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ABSTRACT

Local search algorithms have shown good performance for several
multi-objective combinatorial optimization problems. These ap-
proaches naturally stop at a local optimal set (LO-set) under given
definitions of neighborhood and preference relation among subsets
of solutions, such as set-based dominance relation, hypervolume or
epsilon indicator. It is an open question how LO-sets under different
set preference relations relate to each other. This paper reports an
in-depth experimental analysis on multi-objective nk-landscapes.
Our results reveal that, whatever the preference relation, the num-
ber of LO-sets typically increases with the problem non-linearity,
and decreases with the number of objectives. We observe that strict
LO-sets of bounded cardinality under set-dominance are LO-sets
under both epsilon and hypervolume, and that LO-sets under hyper-
volume are LO-sets under set-dominance, whereas LO-sets under
epsilon are not. Nonetheless, LO-sets under set-dominance are
more similar to LO-sets under epsilon than under hypervolume.
These findings have important implications for multi-objective lo-
cal search. For instance, a dominance-based approach with bounded
archive gets more easily trapped and might experience difficulty to
identify an LO-set under epsilon or hypervolume. On the contrary,
a hypervolume-based approach is expected to perform more steps
before converging to better approximations.
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1 INTRODUCTION

Local search methods operate over a search landscape defined by a
triplet (S, <, N), where S denotes a finite, or countably infinite, set
of solutions (the search space), < is a preorder on S (the preference
relation) and N is a mapping N : S — 25 (the neighborhood relation).
For any pair of solutions s,s” € S, s < s’ denotes that solution s is
at least as preferred as solution s’. For a given solution s € S, the set
N(s) is the neighborhood of s and an element s’ € N(s) is a neighbor
of s. The most basic local search algorithm, commonly known as
hill-climbing, starts from an initial solution s € S, and iteratively
improves the current solution by exploring its neighborhood and
moving to an improving neighboring solution. When no improving
neighbor is available, the algorithm is trapped in a local optimum.
Hence, based on the triplet (S, <, N), we can define the notions of
local optimum (LO) and strict local optimum (sLO).

Although the concepts of (strict) LO are well-studied in single-
objective optimization, their extension and properties in a multi-
objective context are much less understood. The difficulties arise
from the fact that the search space S is actually the set of all mutu-
ally nondominated sets of feasible solutions, possibly bounded in
size, thus the neighborhood can be seen as operating on sets. More-
over, the preference relation is usually defined in terms of Pareto
dominance, but it may also be any other quality indicator that in-
duces a preorder, such as the hypervolume. The implications of
these different aspects are still open to investigation and may guide
the design of new multi-objective algorithms, since even global
search methods, such as multi-objective evolutionary algorithms,
can be seen as iteratively identifying better-quality local optima,
without any guarantee of finding a global optimum. Indeed, a global
optimum is also a local optimum for any neighborhood relation.

Paquete et al. [8] provided definitions of local optimality with
respect to solution- and set-dominance, and related them to the
convergence point of multi-objective local search. Verel et al. [9]
introduced a set-based fitness landscape and measured ruggedness
and non-linearity for fixed-size sets of solutions, using the hyper-
volume as the preference relation. That study was later extended to
the quality of LO-sets and the convergence profile of hypervolume-
based local search under different notions of set neighborhoods [2].
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More recently, Lopez-Ibaiiez et al. [7] showed that the size of sets
that are LO with respect to dominance (Pareto local optimum sets
or PLO-sets) is exponentially correlated with the number of objec-
tives or with their degree of conflict, while variable interactions
have a minor effect. In addition, they showed that the estimated
number of PLO-sets is also correlated with the number of objectives
or their degree of conflict. It is also known that the number of PLO-
solutions increases linearly with the problem non-linearity [10],
but that the number of unbounded PLO-sets decreases [7]. Finally,
the use of bounded size archives [6] does not change these trends,
but increases the number of bounded PLO-sets significantly by a
factor that depends on the size of the unbounded PLO-sets. How-
ever, so far, no work has examined how various definitions of local
optimality relate to each other. In this paper, we extend previous
work on LO-sets by considering various types of local optima, in-
duced by different set preference relations (dominance, epsilon,
hypervolume), and by analyzing their properties.

