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Abstract. Local Optima Networks (LON) model combinatorial land-
scapes as graphs, where nodes are local optima and edges transitions
among them according to given move operators. Modelling landscapes
as networks brings a new rich set of metrics to characterize them. Most of
the previous works on LONs fully enumerate the underlying landscapes
to extract all local optima, which limits their use to small instances.
This article proposes a sound sampling procedure to extract LONs of
larger instances and estimate their metrics. The results obtained on two
classes of Quadratic Assignment Problem (QAP) benchmark instances
show that the method produces reliable results.

1 Introduction

Fitness landscapes are a commonly-used metaphor to describe heuristic search
of a globally optimal, or at least of a satisfying solution, among the set of ad-
missible solutions (see Richter and Engelbrecht [1] for a recent review of the
state of the art in the field). The number and distribution of local optima in
combinatorial fitness landscapes are known to have an impact on the perfor-
mance of search heuristics. Local Optima Networks (LONs) have been recently
proposed as a model of combinatorial landscapes that specifically captures these
landscape features [2,3,4]. In this network model, the nodes are the local optima
of the underlying optimisation problem and the edges account for transitions
among them using a neighbourhood operator. Modelling combinatorial land-
scapes as networks brings a whole new set of metrics for capturing the topology
and structure of combinatorial search spaces, and provides tools for estimating
search difficulty. Most previous work with this model required the full enumer-
ation of the search space in order to extract the nodes and edges of the local
optima network, therefore it was applicable only to small problems. We present
a sampling methodology for extracting local optima networks of large combina-
torial problem instances, and estimating the relevant landscape network metrics
for benchmark instances of the Quadratic Assignement Problem (QAP). The
fitness landscape of QAP have been studied several times (for example see the
algebraic analysis of the autocorrelation function in Chicano et al. [5]). In this



work, we propose to increase the number of relevant features to analyse large size
fitness landscape that could be potentially be used for performance prediction
of QAP algorithms.

The article is structured as follows. The next section briefly overviews previ-
ous work on local optima networks, describes the QAP, and the combinatorial
landscapes considered. Section 3 describes local optima networks and the metrics
employed as features. Section 4 outlines our approach for network sampling and
section 5 describes the empirical validation of the obtained estimates. Finally,
Section 6 summarises our findings and suggest directions for future work.

2 Combinatorial Landscapes

Given a discrete optimization problem, a fitness landscape for its instances is
defined as a finite set S of possible solutions, a neighbourhood N (s) given by
the set of solutions that can be reached from any solution s ∈ S by applying a
simple move operator, and a function f : S → R that, given a solution, provides
its objective value or fitness [6]. One can define a number of useful concepts
such as global and local optima, and basins of attraction among others. It is also
possible to define ways in which the search space can be traversed in a random
or adaptive way in order to collect configuration space statistics or to improve
the current solution.

Starting from the above notions, the local optima network (LON) model for
combinatorial landscapes was first proposed in [2], with follow up work appear-
ing in [3,7] using Kauffman’s NK [8]. Subsequently, more complex and realistic
search spaces were studied: the quadratic assignment problem [9], and the per-
mutation flowshop problem [10] which are known to be NP-hard. In a LON,
vertices correspond to solutions that are minima or maxima of the associated
combinatorial problem, and edges correspond to weighted transitions among
them. Initially, weighed edges represented an approximation to the probability
of transition between the respective basins in a given direction [2,7,3]. This defi-
nition, although informative, produced densely connected networks and required
exhaustive sampling of the basins of attraction. A second version, escape edges
was proposed in [4], which does not require a full computation of the basins.
Instead, these edges account for the chances of escaping a local optimum after
a controlled mutation (e.g. 1 or 2 bit-flips in binary space) followed by hill-
climbing. It is this later version that is used here. In order to demonstrate the
methodologies proposed in this study, we consider the Quadratic Assignment
Problem which is described below.

