way.

Through the knowledge of a system’s dynamical model, con-
trol theory approaches can deliver management strategies that
define how to adjust system’s inputs to get the desired outputs,
i.e. to control the state of the system. Traditional control
solutions include Proportional-Integral-Derivative (PID) con-
trollers [7]: the value of the commands to be executed is given
by an equation with three terms: P proportional to the error,
I involving an integration over time of its past values (i.e., a
memory-like effect), D based on its current ”speed” or rate
of change, which takes into account possible future trends.
More advanced approaches incorporate the use of optimal
control theory, where management strategies are derived from
the formulation of objective functions (so-called cost func-
tions) that describe the goals of the administration loop as a
mathematical expression. This scope enables multi-objective
control schemes when dealing with infrastructures composed
of several inputs and outputs, but requires a fine-tuning of
the objective function, and a fairly accurate knowledge of the
dynamical model of the system.

HPC scheduling is a problem that has already been ad-
dressed by means of Control Theory in the past for spe-
cific objectives. It has been applied for achieving predictable
scheduling by ensuring each job in a workflow to meet its
deadline, and additionally regulating incoming jobs through
admission control [8], but the proposed solution assumes each
job’s progress can be measured by the algorithm, which is
not always true in HPC environments. More recent works use



model predictive control (MPC) to increase cluster utilization
while minimizing slack in periodic workflows [9], [10], but
they assume to count on a priori knowledge of the job’s
duration (that should be provided by the user), leading to
a control scheme that is not robust to deviations from the
analyzed workflows. In any case, the HPC scene has still
plenty of room for innovation in terms of autonomy.

B. Overall Architecture of the system

1) A lightweight grid: CiGri: CiGri1 is a simple,
lightweight, scalable and fault tolerant grid system which
exploits the unused resources of a set of computing clusters,
a concept used in similar solutions such as OurGrid [11] and
Condor [12]. This grid is based on two software tools. The
CiGri server software is based on a database and offers a
user interface for launching grid computations (scripts and
web tools). It interacts with the computing clusters through
the Ressource Job Management System OAR [13], a batch
scheduler software. This lightweight grid system is a simplified
version of the general grid concept [14], in particular a certain
homogeneity of services and administration procedures are
adopted. Also, this grid system is well adapted to address
bag-of-tasks workload which is composed of lots of indepen-
dent and identical tasks. The nature of this specific kind of
workload arises from the need of running large-scale scientific
computations with different input parameters, by means of grid
computing infrastructures. An example of this implementation
is MCFOST [15], a 3D radiative transfer code based on Monte-
Carlo method, which can usually amount to 30000 tasks with
average computation times of 45 minutes per job. Typically,
parametric workloads of this kind show small variability in
their execution time. According to our analysis of historical
data from CiGri database, distribution of computation times
exhibits coefficients of variability [16] that ranges from 10%
to 30%, indicating negligible dispersion. Sample histograms
of computation times for different campaigns are shown in
Figure 2.

Jobs in CiGri bag-of-tasks are essentially treated as low-
priority tasks intended to be run on cluster’s idle resources.
This means that, if during their execution, the resource is
requested by a local cluster user, the best-effort job is killed
by the local batch scheduler and later resubmitted according to
specific fault-treatment mechanisms [17]. Additionally, the no-
tion of best-effort means there is no QoS objective to meet, and
so the problem falls outside the classical scheduling theory. As
a consequence, there are aspects -such as the queued time of
a job- that are excluded from the analysis. To sum up, the
challenge of CiGri is to guarantee the complete execution of
this scientific computations in despite of resources’ volatility,
in the most efficient way. This clearly implies maximizing
the amount of idle resources used by best-effort jobs, without
overloading any component of the infrastructure. Figure 3
presents the overall architecture of the CiGri lightweight grid

1http://ciment.ujf-grenoble.fr/CiGri/dokuwiki/doku.php
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Fig. 2. Campaign histograms for different types of workloads handled by
CiGri.
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Fig. 3. The system global architecture.

with the OAR batch scheduler and the Irods storage system
[18].

There are two options for job submission:
• job submission by a user, directly through OAR.
• submission of a jobs campaign through CiGri: with

numerous small jobs, managed in a best-effort manner.
The downloading and uploading of input data and results of the
jobs is handled by iRODS, a distributed storage management
system.

