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A Graph Transformation Approach to the
Modelling of Capital Markets

Nneka Ene1, Maribel Fernández1 and Bruno Pinaud2

1 King’s College London, UK
2 University of Bordeaux, France

Abstract. We propose to use strategic port-graph rewriting as a visual
modelling tool to analyse credit derivative markets. We illustrate the
approach by specifying a basic “rational negligence” model in which in-
vestors may choose to trade securities without performing independent
evaluations of the underlying assets. We show that our model is correct
with respect to the equational model and can be used to simulate simple
market behaviours. The model has been implemented within PORGY, a
graph-based specification and simulation environment.
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1 Introduction

The sub-prime mortgage crisis of 2008 has heightened the need for more effective
and transparent tools in the modelling of capital markets, as noted in [1]. In the
Asset-Backed Securitisation space, rational negligence [2] has been identified as
a behavioural pattern that led to weakening in the market: to reduce operational
costs, transactions were performed without proper due-diligence checks. Ratings
from credit agencies were found to be inaccurate especially in terms of under-
estimated default probabilities. This inaccuracy led to system states the DSGE
(Dynamic Stochastic General Equilibrium) models3 were unable to anticipate.

As an alternative to traditional top-down macro equilibrium models, Agent-
Based Models (ABM) have been proposed, which examine behaviour at a micro-
level [3]. In this paper we explore an alternative approach: we seek to formalise
the rational negligence theory using graph rewriting. We provide an example of
application to illustrate the ideas. Our small example cannot prevent a future
crisis but can be seen as a first step towards the development of alternative
tools for the analysis of markets, which complement the current agent-based
implementations.

Rewrite rules are an intuitive and natural way of expressing dynamic, struc-
tural changes which are generally more difficult to model in traditional simu-
lation approaches where the structure of the model is usually fixed [4]. Graph
rewriting languages are well-suited to the study of the dynamic behaviour of

3 https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0106.2012.00579.x



complex systems: their declarative nature and visual aspects facilitate the anal-
ysis of the processes of interest producing a shorter distance between mental
picture and implementation; they can be used for rapid prototyping, to run sys-
tem simulations, and, thanks to their formal semantics, also to reason about
system properties.

We use attributed port graphs, that is, graphs where edges are connected to
nodes at specific points called ports, and where attributes are attached to ports,
nodes and edges. Attributed port graphs are useful in the development of graph
models, due to their support of both topology (via ports and edges) and data (via
attributes). To control the rewriting process, we use strategies that permit to
select which rules to apply and where, including probabilistic rule applications.
We present first a basic model of asset trading following a discretised equational
model presented in [2], where the probability of asset toxicity, due diligence
analysis cost and asset cost are fixed. We then briefly discuss a more general
version of the model where stochasticity is introduced by using a probabilistic
choice model of logit type [3].

Summary of Contributions. We identify rules and strategies that model ba-
sic asset-trading transactions, taking into account the rational negligence phe-
nomenon [2, 5]. The top tier model has been implemented in Porgy4, an inter-
active, visual port graph rewriting tool. The graph rewriting approach we ad-
vocate produces flexible models that are easy to validate, experiment with and
reason about. We illustrate it by showing the correctness of our graph rewrite
rules and strategies with respect to the equations defining the rational negli-
gence phenomenon, and using the implemented model to analyse simple market
behaviours.

Overview. We first recall key notions on securitisation and graph rewriting in
Section 2. Section 3 describes the proposed approach to the modelling of securiti-
sation, including a short description of rules and associated strategies. Section 4
examines key properties of the model (formal definitions and proofs are omitted
due to space restrictions). We finally conclude, discuss related work and briefly
outline future plans in Section 5.

2 Background

2.1 Asset-Backed Securities

As defined in [1] “Securitisation is the process of converting cash flows arising
from underlying assets or debts/receivables (typically illiquid such as corporate
loans, mortgages, car loans and credit cards receivables) due to the originator
into a smoothed liquid marketable repayment stream”. We now examine infor-
mally some of the entities and processes that characterise this space [5]. Assets
represent loans to clients or obligors who make regular installment payments to

4 http://porgy.labri.fr
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the originator to clear their debts. In a securitisation, assets are selected, pooled
and transferred to a tax neutral, liquidation-efficient (i.e bankruptcy avoiding),
special purpose vehicle (SPV), who funds them by issuing securities. In general,
an ABS (asset-backed security), or simply asset if there is no ambiguity, is any
securitisation issue backed by consumer loans, car loans, credit cards, etc.

