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ABSTRACT

The working principles of the well-established multi-objective evo-
lutionary algorithm Moea/d relies on the iterative and cooperative
improvement of a number of single-objective sub-problems ob-
tained by decomposition. Besides the definition of sub-problems,
selection and replacement are, like in any evolutionary algorithm,
the two core elements of Moea/d. We argue that these two com-
ponents are however loosely coupled with the maintained popula-
tion. Thereby, we propose to re-design the working principles of
Moea/d by adopting a set-oriented perspective, where a many-to-
one mapping between sub-problems and solutions is considered.
Selection is then performed by defining a neighborhood relation
among solutions in the population set, depending on the corre-
sponding sub-problem mapping. Replacement is performed follow-
ing an elitist mechanism allowing the population to have a variable,
but bounded, cardinality during the search process. By conducting
a comprehensive empirical analysis on a range of combinatorial
multi- and many-objective NK-landscapes, we show that the pro-
posed approach leads to significant improvements, especially when
dealing with an increasing number of objectives. Our findings indi-
cate that a set-oriented design can constitute a sound alternative
for strengthening the practice of multi- and many-objective evolu-
tionary optimization based on decomposition.
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1 INTRODUCTION

Context. A multi-objective problem requires to optimize multi-
ple objectives simultaneously. Since the objectives are many-often
conflicting, it is unlikely to find one single solution optimizing all
target objectives. One of the most challenging issues is then to find
a set of solutions providing different trade-offs between the con-
sidered objectives. For this purpose, Evolutionary Multi-objective
Optimization (EMO) algorithms have been proved to be extremely
efficient in finding high-quality approximation sets [3, 19].

Most existing EMO approches follow a standard algorithmic
scheme where a population of solutions is evolved in an iterative
manner. Specific mating selection and replacement mechanisms are
used to respectively (i) choose some parents from which new indi-
viduals are created by means of variation operators, and (ii) update
the population by incorporating the newly-generated offspring solu-
tions. Apart from the variation operators, it is well understood that
the dynamics of an evolutionary search process in terms of conver-
gence and diversity is tightly related to the design of the selection
and replacement mechanisms. Different classes of EMO algorithms
can be distinguished according to these two critically-important
components. For instance, dominance-based approaches, such as
Nsga-ii [3] and Pls [15], rely on a dominance relation for “com-
paring” different solutions at the selection and replacement steps.
Indicator-based approaches, such as Ibea [20] and Sms-Moea [2],
rely on a quality indicator to guide the evolutionary search process
when deciding the most suitable parents to select and the most
suitable solution to maintain in the population. In this paper, we
are interested in aggregation-based algorithms, e.g., [4, 5, 8, 14, 19].

Motivations. Our main focus is on the design principles of the
so-called Moea/d (Multi-objective evolutionary algorithm based on
decomposition) algorithm [8, 19], which can be considered as a state-
of-the-art framework in the class of aggregation-based approaches.
In its basic variant, given a scalarizing function in the objective
space, Moea/d considers the cooperative solving of different single-
objective sub-problems, each one defined using the given scalarizing
function parametrized by a different weight vector. A population of
solutions is then considered, where each sub-problem, equivalently
weight vector or search direction, is mapped to one single solution.

The computational flow of Moea/d consists in iterating over the
set of weight vectors, by performing selection and replacement in
the vicinity of the current weight vector. In fact, Moea/d does not
iterate explicitly over the solutions when performing selection and
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replacement, which might raise some concerns. For example, when
the number and distribution of the weight vectors does not properly
match the distribution of non-dominated solutions, Moea/d may
imply a population of multiple duplicates of the same solution.
This might not only impact the (small) cardinality of the output
solution set and a lack of diversity in the current population, it
also biases the selection of the crucially-important mating selection
mechanisms. By handling a set of solutions, where duplicates are
not allowed, it can be possible to offer an alternative (re-)design
of Moea/d. This idea is the core motivation of our work. In other
words, a notable design feature of Moea/d, to be contrasted with
the previously-mentioned EMO algorithms, is that the population
is not controlled in an explicit manner. We claim that this plays
an important role in the behavior of Moea/d, and subsequently
in the performance of the underlying evolutionary search process.
Besides, we argue that investigating the impact of such a design
feature shall allow us to better grasp some of the common issues
when choosing Moea/d as an effective solving approach.