2) Computing infrastructure: CiGri production environ-
ment is currently deployed onto CIMENT, part of the Gricad
unit2 and one of the most powerful HPC tier-2 centers in
France, located at Grenoble. It is a joint center from the
Community Université Grenoble Alpes and more than 30
research laboratories from CEA, INRIA and CNRS; composed
of over 6500 cores that add up to 135 TFlop/s and 28 TB of

2https://gricad.univ-grenoble-alpes.fr/



memory distributed over 12 clusters. Its resources are managed
by OAR3, a modular batch scheduler for HPC clusters that
supports integration with CiGri through a dedicated waiting
queue for best-effort jobs introduced in each cluster. Even
though the center is composed of heterogeneous resources,
they are grouped by similar specifications (i.e. processing
power) to achieve certain uniformity throughout clusters, so
that resource homogeneity can be assumed.

The Gricad unit provides HPC resources to academic re-
search communities from a wide range of disciplines: Biology
and Health, Chemistry, Environment and Climate, Numerical
Physics, Earth and Planetary Sciences, and Distributed Com-
puting [19]. As an example, the center has been extensively
used in the ATLAS particle detector experiment [20], one of
the seven experiments performed at the LHC (Large Hadron
Collider) particle accelerator, and one of the two involved in
the discovery of the Higgs boson.

3) Administration problems considered: The current, ad
hoc, solution to manage job submission is based on a tap
mechanism implemented in the Runner component of CiGri.
It maps jobs from the bag-of-tasks on the available resources
of the cluster with the following criteria,

Algorithm II.1: JOB SUBMISSION( )

main
rate← 3
increase factor ← 1.5
whilejobsleftinthebag − of − tasks

do


launchrateamountofjobs
whilejobsrunning > 0 and not(timeout)

do sleep
rate← min(rate ∗ increase factor, 100)

The algorithm cyclically submits rate number of jobs to the
cluster, which increases at every iteration. Note that, in each
cycle, the algorithm waits for the completion of all submitted
jobs, but taking into account several failsafe mechanisms
intended to protect the infrastructure. As an example, the
loop timeouts when job’s walltime is exceeded. Other more
complex scenarios are also considered by the algorithm, which
might involve cluster blacklisting depending on the severity of
the problem, requiring administrator intervention to regularize
the situation.

Under the explained behavior, jobs are submitted onto a
cluster only when its waiting queue is fully empty. In practice,
this behavior yields situations where the cluster is being under-
used (or not used at all) in spite of the existence of remaining
jobs in the CiGri bag-of-tasks. This occurs when, between
cycles of the algorithm, there is no queued jobs.

Other side problems that can occur are:

• Cluster overload, when too many jobs are submitted, and
can not be served by the cluster resources: a stress factor
is defined, between 0 and 1, and sent back to CiGri, so

3http://oar.imag.fr/

that it avoids sending jobs to a cluster for which it is
beyond 0,8.

• Irods overload, when too many requests are submitted.
• Particular storage resource overload, concerning access to

an individual storage server.
As a result, the way CiGri handles jobs submission to the

waiting queue turns out to be a major factor in the overall
performance. Maximizing the exploitation of idle resources,
then, requires an improved strategy in this regard.

III. ANALYSIS AND MODELING

As said before, in this paper we focus on the problem of
minimizing the unused resources of a grid while avoiding
overloading. To do this, we followed this methodology,

1) informal analysis of the system in order to extract the
feedback loop: identify sensors and actuators (which are
the inputs and outputs of the process) and formulate the
control objective.

2) open loop testing to approximate an analytic model, by
measures in the absence of regulation, in order to acquire
some parameters of the system behavior.

3) design of the control law at the heart of the Autonomic
Manager: in this case simple P and PI regulators.

A. The considered administration loop

Figure 4 sketches the process detailed in Section II-B3,
highlighting elements involved in our administration loop:

• The Cluster is the main component: we want to control
the ”pressure” it undergoes (risk of overload).

• The Resource Job Management System (RJMS) is done
by OAR which plans execution of jobs on the cluster.

• The ”Runner” module : submits CiGri jobs as presented
in Section II-B3.