In the core rational negligence model [2], the profit Uw expected by an agent
(e.g., a bank) w from trading an asset depends on whether or not w follows the
negligence rule, i.e., the rule of not performing independent risk assessment.
Let z be a binary variable indicating whether or not the agent is following
the negligence rule, then Uw is a function of z. According to [2], Uw(z) can
be characterised by the following equations, where p is the probability of asset
toxicity, Z is the average of all z’s in the domain, c is the cost of purchasing an
asset (note that the payoff from successfully reselling the asset is normalised to
unity), xw is the cost of performing a complete risk analysis, k is the number of
trading partners of the seller bank and Ni is the set of agents.

– Expected profit for w when following the negligence rule, i.e., when z(w) = 1,
if w buys an asset and then tries to sell it to w′:

Uw(1) =def −p(1− z(w′))c+ [1− p(1− z(w′))](1− c) ≈ 1− p(1− Z)− c

This is because if the asset is toxic then w will loose c if w′ checks, and will
have a profit of 1 − c if w′ does not check. Of course w does not know a
priori whether w′ will or not follow the rule, but it can estimate z(w′) as the
average of all the values of z in the system, Z. Note that when p = 0 the
profit is 1− c as expected.

– Similarly, the expected profit for w when the rule is not followed, i.e., z(w) =
0, is defined by:

Uw(0) =def (1− p)(1− c)− xw
This is because if the asset is toxic, then w will not buy it (losing only xw),
but if it is not toxic then it will resell it with a profit of 1 − c − xw. Note
that when p = 1 the loss is xw as expected.

So the best response of agent w to a buying request is determined by the value
of U(1)− U(0). If it is positive, then negligence is better, otherwise diligence is
better. Note that

U(1)− U(0) = p(Z − c) + xw = p

1

k

∑
j∈N i

zj − c

 + xw

Following [2], in this paper we study the behaviour produced by the trading of
one asset since this is sufficient to perform validations against equivalent DSGE
analyses. The goal is to study the evolution of the system till fixed point (that is,
a stable state) is reached i.e., in this case, a state such that all potential buyers
in the universe of discourse no longer alternate between diligent and negligent
behaviour in their handling of the purchase of a particular asset.
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2.2 Port Graph Rewriting

There are many different kinds of graph transformation systems. In this paper
we focus on labelled port graphs [6], which have been used in various domains
(see, e.g., [7, 8] for applications in biochemistry and social networks). Due to
space restrictions, in this section we briefly recall the main notions of port graph
rewriting and refer the reader to [6] for formal definitions and examples.

Intuitively a port graph is a graph where nodes have explicit connection
points, called ports, and edges are attached to ports. Nodes, ports and edges
are labelled by a set of attributes, including a mandatory attribute Name that
characterises the type of the node, port or edge. For example, in our model we
have nodes named B (representing banks), A (representing an asset), etc. In
general, attributes describe properties of nodes, ports and edges.

Port graphs are transformed by applying port graph rewrite rules. The sys-
tem we use to implement our port graph rewriting system is Porgy [6], where
labels are records, i.e., lists of attribute-value pairs. The values can be concrete
(numbers, Booleans, etc.) or abstract (expressions in a term algebra, which may
contain variables).

The port graph in Figure 1 depicts a toy ABS secondary market universe
represented by a community of banks (B), one of which owns a tradeable asset
(A), together with a global environment represented by the nodes Z and Change.
The edge between A and B represents ownership, it originates from a port in B
called O (meaning that B owns A). Transactions between banks, representing
buy-sell requests and associated operations are specified by means of rewrite
rules.

A port graph rewrite rule L⇒C R can itself be seen as a port graph consisting
of two port graphs L and R together with an “arrow” node. Intuitively, the
pattern, L, is used to identify subgraphs (redexes) in a given graph which should
be replaced by an instance of the right-hand side, R, provided the condition C
holds. The arrow node may itself have ports and edges that connect it to L
and R; these edges specify a partial morphism between the ports in L and R,
following the single push-out approach [9] to graph rewriting (see [6] for more
details).

Figure 2 displays one of the rules used in our model and implemented in
Porgy. The arrow-node edges (depicted in red in the diagram) are used during
rewriting to redirect edges that arrive to ports in the redex from outside: these
edges are redirected towards the corresponding ports in the copy of the right-
hand side that will replace the redex, ensuring that no edges are left dangling.

