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Abstract. Pareto local optimal solutions (PLOS) are believed to highly
influence the dynamics and the performance of multi-objective optimiza-
tion algorithms, especially those based on local search and Pareto dom-
inance. A number of studies so far have investigated their impact on
the difficulty of searching the landscape underlying a problem instance.
However, the community still lacks knowledge on the structure of PLOS
and the way it impacts the effectiveness of multi-objective algorithms. In-
spired by the work on local optima networks in single-objective optimiza-
tion, we introduce a PLOS network (PLOS-net) model as a step toward
the fundamental understanding of multi-objective landscapes and search
algorithms. Using a comprehensive set of ρmnk-landscapes, PLOS-nets
are constructed by full enumeration, and selected network features are
further extracted and analyzed with respect to instance characteristics.
A correlation and regression analysis is then conducted to capture the
importance of the PLOS-net features on the runtime and effectiveness
of two prototypical Pareto-based heuristics. In particular, we are able to
provide empirical evidence for the relevance of the PLOS-net model to
explain algorithm performance. For instance, the degree of connected-
ness in the PLOS-net is shown to play an even more important role than
the number of PLOS in the landscape.

1 Introduction

Context and motivation. In landscape analysis,the search space is regarded as an
object having spatial and structural properties which are believed to characterize
the intrinsic difficulties underlying the solving of an optimization problem and,
hence, the dynamics and performance of recognized optimization techniques [16].
This aim may be achieved in an incremental manner: (i) gaining fundamental
understanding of the information provided by the landscape structure, (ii) using
this information to catalyze the good practice and design of search techniques,
and (iii) developing out-of-the-box effective heuristics, for example, by contribut-
ing to the foundation of landscape-aware selection methods based on statistical
and machine learning prediction models [11]. In this paper, we make a step to-
wards leveraging the so-called local optima network model, with the primary
goal of providing empirical evidence on its relevance and usefulness for multi-
objective combinatorial optimization.
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Overview of (single-objective) local optima network. Given a combinatorial op-
timization problem, it is widely accepted that understanding the underlying
(landscape) properties of local optimal solutions is of high importance. This is
especially because heuristics are essentially navigating through the landscape
in search of high-quality local optima that are hopefully as close as possible
to the global one. A major issue, however, comes from the curse of dimension-
ality, which makes it difficult to define metrics and extract statistics that are
meaningful and easy to interpret. In single-objective optimization, the local op-
tima network (LON) is a relatively new model [13,14] that adapts the notion
of the inherent network of energy surfaces in chemical physics [6] to compress
the information given by the whole search space into a smaller and synthetic
mathematical object described as a graph. The local optima are thereby the
nodes of the graph and there is an edge or a transition (arc) between two nodes
if the search process is potentially able to jump from one local optima (or basin
of attraction) to another one. Variants of the definition of edges and nodes exist
that capture different facets of search algorithms, however, these variants do not
alter the primary purpose behind the analysis of LONs. The LON model not
only aims at capturing in detail the number and distribution of local optima
in the search space, but it also aims at enabling the definition of novel features
having interesting correlation with the behavior of local search heuristics [4,14].

Overview of related work in multi-objective optimization. To the best of our
knowledge, there are no investigations on defining and studying LONs in multi-
objective combinatorial optimization, although local optimality also constitutes
a central issue in the multi-objective case. For instance, the distribution and
the connection of local optima induced by a scalarizing (single-objective) func-
tion is studied in [1,9], which is informative when multiple scalarizations of the
objectives are considered. In [15], local optimality under Pareto dominance is
defined, which is then related to the convergence of Pareto local search. Such a
definition of Pareto local optimal solutions (PLOS) was later used in a number
of studies. For example, it is shown in [18] how the characteristics of a problem
instance can be related to the number of PLOS. Alternative definitions of local
optima in terms of sets of nondominated solutions are also being investigated in
relation to different multi-objective search paradigms [12]. A definition of local
optimal sets for continuous multi-objective landscapes can also be found in [8].
In fact, although a multi-objective search heuristic aims at providing a whole set
of solutions approximating the Pareto set, information about PLOS is found to
influence the global search performance, especially when considering algorithms
using local search and Pareto dominance as core components [3].