Contributions and Results Overview. In this paper, we adopt a
set-oriented perspective allowing us to design an enhanced EMO
algorithm based on decomposition. We propose to explicitly evolve
a population of solutions considered as a bounded set. We then
manage to loosely couple the sub-problems solving with the itera-
tions of the evolutionary process, while still using the underlying
(fixed-size) weight vectors as a core element to perform selection
and replacement. Based on the scalarized fitness values of solutions,
we adopt a many-to-one mapping of the weight vectors to the pop-
ulation, i.e. a subset of weight vectors can be explicitly assigned to
one single solution. Mating selection is performed within the neigh-
borhood of solutions, which is defined using the distance in the
objective space between the corresponding subsets of weight vec-
tors to which the solutions are mapped. Replacement is performed
following a standard elitist mechanism where the population size
is not fixed, but bounded by the number of weight vectors.

To validate these design principles, we experiment the proposed
algorithmusing ρMNK-landscapes, considered as a standard generic
combinatorial optimization problem family, with variable problem
size, number of objectives, and objective correlation. Through a
comprehensive empirical analysis, the proposed algorithm is shown
to improve the quality of the obtained approximation sets, and to
have a robust behavior in a relatively wide range of problems and
configurations. In particular, a substantial improvement is reported
as the number of objectives increases and as the maximum size of
the population scales. More importantly, our investigations provide
evidence that a set-oriented design offers an alternative perspective
to the establishment of future high-quality decomposition-based
EMO algorithms for both multi- and many-objective optimization.

Outline. The paper is organized as follows. Section 2 presents
some necessary background and related work. Section 3 introduces
the proposed set-oriented Moea/d framework. Section 4 provides
the experimental analysis of our approach. The last section con-
cludes the paper and discusses open issues.

2 BACKGROUND AND RELATEDWORK

2.1 Multi-objective Optimization

A multi-objective optimization problem (MOP) can be defined by a
set of M objective functions f = (f1, f2, . . . , fM ), and a set X of
feasible solutions in the decision space. In the combinatorial case,
X is a discrete set. Let Z = f (X ) ⊆ IRM be the set of feasible
outcome vectors in the objective space. In a maximization context,
an objective vector z ∈ Z is dominated by a vector z′ ∈ Z (z ≺ z′)
iff ∀m ∈ {1, . . . ,M}, zm ⩽ z′m and ∃m ∈ {1, . . . ,M} s.t. zm < z′m .
A solution x ∈ X is dominated by a solution x ′ ∈ X (x ≺ x ′) iff
f (x) ≺ f (x ′). A solution x⋆ ∈ X is Pareto optimal if there does
not exist any other solution x ∈ X such that x⋆ ≺ x . The set of
all Pareto optimal solutions is the Pareto set. Its mapping in the
objective space is the Pareto front.

2.2 The Moea/d Framework

Decomposition-based EMO algorithms [4, 5, 19] seek good-per-
forming solutions in multiple regions of the Pareto front by de-

composing the original MOP into a number of scalarized single-
objective sub-problems [12]. In this paper, we use the weighted
Chebyshev (дte) scalarizing function, to be minimized:

дte(x , λ) = max
i ∈{1, ...,M }

λi ·
��z⋆i − fi (x)

��
where x ∈ X , λ = (λ1, . . . , λM ) is a positive weight vector such that
λi ⩾ 0 for all i , and z⋆ = (z⋆1 , . . . , z

⋆
M ) is a reference point such

that, ∀i ∈ {1, . . . ,M} ,∀x ∈ X , z⋆i > fi (x).
In Moea/d [8, 19], sub-problems are optimized cooperatively by

defining a neighborhood relation between sub-problems. Given a
set of µ weight vectors Λµ = (λ

1, . . . , λµ ) defining µ sub-problems,
Moea/d maintains a population Pµ = (x

1, . . . ,x µ ) where each
individual corresponds to one sub-problem. For each sub-problem
i ∈ {1, . . . , µ}, a set of neighbors B(i) is defined by considering
the T -closest weight vectors using the euclidian distance (denoted
| | · | |). The sub-problems are optimized iteratively. For each sub-
problem i , two sub-problems are selected at random from B(i),
and the two corresponding solutions are considered as parents.
An offspring x ′ is created by means of variation operators (e.g.,
mutation, crossover). For every j ∈ B(i), if x ′ improves j’s current
solution x j , then x ′ replaces it, i.e., if дte(x ′, λj ) < дte(x j , λj ) then
x j = x ′. The algorithm loops over the sub-problems, i.e., weight
vectors, until a stopping condition is satisfied.