The paper is organized as follows. Section 2 defines the concept
of (strict) LO-sets in a way the matches the usual definition of LO
solutions in the single-objective case, but allows the use of set pref-
erence relations based on dominance or quality metrics. In addition,
we describe an adaptive walk for sampling such LO-sets. Section 3
describes the multi-objective nk-landscapes and the experimental
setup used for our experimental study. Section 4 describes the ex-
periments carried out in this paper and the conclusions that can be
extracted from them. Finally, we summarize our main findings and
list remaining open questions in Section 5.

2 LOCAL OPTIMAL SETS

Multi-objective Optimization. Let us assume that we are given
an optimization problem characterized by a pair (X, f), where X is
the set of feasible solutions (the decision space) and f is the objective
function f: X — R™, to be maximized. In multi-objective optimiza-
tion (m > 1), one is often interested in finding more than one opti-
mal solution. Given two solutions x, x” € X, we say that x weakly
dominates x" (x <dom x’) if fi(x") < fi(x) foralli € {1,...,m}.
In terms of Pareto optimality, the goal is to find a set X* C X for
which there exists no solution x € X such that x <gon x* for all
x* € X*. The set X* is the Pareto set, and its image in the objective
space is the Pareto front.

Set Preference Relations. In set-based multi-objective opti-
mization [12], the search space can be defined as the collection
of sets of feasible solutions (feasible sets): ¥ C 2X. We restrict to
sets of mutually nondominated solutions and we consider that the
cardinality of the sets is bounded by p € N7, that is, we define
Ti={Aec2X: Al <pu A Vx,x' € Ax #x" = =(x <dom X)}.
Notice, however, that if the Pareto set X* is larger than y, then
X* ¢z

The aforementioned dominance relation among solutions can
naturally be extended to sets. Given two sets A, B € X, A weakly
dominates B (A <dom B), if for all b € B there exists an a € A such
that a <gom b. The quality of a set A € X can also be measured as a
single scalar value through a unary quality indicator I: ¥ — R. We
consider the (additive) epsilon indicator (Ieps), to be minimized, and
the hypervolume indicator (Iy), to be maximized [11]. Interestingly,
Ieps(resp. Iy) is order-preserving (resp. strictly order-preserving)
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with respect to the weak-dominance set preference relation [11]:

A <dom B = Ieps(A) < Ieps(B) (1)
(A <dom B) A =(B <dom A) = Ihy(0) < Iny(0”) . ©)
We also define the corresponding set preference relations:
A<eps B & Ieps(A) < Leps(B) , ®)
Ash B &= Ih(A) > I(B) . ©

Local Optimality. Let A,B € X. We define the strict partial
order < of a given partial order < as:

A<B & —-(BKAAA=XB). (5)

Sets A and B are incomparable if neither (A < B) nor (B < A) holds.

Given a collection of sets ¥, a preorder (preference relation) be-
tween sets <, and a neighborhood relation between sets N: X — 2%,
the definition of local optima can be adapted as follows.

Definition 2.1 (Local optimal set, LO-set (¥, <,N)). Aset Ae X is
a local optimal set iff VB € N(A) \ A, =(B < A).

Definition 2.2 (Strict LO-set, sLO-set (X, <,N)). Aset AeXisa
strict local optimal set iff VB € N(A) \ A, A < B.

Under the definitions above, a Pareto local optimum set [7, 8] is
an LO-set where < is the set-dominance relation <qon. It would be
a strict LO-set under the same definitions if there is no B € N(A)
such that A and B are incomparable. As another example, a multi-
objective local search based on hypervolume () stops on an
LO-set A € X if there exists no neighboring set B € N(A) that
has a larger hypervolume value. It stops on a strict LO-set if all
neighboring sets have a (strictly) smaller hypervolume value than
the current set. Therefore, the proposed definitions allow us to
compare various types of LO-sets under a common terminology.