Paper contributions. The work described in this paper aims at pushing further
the understanding of the structure of PLOS, eventually leading to new insights
into what makes a multi-objective problem instance difficult and what makes a
particular multi-objective search algorithm effective. More specifically, our con-
tribution can be summarized following two lines:
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– We introduce a model, inspired by the single-objective LON, that describes
the network of Pareto local optimal solutions (PLOS-net) for multi-objective
optimization. Using a comprehensive set of ρmnk-landscapes, we conduct a
preliminary visual inspection and comparison of the corresponding PLOS-nets,
showing how such networks enlighten the nature of the multi-objective land-
scape where the search is expected to operate.

– We further analyze the proposed PLOS-nets by introducing features from
network analysis. Based on a comprehensive statistical analysis, the pre-
dictive importance of the newly-defined PLOS-net features is then studied
with respect to the performance of pure Pareto local search [15] and of
a global evolutionary multi-objective optimizer [10]. Our analysis indicates
that PLOS, and more critically their connections in the PLOS-net, have the
largest influence on the runtime of PLS, even larger than the number of
objectives and their conflicting nature.

Outline. The rest of this paper is organized as follows. In Section 2, we recall
some definitions for multi-objective optimization, and we describe the ρmnk-
landscapes that will be later used in our empirical investigations. In Section 3, we
define the notion of PLOS-net for multi-objective optimization, and we conduct
a visual inspection of selected PLOS-nets. We also define features extracted
from the PLOS-net, and we discuss how they relate with search performance. In
Section 4, we study the effect and importance of PLOS-net features on algorithm
performance. In Section 5, we conclude the paper and discuss open issues.

2 Multi-objective Optimization and ρmnk-Landscapes

We assume that we are given a (black-box) optimization problem characterized
by a set of feasible solutions X (the decision space) and an objective function
f : X 7→ IRm, to be maximized. We denote by Z = f(X) = {z ∈ IRm |∃x ∈ X :
z = f(x)} the image of X in the objective space. Given two solutions x, x′ ∈ X,
x is said to dominate x′ (x ≺ x′) iff fi(x

′) 6 fi(x) for all i ∈ {1, . . . ,m} and
fi(x

′) < fi(x) for at least one i ∈ {1, . . . ,m}. The set X? ⊆ X for which there
exists no solution x ∈ X such that f(x) ≺ f(x?) for all x? ∈ X?, is the Pareto
set and its image Z? = f(X?) in the objective space is the Pareto front.

We consider ρmnk-landscapes as a problem-independent model used for
multi-objective multi-modal landscapes with objective correlation [18]. Solu-
tions are binary strings of size n, i.e., X = {0, 1}n. The objective vector f =
(f1, f2, . . . , fm) is defined as f : {0, 1}n 7→ [0, 1]m such that each objective func-
tion fi is a pseudo-boolean function to be maximized. The value fi(x) of a
solution x = (x1, x2, . . . , xn) is the average value of the contributions associated
with each variable xj . Given objective fi and variable xj , a component function
fij : {0, 1}k+1 7→ [0, 1] assigns a real-valued contribution to every combination
of xj and its k epistatic interactions {xj1 , . . . , xjk}. For every i ∈ {1, . . . ,m},
the objective function is then defined as fi(x) = 1

n

∑n
j=1 fij(xj , xj1 , . . . , xjk).

The epistatic interactions, i.e., the k variables that influence the contribution
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of xj , are set uniformly at random among the (n−1) variables other than xj [7].
By increasing the number of epistatic interactions k from 0 to (n− 1), problem
instances can be gradually tuned from smooth to rugged. In ρmnk-landscapes,
fij-values follow a multivariate uniform distribution of dimension m, defined by
an m×m positive-definite symmetric covariance matrix (cpq) such that cpp = 1
and cpq = ρ for all p, q ∈ {1, . . . ,m} with p 6= q, where ρ > −1

m−1 defines the corre-
lation among the objectives [18]. The positive (respectively, negative) objectives
correlation ρ decreases (respectively, increases) the degree of conflict between
the different objective function values. We use the same correlation coefficient,
and the same epistatic degree and interactions for all objectives.

We generate 520 ρmnk-landscapes as follows. The problem size is set to
n = 16; the problem non-linearity to k ∈ {0, 1, 2, 4}, from linear to rugged
landscapes; the number of objectives to m ∈ {2, 3}; and the objective correlation
to ρ ∈ {−0.7,−0.4,−0.2, 0, 0.2, 0.4, 0.7} subject to ρ > −1

m−1 , from conflicting to
correlated objectives. We generate 10 instances independently at random for
each parameter combination.

