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Abstract

We detail in this article the development of a delay-robust stabilizing feedback control law for a linear ordinary differential
equation coupled with two linear first order hyperbolic equations in the actuation path. The proposed method combines the
use of a backstepping approach, required to construct a cancelling feedback for the in-domain coupling terms of the PDEs,
with a second change of variables that reduces the stabilization problem of the PDE-ODE system to that of a time-delay
system for which a predictor can be constructed. The proposed controller can be tuned, with some restrictions imposed by
the system structure, either by adjusting a reflection coefficient left on the PDE after the backstepping transformation, or by
choosing the pole placement on the ODE when constructing the predictor, enabling a trade-off between convergence rate and
delay-robustness. The proposed feedback law is finally proved to be robust to small delays in the actuation

Key words: Hyperbolic Partial Differential Equations; Time-Delay Systems ; Stabilization; Backstepping.

1 Introduction

In this paper we develop a linear feedback control law
that achieves delay-robust stabilization of a system of
two heterodirectional linear first-order hyperbolic Par-
tial Differential Equations (PDEs) coupled through the
boundary to an Ordinary Differential Equation (ODE).
The proposed design works for all systems within the
considered class for which delay-robust stabilization by
such a feedback operator can be expected, see [17]. We
achieve this by partially leveraging the backstepping de-
sign in [11] and complementing it with a predictor-based
controller after an adequate reformulation using a time-
delay approach.

The control of systems of coupled ODEs and hyper-
bolic PDEs is a very active research topic, see for
instance [5,7,11,22]. It naturally arises when consid-
ering delays (that can be seen as first-order hyper-
bolic PDEs) in the actuating and sensing paths of
ODEs [5,6,12,24,27]. A recurrent practical motivation
for the study of such systems is the attenuation of me-
chanical vibrations in drilling applications, where the
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hyperbolic PDEs represent axial and torsional stress
propagation (waves) along the drill string, while the
ODEmodels the Bottom Hole Assembly (BHA) dynam-
ics. An thorough review of drilling vibrations models is
available in [23]

The backstepping approach was first used in [16] to deal
with hyperbolic PDE-ODE couplings where actuator
and sensor delays are explicitly compensated. While this
problem had already been tackled by the Smith predic-
tor [25], the reformulation of the delay as a linear ODE
enabled numerous related problems to be tackled, most
notably the presence of non-constant and uncertain de-
lays [4,6]. Recently, the general problem of stabilizing
an ODE with a system of first-order linear hyperbolic
PDEs in the actuator path was solved in [11] using a
backstepping transformation that maps the fully inter-
connected system into a cascade of exponentially sta-
ble subsystems. This was achieved by canceling, among
other terms, the reflection at the controlled boundary.
While this approach enables the design of predictor-like
feedback laws, and is mathematically correct, it does not
take into account the impact on stability of small delays
in the feedback loop (delay-robustness).

It has been observed, see for instance [10,17], that for
many feedback systems, the introduction of arbitrarily
small time-delays in the loop may cause instability un-
der linear state feedback. In particular, for coupled linear
hyperbolic systems, recent contributions [1] have high-
lighted the necessity of a change of paradigm in order
to achieve delay-robust stabilization. It turns out that,
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in some cases, one must preserve some reflection at the
boundaries in order to maintain the delay robustness of
the control. Also, in [1], the authors use the backstepping
transformation in order to rewrite the system as a neu-
tral equationwith distributed delays. This opens the per-
spective of adapting stability analysis methods for time
delay systems, such as those developed in [9,15,20,21] on
hyperbolic PDE systems.

The main contribution of this paper is to provide a new
design for a state-feedback law for a PDE-ODE sys-
tem that ensures the delay-robust stabilization. Delay-
robustness is ensured by preserving some proximal re-
flection terms in the control law. This is done by means
of an additional degree of freedom enabling a trade-off
between convergence rate in the absence of delay and
delay-robustness. Note that the approach of [1] cannot
be directly extended since the system naturally features
several feedback loops or couplings that can be sources
of instabilities.

Our approach is the following: (i) A backstepping trans-
formation (and associated feedback operator) is con-
structed, removing the in-domain couplings present in
the PDEs and possibly attenuating the reflections on
the controlled side (depending on the choice of a tun-
ing parameter). Without these in-domain couplings, the
new system can be rewritten as a neutral delay differ-
ential equation. (ii) Using the structure of the obtained
equation, we construct a non-invertible operator that
preserves detectability in order to reduce the stabiliza-
tion problem of the neutral system to that of a lin-
ear ODE system with delayed input, for which a state-
predictor feedback law is constructed. (iii) Finally, the
delay-robustness properties of the system are studied by
means of an algebraic analysis in the Laplace domain.