2.1 The Quadratic Assignment Problem

The Quadratic Assignment Problem [9] is a combinatorial problem in which a
set of facilities with given inter-facilities flows has to be assigned to a set of
locations with given inter-locations distances in such a way that the sum of the



product of flows and distances is minimised. A solution to the QAP is generally
written as a permutation π of the set {1, 2, ..., n}. The cost associated with a
permutation π is given by:

C(π) =

n∑
i=1

n∑
j=1

aijbπiπj

where n denotes the number of facilities/locations and A = {aij} and B = {bij}
are referred to as the distance and flow matrices, respectively. The structure of
these two matrices characterises the class of instances of the QAP problem.

The results presented in this article are based on two instance generators
proposed in [11] which are in turn inspired by [12] included in the QAPLib.
In [11] the generators were devised for the multi-objective QAP, but are adapted
here for the single-objective QAP. In order to perform a statistical analysis of
the extracted local optima networks, we consider 30 problem instances for each
class and size combination.

– Uniform generator: produces uniformly random instances where all flows
and distances are integers sampled from uniform distributions. The distances
are random integer numbers between 0 and 99 (bounds included). The flow
matrix is symmetric with random integer entries between 1 and 99. This
leads to the kind of problems known in literature as Tainna, being nn the
problem dimension [12]

– Real-like generator: makes instances where the distance and flow matrices
have structured entries. To generate the symmetric distance matrix,N points
(integer coordinates) are randomly distributed in a circle of radius 100, and
the entries are given by the distances between these N points. The flow
matrix is also symmetric with entries following the law d10re where r is a
uniform random integer from [L,U ]. This procedure generates non-uniformly
random instances of type Tainnb which have the so called “real-like” struc-
ture (see QAPLib) since they resemble the structure of QAP problems found
in practical applications. The problem instances from the QAPLib are often
unique example of a class of problems, so our study considers two parameter-
isations of real-like instances which allows a statically analysis: rl1 : L = −10
and U = 5, rl2 : L = −2 and U = 4.

3 Obtaining the Local Optima Networks

Our study considers the permutation representation for QAP solutions. In this
case, the most basic neighbourhood structure in the search space is given by the
pairwise exchange operation that exchanges any two positions in a permutation,
thus transforming it into another permutation.
In what follows, we define how the LON graphs are obtained from the fitness
landscapes corresponding to QAP instances.



Nodes: The nodes in the network are local optima (LO) in the search space.
For a minimisation problem such as QAP, a solution x ∈ X is a local optimum iff
∀x′ ∈ N (x), f(x) 6 f(x′). Notice that in this work we do not target specifically
neutral fitness landscape with large plateaus. However, this definition of local
optima is still relevant for small amounts of neutrality. For fitness landscapes
with high levels of neutrality, please refer to the definitions of previous work
[13] where the nodes are local optima plateaus. LO are extracted using a best-
improvement hill-climber (hc), as given in Algorithm 1. Thereby, when selecting
the fittest neighbour (line 4), ties are broken at random.

Algorithm 1 Best-improvement hill-climbing (minimisation)

1: procedure HillClimbing
2: x← random initial solution
3: while x 6= Local Optimum do
4: set x′ ∈ N (x), s.t. f(x′) = miny∈N (x)f(y)
5: if f(x′) < f(x) then
6: x← x′

7: end if
8: end while
9: end procedure

Escape edges: The edges in the network are defined according to a distance
function dist and a positive integer D > 0. The distance function represents
the minimal number of moves between two solutions for a given search (mu-
tation) operator. There is an edge eij between LOi and LOj if a solution x
exists such that dist(x, LOi) 6 D and hc(x) = LOj . In other words, if LOj
can be reached after mutating LOi and running hill-climbing from the mu-
tated solution. The weight w̃ij of this edge is w̃ij = ]{x ∈ X | dist(x, LOi) 6
D and hc(x) = LOj}. That is, the number of LOi mutations that reach LOj af-
ter hill-climbing. This weight can be normalised by the total number of solutions,
]{x ∈ X | dist(x, LOi) 6 D}, within reach at distance D: wij = w̃ij/

∑
j w̃ij .

Local optima network: The weighted local optima network Gw = (N,E)
is the graph where the nodes ni ∈ N are the local optima, and there is an edge
eij ∈ E, with weight wij , between two nodes ni and nj if wij > 0. According to
the definition of weights, wij may be different than wji. Thus, two weights are
needed in general, and we have a weighted, oriented transition graph.