In Porgy, we can specify how the attributes are updated in the right-hand
side of the rule by means of an ”algorithm tab”. As an example, we show in
Figure 3 the tab associated with the beginanalysis rule detailed in Table 3 (see
also the Appendix). The algorithm tab permits the definition of the values of
new attributes in terms of attributes of left-hand side elements. For example, the
node Theta created in the right-hand side of rule beginanalysis has attributes U1,
U0 and DeltaU1U0, which are updated as indicated in Figure 3, using attributes
of the nodes A and Z in the left-hand side of the rule.
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Fig. 1. Sample Port-graph: Model’s Starting Graph

Fig. 2. Sample Rule

For a given graph, several different rewriting steps may be possible (due to
the intrinsic non-determinism of rewriting). Strategies in rewriting systems are
a means of controlling the creation of rewriting steps. A sequence of rewriting
steps is called a derivation. A derivation tree is a collection of derivations with
a common root. Intuitively, the derivation tree is a representation of the possi-
ble evolutions of the system starting from a given initial state (each derivation
provides a trace, which can be used to analyse and reason about the behaviour
of system).

Porgy’s strategy language allows us to control the way derivations are
generated. We can specify not only the rule to be used in a rewriting step,
but also the position where the rule should (or should not) be applied. For-
mally, the rewriting relation is defined on located graphs, which are port-graphs

Theta.U1=1-A.p_tox(1-Z.z)-A.c_val

Theta.U0=(1-A.p_tox)(1-A.c_val)-A.ddcost

Theta.DeltaU1U0=Theta.U1-Theta.U0

Fig. 3. Sample Algorithm Tab Script
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with two distinguished subgraphs P (Position subgraph, the focus of rewriting)
and Q (Banned subgraph, where rewriting steps are forbidden). The keywords
crtGraph, crtPos, crtBan in the strategy language denote, respectively the
current graph being rewritten and its Position and Banned subgraphs. For ex-
ample, the strategy expression setPos(crtGraph) sets the position graph as
the full current graph. If T is a rule, then the strategy one(T ) randomly selects
one possible occurrence of a match of rule T in the current graph G, which
should superpose the position subgraph P but not superpose the banned subgraph
Q. This strategy fails if the rule cannot be applied. Id and Fail denote success
and failure, respectively. The strategy expression match(T ) is used to check if
the rule T can be applied but does not apply the rule. (S)orelse(S′) tries strat-
egy S and if it fails then tries to apply S′. If both strategies fail then the whole
statement fails. The strategy ppick(T1, . . . , Tn, Π) selects one of the transforma-
tions T1, . . .Tn according to the given probability distribution Π. The strategy
while(S)[(n)]do(S′) executes strategy S′ (not exceeding n iterations if the op-
tional parameter n is specified) while S succeeds. repeat(S)[max n] repeatedly
executes a strategy S, not exceeding n times; it can never fail (when S fails, it
returns Id). We refer the reader to [6] for the full definition of Porgy’s strategy
language.

Porgy [6] offers an in-built strategy editor, a navigable derivation tree wid-
get, and widgets for the creation of rules and graphs (see Figures 4 and 5). By
navigating on the tree and zooming on different nodes, we can see the various
stages in the simulation; if we click on the black arrows in the derivation tree we
can see which rule has been applied and identify the cause of the change in the
model state.

3 The ABS-GTS Model

In this section we give a high-level description of a graph-based model of the
ABS process as specified by the equations given in Section 2.1. Asset-transfer
transactions are modelled using a combination of global and local data, as ex-
plained above: the global state includes Z (an indicator of market behaviour
obtained as the average value of each individual bank’s approach, represented
by the bank’s attribute z and not to be confused with the global value Z) and a
Change indicator, to detect whether the market has reached a stable state. See
Tables 1 and 2 for a description of the nodes used.

We represent the full ABS universe hierarchically as several initial graphs.
Port graph rewriting rules and strategies are used to control the step-wise evo-
lution of the graphs and to create a derivation tree that can be used for plotting
and analysing. The asset trading model sits at the top level of the model hier-
archy. It is non-deterministic in nature. Below this system, also able to handle
asset pricing and valuation issues, lie several subsystems that model origination,
structuring of the deal, SPV transfers and profitability of the sale, and therefore
aid in enforcing internal checks. Alternative designs are possible, for example,
banks could be organised in clusters, with local copies of Z, using algorithms
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Entity Name Attribute Description

Buyer (B/PB)