3 Pareto Local Optimal Solutions Network

3.1 Definition and Visual Inspection of PLOS-net

The Pareto local optimal solutions network (PLOS-net) proposed in this paper
can be constructed for a given optimization problem (X, f) and neighborhood
relation N : X 7→ 2X . For ρmnk-landscapes, the neighborhood relation is the
1-bit-flip operator: two solutions are neighbors if the Hamming distance between
them is one. Let us first define Pareto local optimal solution (PLOS) [15].

Definition 1. A solution x ∈ X is a Pareto local optimal solution if it is not
dominated by any of its neighbors: ∀x′ ∈ N (x), ¬(x′ ≺ x).

For m = 1, this is equivalent to the conventional definition of a single-objective
local optimal solution. Based on PLOS, we then define a PLOS-net as follows.

Definition 2. A Pareto local optimal solutions network (PLOS-net) is a (undi-
rected unweighted simple) graph G = (N,E), such that the set of vertices N are
the Pareto local optimal solutions, and there is an edge eij ∈ E between two
nodes xi and xj iff xi ∈ N (xj) or xj ∈ N (xi).

Two solutions connected by an edge in the PLOS-net are necessarily mutually
nondominated. Moreover, the Pareto (global) optimal solutions (POS) are par-
ticular nodes of the PLOS-net.

A visual inspection of the so-defined PLOS-nets is given in Fig. 1 for some
selected landscapes. The different PLOS-nets are extracted by full enumeration.
The two first rows are for a (fixed) number of objectives (m = 2), while the last
two are for m = 3. In the first and third rows, the degree of objective correlation
ρ varies for a fixed value of k = 1, whereas in the second and fourth rows, the
value of k varies for a fixed value of ρ = 0.0. The x– and y–axes correspond
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to the first two objectives (f1, f2) and the scale is intentionally different for the
different instances for a better visualization. For m = 3, we see a 2D-projection
while the color intensity depicts f3–values.

By mapping the PLOS-nets into the objective space, we intend to illustrate
the shape of the network while providing a first hint on the impact of instance
parameters on the distribution of PLOS. As somewhat expected, the objective
correlation ρ impacts the shape and region spanned by the Pareto front; e.g.,
nodes of the PLOS-net at the upper objective space limit for m = 2. More inter-
estingly, the number of nodes in the PLOS-nets increases when the number of
objectives m, when the degree of conflict between the objectives −ρ, or when the
problem non-linearity k increase. A similar trend for the number of connections
between nodes can be observed. However, the increase in the PLOS-net density
seems to be proportionally lower than the number of PLOS.

This visual projection of PLOS-nets in the objective space is certainly not
sufficient to elicit the structure and complexity of the underlying graphs in a
comprehensive manner. For instance, at first sight, PLOS-nets might look fully
connected. As it will be highlighted later in our analysis, this is definitely not
true in general for the considered instances. Interestingly, the connectedness
between PLOS is one critically important aspect for multi-objective local search.
A closer investigation of the PLOS-net model will enable us to fully capture
such an aspect, among others, in a very natural manner. Because of its roots
in graph theory and complex networks [17], the PLOS-net model allows us to
define informative metrics and statistics with respect to the structure of PLOS,
as detailed in the following.

3.2 Definition of PLOS-net Features

Looking at the PLOS-net as a mathematical object, we propose to define and
analyze a number of graph-based features inspired by previous studies from
single-objective LON analysis [4,13,14] but taking into account the Pareto dom-
inance relation when necessary, and hence accommodating the multi-objective
nature of the considered problems.

The first two considered features give a general idea on the node degrees,
that is the number of edges leaving a PLOS and connecting it to other PLOS.

– node prop: The number of nodes in the network, i.e., the number of PLOS,
proportional to the search space size.

– degree avg: The average degree of a node, proportional to the number of
nodes. This metric is equivalent to the density of edges, that is, the number
of edges proportional to the maximum number of edges in a complete graph.

The next two features are related to the connectedness between PLOS. We argue
that connectedness affects whether a local search with exhaustive neighborhood
exploration will be able (or not) to find all PLOS.