Fig. 4. Feedback loop for the CiGri cluster

Moreover, Figure 4 shows in green the feedback loop we
intend to construct. Our intention is to regulate around a
fixed number of jobs in the queue waiting to be executed. At
runtime, we cyclically measure the number of jobs in the queue
and compare this value with a reference value of number of
jobs in the queue. Based on this difference, our administration
loop (the controller) will automatically decide how much to



Fig. 5. Diagram of the model-based feedback control loop.

open the tap in order to send more or less CiGri jobs through
the Runner to the Cluster. This type of control will allow us
to maximize the number of resources utilized by the cluster
without overloading it.

We consider that users can also send jobs to the Cluster
directly through OAR, which represents an unknown and non-
measurable disturbance to our system. These jobs have a non-
negligible impact on the cluster charge, therefore on its job
treatment speed, and finally on the number of jobs left in the
queue.

Figure 5 presents the feedback loop from a Control Theory
perspective. We can notice on this figure the actuator (the tap),
the sensor which measures the number of jobs in the queue,
as well as the external perturbations which act on the system:
the users jobs sent directly through OAR.

Since the sensor measuring the number of jobs in the queue
was not present on our system, we had to construct it. In order
to do this, we placed in the core of the Runner module the
instructions detailed in Code 1. Line 1 gets the number of
jobs on a cluster, and Line 3 gets the jobs in the queue and
therefore counts their number.

1 cluster_jobs = cluster.get_jobs()
2 temps = Time.now
3 jobs = cluster_jobs.select{ |j| j["state"] == "Waiting" }
4 file = File.open("/home/user1/Nb_jobs.txt", "a+")
5 file << "#{jobs.length};#{temps.to_f}\n"
6 file.close

Listing 1. Sensor measuring the number of jobs in the queue

Since the administration loop is incorporated into the main
cycle of the Runner, it will also run periodically and with
the same frequency. Although this cycle time might vary
during the execution depending on the amount of workload
the Runner is under, it is lower bounded to 15 seconds. In
practice, there are no significant deviations from this bound,
so we assume it to be constant.

Another key factor in the behavior of the loop is the
selection of the reference value for the waiting queue, in
which there is a clear trade-off. A lower number of jobs in
the waiting queue might lead to cases with free resources in
the OAR cluster, but no available jobs to run, which translates
into under-usage of idle resources. This effect can be even
worse in the presence of disturbances: user jobs not managed
by CiGri, when finished, release a big number of resources
that can be potentially used by best-effort jobs, so having
a considerable amount of waiting jobs ready to be launched
is a good way to deal with this uncertainties. However, an
excessively large number of queued jobs can certainly overload

0 500 1000 1500 2000 2500
Time [seconds]

0
25
50
75

100
125
150
175
200

Jo
bs

4 resources
6 resources
8 resources
10 resources
12 resources

Fig. 6. Number of jobs in the queue for varying resource numbers and
fixed job campaign of 200 jobs. Campaign start time among experiments
is synchronized to the same time instant t = 80s for better comparison of
the responses.

the OAR scheduler. For this reasons, the selection of this
value is not straightforward: to our understanding, it should
be dynamically adjusted to meet the administration loop’s
objectives in an optimal way. For this first approach, we
manually adjusted the reference to 40 waiting jobs, as this
value delivered reasonable results throughout our experiments.

B. Open loop testing for model identification

In order to have an idea about the behavior of the system,
we started with some open loop tests, that is to say the system
is left free to evolve while only monitoring its behavior. We
test the behavior of the system once when resource number is
fixed (jobs are varying) and once when the initial number of
jobs is fixed (number of available resource is varying).

For the experiments, we used workflows composed of
dummy jobs with distribution of execution times similar to
those analyzed in the previous section (Figure 2) to ensure a
representative scenario. In particular, the mean execution time
for this experiment was 30 seconds.

The evolution of the queue when the initial number of jobs
is fixed (200 jobs) and when the number of resources varies
is given in Figure 6. As expected, the number of available
resources has an impact on the evolution of the number of
jobs in the queue: the larger the number of resources, the
steeper is the slope of the queue drain.
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Fig. 7. Slope evolution towards available resources



After testing the queue behavior when the number of
resources is fixed and with varying initial number of jobs in the
queue, we obtained a relation between the slope of the draining
queue and the number of available resources, as depicted in
Figure 7. Moreover, we can notice a linear evolution of the
slope towards resource number.