Payoff (payoff) Returns from re-selling an asset
Bank/Potential

z Indicates whether or not, as a rule, the
bank performs independent risk analyses

Bank ID (b id) Bank identifier

Asset

Current Value (c val) Cost of purchasing an asset
Probability An asset is toxic if the borrowers of the
of Toxicity (p tox) underlying loans are likely to default

or are in default
Actualised Toxicity Current toxicity level
(a tox)
Perception (pe) External rating of the asset by rating

agencies
Due Diligence Cost Full cost of an independent risk
(ddcost) assessment

Change
change Change in bank approach
Sum of change Sums all changes in a current cycle
(sumofchange)

z Represents the global average z
Number of Iterations Counter that keeps track of

Z (numofiterations) AllTrade iterations
Number of Agents Variable that keeps track of number
(numofagents) of banks

Theta
U1 Profitability of being negligent
U0 Profitability of being diligent
DeltaU1U0 Difference between U1 and U0

Table 1. Nodes and Attributes

Entity Ports Description

Bank
O (Owns) Edges attached to this port highlight

assets owned by the bank
C (Contacts) Communication channel with another bank

Asset OB (Owned by) Connects the asset to its current owner

Z EN (Environment) Global entity that tracks current average sentiment

PotentialBuyer
O (Owns) Links to assets owned by the bank
C (Contacts) Communication channel with another bank
GE (Generates) Declares a relationship with an analysis node

Change CH (change) Keeps track of behaviour changes

Theta PB (Produced by) Links to entity that produces this node

Table 2. Ports in each kind of node
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Fig. 4. PORGY in action: A portion of a branch in a derivation tree (top right window).
Bottom window: strategy widget, left window: rules widget containing all the rules that
drive the system. The diagram has been minimized in keeping with space restrictions.
A zoom-in on the derivation tree can be found in Figure 5. Sample strategies can be
seen in Section 3.

borrowed from social networks [8] to model propagation of negligent/diligent
behaviour. The exploration of these models is left for future work. In the rest of
the paper we focus on the top tier level, which is where the ‘rational negligence’
phenomenon can be observed.

Reduction strategies define sub-graphs to be selected for evaluation and
which rules should be applied. The starting state of the model is the graph
shown in Figure 1 and it is from this point that the derivation tree begins to un-
dergo construction as the execution strategy calls on rules that create step-wise
transformations. Specifically, the asset transfer processes are governed by the
strategies AllTrade and FixedPointSearch (see Strategies 1 and 2 below), using
8 rewrite rules summarised in Table 3 (see also the diagrams in Figures 7 to 14
of the Appendix, omitted here due to space constraints).

A basic description of the strategy AllTrade (Strategy 2) is as follows: Line
1 specifies that rules will apply anywhere in the current graph. Line 2 starts
a trading cycle: each iteration corresponds to one transaction (asset transfer
operation), with the rules described in Table 3: the owner of the asset offers the
asset to another bank (rule requesttobuy ; the strategy operator one that controls
the application of the rule requesttobuy ensures fair, nondeterministic choice of
buyer); the potential buyer then begins the analysis in line 3 to decide whether
or not to follow the negligence rule. It does this by computing the profitability
of choices as described in Section 2.1 using rule beginanalysis. If diligence is
more profitable the deviation rules will apply, otherwise the bank follows the
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Fig. 5. PORGY in action: A zoom-in on the derivation tree in Figure 4. The square
boxes are nodes in the derivation tree: they contain graphs, and the black arrow rep-
resents the application of a rewrite rule.

1 #AllTrade#;
2 while(match(change))do(
3 one(change);
4 #AllTrade#)

Strategy 1: FixedPointSearch

negligence rule (see the orelse in lines 4 and 5). The rule updatez used in Line
7 updates the global Z as described in Table 3. We repeat k times in order to
give all banks an opportunity to trade. Strategy 1 controls the full execution:
AllTrade is iterated until there are no changes in the agent behaviours (i.e., as
long as the change rule can be applied).