– comp prop: The number of connected components in the graph, proportional
to the number of nodes. A connected component is a maximal subgraph in
which there exist a path between any pairs of nodes.
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ρ = −0.4, m = 2, n = 16, k = 1 ρ = 0.0, m = 2, n = 16, k = 1 ρ = 0.4, m = 2, n = 16, k = 1

ρ = 0.0, m = 2, n = 16, k = 0 ρ = 0.0, m = 2, n = 16, k = 2 ρ = 0.0, m = 2, n = 16, k = 4

ρ = −0.4, m = 3, n = 16, k = 1 ρ = 0.0, m = 3, n = 16, k = 1 ρ = 0.4, m = 3, n = 16, k = 1

ρ = 0.0, m = 3, n = 16, k = 0 ρ = 0.0, m = 3, n = 16, k = 2 ρ = 0.0, m = 3, n = 16, k = 4

Fig. 1. Exemplary PLOS-nets. For m = 3, a two-dimensional projection is displayed,
the darker the node color, the higher the f3−value. Notice the different scales of axes.
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– comp max size: The size of the largest connected components, proportional
to the number of nodes.

The next three features deal with the paths that connect PLOS, either among
them or to PLOS that are also Pareto (global) optimal solutions (POS). This is
mostly intended to provide an information about how fast navigating between
PLOS can lead to the Pareto front.

– path length: The average path length between any pair of nodes, propor-
tional to the maximum distance between pairs of solutions. When the graph
is not connected, only existing paths are considered.

– path pos exist: The average number of nodes that are connected with (at
least) one POS in the graph, proportional to the number of nodes.

– path length pos: The average path length between nodes and their closest
POS in the graph, proportional to the maximum distance between pairs of
solutions. Nodes not connected to any POS are not taken into account.

The last three features describe the similarity of PLOS and are intended to
capture how the PLOS may be clustered together, eventually inferring some
preferred connections as observed in network communities.

– assort degree: The tendency of nodes to be connected to nodes with a
similar degree.

– assort pos: The tendency of local (resp. global) optimal nodes to be con-
nected to local (resp. global) optimal nodes.

– assort rank: The tendency of nodes to be connected to nodes with a similar
rank. The rank of nodes is here defined in terms of nondominated sorting
within the whole search space (dominance depth) [5].

3.3 Exploratory Analysis

Based on the 10 aforementioned features, we are able to provide a more detailed
analysis on the effect of instance parameters on the structure of the PLOS-net,
as reported in Fig. 2. Confirming our visual inspection, one can clearly notice
the positive correlation of the number of PLOS with −ρ, m and k. This correla-
tion is actually reverted when looking at the density of the graph degree avg.
This indicates that not only the number of PLOS increases with the intrinsic
difficulty of an instance, but PLOS become more sparsely connected. A similar
situation occurs when looking at the size of the induced connected components.
For instances with a low degree of non-linearity (k = 1), the proportional size
of the largest connected component comp max size is 1 in most cases, meaning
that all PLOS are connected. This is confirmed by the path pos exist fea-
ture, measuring how many PLOS are connected to (global) POS, which is also
found to be close to 1 for k = 1. However, with the exception of 3-objective
instances with highly conflicting objectives (ρ < 0), the PLOS-nets are clearly
disconnected (path pos exist) and PLOS are relatively far from the Pareto
set (path length pos). Surprisingly, the degree of connectedness seems to in-
crease substantially for the highest value of k = 4. Finally, we can remark that
the tendency of a node to be connected with nodes having the same degree
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Fig. 2. Distribution of feature-values with respect to instance parameters.

(assert degree) is mainly impacted by the degree of non-linearity k, while the
other parameters ρ and m have only a marginal effect. This trend is roughly the
same when looking at how the PLOS are mutually connected as a function of
their nondominated rank (assort rank). To summarize, we found that the con-
nectedness of the PLOS-net is highly related to instance parameters, especially
to the degree of non-linearity k, which is obviously related to search difficulty.
In the next section, we go deeper in the analysis by providing a comprehen-
sive statistical study of the predictive power of the features with respect to two
conventional Pareto-based multi-objective search algorithms.
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4 PLOS-net Features vs. Search Performance

4.1 Algorithms and Search Performance

In the following, we consider the relative impact of PLOS-net features on both
Pareto Local Search (PLS) [15] and the Global Simple Evolutionary Multi-
objective Optimizer (G-SEMO) [10]. For PLS, we are interested in the total
number of evaluations performed by the algorithm before falling into a maximal
Pareto local optimum set [15]. For G-SEMO, the stopping condition is arbitrar-
ily set to 104 solutions evaluated. For both algorithms, we are interested in the
quality of the approximation set, measured in terms of the Pareto front resolu-
tion, i.e., the proportion of nondominated solutions identified. We perform 30
independent runs of each algorithm per instance.