A Walk to Sample Local Optimal Sets. Following the def-
initions of strict and non-strict LO-sets, we define a set-based
adaptive walk (Alg. 1), where the first improving neighboring set
encountered during neighborhood exploration is accepted. This
set-based local search is analogous to a classical single-objective
first-improvement local search (or hill-climber). In Alg. 1, p initial
solutions are randomly generated and added to a nondominated
archive A, which represents the current solution-set. Then, a main
loop explores each neighboring solution x’ of each element in A
in a random order without replacement. If this neighbor x” is non-
dominated with respect to any solution in A and the cardinality
of Ais smaller than y, then A can be trivially improved by adding
solution x’. Otherwise, the algorithm explores all sets that are con-
structed by replacing one solution from A with x’. If the resulting
set improves over A, it is accepted. In the case of a neutral walk, the
solution is also accepted if the resulting set is incomparable with A.
Otherwise, the procedure explores the next neighboring set. The
main loop stops once all neighbors have been explored, returning
a (possibly strict) LO-set, when a budget of solution evaluations
has been consumed, or when there is a number of steps without
any strict improvement. A step is here defined as a change in the
current set, i.e., an iteration of the main loop (lines 5-19).

The proposed adaptive walk shares similarities with existing
multi-objective local search methods. Compared against PLS [8] and
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Algorithm 1: Adaptive Walk
Input :Set cardinality bound p, neutral € {TRUE, FALSE},
partial order <€ {<dom» <eps> <hv}
Output:Nondominated set A

1 A0

2 fori « 1topudo

3 x « RandomSolution()

4 A « FilterDominated(A U {x})

5 repeat // main loop
6 for each x’ € {N(x)\A|x € A} do // random order
7 A’ « FilterDominated(A U {x’})

8 if |A’| < p then

9 A A

10 goto line 19

11 for each x”” € Ado // random order
12 A — {Aux'}\ {x"}

13 if (A’ < A) then // A’ better than A
14 Ae— A

15 L goto line 19

16 else if neutral A A’ < A then

17 A— A" // A at least as good as A
18 L goto line 19

19 until A is a (s)LO-set or no budget left or cutoff reached

SEMO [5], we consider mutually nondominated sets of bounded car-
dinality. The neighbors of a set are the same as those in SEMO [5];
ie,given A € ¥, then B € N(A) & |B\A|l < 1AVb €
B\ A,3Ja € Asuch that b € N(a) [2]. The main difference is that
we explore neighboring sets without replacement, which allow us
to detect when the walk falls into a (possibly strict) LO-set. As in
single-objective local search, the proposed non-neutral adaptive
walk always falls into an LO-set, whereas a neutral walk may either
eventually fall into a strict LO-set, or terminate without reaching
any type of LO-set. By using this adaptive walk, we can experi-
mentally estimate the number, quality, and dissimilarity of various
types of LO-sets, as shown below.

3 EXPERIMENTAL SETUP

Multi-objective nk-Landscapes. We consider nk-landscapes
as a problem-independent model of multi-objective multimodal
landscapes [1, 10]. Candidate solutions are binary strings of size n
and the objective function vector f = (fi, ..., fi,. .., fm) is defined
as f: {0,1}™ + [0, 1]™ such that each objective f; is to be max-
imized. As in well-established single-objective nk-landscapes [3],
each separate objective function value f;(x) of a solution x =

(x1,...,xj,...,xn) is an average value of the individual contri-
butions associated with each variable x;. Given objective f;, i €
{1,...,m}, and variable xj, j € {1,...,n}, a component function

fij: {0, 1}%+1 s [0, 1] assigns a real-valued contribution for ev-
ery combination of x; and its k epistatic interactions {xj,,...,xj_}.
These fjj-values are uniformly distributed in [0, 1]. Thus, the in-
dividual contribution of a variable x; depends on its value and on
the values of k < n other variables {xj,,...,xj }. In this work,
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the epistatic interactions, i.e., the k variables that influence the
contribution of x;, are set uniformly at random among the (n — 1)
variables other than x; [3]. By increasing the number of epistatic
interactions k from 0 to (n — 1), landscapes can be gradually tuned
from smooth to rugged. We use the same epistatic degree and in-
teractions for all the objectives. By construction, it is very unlikely
that different solutions map to the same point in the objective space.