A variant of strategy AllTrade replaces the orelse operator (lines 4 and 5)
by a ppick operator, to model probabilistic choice of logit type between following
or deviating from the negligence rule. The probability distribution used in this
case implements the stochastic “trembles” described in [3] and can be written
within our strategy environment as follows:

ppick(followResult, deviationResult, udfLogitModel)

where udfLogitModel is a function that reads the profitability of being negligent
or diligent (attributes U1 and U0 in the node Theta of the graph produced by
the relevant rule) and returns the following values as a list:

expBUi(z=1)

expBUi(z=1) + expBUi(z=0)
and 1− (

expBUi(z=1)

expBUi(z=1) + expBUi(z=0)
)

where i is the current agent number and B is the intensity of choice parameter
that controls the ease at which fixed point is reached (as specified in [3]). Levels
of toxicity, asset value and due diligence cost are parameters of the simulation,
which can be easily changed in our model by updating values in the attributes
of bank and asset nodes.
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Name of Rule Description

requesttobuy
Sends a request-to-buy message to a random bank B
changing the name of this node to PB (PotentialBuyer)

beginanalysis
Computes profitability U(1), U(0) of PB, generating
a node Theta with attribute DeltaU1U0 = U(1)− U(0)

updatez
Updates the attribute Z in node Z. The new value in
Z is (Z ∗ (k − 1) + z(PB))/k

followresult
Applies if DeltaU1U0 ≥ 0.
As additional visualisation support, it generates a
follow node if more profitable to not do a full risk analysis.

deviationresult
Applies if DeltaU1U0 < 0.
As additional visualisation support, it generates a
deviation node if more profitable to do a full risk analysis.

followdecision

Transfers asset and prepares for a new transaction
(i.e. cleans up after the decision to follow the
negligence rule), updating bank’s attribute z,
updating the Change counter if necessary.

deviationdecision

Transfers asset and prepares for a new transaction
(i.e. cleans up after the decision to deviate from the
negligence rule), updating bank’s attribute z,
updating the Change counter if necessary.

change Sets the Change counter back to 0 if greater than 0
Table 3. Rewrite Rules

1 setPos(crtGraph);
2 repeat(one(requesttobuy);
3 one(beginanalysis);
4 (one(deviationresult);one(deviationdecision)) orelse
5 (one(followresult);one(followdecision))
6 setPos(crtGraph);
7 one(updatez))(k)

Strategy 2: AllTrade

4 Model Properties

Following a base case validation in which test results (see Figure 6 where av-
erage Z value is plotted versus depth of the simulation) line up with results
from a traditional ABM simulation given in [2], we examine parameters and
parameter values that simulate different economic scenarios. A natural question
arises: What events could have mitigated or further instigated the 2008 crisis?
By increasing toxicity values for example we can take into account the increase
in interest rates that led to increased default rates and the 2008 crisis. Our
experiments show that when toxicity is increased (attribute p in node A) the
system reaches a stable state where all banks perform independent risk analysis,
as expected.
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First, we show that our implementation is correct with respect to the equa-
tional semantics given in Section 2.1. This ensures that our model captures the
ABS process of interest, and predictions from the ABS models under the same
conditions coincide with the predictions produced by our system. Proofs are
omitted due to space constraints and can be found in the Appendix.

Lemma 1. Strategies 1 (FixedPointSearch) and 2 (AllTrade) never fail5.

Theorem 1 (Correctness). The graph-based model defined by the initial state,
rewrite rules and strategies defined above is correct with respect to the equation-
ally defined ABS process (see Section 2.1). More precisely, the graphs generated
by the application of the rewrite rules with the given strategy represent states
reached by the system governed by the equational ABS model.

Theorem 2 (Completeness). The graph-based model defined by the initial
state, rewrite rules and strategies defined above is complete with respect to sta-
bility as specified by the equational ABS model (see Section 2.1). More precisely,
if the equational model reaches a stable state, so does our model.

Theorems 1 and 2 ensure that our model reaches a stable state if and only if the
ABS equational model (see Section 2.1 and [2]) reaches the same stable state.

Theorem 3 (Termination). The graph program consisting of the initial graph,
rewrite rules and strategy described above terminates.

More generally, if the rule updatez also changes the values of the asset at-
tributes (reflecting external changes in risk analysis cost, toxicity and asset value)
then the graph program terminates if and only if stable state is reached.

Experiments and Analysis. Here we report results of experiments where we in-
vestigate the phenomena that occur as a result of changes in parameter values
such as toxicity, due diligence cost, initial z, current value, etc.

In particular, for high values of p (that is, high probability of toxicity), we
observe the expected result when the initial state contains a mixture of negligent
and diligent agents: a sharp drop in Z, corresponding to a sharp switch towards
diligence which in turn will generate stability. An illustration of this can be
seen in Figure 6(c) and notice that given high due diligence costs Figures 6(b)
and 6(e) highlight a negligent approach whereas Figures 6(c) and 6(h) reflect the
favouring of a diligent approach. However, even for high toxicity, if the initial
state is a set of negligent agents, the model reaches equilibrium without switching
approach as seen in Figure 6(l).