3.1 Complex network metrics

The previous section described how to obtain the LONs. A number of models
and statistical metrics have been proposed to study the structure and func-
tion of large networks [14]. The first section of Table 1 summarises the metrics
for weighted networks considered in this study. First, we introduce some ba-
sic network notation before defining more advanced metrics. Let us denote aij



an element of the graph’s adjacency matrix A for a weighted oriented graph
Gw = (N,V ), defined as aij = 1 if wij > 0, aij = 0 if wij = 0. Finally,
ki =

∑
j 6=i aij is the degree of node i, whereas si =

∑
j 6=i wij is a generalisation

of a node’s degree for weighted networks called the node’s strength. From those
basic definitions, we can define the average outdegree, zout, as the average of ki
for all nodes.

Disparity of a node ni measures how heterogeneous are the contributions of
the edges of node ni to the total weight (strength):

Y2(i) =
∑
j 6=i

(
wij
si

)2

Thus, the average disparity y2 is defined as the average for all node of Y2(i).
The standard clustering coefficient [14] does not consider weighted edges. We
thus use the weighted clustering cw(i) measure of a node ni proposed in [15],
which combines the topological information with the weight distribution of the
network:

cw(i) =
1

si(ki − 1)

∑
j,h

wij + wih
2

aijajhahi.

For each triple formed in the neighbourhood of the node ni, c
w(i) counts

the weight of the two participating edges of the node ni. The average weighted
clustering coefficient wcc is defined as wcc = 1/|N |

∑
ni∈N c

w(i). The reader is
referred to [15] for more details.

A network is said to show assortative mixing if the nodes in the network
that have many connections tend to be connected to other nodes with many
connections [16]. Assortativity can be measured using the Pearson correlation
coefficient r of degree between pairs of linked nodes. Positive values of r indicate
a correlation between nodes of similar degree, whereas negative values indicate
relationships between nodes of different degree. We use here the weighted assor-
tativity, denoted knn, which measures the nearest-neighbours degree correlation.
This metric reflects the affinity to connect with high or low-degree neighbours.

The fitness-fitness correlation (fnn) measures the correlation between the
fitness values of adjacent local optima. It is the Pearson correlation coefficient
between the fitness value fi of node ni and the weighted-average of it nearest-
neighbours fitness, defined as fn,w(i) = 1/si

∑
j 6=i wijfj .

4 Sampling local optima networks

Most of the previous work has considered small search spaces (problem sizes
up to 18 for binary spaces and up to 10 for permutation spaces), where it was
possible to exhaustively enumerate and fully extract the local optima network
models. For larger search spaces, i.e., those corresponding to realistic problem
sizes, a methodology for sampling the local optima networks is required. We



Table 1: Set of features used for network characterisation and for sampling.

Network metrics

fit Average fitness of local optima in the network.

wii Average weight of self-loops.

zout Average outdegree, i.e, number of outgoing edges.

y2 Average disparity for outgoing edges.

knn Weighted assortativity.

wcc Weighted clustering coefficient. Measures “cliquishness”
of a neighbourhood.

fnn Fitness-fitness correlation. Measures the correlation be-
tween the fitness values of adjacent local optima.

snowball sampling metrics

lhc Average length of hill-climbing to local optima.

mlhc Maximum length of hill-climbing to local optima.

nhc Number of hill-climbing paths to local optima.

propose here an original method for extracting a significant subset of the lo-
cal optima and transition edges. Thereafter, the network metrics are estimated
from the sampled network. The sampling follows a random walk over the local
optima network coupled with a snowball process, also known as chain-referral
[17]. Snowball sampling is a non-probabilistic technique used in sociology where
existing subjects recruit future subjects from among their acquaintances. The
sample population then grows like a rolling snowball, similarly to breadth-first
search. In the computational implementation, the snowball procedure enlarges
an original node sample by joining adjacent nodes. Two control parameters are
required: the number of neighbours to consider m (how many acquaintances a
recruit should name), and the depth of the sampling d (how many referral steps).