2.3 Discussion and Positioning

Rationale. Since mating selection and replacement in Moea/d
are performed among neighbors, the neighborhood definition, B(i),
is critical for an accurate diversity/convergence balance. For exam-
ple, replacement can lead to the situation where a solution which
improves a sub-problem that does not belong to the neighborhood,
is discarded. It can also lead to a situation where several neighbors
are assigned the same solution. This has the effect of decreasing the
probability that different solutions are picked at the selection step,
since theT different neighbors of a sub-problem, in the weight vec-
tor space, could imply much fewer than T different solutions in the
search space. Such a feature can prevent the reproduction operator
from producing high-quality offsprings. This might not only slow
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down convergence, but it might also make the search process stuck
more easily. Additionally, since the Moea/d main iterative process
is performed w.r.t. sub-problems, if the solutions maintained by
multiple sub-problems are the same, then the corresponding geno-
type is likely to be considered more often for reproduction. This
might not be an issue at a first sight, especially if such a scenario
happened because an exceptionally-good solution w.r.t respect to
a subset of sub-problems was found at some iteration. However,
this might be unfair w.r.t some other sub-problems, because their
solutions are then less likely to be considered for reproduction.

Related Works. Different techniques can be adopted to deal with
such issues, e.g., adapting the neighborhood size, adjusting the
neighborhood w.r.t. the selected sub-problem, restricting the num-
ber of replacements, see [16]. With respect to the population man-
agement, different variants can also be found, for instance by adopt-
ing a global (generational) replacement approach [10, 18] or a stable
matching methodology [9]. One variant, denoted Moea/d(δ,nr ),
was extensively considered in the literature [8]. Two modifications
are considered. The first one consists in an extra probability param-
eter δ allowing parents to be selected from the whole population
instead of solely the T -neighborhood. The second one consists in
an extra parameter nr bounding the number of neighbors that can
be replaced by a newly-generated offspring.

Positioning. To the best of our knowledge, there are no much
investigations addressing the impact of iterating over the weight
vectors Λµ in Moea/d, instead of explicitly iterating over the popu-
lation Pµ , considered as a solution set. One can only find few recent
works aiming at understanding the behavior of the population dy-
namics in Moea/d [13]. It is in fact worth-noticing that our ultimate
goal is not to provide yet another variant of Moea/d, but rather
to better grasp the complexity of solving a multi-objective opti-
mization problem by evolving a population based on the concept
of decomposition. In this respect, the community still lacks much
understanding on the subject despite the success of the Moea/d
framework. The population maintained in Moea/d cannot be really
considered as a set, in particular because it could include duplicates.
Consequently, in contrast to other classes of algorithms, the be-
havior of Moea/d cannot be easily understood from a set-oriented
multi-objective search perspective [21], which is known to provide
a unified theory and best practices of EMO algorithms.

Viewing Moea/d from a set-oriented angle requires to revise its
initial design components. In particular, this requires to re-design
its main iterative process, as well as the underlying selection and
replacement mechanisms, while keeping the spirit of the ingredi-
ents that made its wide success, that is: (i) the use of decomposition
and (ii) the cooperation among sub-problems. The rest of this paper
is devoted to showing how such a perspective can offer new alter-
natives to enhance the performance of Moea/d while opening a
new angle for designing EMO algorithms based on decomposition.

3 A SET-ORIENTED DESIGN OF MOEA/D

In the following, we adopt a set-oriented perspective to the de-
sign of Moea/d. We still consider µ weight vectors defining µ
sub-problems, for which we search for a set of good performing
solutions. However, we consider the population as a bounded set,

which is managed in a more explicit manner. The general idea is to
map the weight vectors to the solutions, and to use the mapping
information to perform selection and replacement following a stan-
dard evolutionary scheme. The flow of the proposed scheme, called
Set-Moea/d, is illustrated in Fig. 1, and detailed in Algorithm 1.

PopulationMapping. Given the current population P , we compute
at every iteration a mapping ϕ : Λµ

g
7−→ P of the target µ sub-

problems into the solutions of the population. We adopt an elitist
mapping function where every weight vector λi ∈ Λµ is mapped
to exactly one solution x ∈ P having the best fitness value w.r.t. the
scalarizing function д (lines 4 to 6). Since different sub-problems
can have the same best solution, ϕ is amany-to-one mapping where
a solution x ∈ P can be either: (i) mapped by one or more weight
vectors, denoted Φ(x) in line 6, or (ii) non-mapped by any weight
vector, i.e., Φ(x) = ∅. The non-mapped solutions are discarded
from the population (line 8). After this step, all solutions remaining
in the population are different, and duplicates cannot survive.