Result 1 (Negligent equilibrium) If in the initial graph Z ≈ 1, then the
system arrives at negligent equilibrium (i.e., a result that reflects a community
decision to no longer perform due diligence on a particular asset) even when the
asset has high probability of toxicity.

5 A strategy fails if it attempts to apply a rule that is not applicable.
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(a) Low Tox-
icity, High
Due Diligence
Cost,Mixture
of Diligent and
Negligent Banks

(b) High Toxi-
city, High Due
Diligence Cost,
Mixture of
Diligent and
Negligent Banks

(c) High Toxi-
city, Low Due
Diligence Cost,
Mixture of
Diligent and
Negligent Banks

(d) Low Toxi-
city, Low Due
Diligence Cost,
Mixture of
Diligent and
Negligent Banks

(e) High Toxi-
city, High Due
Diligence Cost,
Diligent Banks

(f) Low Toxicity,
High Due Dili-
gence Cost, Dili-
gent Banks

(g) Low Toxicity,
Low Due Dili-
gence Cost, Dili-
gent Banks

(h) High Toxi-
city, Low Due
Diligence Cost,
Diligent Banks

(i) Low Toxicity,
High Due Dili-
gence Cost, Neg-
ligent Banks

(j) High Toxicity,
High Due Dili-
gence Cost, Neg-
ligent Banks

(k) Low Toxicity,
Low Due Dili-
gence Cost, Neg-
ligent Banks

(l) High Toxicity,
Low Due Dili-
gence Cost, Neg-
ligent Banks

Fig. 6. Experiment Results. (y-axis: Count of the number of negligent banks. The
intersection of x and y axes in the case of a starting universe of purely diligent banks
corresponds to the co-ordinates (0,0) as opposed to (11,0) in the case where we begin
with negligent banks. Curves tending upwards reflect a negligent equilibrium result)
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Explanation: For high p the profitability equation outlined in section 2.1 reduces
to: U(1)−U(0) ≈ Z−c+xw given that the difference between U(1) and expected
profit when the rule is not followed (i.e. U(0)) is p(Z − c) + xw. This linear
equation will be computed at each iteration of the repeat loop. The result must
be positive given that c and xw are both positive constants smaller than 1.

Similarly, we observe that if p is high but in the initial graph the majority
of banks are deviating from the negligence rule, then the system reaches a due
diligence stable state. We can also infer simple conditions to avoid a market
crash, such as the one below (that although not feasible in a real market, is valid
in equational models).

Result 2 (Indefinite propagation) A continuous increase in the number of
negligent bank agents means that a market crash can be postponed.

Explanation: A continuous increase in the number of agents used in calculating
the average current sentiment, Z, as outlined in section 2.1 and as computed by
Porgy, means that the value of Z used in deciding whether or not to perform
an independent risk analysis can remain unchanged.

Result 3 (Dangerous Equilibrium) A negligent stable state can be reached
despite high toxicity under certain circumstances (high due diligence costs).

Explanation: A sensitivity analysis shows that for a certain range of high due
diligence cost values, negligent equilibrium can be obtained despite high toxicity
values, even if initially negligence is not the norm, see Figure 6 (b and e).

Additional Experiments. The results obtained with the basic experiments per-
formed so far suggest that the graph rewriting approach, and in particular the
derivation tree provided by Porgy, could be used to get insights beyond simu-
lation runs. For example, the derivation tree could be used to search for states
with specific properties, or to identify the occurrence of specific events (e.g., the
first application of a specific rule). More meaningful analyses could be carried
out by experts in the area, such as calculating propagation speeds (i.e., number
of steps it takes for rule sentiment to be adopted by all agents relative to the
size of network or the rate of change of average sentiment within different envi-
ronments), taking into the account the pay-down factor of the loans supporting
the asset and the expected contractual degradation of the asset itself, etc.

5 Related Work and Conclusions

Graph Transformation Systems (GTSs) have been used as a modelling framework
in many areas: for example, RuleBENDER6 is a simulation tool that supports
rule-based modelling of biochemical systems and is compatible with ordinary
and partial differential equation projects written in the BioNetGen Language [7];

6 http://www.rulebender.org
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Kappa [10] is a rule-based language for modelling protein interaction networks;
and more generally, graph transformation has been used to outline the semantics
of domain specific modelling languages (DSMLs) [4].