C. A Proportional controller

As a controller in Figure 5, we use a proportional one
written: tap = Kp ∗ error, where Kp is the gain of the
controller. In this case, the error between the number of jobs
set as reference and the actual number of jobs is multiplied
by a fixed gain, then sent to the tap. The choice of this
gain is not straightforward as a small value will imply a
slow filling of the cluster, while a large value could lead to
oscillations of the queue size, which at the end can worsen the
performance of the system. In our case, for a fixed number of
resources (see Figure 6), we approximate the system behavior
as a second order differential equation expressed through its
Laplace transformation (a well documented method in control
theory [7]) as,

H(p) = 1− Kp

(1 + T1 p)(1 + T2 p)
,

with T1 = 125 and T2 = 235. The values of T1 and T2

are computed using the Identification Toolbox in Matlab or
the well known Cadwell technique [7]. Based on the simu-
lations on the identified (approximated) system, we choose
a Proportional controller which is not very aggressive to the
system and does not produce overshoot and instability. Using
Matlab, we find a suitable value of Kp = 0.713. Another
gain can be used and the regulation will still work but the
system might experience other side problems: lower values
can lead to very slow response to disturbances, meaning that
the algorithm may take more time to control the queue length
in the presence of local user’s jobs. By contrast, if the gain
is very large, the system can became unstable, an undesired
property of dynamical systems that causes the queue length to
grow unbounded instead of remaining steady as desired.

D. A PI controller

In a second stage, we designed a PI controller by extending
the obtained P controller from previous section to accomplish
integral action. In other words, the new control law as a
function of time becomes,

tap(t) = Kp error(t) +Ki

∫ t

0

error(τ)dτ.

This expression describes the general form of a PI controller
in continuous time, but the implementation of such controller
requires a time-discrete control law, which can be done by
approximating the integral of the error as a cumulative sum
of the previous values of this error function,

tap(t) = Kp error(t) +Ki

t∑
k=0

error(k)∆tk,

where ∆tk corresponds to the cycle time of the main loop in
the Runner module at time k. This expression shows the main
effect of PI controllers: a control action that depends not only
of error values computed at present time, but also of error
values computed in the past. In practice, it is not necessary to
store the value of the error function at each cycle as long as
the cumulative error is kept,

err = job_reference - queue_load # Compute current error
errcum = errcum + err # Compute cumulative error
tap = kp*err + ki*errcum*dt # Compute control action

Listing 2. Pseudo-code for the PI implementation

The proportional gain Kp is tuned as in the P controller. The
contribution from the integral term depends on the cumulative
error computed at each time instant, but also on the amount
of time the error persisted. This effect should be taken into
consideration when tuning Ki parameter to avoid overshooting
in the time response of the controller. In the control theory
framework, overshoot is the effect in which the controlled
variable exceeds its target, a common issue that occurs when
cumulating ”too much” in the integral term (errcum for this
case). A frequent workaround to this problem is to implement
an anti-windup scheme [21]. For this particular case, we
imposed lower and upper thresholds on errcum (of 20 and
−20 respectively) to limit the effect of the integral action
term. Another key characteristic of the integral action is that
it accomplishes null steady-state error, in contrast with plain
P controllers. This basically means that the amount of jobs in
the queue will asymptotically tend to the desired value (and
so the difference between this two variables will be equal to
zero).

IV. EXPERIMENTAL VALIDATION
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Fig. 8. Open loop behavior (i.e. original algorithm).

In this Section we validate our approach on the real system.
The behavior of the system without control is depicted in
Figure 8, the P controller is considered in Figure 9 and
the PI one can be seen in Figure 10. The behavior of the
system through the experiments is characterized by the waiting
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Fig. 9. Closed loop behavior with the P controller.
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Fig. 10. Closed loop behavior with PI controller.

queue (upper graph in Figures) and the running jobs (lower
graph in Figures). The experiment consisted of a 400 jobs
campaign running on a 12 resources cluster. We performed
this experiment 10 times per scheme and computed the average
performance, depicted in Table I. As in the open loop analysis,
we used the same dummy jobs with mean execution time
of 30 seconds and small variance, based on real workflows
previously processed by CiGri. As we can see, the use of a
controller diminishes considerably the completion time of the
campaign. This leads to an average improvement in cluster uti-
lization of 5% with the simplest control algorithm, and of 8%
in the case of the PI controller. The usage upgrade is reflected
in a significant reduction of the total time: approximately 10%
faster completion time was achieved for the same campaign.