Parameter Settings. We generate 15 multi-objective nk-land-
scapes with the following settings. The problem size is set to n = 16,
number of objectives m € {2,3,5}, and problem non-linearity
k € {0,1,2,4,8}, that is, from linear to highly rugged landscapes.
We generate one instance independently at random for each combi-
nation of instance settings. We run the adaptive walk (Alg. 1) with
respect to the set preference relations {<gom, <hv, Seps} and with
various set cardinality bounds u € {2, 4, 8, 16, 32}. The reference set
for computing Ieps is the (exact) Pareto front. The reference point
for computing f, is set to (0, . . ., 0). We experiment with both neu-
tral and non-neutral walks. In order to ensure a reasonable runtime
for neutral walks, we set a maximum budget of 107 evaluations
and a cutoff of 30 consecutive iterations of the main loop without
improvement. The neighborhood relation among solutions (N) is
defined by the 1-bit-flip operator; i.e., two solutions are neighbors
if the Hamming distance between them is one. We replicate each
experiment 30 times with different random seeds.

4 EXPERIMENTAL ANALYSIS
4.1 Number of Local Optimal Sets

As a first question, we investigate the number of LO-sets of each
type, that is, for each set preference relation (<dom, <hv> and <eps)
and either strict or non-strict definition (LO/sLO). Given previous
results regarding Pareto local optimum sets [7], we expect the
number of LO-sets to be affected by the number of objectives (m),
the epistasis (k) and the cardinality bound (¢). However, we do not
know how each type of LO-set is affected by these characteristics.
Moreover, although we conjecture that some LO-sets of one type
are also LO-sets of other types, their relative ratios are unknown.
To answer these questions, after running the adaptive walk as
described in the previous section, we simply count how many of
the sets returned at the end of the runs satisfy the definition of each
type of LO-set. Results are shown in Fig. 1 for selected settings.
Results on other instances confirm the trends observed here.

The first observation is that non-neutral walks using a particular
set preference relation always find a non-strict LO-set according
to the same relation, in every run. That is, a walk based on <qon
(resp. <eps, <hv) always falls into an LO = (resp. LOx, s LOg,,)-
Moreover, the LO-set where a given walk falls into might be the
same at different executions, as observed, for instance m = 2, k = 0
with 1 = 32. This suggests that there is a single LO-set in this case,
which is not a surprise because the corresponding nk-landscape is
linear (k = 0) and its Pareto set cardinality is lower than p = 32.

We did not notice any difference between neutral or non-neutral
walks with <py, which suggests that neighboring LO-sets with
the same hypervolume value are rare, thus there is no neutrality
in the corresponding landscapes. Although we do not expect that
real-world problems have many sets with the same hypervolume
value, we cannot generalize this finding to any landscape since it
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Figure 1: Number of each type of LO-set found by each type of LS walk (by column) for different instances (by row), depending
on the set cardinality bound (u:). Results for neutral walk (hv) is not reported because they are the same as for walk (hv).

is easy to think of artificial examples where two neighboring sets
have equal hypervolume values. By contrast, we observe a large
neutrality for <qom and <eps, as shown by the large differences
between neutral and non-neutral walks in such cases. In fact, the
neutral walk using <gop is only able to find a sLOg, = when p is
large, and when there are few objectives, e.g., for m = 2 and k = 8.
We attribute this to a large non-linearity in the objective values in
such cases, with many incomparable neighboring sets, which seem
to increase the number of strict LO-sets. By contrast, the neutral-
walk using <eps is only able to find a sLO<epswhen u is small
and/or when non-linearity is small (k = 0), whereas the neutral-
walk using <y is always able to find a sSLO, , as already reported
above. The probable reason is that there are more neighboring sets
with the same epsilon value and/or that the hypervolume gradient
is easier to optimize that of epsilon. Interestingly, when there are
many objectives, and when py is especially small relative to the
size of the exact Pareto set, it appears to be difficult to obtain a
LO,, with any method besides a walk based on <hy.