General purpose agent-based simulation tools and platforms 7 like JAS, Net-
logo, AgentBuilder, Swarm, MASON, Repast, SeSAm, GAMA and INGENIAS
Development Kit, support an imperative object-oriented approach to model de-
velopment, facilitating the modular approach to coding. Other tools and lan-
guages like Stratego, Maude and ELAN [11] support a pure term-writing ap-
proach which in the case of Maude is augmented by probabilistic features. The
visual, declarative nature of graph transformation systems is thus welcome in
the cases where users seek to primarily focus on describing what the system
should accomplish, and is especially useful for the analysis of complex systems
in interactive environments.

A benchmark analysing the differences between several GTS tools has been
developed by Varro et al. [12]. Among other available GTS tools, we can cite
GROOVE [13], a graph-based model checker for object oriented systems; AGG
(the Attributed Graph Grammar System) [14], a graph-based language for the
transformation of attributed graphs that comes with a visual programming en-
vironment; PROGRES (Programmed Graph Rewriting Systems) [15] that offers
backtracking and nondeterministic contracts; GrGen (Graph Rewrite Genera-
tor) [16] that uses attributed typed multigraphs and includes features such as
Java/C code generation, and GP [17], a graph programming language, where
users can define rules and strategy expressions, with support for conditional
rewriting. Porgy [18, 8], the implementation environment used in this work,
has previously been used to model social networks and biochemical processes,
where non-determinism, backtracking, positioning constructs, and probabilistic
rule application are also key features.

We have shown that strategic port-graph rewriting provides a basis for the
design and implementation of graph models of the aforementioned rational neg-
ligence phenomenon. Whilst ABMs rely on the internal processing of its agents,
GTSs provide at each point in time a holistic view of the system state and a
visual trace of the specific rules that trigger specific behaviours. In future, we
hope to further develop the model using hierarchical graphs [19] to be able to
capture all tiers of the model, and also generalise the rules to permit dynamic
changes in key attributes such as asset toxicity and costs.
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A Appendix

A.1 Model Properties Continued

The theorems given in Section 4 are stated below along with their proofs:

Lemma 1 Strategies 1 (FixedPointSearch) and 2 (AllTrade) never fail.

Proof. Strategy 2 (AllTrade) sets the position for rewriting (a setPos command
cannot fail), and then executes a command of the form repeat(S)(k), which ac-
cording to PORGY’s semantics [6] iterates the strategy S while it succeeds and
always returns id (i.e., it can never fail). The number k indicates the maximum
number of iterations of the loop. Since AllTrade cannot fail, strategy Fixed-
PointSearch can only fail if the rule change in the body of the while loop fails,
which is impossible due to the condition in the “while” (there is at least one
match for change). This completes the proof.

Theorem 1 (Correctness) The graph-based model defined by the initial state,
rewrite rules and strategies defined above is correct with respect to the equa-
tionally defined ABS process in [2]. More precisely, the graphs generated by the
application of the rewrite rules with the given strategy represent states reached
by the system governed by the equational ABS model.

Proof. We show that one trading transaction in our system corresponds to one
trading transaction in the equational model. Let w be the bank that owns the
asset (i.e., the bank linked by an edge to the asset), and let w′ be the randomly
chosen potential buyer (selected by the application of the rule requesttobuy).
Rule beginanalysis computes the value of the projected profitability made by
w′ following and not following the negligence rule using the attributes p-tox,
c-val and dd-cost (i.e., probability of toxicity, current value and due diligence
cost) in the asset, which correspond to the values of p, c and x in the equational
model. It computes the difference between Uw(1) and Uw(0) using the equations
given in section 2.1 and stores it in the attribute DeltaU1U0, as indicated in
its algorithm tab. The result of this computation is the values specified by the
equations:

Uw(1) = −p(1− z(w′))c+ [1− p(1− z(w′)](1− c)

and

Uw(0) = (1− p)(1− c)− xw

The best response, given by U(1)−U(0), is accurately computed in the attribute
DeltaU1U0 of node Theta (the indicator value of best choice). The strategy
ensures that the potential buyer selects the most profitable choice (lines 5-6 of
Strategy 2), and the rule updatez recomputes the global Z value as outlined in
Table 3, as follows:

Zi+1 =
Zi ∗ (k − 1) + z(w′)

k
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which gives the average value specified in the equational model.