The paper is organized as follows. In Section 2 we in-
troduce the model equations and the notations. In Sec-
tion 3, we present the stabilization result: using a back-
stepping transformation,we first dissociate theODE and
the PDE. The original system can then be rewritten as
a distributed delay equation for which it is possible to
derive a stabilizing control law. The corresponding feed-
back system is proved to be stable to small delays in
Section 4. Finally, some simulation results are given in
Section 5.

2 Problem Formulation

2.1 Definitions and notations

In this section we detail the notations used through this
paper. For any integer p > 0, || · ||Rp is the classical
euclidean norm on Rp. We denote by L1([0, 1],R), or
L1([0, 1]) if no confusion arises, the space of real-valued
functions defined on [0, 1] whose absolute value is in-
tegrable. This space is equipped with the standard L1

norm, that is, for any f ∈ L1([0, 1])

‖f‖L1 =

∫ 1

0

|f(x)|dx.

We denote L2([0, 1],R) the space of real-valued square-
integrable functions defined on [0, 1] with the stan-
dard L2 norm, i.e., for any f ∈ L2([0, 1],R)

||f ||2L2 =

∫ 1

0

f2(x)dx.

The set L∞([0, 1],R) denotes the space of bounded real-
valued functions defined on [0, 1] with the standard L∞

norm, i.e., for any f ∈ L∞([0, 1],R)

||f ||L∞ = sup
x∈[0,1]

|f(x)|.

In the following, for (u, v,X) ∈ (L2([0, 1]))2 × Rp, we
define the norm

||(u, v,X)|| = ||u||L2 + ||v||L2 + ||X ||Rp . (1)

The set Cp([0, 1]) (with p ∈ N∪{∞}) stands for the space
of real-valued functions defined on [0, 1] that are p times
differentiable and whose p-th derivative is continuous.
The set T is defined as

T = {(x, ξ) ∈ [0, 1]2 s.t. ξ ≤ x}. (2)

C(T ) stands for the space of real-valued continuous func-
tions on T . For a positive real k and two reals a < b, a
function f defined on [a, b] is said to be k-Lipschitz if for
all (x, y) ∈ [a, b]2, it satisfies |f(x) − f(y)| ≤ k|x − y|.
The symbol Ip (or I if no confusion arises) represents

the p× p identity matrix. We use the notation f̂(s) for
the Laplace transform of a function f(t), provided it is
well defined. The set A stands for the convolution Ba-
nach algebra of BIBO-stable generalized functions in the
sense of [26]. A function g(·) belongs to A if it can be
expressed as

g(t) = gr(t) +
∞
∑

i=0

giδ(t− ti),

where gr ∈ L1(R+,R),
∑

i≥0

|gi| < ∞, 0 = t0 < t1 < . . .

and δ(·) is the Dirac distribution. The associated norm is

‖g‖A = ‖gr‖L1 +
∑

i≥0

|gi|.

The set Â of Laplace transforms of elements in A is also
a Banach algebra with associated norm

‖ĝ‖Â = ‖g‖A .

2.2 System under consideration

We consider a class of systems consisting of an ODE
coupled to two heterodirectional first-order linear hyper-
bolic systems in the actuation path, depicted schemati-
cally in Figure 1. More precisely, we consider systems of
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Fig. 1. Schematic representation of the system (3)-(6)

the form:

ut(t, x) + λux(t, x) = σ+−(x)v(t, x) (3)

vt(t, x) − µvx(t, x) = σ−+(x)u(t, x) (4)

Ẋ(t) = AX(t) +Bv(t, 0), (5)

evolving in {(t, x) s.t. t > 0, x ∈ [0, 1]}, with the
boundary conditions

u(t, 0) = qv(t, 0) + CX(t)

v(t, 1) = ρu(t, 1) + U(t), (6)

whereX ∈ Rp is the ODE state, u(t, x) ∈ R and v(t, x) ∈
R are the PDE states and U(t) is the control input.
The in-domain coupling terms σ−+ and σ+− belong to
C0([0, 1]), the boundary coupling terms q 6= 0 (distal
reflexion) and ρ (proximal reflexion), and the velocities λ
and µ are constants. Furthermore, the velocities verify

−µ < 0 < λ.

The initial conditions of the state (u, v) are denoted u0

and v0 and are assumed to belong to L2([0, 1],R) and we
consider only weak L2 solutions to the system. The ini-
tial condition of the ODE (5) is denoted X0. The result-
ing system (3)-(6) is well-posed [3, Theorem A.6, page
254].

Remark that this system naturally features several cou-
plings that can be source of instabilities. Also, the results
of this paper can be extended to the case q = 0 with a
slight modification of the backstepping transformation.