To summarize, by comparing LO-sets under <gon and <py, we
conjecture that: sSLOg, = sLOg, = LOg, = LOg, . Al
though we do not obtain any clear trend by comparing LO-sets
under <gon and <p, with LO-sets under <eps, We conjecture that

sLOg,,, = LOx, .. We also suspect that there are slightly more
LOx,s than LO, , given that the walk based on <{gop consistently
finds more of those, but the difference seems to be rather small.

Finally, a general observation worth mentioning is that, whatever
the set preference relation, the adaptive walk gets more easily
trapped into an LO-set as the problem non-linearity k increases,
and as the number of objectives m decreases.

4.2 Length of Adaptive Walks

As in single-objective optimization, the length of the adaptive walk
provides an estimation of the number of LO-sets. The number of
steps performed by the algorithm defines the length of the adaptive
walk. This length is an estimator of the diameter of local optima’s
basins of attraction. Roughly speaking and assuming isotropy in
the search space, the longer the walk, the larger the basins size,
and the lower the number of local optima [3]. Fig. 2 reports the
number of steps performed by each type of adaptive walk. In our
experiments, the solution space has the same size for all instances;
ie |X| = 2" = 21°, whatever k and m. However, the number of
candidate sets depends on the set cardinality bound y and on the
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Figure 2: Number of steps performed by each walk (colors) for different instances (non-linearity k and number of objectives

m, by column), depending on the set cardinality bound.

dominance relations between solutions. For a given y, the num-

16
ber of candidate sets is bounded by 2?:1 (IZTI) = Z‘;lzl (2(2 l.)_l).
Therefore, for a given instance, a larger value of y induces an expo-
nentially larger number of candidate sets. Of course, depending on
the dominance relations between solutions, many candidate sets
might be equivalent once dominated solutions are discarded.

We observe that the length of adaptive walks typically increases
with . Therefore, a local search is more easily stuck when p is small.
This means that the absolute number of LO-sets decreases with .
When relating that to the number of candidate sets, we argue that
the proportional number of LO-sets is larger when p is small, what-
ever the set preference relation. As expected, the length of adaptive
walks decreases with the problem non-linearity k. As for single-
objective nk-landscapes, the larger k, the larger the number of local
optima [3]. When considering the number of objectives m, we ob-
serve that adaptive walks runs longer as m increases, especially
when y is relatively large. A local search has a larger probability
of getting stuck for two-objective landscapes than for three- and
five-objective landscapes. This suggests that the number of LO-sets
decreases with the objective space dimension.

When comparing neutral and non-neutral walks for a given set
preference relation, we observe that neutral walks typically run
longer. There are two potential explanations for this result: (i) a
neutral walk may fail to identify a strict LO-set simply because
it does not exist, explaining why the number of steps reaches the
overall budget limit for some settings; and (ii) every strict LO-set
under a given set preference relation is also an LO-set under the
same relation, thus the number of sLO-sets is smaller or equal
than the number of LO-sets. This is the case for <gon and <eps.
Interestingly, the gap between the number of strict and non-strict
LO-sets seems to decrease with p for <qon, Whereas it increases
for <eps. In fact, for large sets, almost all LOg,,, are sSLO, ,as
also noticed in Fig. 1. We attribute this to the fact that it is more
unlikely to come across a neighboring solution that is not dominated
by the set when this set is larger. As already mentioned above, in the
case of <y, there is no distinction between neutral and non-neutral
walks for the considered instances, an LO,  is alwaysasLO, .

Let us now compare non-neutral walks and non-strict LO-sets
for different set preference relations. For m = 2 and p € {16, 32},
the length of the adaptive walk is roughly the same for all relations.
They are the sole settings where the cardinality of LO-sets is actually
smaller than the bound i (not reported here due to space restriction),
which is explained by the fact that y is larger than the Pareto set in
those cases. This suggests that there is no distinction between LO-
sets under the different set preference relations when y has the same
order of magnitude than the Pareto set, as also observed in Fig. 1.
By contrast, for other instances, the length of the adaptive walk
for <qom is typically smaller than for <eps, which is itself typically
smaller than for <. This gives us more evidence that, when p
is smaller than the Pareto set, we have more LOg,., than LOﬁepS,
and more LOg, . than LOg, . A multi-objective local search with
bounded archive is then expected to get more easily trapped when
comparing sets in terms of dominance rather than in terms of
epsilon or hypervolume. On the contrary, a hypervolume-based
local search is expected to perform more steps before being stuck.