Neighborhood-based Selection. We consider a standard evolution-
ary (genetic-like) process where two parents are used for reproduc-
tion. The first parent x̂ is selected uniformly at random from the
population (line 9). The second parent x̌ is however selected in the
neighborhood BS(x̂) of the first parent (lines 11 and 12). Unlike the
conventional Moea/d, the neighborhood is here defined explicitly
w.r.t a given solution. The distance between two solutions in the
population set P (denoted d in line 10) is defined according to the
distance between the weight vectors to which they are respectively
mapped. In more details, since ϕ is a many-to-one mapping, a so-
lution x surviving in the population can be mapped to a subset
of weight vectors Φ(x). The distance between any two solutions x
and x ′ in the population is then defined as the minimum distance
between any pair of weight vectors respectively in Φ(x) and Φ(x ′).
Since the population cannot contain any duplicates, this selection
mechanism ensures that the genotypes of parents are different and
likely to be close-enough to produce promising individuals.

Reproduction and Population Update. An offspring solution y
is produced (line 13) and injected in the population P (line 14).
Nevertheless, this does not mean that it will necessarily survive. In
fact, as soon as the next iteration starts, the mapping ϕ is computed
again, and the population is updated by removing non-mapped
solutions. Actually, the mapping enables the replacement in our
design. With the newly-generated offspringy, the updated mapping
may imply different scenarios. First, y can survive iff it is elected as
the best solution for at least one weight vector, i.e., Φ(y) , ∅. In
such a scenario, if a solution x , to which a weight vector in Φ(y)
was mapped in the previous iteration, is still the best for at least
one other weight vector, then x survives as well, otherwise it dies.
This means that if the offspring y survives, then a number of other
solutions might die. In all cases, the population size cannot exceed
the pre-defined number of weights µ, but it can drop to less than µ
when an offspring improves simultaneously different sub-problems.

Implementation Details and Further Considerations. Notice that
the mapping ϕ does not need to be recomputed from scratch at
each iteration. Since only the mapping of some weights is likely to
change at a given iteration w.r.t. a newly-produced offspring y, one
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parent selection

...... ...

... ... ......
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y

(д, Λµ )

population/set P

replacement
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reproduction

ϕ : many-to-one mapping

δ (x̂, .) Φ(x̂)

x̂ x̌

BS(x̂ ): T -neighbors

sub-problems

Figure 1: A schematic illustration of Set-Moea/d: many-to-one mapping ϕ, T -neighbors, mating selection, and replacement.

Algorithm 1: A set oriented Moea/d (Set-Moea/d)

Input: Λµ :=
{
λ1, . . . , λi , . . . , λµ

}
: weight vectors;

д(· | λ): a scalarizing function to be minimized;
T : neighborhood size

1 P :=
⋃
x ← initial population of solutions ;

2 while Stopping Condition do

// Replacement: many-to-one mapping function ϕ of µ
sub-problems to solution set (Φ := ϕ−1 )

3 for x ∈ P do Φ(x) ← ∅;
4 for i ∈ {1, . . . , µ} do
5 x ← arg min

x ∈P
д(x | λi );

6 ϕ(λi ) ← x ; Φ(x) ← Φ(x) ∪
{
λi
}
;

// Replacement: remove non-mapped solutions

7 for x ∈ P do

8 if Φ(x) = ∅ then P ← P \ {x} ;
// Select one parent

9 x̂ ← select a (random) parent in P ;
// Compute T -Neighboring solutions

10 for x ∈ P do d(x̂ ,x) ←minλ∈Φ(x̂ ),λ′∈Φ(x ) | |λ, λ
′ | |; ;

11 BS(x̂) ← the T closest solutions in P w.r.t. d;
// Select another parent

12 x̌ ← select a (random) parent in BS(x̂);
// Reproduction, e.g. crossover and mutation

13 y ← generate an offspring from parents x̂ and x̌ ;
// Replacement: merge population with offspring