The cluster usage in an interval [t0, tf ] was computed using
the following expression,

Usage[%] =
1

T

tf∑
k=t0

r(k)∆t

rmax
, (1)

where r(k) is the number of resources used by best-effort jobs
at time k and rmax the total amount of resources in the cluster

w/o control P control PI control
Total time 1445 sec 1361 sec 1313 sec
Cluster usage 77% 82% 85%

TABLE I
COMPARISON OF PERFORMANCE AMONG THE SOLUTIONS FOR THE SAME

CAMPAIGN OF 400 JOBS IN A 12 RESOURCES CLUSTER.

(constant, in this case). The total time of the experiment is
computed as T = tf − t0.

Moreover, for further evaluating the performance of the
solution, we tested the robustness of our control algorithm.
In order words, we analyzed the controller performance
when dealing with unknown external factors. Specifically, we
stressed the system with external disturbances by submitting
higher priority jobs to the cluster, in order to dynamically
vary the amount of available resources. The results of the
controlled system for this scenario are shown in Figures 11
and 12. The periods when the cluster is unutilized are also
diminished, even though the system is not able to measure the
amount of available resources. The latter varies randomly by
occupying resources in a range of 0-12 equiprobably, making
the expectancy of resource availability equal to 6 (half of
the total resources), so the completion time of the campaign
is expected to be twice as much as that of non-disturbed
experiments. However, the usage can be still analyzed as in
1 by computing rmax in terms of the time-varying function
ravailable(k),

rmax =
1

T

tf∑
k=t0

ravailable(k)∆t.

Needless to say, computing the cluster usage is equivalent to
compute the ratio of the area below the used resources curve
to the area below the available resources curve. From the
experiments, we observed an average cluster usage of 79%
in the presence of disturbances using the PI controller.

It is noteworthy that the behavior of the system may
vary when dealing with workflows other than those used
for experimentation. However, as one of the advantages of
control theory approaches, the controller will certainly ensure
the waiting queue to converge to the reference value in any
scenario, in despite of this variations.

V. CONCLUSION AND PERSPECTIVES

1) Results: we presented preliminary results addressing
autonomic administration in HPC systems, more particularly
automated resource management using techniques from Con-
trol Theory. We focused on a controller that maximizes cluster
utilization while avoiding overload. For this, we performed
a control-oriented analysis of the system involving the iden-
tification of its dynamics, taking into account the overload
problems to be tackled. Further on, we proposed two feed-
back controllers based on P (Proportional) and PI (Propor-
tional+Integral) regulation; we implemented the approach and
validated it through experimental results. Comparing with the
previously used, more ad hoc solution, the new controller
proved to be more efficient in terms of usage of idle resources.
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Fig. 11. Test in presence of perturbations in the amount of available resources
(40 jobs reference) for a 200 jobs campaign.
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Fig. 12. Test in presence of perturbations in the amount of available resources
(40 jobs reference) for a 400 jobs campaign.

The main contribution of this work is a proof of concept.
We showed, for a particular case study, the benefits of re-
thinking computing infrastructures as dynamical systems, to
allow the use of the control theory toolset in order to solve
specific problems and improve performance measures of com-
puting systems. In past works [9], [10], the identification
process was performed taking into account several input and
output variables of the infrastructure, which leads to more
comprehensive models intended to be used for multi-objective
control. However, the obtained linear models lack the ability
to reflect several non-linear behaviors and variable constraints
of the real system, since its accuracy is limited to a specific
region of operation. Thus, the performance improvements
are constrained to this region, and the controller fails to
ensure the desired performance and stability objectives for all
possible situations. Our solution do not seek to replace the
scheduler but to complement it, which simplifies the whole
approach, simultaneously ensuring robustness to variations in
the analyzed scenarios.

2) Perspectives: We have ongoing work on considering
other problems of overload concerning the storage architec-
ture. On the control side, we plan to consider more elab-
orate techniques which made their proof when applied to
other computing systems, e.g. adaptive [22], discrete [23], or
stochastic. Another promising research direction is to adopt
an integral point of view of the infrastructure. In practice, the
running module manages each cluster submissions separately.
A centralized administration loop could provide an improved
strategy towards a unified framework for autonomic grid
management.
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