4.3 Quality of Local Optimal Sets

In Fig. 3, we report the quality of the final set obtained by each walk
on a selected subset of instances. The quality of the resulting sets is
evaluated both in terms of the additive epsilon indicator (Ieps) and
of the relative hypervolume deviation (f,y,). The relative hypervol-
ume deviation is computed as Iy (A) := (Iny(R) — Iny(A4))/ L (R),
where R is the Pareto set. Although a walk based on <, (resp.
<eps) always outputs the best hypervolume (resp. epsilon) value,
the indicator value of the final set is not necessarily the best one
observed during the search process for walks that are based on a
different set preference relation. In the next section, we will analyze
the best indicator value obtained at different time steps.
Unsurprisingly, the quality of LO-sets always improves with
higher set cardinality bound g, for both hypervolume and epsilon.
In fact, as suspected above, for all variants, the set found by each
walk always maps to the Pareto set for the linear two-objective
instance (k = 0, m = 2), as long as the cardinality bound is larger
than the number of Pareto optimal solutions (¢ = 32). This means
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Figure 3: Final relative hypervolume deviation and epsilon value obtained by each walk (colors) for different instances (non-
linearity k and number of objectives m, by column), depending on the set cardinality bound.

that, whatever the set preference relation, there is only one LO-set
for this setting: the Pareto optimal set.

For all instances, the walk based on <, consistently converges
to better LO-sets in terms of hypervolume. When analyzing LO-sets
in terms of epsilon values, it is more difficult to distinguish between

the walk based on <,y and the (non-neutral) walk based on <eps.

However, a neutral walk based on <eps often leads to better epsilon
values for the most difficult instances (with large m and k), although
in much more steps as depicted in Fig. 2. This once again emphasizes
the high neutral degree induced by <eps. As such, we argue that an
epsilon-based local search will not necessarily converge to better
epsilon values than a hypervolume-based local search, unless it
explicitly handles equivalent sets in terms of epsilon. At last, the
walks based on <4on seem to converge to lower-quality LO-sets,

in terms of both indicators, as the number of objectives increases.

This confirms that dominance is probably not the best option to

distinguish between candidate sets in many-objective local search.

4.4 Convergence Profile of Adaptive Walks

In order to better appreciate the anytime behavior of the walks
under different settings, we report in Fig. 4 the convergence of the
best-found indicator value for different budgets, measured in terms
of a number of evaluations. This is different from Fig. 3, where only
the quality of the final set was analyzed. It is worth noticing that
we do not consider any restart mechanisms in our algorithm, and

once an algorithm stops at a given iteration, it is assumed that the
quality remains the same for subsequent ones.

First, we observe that a (non-neutral) walk under <gop is only
efficient when p = 32 and m = 2, that is, when y is larger than the
Pareto set. Otherwise, the performance of such a walk is always very
low, both in terms of epsilon and hypervolume. A walk based on
<eps follows the same trend according to hypervolume, although
it is always slightly better. By contrast, it performs much better
in terms of epsilon, although it is mostly outperformed by the
walk under <y, except when y is particularly small. The latter
is actually never outperformed in terms of hypervolume, except
for a few settings with a small p and small m. It is also often the
second-best approach in terms of epsilon, even consistently better
than the former when p > 8.