Figure 1 and Algorithm 2 illustrate the local optima network sampling pro-
cedure, which requires a hill-climbing algorithm (Algo. 1), a mutation operator
op, and a snowball sampling procedure. An initial local optimum is obtained
using hill-climbing (hc) starting from a randomly generated solution. This ini-
tial local optimum is the starting point of the random walk, whose length is
controlled by a parameter l indicating the number of steps. At each step of the
walk, a snowball procedure is computed as follows: let xt be the local optimum
sampled at step t of the random walk. From xt, a snowball sampling is per-
formed, by applying m times the mutation operator op followed by hill-climbing
to produce neighbouring local optima. Then, the edges and the corresponding
weights from xt are updated. Using recursion, the snowball procedure (with a



Fig. 1: Illustration of the sampling procedure, featuring a random walk of length
l = 5, a number of sampled edges m = 3, and a sampling depth d = 2. The light
circles in the center are solutions xi on the random walk, while dark circles on
the outside are solutions sampled during the snowball procedure.

decreasing depth) is invoked from each adjacent node. For the next step in the
walk xt+1, a neighbouring node of xt that is not already in the walk is selected.
If this is not possible (i.e. if all xt adjacent nodes are already in the walk), then
xt+1 is set as a local optimum obtained from a randomly generated solution,
that is xt+1 = hc(x) where x is a random solution. The second part of Table 1
summarises the main sampling metrics.

The random walk allows for the estimation of the network metrics that are
based on the correlations between neighbouring nodes. The snowball procedure
permits the estimation of metrics that require higher-oder interactions (that is,
“neighbours of neighbours”) such as the clustering coefficient. Moreover, along
the sampling, a number of hill-climbing runs are performed, allowing us to oppor-
tunistically extract other metrics such as the average length of adaptive walks,
the average maximum length of adaptive walks to reach each local optimum
of the sampled set, and the corresponding average number of adaptive walks
to each local optimum 4. These sampled values have been used, together with
network metrics, to predict the performance of metaheuristics on large problem
instances (work to be presented elsewhere).

5 Empirical validation

In order to validate the sampling methodology, we compared the estimated net-
work metrics against their exact values obtained from previous work on small
instances. Various sampling parameters and instance types were considered. We
report here the QAP landscape experiments. Three instance types were tested,
namely, uniform (uni) and two settings of real-like instances (rl1) and (rl2) as
described in Section 2.1. For each type and size, 30 instances were generated. The
depth of the snowball sampling procedure was set to d = 2. Table 2 summarizes
the remaining parameters for both the small and larger instances.

4 Here an adaptive walk means that from a given point the walk goes to a randomly
chosen neighbor if the neighbor’s fitness is better, otherwise it tries another random
neighbor.



Algorithm 2 Sampling methodology for local optima networks

1: procedure LONSampling(d, m, l)
2: x0 ← hc(x) . where x is randomly initialised
3: N̂ ← {x0}
4: Ê ← ∅
5: for t← 0, . . . l − 1 do
6: Snowball(d, m, xt)
7: xt+1 ← RandomWalkStep(xt)
8: end for
9: end procedure

1: procedure Snowball(d, m, x)
2: if d > 0 then
3: for j ← 1, . . .m do
4: x′ ← hc(op(x))
5: N̂ ← N̂ ∪ {x′} . Add node to the sample
6: if (x, x′) ∈ Ê then
7: ŵx,x′ ← ŵx,x′ + 1
8: else
9: Ê ← Ê ∪ {(x, x′)} . Add edge to the sample

10: ŵx,x′ ← 1
11: Snowball(d− 1, m, x′)
12: end if
13: end for
14: end if
15: end procedure

1: procedure RandomWalkStep(xt)
2: neighbourSet ← {x : (xt, x) ∈ Ê ∧ x 6∈ {x0, . . . , xt}}
3: if neighbourSet 6= ∅ then . Randomly select a neighbour
4: Select randomly xt+1 ∈ neighbourSet
5: else . Restart from a random solution x
6: xt+1 ← hc(x)
7: N̂ ← N̂ ∪ {xt+1}
8: end if
9: return xt+1

10: end procedure

The plots in Figure 2 show the network metrics: fit, wii, fnn, y2, knn and
wcc, described in Table 1, for the small QAP instances. These metrics have been
shown to be significantly related to search performance in previous work [18,19].
The curves in the plots refer to the different sampling parameter pairs (m, l),
whereas the curves named ‘full’ correspond to the metrics calculated from fully
enumerated networks, which is only possible for these small instances. The es-
timated metrics for the different instance classes follows the trend of the full
metrics, and their values depend on the instance class. The sampling parameter
m has a larger impact on the estimation with higher values producing better



Table 2: Parameters for the empirical validation of the sampling procedure. N :
problem dimension. Sampling parameters, m: number of edges, l: size of the
random walk.