14 P ← P ∪ {y};

simply needs to compute the aggregated fitness values of the newly
created offspring, and then update the mapping and the distances
required to define BS in an incremental manner. This can only
imply a restricted complexity cost compared to Moea/d. More
importantly, the proposed Set-Moea/d algorithm is to be viewed as
one specific implementation of a set-oriented design of Moea/d. In
fact, the underlying algorithmic framework can be flexibly extended
with other components guided both by: (i) decomposition-specific
aspects, such as extended notions of neighborhood(s) w.r.t. solutions
or other mapping functions, and (ii) by more general plug-and-
play EMO techniques, such as steady-state, generational, ‘comma’
or ‘plus’ evolutionary strategies. In this respect, decomposition

is simply to be considered as a way of efficiently structuring the
population, which can then be handled in a more explicit manner.

4 RESULTS AND EXPERIMENTAL ANALYSIS

4.1 Experimental Setup

ρMNK-Landscapes. we use ρMNK-landscapes considered as a
family of problem-independent models for multi-objective multi-
modal combinatorial optimization [1, 6, 17]. Feasible solutions are as
binary strings of size N . For every k ∈ {1, . . . ,M}, the kth objective
(to bemaximized) is defined by: fk (x) = 1

N
∑N
i=1 c

k
i (xi ,xi1 , · · · ,xiK ),

such that cki is the component functions. Component-values fol-
low a multivariate uniform distribution of dimension M , defined
by a correlation matrix [17]. We consider the same correlation be-
tween all pairs of objectives, given by a coefficient ρ > −1

M−1 . A
positive (resp. negative) coefficient decreases (resp. increases) the
degree of conflict between the objective values. In our experiments,
we set ρ ∈ {−0.2, 0.0, 0.2}, M ∈ {2, 3, 4, 5}, N = 100 and K = 2.
Investigating other values for K and N are left for future work.

Parameter Setting. Set-Moea/d, the conventional Moea/d [19]
as well as Moea/d(δ,nr ) [8], are considered in our experiments.
The number of weight vectors µ is set in the range {100, 200, 600}
and generated using the method described in [11]. Each considered
configuration is executed 20 times. The stopping condition is set to
106 evaluation function calls. We use an independent bit-flip mu-
tation with a rate 1

N and one-point crossover. The neighborhood
size T is set to 10% of µ. A population of µ randomly-generated in-
dividuals is used initially. The reference point z⋆ is updated online
to the best-encountered objective values. Parameters δ and nr are
set respectively to 0.1 and 2 in Moea/d(δ,nr ) [8]. We follow the
performance assessment design proposed in [7] using the hypervol-
ume (to be maximized) and the additive epsilon (to be minimized)
indicators [22]. For each instance, we compute a reference set by
merging the approximation sets over all runs. The reference point
is set to the worst value in each dimension of the reference set.

4.2 Overall Performance

We start our empirical study by providing in Table 1 a global
overview of the relative performance of Set-Moea/d and Moea/d.
Out of the 72 settings (12 ρMNK-landscapes × 3 µ values × 2 indi-
cators), Set-Moea/d is in average better than Moea/d 62 times (i.e.
more than 85% of the cases). Set-Moea/d significantly outperforms
Moea/d 26 times (36%), whereas Moea/d significantly outperforms
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Table 1: Average and standard deviation (in braces) of the indicator-values achieved by Set-Moea/d and Moea/d at 106
evalu-

ations. For every (µ, ρ,M), an underlined font indicates that the algorithm in the column is better (w.r.t. considered indicator).

When the difference is statistically significant according to a Wilcoxon test (p-value = 0.05), a bold font is additionally used.

M = 2 M = 3 M = 4 M = 5
Set-Moea/d Moea/d Set-Moea/d Moea/d Set-Moea/d Moea/d Set-Moea/d Moea/d

Hypervolume Indicator
(
× 103)

µ = 100
ρ = 0.2 31.088(1.14) 30.900(1.02) 5.738(0.22) 5.678(0.20) 0.663(0.05) 0.657(0.06) 0.090(0.01) 0.094(0.01)
ρ = 0 28.653(0.72) 28.286(0.75) 9.863(0.12) 9.774(0.18) 2.308(0.05) 2.295(0.06) 0.491(0.02) 0.490(0.03)
ρ = −0.2 46.941(0.95) 46.878(1.01) 21.539(0.52) 21.580(0.32) 7.664(0.22) 7.687(0.22) 1.568(0.04) 1.572(0.04)