Regarding neutral walks, the one based on <gon performs nicely
for small p values, but not so good for m = 5, which once again
might explain the low performance of dominance-based search in
many-objective optimization. Showing the opposite behavior, the
neutral walk based on <eps is often the best-performing approach
in terms of epsilon, and second-best approach in terms of hypervol-
ume, except for large y and small m. It performs particularly well
for m = 5, whatever the set cardinality bound.
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4.5 Distance between Local Optimal Sets

As a last question, we go deeper into the comparison of LO-sets
under different set preference relations by investigating their dis-
similarity in the space of sets. In particular, we want to know how
much different isa LO<___ oraLO,  from aLOL_ . We do not
Seps Shv S dom
consider strict LO-sets in this section, since they do not necessarily
exist for all settings, and since the success rate for the corresponding
neutral walks is typically lower than 1.

Let us define the distance between a LOg,, and a LOg_  as
the length (number of steps) required by a walk based on <eps to
reach a LOy_ _, while starting from a LO<__ as an initial set. To

Neps Svdom
do so, (i) we simply start by running a walk under <qon until it
falls into a LOg, ., and then (i) we run a walk under <eps starting
from the obtained LO, . Only the steps performed in the second
phase are taken into account to measure the distance. The distance

between a LOg, = and a LOg,  follows the same reasoning, but
using a walk under <. This notion of distance gives how many
1-bit-flips, performed on any solution from the initial set, separates
a set A from a set B. Thus, if dist(A, B) = d, then A may differ from
B in d solutions, all connected at Hamming distance 1, or they may
differ in a single solution with Hamming distance d.

The obtained distances are reported in Fig. 5. When compared
against the walks that start from a random set, as reported in Fig. 2,
the number of steps performed from a LOg,  is lower by an order
of magnitude. This means that a LO,  is much closer toa LO<_
oraLO, thanarandom set is with any of the three. The distance
betweenaLO,  andaLO,_ _ is often larger for medium y values
(u € {4, 8}) than for small and large values (u € {2, 16, 32}).

When considering the hypervolume, the distances fromaLO, .
toaLO,  are always larger than to a LOg, . When m = 2, these

Neps’
distances roughly follow the same trend as for LO, _, however,

eps’
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linearity k and number of objectives m, by column), depending on the set cardinality bound.

when m > 3, they seem to increase with p, with the exception of
4 =32 and m = 3 where the distance is close to 1. For m = 5, the
gap relative to the distances corresponding to LOx,,, increases by
several orders of magnitude.

5 CONCLUSIONS

In this paper, we empirically studied the properties of various types
of LO-sets. Our results confirm previous findings and observations
in multi-objective optimization, such as the fact that algorithms
relying solely on dominance tend to perform worse for more than
three objectives. We also observed that the number of LO-sets of
any type increases with increasing ruggedness of the landscape, and
with decreasing number of objectives and decreasing cardinality
bound. Similar results were previously known for (bounded size)
PLO-sets [7] and here we show that they are true for other types
of LO-sets. In addition, we advance several hypotheses based on
our experimental results. In particular, we conjecture that:

sLO<yy = sLOy,, = LOg,, = LOg,,
= Log,,
which means that there are more LOg,.. than LOg,,» but more
sLOx,, than sLO (except for the trivial case when the cardinal-
ity bound is larger than the actual size of the Pareto set, in such case
there is no distinction between the various LO-sets). In addition
to the implications above, we also observed that there are many
more LOy, - than LO<eps, and slightly more LO.\<eps than LOg,,»
the latter being perhaps the most surprising conclusion.

We conjecture that our findings regarding LOg__(resp. LO, )
generalize to other LO-sets under any order-preserving (resp. strictly
order-preserving) indicators. Our analysis should also guide the
design of new multi-objective optimizers. For instance, we conclude
that an epsilon-based local search does not necessarily converge to
better epsilon values than a hypervolume-based local search, unless
it explicitly handles sets that are equivalent in terms of epsilon.

Our conclusions provide at least two directions for further work.
One direction should attempt to formally prove some of our con-
jectures, thus increasing our theoretical understanding of multi-
objective landscapes. A second direction should try to extend our

experimental analysis to additional problems, different neighbor-
hoods and other order-preserving indicators, to corroborate that
our conjectures indeed generalize as expected. Of particular interest
is the extension of our work to LO-sets for continuous problems [4].
Furthermore, there are other factors that were not considered here,
such as the size of the search space and the correlation between
objectives.
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