Small Large

Problem size (N) 10 30, 50, 70, 100, 150
Sampling (m, l) (15, 50), (30, 50), (15, 100) (30, 100), (60, 100), (30, 400)
op strength (D) 2 4

estimates. Some metrics are better estimated than others with fitness of local
optima and weighted clustering coefficient (wcc) producing the best match.

Figure 3 shows the estimated network metrics for the larger QAP instances.
The curves represent the sampling parameter pairs (m, l), grouped from left to
right according to the instance type: uni, rl1, rl2. The instance sizes explored,
n ∈ {30, 50, 70, 100, 150}, are indicated in the X axis labels. The differences
among the estimated metrics are small for the three sampling parameter pairs. As
for the small instances, the m parameter has a larger impact on the estimation.
The curves for (m, l) ∈ {(30, 100), (30, 400)} are almost identical. Therefore, for a
fixed computational cost it seems preferable to increase the sampling parameter
m (number of edges) rather than the length of the random walk (parameter l).
Beyond the quality of the estimation, the main metrics of LON are different
according to the class of the QAP instances. For example, the weight clustering
coefficient is lowest for uniform type of instance which corresponds to less dense
network; or the self-loop transition weight is highest for the real-like instances of
type 2. Without giving all details, the metrics seems to give useful information
on the structure of the LON, and problem difficulty. The sampling methodology
opens research directions on the performance prediction for large size instance.

6 Conclusions and Future Work

The fitness landscape metaphor has been often used in the context of meta-
heuristics to search for solutions to difficult problems. In the last few years, we
have put forward a novel view of fitness landscapes based on a network called
the Local Optima Network which captures fundamental features of the underly-
ing fitness landscape, as well as information about the transitions among local
optima basins. In previous work on relatively small instances of typical combina-
torial problems we have been able to show that selected LON network statistics
correlated with the problem instance difficulty and can be used to predict the
performance of well-known metaheuristics on these search spaces. Although it is
useful to show these capabilities in principle, the main limitation of the approach
was that it required complete enumeration of all local optima in the search space,
which of course can only be done for relatively small problem instances. In the
present study we have shown that it is possible to sample larger search spaces
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Fig. 2: Small QAP instances (n = 10). Estimated network metrics depending
on instance type. Boxplots labelled ‘full’ correspond to the metrics calculated
from the complete networks, whereas the remaining boxplots illustrate different
sampling parameter pairs (m, l).

without losing much in accuracy. This has been done by first comparing sam-
pled and exhaustively enumerated spaces results for small instances, which give
similar results, and then extending the procedure to larger sizes. The results ob-
tained on uniformly random, as well as real-like QAP instances, are satisfactory
and consistent.

In previous work with small instances, it was found that some network statis-
tics were useful to predict performance [18,19]. As a follow-up work, a simi-
lar analysis could be conducted with larger sampled instances in order to find
whether LON features could be more correlated with performance than basic
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Fig. 3: Large QAP instances. Estimated network metrics as a function of the
instance type (uni, rl1, rl2) and size (n ∈ {30, 50, 70, 100, 150}). The curves
represent the sampling parameter pairs (m, l).

fitness landscape features. This will allow to predict performance on larger in-
stances using LON features. Finally, we note that the proposed methodology is
not limited to sampling problem instance LON’s. The same or a very similar
approach could also be used to sample other features of a combinatorial search
space. Many aspects remain to be studied and we intend to extend the method-
ology to other important combinatorial problems and their fitness landscapes.
Future work is also planned to extend the sampling method to fitness landscapes
that have a significant amount of neutrality.
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