Z = (
1

ki
)
∑
j∈Ni

z(wj)

where ki is the number of selling agents and z(w′) is the estimated sentiment of
a buyer (indicating whether it has decided to follow or not the rule). Ni the set
of agents in the universe. The case in which |Ni| and ki coincide (represented in
our model by the value k) is a centralised system.

Theorem 2 (Completeness) The graph-based model defined by the initial state,
rewrite rules and strategies defined above is complete with respect to stability as
specified by the equational ABS model in [2] (see Section 2.1), assuming all the
banks are given the opportunity to trade. More precisely, if the equational model
reaches a stable state, so does our model.

Proof. (Sketch) The transactions of the equational ABS model are mimicked by
the iterations of the “repeat” in our strategy. A stable state in the equational
model is reached when banks do not change their approach to negligence, which
corresponds to absence of “Change” in our model: the Change flag is updated
as required when rules followdecision and deviationdecision are applied (see
Table 3).

Theorem 3 (Termination) The graph program consisting of the initial graph,
rewrite rules and strategy described above terminates.

More generally, if the rule updatez also changes the values of the asset attributes
(reflecting external changes in risk analysis cost, toxicity and asset value) then
the graph program terminates if and only if stable state is reached.

Proof. A state is stable if no bank has changed its mind regarding its negligence
choice when given an opportunity to trade. If stable state has been reached,
there is no change after executing AllTrade hence the while loop found in line 2
of Strategy 1 stops. Conversely if our strategy terminates then the change rule
does not apply since this is the condition to exit the while, hence no bank has
changed its behaviour in AllTrade (stability has been reached). Thus, the graph
program terminates if and only if the initial graph reaches a stable state.

Moreover, if the parameters of the asset do not change during the simulation
then the program is guaranteed to terminate, because in this case Z is monotonic
(once a bank decides towards diligence or negligence, the rest follow the trend).
Thus, in this simple case, the program terminates.
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A.2 Rewrite Rules

Diagrams in Figures 7 to 14 provide overviews on the rules described in the main
section without the red arrow-node edges in order to achieve a more user-friendly
viewing. Displaying the red arrow-node edges is optional in Porgy.

Fig. 7. Request to Buy. Sends a request-to-buy message to a random bank B changing
the name of this node to PB (PotentialBuyer)

Algorithm Tab:
Theta.U1 = 1−A.p tox(1− Z.z)−A.c val
Theta.U0 = (1−A.p tox)(1−A.c val)−A.ddcost
Theta.DeltaU1U0 = Theta.U1− Theta.U0

Fig. 8. Begin Analysis. Computes profitability U1, U0 of PB, generating a node Theta
with attribute DeltaU1U0 = U1 - U0
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Fig. 9. Follow Result. Applies if DeltaU1U0 ≥ 0. As additional visualisation support,
it generates a follow node, which indicates that it is more profitable to follow the
negligence rule and not do a full risk analysis

C: If Theta.DeltaU1U0 ≥ 0

Algorithm Tab:
Change.change = 1− PB.z
Change.sumofchange = Change.sumofchange

+Change.change

B.z=1

Fig. 10. Follow Decision. Transfers asset and prepares for a new transaction (i.e. cleans
up after the decision to follow the negligence rule), setting buyer’s attribute z to 1
(which indicates negligent behaviour) and increasing the Change counter sumofchange
if there was a change in the bank’s behaviour (i.e., if the new value of z is different
from PB’s value).

Fig. 11. Deviation Result. Applies if DeltaU1U0 < 0. As additional visualisation sup-
port, it generates a deviation node if more profitable to do a full risk analysis (deviating
from the negligence rule).

C: If Theta.DeltaU1U0 < 0
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Algorithm Tab:
Change.change = PB.z
Change.sumofchange = Change.sumofchange

+Change.change

B.z=0

Fig. 12. Deviation Decision. Transfers asset and prepares for a new transaction (i.e.
cleans up after the decision to deviate from the negligence rule), setting buyer’s at-
tribute z to 0, and increasing the Change counter sumofchange if there was a change
in the bank’s behaviour (i.e., if the new value of z is different from PB’s value).

Algorithm Tab:
Z.z =
((Z.z ∗ (Z.numofagents− 1)) + B.z)
/Z.numofagents

Fig. 13. Update Z. Updates the attribute z in node Z (which represents the average of
the values of z in each bank). The new value in Z is (Z * (k - 1) + z(PB))/k

C: If Change.sumofchange ! = 0

Algorithm Tab:
Change.change = 0
Change.sumofchange = 0

Fig. 14. Change. Sets the Change counter back to 0 if greater than 0
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