µ = 200
ρ = 0.2 31.102(1.02) 30.948(0.73) 6.117(0.13) 5.947(0.19) 0.749(0.04) 0.730(0.05) 0.106(0.01) 0.108(0.01)
ρ = 0 28.721(0.68) 28.574(0.63) 10.166(0.13) 10.102(0.14) 2.488(0.05) 2.454(0.06) 0.581(0.03) 0.563(0.02)
ρ = −0.2 47.152(0.92) 47.101(0.82) 22.530(0.38) 22.303(0.43) 8.429(0.12) 8.374(0.13) 1.866(0.03) 1.817(0.03)

µ = 600
ρ = 0.2 31.362(0.95) 31.157(0.58) 6.225(0.11) 6.162(0.18) 0.818(0.04) 0.774(0.06) 0.130(0.01) 0.117(0.01)
ρ = 0 28.814(0.46) 28.344(0.79) 10.497(0.09) 10.380(0.12) 2.690(0.04) 2.601(0.07) 0.675(0.02) 0.640(0.02)
ρ = −0.2 47.459(0.71) 47.394(0.77) 23.517(0.52) 23.049(0.39) 9.369(0.15) 9.095(0.14) 2.241(0.04) 2.156(0.05)

Epsilon Indicator
(
× 103)

µ = 100
ρ = 0.2 16.758(5.09) 17.981(4.32) 29.163(5.37) 30.085(4.14) 44.384(5.35) 47.798(6.86) 53.595(7.73) 53.696(6.50)
ρ = 0 13.545(6.36) 14.262(5.57) 25.936(4.08) 27.280(2.82) 45.575(3.78) 46.507(5.25) 70.286(4.25) 65.958(5.37)
ρ = −0.2 17.915(5.59) 19.255(7.44) 42.001(5.82) 42.531(5.51) 73.402(3.20) 70.631(4.04) 94.785(4.21) 93.876(3.85)

µ = 200
ρ = 0.2 18.017(4.63) 19.872(4.48) 23.128(6.85) 28.168(6.92) 39.180(5.07) 40.534(5.59) 49.246(7.08) 56.998(10.93)
ρ = 0 12.191(4.34) 13.559(5.70) 21.908(2.80) 26.148(3.75) 41.249(3.68) 41.990(5.66) 57.324(4.93) 60.197(6.31)
ρ = −0.2 19.636(5.33) 19.722(6.01) 38.930(10.50) 45.049(11.62) 62.758(1.66) 60.921(4.43) 77.930(3.22) 76.383(3.40)

µ = 600
ρ = 0.2 16.206(8.21) 17.628(4.39) 23.156(5.86) 29.094(7.35) 35.187(5.73) 42.370(7.40) 40.739(8.48) 56.427(10.79)
ρ = 0 10.927(4.19) 15.952(6.46) 21.105(3.33) 25.717(4.29) 35.436(4.96) 44.992(4.75) 46.554(4.59) 60.742(8.33)
ρ = −0.2 16.656(5.03) 18.086(5.81) 36.026(13.32) 48.277(11.54) 50.600(4.82) 55.374(5.47) 61.547(4.31) 69.937(7.06)

Set-Moea/d only 2 times (3%), and there is no statistically signifi-
cant difference 44 times (60%). Actually, a similar overall superiority
of Set-Moea/d is found when compared to Moea/d(δ,nr ), but this
is not reported in Table 1 due to space restrictions. Notice that
Set-Moea/d is never statistically outperformed w.r.t hypervolume.

Furthermore, we can observe a notable change in the relative
performance of the two algorithms when looking more carefully
at dimensionM . Although there is no statistical difference for bi-
objective problem instances (except for ρ = 0 and µ = 600 where
Set-Moea/d is better in terms of epsilon indicator), Set-Moea/d
is consistently at least as good as Moea/d, and often significantly
better, when the number of objectives increasesM ⩾ 3 (except for 2
particular cases, w.r.t the epsilon indicator). Such an observation
indicates that Set-Moea/d is a viable alternative to Moea/d for
multi- and many-objective optimization. Interestingly, Set-Moea/d
is always outperformingMoea/d when using the largest population
size (µ = 600), which is a particularly relevant feature for many-
objective optimization. This is confirmed by the following anytime
analysis.