The expected number of evaluations performed by PLS is reported in Fig. 3.
The expected Pareto front resolution obtained by PLS and G-SEMO is reported
in Fig. 4. These two figures illustrate how strong is the effect of the intrinsic
instance parameters on search performance. Notice in particular the linear slope
of the PLS runtime as a function of ρ, and the strong similar effect of k on the
accuracy of PLS and G-SEMO, independently of ρ and m.
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4.2 Effect of PLOS-net Features on Search Performance

The correlation of instance parameters (ρ, m, k) and PLOS-net features with
search performance is reported in Fig. 5. First, both the number of objectives m
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Fig. 5. Spearman’s rank correlation coefficient between parameters/feature-values and
the expected number of evaluations performed by PLS (left), the expected Pareto front
resolution obtained by PLS (middle) and by G-SEMO (right).

and their correlation degree ρ are highly correlated with the runtime of PLS
and very little with search quality, while the opposite holds for the problem non-
linearity k. Second, interesting correlations can clearly be observed for PLOS-net
features. On the one hand, the number of connected components as well as the
density of the network are correlated both to runtime and quality. We argue
that this is due to the fact that local search is basically exploring the con-
nected components in a pseudo-exhaustive manner. Hence, the performance of
the considered algorithms is naturally correlated to how local optimal solutions
are connected together. On the other hand, the features related to path length
and node connection similarity have the lowest correlation with the runtime of
PLS. However, this is no more true when examining the search resolution where
the correlation of such features to the Pareto front resolution obtained by PLS
and G-SEMO is consistently similar and more pronounced. In fact, the distance
between local and global optima, as captured by path lenght pos, is a natural
outcome to understand how likely a Pareto local search can find its way to Pareto
optimal solutions when starting from a local optima and navigating throughout
the PLOS-net under Pareto dominance.

4.3 Importance of PLOS-net Features on Search Performance

In this last section, we build a machine learning regression model to predict
search performance based on three sets of input variables: (i) instance parame-
ters only (i.e. ρ, m, k), (ii) features from the network only (cf. Section 3.2), and
(iii) the combination of the two. Given the non-linearity observed on the data,
we decide to use random forest as a regression model [2], which also allows us to
calculate the relative importance of input variables on the quality of the model.
The proportion of variance explained by the random forest regression model for
different input variables and search performance measures are reported in Ta-
ble 1. As we can see, the addition of PLOS-net features as input variables largely
improve the regression accuracy, and consequently the predictive power of the
regression model. Additionally, the importance of model’s input variables [2] are
depicted in Fig 6. For a given search performance measure, the instance param-
eters and PLOS-net features are sorted in the decreasing order of importance,
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Table 1. Variance explained by the regression model for different input variables.

instance PLOS-net instance parameters
parameters features + PLOS-net features

PLS – # evaluations 75.15 % 94.37 % 95.06 %
PLS – PF resolution 70.31 % 83.84 % 84.77 %

G-SEMO – PF resolution 67.01 % 80.07 % 81.37 %
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Fig. 6. Relative importance (mean decrease in accuracy) of input variables (instance
parameters and PLOS-net features) on the random forest regression model.

from top to bottom. Again, the PLOS-net features, especially those related to
connectedness of PLOS, appear to have a high importance. By contrast, for the
search quality measure, the number of objectives m and the objective correla-
tion ρ has a relatively low importance, whereas the degree of non-linearity k has
a relatively high importance. Finally, the number of PLOS, although being rela-
tively important for the regression model, is less important than other PLOS-net
features such as the structure of connected components.

5 Conclusions

In this paper, we introduced the Pareto local optimal solutions network model
as an alternative to capture the structure of multi-objective landscapes. We
also investigated its relation with the performance of multi-objective search al-
gorithms. Our work is to be viewed as the first step towards more systematic
investigations on the accuracy of PLOS-nets as a powerful fundamental tool for
enhancing our understanding and our practice of multi-objective optimization.
In fact, several questions are left open. For example, it would be interesting
to test whether our conclusions still hold for other state-of-the-art algorithms
and standard multi-objective combinatorial optimization problems. Studying the
scalability of the PLOS-net model for large-size problem instances is a challeng-
ing issue that should allow us to consider more practical prediction scenarios.
It is for instance still unclear how to estimate the proportion of nodes in the
PLOS-net and their relative connectedness. Considering adaptation of a simple
solution-based Pareto adaptive walk [3] for this purpose can be a promising sam-
pling methodology, which is worth investigating in the future. It would also be
interesting to investigate how leveraging PLOS-net features could help improving
the performance of the multi-objective optimization algorithms.
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