4.3 Anytime Behavior

When studying the anytime performance of the considered algo-
rithms, the superiority of Set-Moea/d is even more pronounced
when the maximum size allowed for the population set is suffi-
ciently large and using a reasonable budget in term of function
evaluations. In fact, we depict in Fig. 2 the evolution of the average
epsilon indicator value as a function of the number of function
evaluation calls, while additionally including in our comparison
the extended variant Moea/d(δ,nr ), for µ = 600. One can clearly

see that Set-Moea/d has a better anytime convergence profile than
both Moea/d and Moea/d(δ,nr ) for multi- and many-objective
problems (M ∈ {3, 4, 5}), and especially for M = 5. Actually, the
results are mitigated for bi-objective problem instances (M = 2),
especially starting at 105 evaluations, but before that Set-Moea/d is
the best-performing approach. This is a desirable feature especially
when dealing with an expensive optimization scenario when one is
only allowed a restricted number of function evaluation calls.

These findings hold independently of the objective correlation ρ.
This is a notable feature since one might typically expect that the
impact of different ρ-values on the landscape, in terms of solution
diversity and Pareto front size, could influence the diversity-to-
convergence trade-off of the experimented algorithms. Further-
more, we can extract an interesting observation when analyzing
more carefully the anytime behavior of Moea/d(δ,nr ). At the early
stages of the search process, Moea/d(δ,nr ) has the slowest conver-
gence behavior, whereas Set-Moea/d is the most efficient. This can
be attributed to the specific replacement design of Moea/d(δ,nr )
which has a tendency to preserve solution diversity. As the search
progresses, Moea/d(δ,nr ) is overall able to outperform Moea/d for
M ∈ {2, 3} but to a less extent for many-objective problem instances
M ∈ {3, 4, 5}, while being always worse than Set-Moea/d.

In Fig. 3, we further illustrate the difference in the anytime be-
havior of the three algorithms w.r.t. the different values of µ (due
to space restrictions, only one many-objective instance is shown).
Two insightful observations can be extracted. First, Set-Moea/d ap-
pears to be relatively robust to the choice of the cardinality bound
µ of the solution set. Using different µ-values leads to different
indicator values. With no surprise, larger µ-values lead to better
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Figure 2: Anytime performance of Set-Moea/d, Moea/d, and Moea/d(δ,nr ) with a (maximum) population size µ = 600. Subfig-
ures in rows and columns correspond to instances with respectively the different objective correlation ρ ∈ {−0.2, 0.0, 0.2} and
the different number of objectivesM ∈ {2, 3, 4, 5}. Notice the log-scales. Error bars show 95% confidence intervals.
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Figure 3: Anytime performance of Set-Moea/d (left), Moea/d (middle), Moea/d(δ,nr ) (right); using different values of (maxi-

mum) population size µ for an instance with ρ = 0.0 andM = 5. Error bars show 95% confidence intervals.

performance. However, for Moea/d and Moea/d(δ,nr ), this is only
true at the late stages of the search, whereas this tends to hold at
anytime for Set-Moea/d (except with very few function evalua-
tions). At the beginning of the run, the cardinality bound of the set
maintained by Set-Moea/d has almost no impact on the algorithm
performance. Only at the end of the run, having a larger population
size allows for more improvement, especially for many-objective
problems. This difference implies that the performance of Moea/d
and Moea/d(δ,nr ) is quite sensitive to the setting of the population
size µ, in the sense that it is correlated to both the available budget
and to µ. In contrast, in the case of Set-Moea/d, performance seems

to be simply positively correlated to the available budget, which
is a natural outcome, especially for many-objective problems. We
attribute this feature to the fact that parameter µ plays a fundamen-
tally different role in the design of Set-Moea/d. In fact, parameter
µ is to be viewed as one way to structure the population set while
imposing a bound on its cardinality. This is to be contrasted to
the initial design of Moea/d, where it also influences the intrinsic
composition of the population, thus impacting more critically the
search behavior, e.g., by introducing duplicates. This is analyzed
further in the rest of the paper.
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Figure 4: Evolution of the average absolute size of the population for the different algorithms for different µ ∈ {100, 200, 600}
(in rows), and for the instances withM ∈ {2, 3, 4, 5} (in columns) and ρ = 0.0. Error bars show 95% confidence intervals.

4.4 Population Dynamics

As discussed previously, unlike in Set-Moea/d, some duplicated
solutions can be maintained by Moea/d. In Fig. 4, we show the
evolution of the absolute (average) size of the populationmaintained
by the different considered algorithms. In the case of Moea/d and
Moea/d(δ,nr ), we simply count each single objective vector only
once (since there are no equivalent solutions in ρMNK-landscapes).

(Average) Absolute Population Size. The long-term general ten-
dency is roughly the same for all three algorithms. The mean abso-
lute size of the population starts at a small value within relatively
few function evaluations (103), then it grows as the search process
evolves. The maximum-allowed size µ can only be reached in the
setting where the number of objectives and the computing budget
are both relatively high. For a given budget (e.g., 105), using more
weight vectors (e.g., 200) allows the set to attain an even larger
size (e.g., > 150) than the maximum allowed when using fewer
weight vectors (e.g., 100). Based on our anytime analysis, this does
not necessarily implies that the performance, w.r.t. some budget, is
better when using more weight vectors because the population is
more diverse. This actually renders a more complex behavior that
can only be understood by taking into account the mapping of the
weight vectors into the Pareto front. In fact, fewer weight vectors,
i.e., smaller µ-values, are likely to imply more intensification, which
may in turn make the search stuck more easily.

Additionally, we can observe that the absolute size of the popu-
lation tends to be slightly lower in Set-Moea/d at the early stage
of the search process, with the exception of bi-objective instances.
The dynamics of Moea/d(δ,nr ) is also different at the beginning,

because the number of replacements is restricted to at mostnr . How-
ever, even if the propagation of duplicates is slower, Moea/d(δ,nr )
does not properly address the issue induced by having duplicates
in the population in the long run, and the absolute size of the popu-
lation drops to the same level than the other algorithms after about
100 generations. As a consequence, we argue that the overall good
performance of Set-Moea/d is not only due to the absolute number
of solutions (which in fact was shown to be roughly the same). This
should make it clear that adopting a set-oriented design allows us to
have a better control on the population. For instance, the selection
of duplicates can typically have a non-zero probability in Moea/d.
By contrast, we are not only able to avoid such a bias, but we can
also refine the selection by controlling explicitly which individuals
to choose, i.e. through the neighborhood relation BS.

Population Behavior. We can refine our understanding of the
population dynamics by analyzing not only its average absolute size,
but its actual absolute size in one single particular execution. This
is depicted in Fig. 5, corresponding to a typical run of Set-Moea/d.
We can see that the absolute population size is indeed increasing
overall, but in a non-smooth manner. In fact, the population size
decreases periodically in an abrupt manner, and then increases
again to reach an even higher value. This can be explained as
follows. The algorithm operates in several periods. At each period,
newly-found, hopefully diverse, solutions are produced andmapped
to different weight vectors. This hence helps the algorithm to jump
to an even more efficient region of the objective space, which makes
the population size decrease again, an so on. The periodicity of this
behavior is however decreasing with time (notice the log-scale in
Fig. 5), which can indicate that the algorithm is actually converging.
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any possible correlation. Only the Hypervolume evolution is shown, but not its scale, for more clarity.

Interestingly, such a dynamic implies a smooth evolution of the
population quality, which suggests that the population jump is
periodically localized in small regions of the objective space.

5 CONCLUSION AND PERSPECTIVES

By adopting a a set-oriented perspective, the work conducted in this
paper enables to provide an alternative design of multi-objective
decomposition-based algorithms. The proposed Set-Moea/d al-
gorithm follows a standard evolutionary search process using a
many-to-one mapping between weight vectors and solutions in
order to perform selection and replacement. Besides being able to
improve the quality of the approximation sets, our experimental
analysis provides insights into the behavior of the underlying evo-
lutionary process, while highlighting some interesting features that
need to be studied in a more systematic manner in the future. For
instance, it would be nice to provide decomposition-based features
to better estimate the diversity of the population set, as well as its
degree of convergence. This could be helpful to control selection
and replacement in an adaptive manner, or to adjust the maximum
size of the population online, which we believe to be a challenging
but crucially-important perspective. In our design, the replacement
is relatively aggressive, since poor quality solutions die immedi-
ately. This could be handled differently in the future if diversity
appears to be an issue. Moreover, we only consider combinatorial
instances in our experiments. It would be interesting to confirm the
benefits of such an alternative set-oriented design when tackling
other instances from both discrete and continuous domains. Inter-
estingly, the design of the proposed algorithm is flexible enough
to enable the integration of other advanced EMO techniques, espe-
cially when dealing with many-objective optimization problems, for
which a set-oriented perspective seems to be particularly promising.
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