2.3 Control problem

The goal of this paper is to design a feedback control
law U = K[(u, v,X)] where K : (L2[0, 1])2 × Rp → R is
a linear operator, such that:

• the state (u, v,X) of the resulting feedback sys-
tem (3)-(6) exponentially converges to its zero
equilibrium (stabilization problem), i.e. there
exist κ0 ≥ 0 and ν > 0 such that for any initial
condition (u0, v0, X0) ∈ (L2[0, 1])2 × Rp

||(u, v,X)|| ≤ κ0e
−νt||(u0, v0, X0)||, t ≥ 0. (7)

• the resulting feedback system (3)-(6) is robustly sta-
ble with respect to small delays in the loop (delay-
robustness), i.e. there exists δ⋆ > 0 such that for
any δ ∈ [0, δ⋆], the control law U(t − δ) still stabi-
lizes (3)-(6).

A control law that satisfies these two constraints is said
to delay-robustly stabilize (in the sense of [17]) sys-
tem (3)-(6).

In this paper, we make the two following assumptions:

Assumption 1 The pair (A,B) is stabilizable, i.e. there
exists a matrix K such that A+BK is Hurwitz.

Assumption 2 The proximal reflection ρ and the distal
reflection q satisfy |ρq| < 1.

The first assumption (stabilizability of the ODE sub-
system) is necessary for the stabilizability of the whole
system, while the second assumption is required for the
existence of a delay-robust linear feedback control. This
second assumption is not restrictive since, if is not ful-
filled, one could prove using arguments similar to those
in [1] that the open-loop transfer function has an infinite
number of poles in the complex closed right half-plane.
Consequently (see [17, Theorem 1.2]), one cannot find
any linear state feedback law U(·) that delay-robustly
stabilizes (3)-(6).

3 Design of the control law

In this section we derive a control law that guarantees
the stabilization of (3)-(6), following the methodology
introduced above. Using a backstepping transformation,
we map the original system to a simpler target system
without the in-domain couplings. This new target sys-
tem is then rewritten as a neutral delay differential equa-
tion. Finally, the stability of this equation is reduced to
that of an ODE with input delay for which a stabilizing
control is constructed. This control law will be shown to
be robust to small delays in the next section.

3.1 Backstepping transformation

We derive a Volterra transformation to rewrite sys-
tem (3)-(6) as a system of transport equations coupled
with an ODE. In other words, the purpose of this trans-
formation is to remove the in-domain coupling terms,
while conserving (only attenuating) boundary cou-
plings. Let us consider the linear map that associates
to any element (α, β,X) ∈ (L2([0, 1])2 × Rp the corre-
sponding element (u, v,X) ∈ (L2([0, 1])2×Rp as follows

u(t, x) =α(t, x) +

∫ x

0

Lαα(x, ξ)α(t, ξ)dξ

+

∫ x

0

Lαβ(x, ξ)β(t, ξ)dξ + γ0(x)X(t), (8)

v(t, x) =β(t, x) +

∫ x

0

Lβα(x, ξ)α(t, ξ)dξ

+

∫ x

0

Lββ(x, ξ)β(t, ξ)dξ + γ1(x)X(t), (9)

X(t) =X(t). (10)
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This mapping is a Volterra integral transformation and
is consequently invertible. The kernels Lαα, Lαβ, Lβα

and Lββ are defined on T introduced in (2), γ0 and γ1
are row vectors with p components defined on ([0, 1]).
They satisfy the following set of PDEs

λLαα
x (x, ξ) + λLαα

ξ (x, ξ) = σ+−(x)Lβα(x, ξ) (11)

λLαβ
x (x, ξ) − µL

αβ
ξ (x, ξ) = σ+−(x)Lββ(x, ξ) (12)

µLβα
x (x, ξ)− λL

βα
ξ (x, ξ) = −σ−+(x)Lαα(x, ξ) (13)

µLββ
x (x, ξ) + µL

ββ
ξ (x, ξ) = −σ−+(x)Lαβ(x, ξ) (14)

and ODEs

λγ′
0(x) = −γ0(x)A+ σ+−(x)γ1(x) − λLαα(x, 0)C

(15)

µγ′
1(x) = γ1(x)A − σ−+(x)γ0(x) + λLβα(x, 0)C (16)

with the boundary conditions

Lβα(x, x) = −
σ−+(x)

λ+ µ
, Lαβ(x, x) =

σ+−(x)

λ+ µ
(17)

Lαα(x, 0) =
µ

λq
Lαβ(x, 0)−

1

λq
γ0(x)B (18)

Lββ(x, 0) =
λq

µ
Lβα(x, 0) +

1

µ
γ1(x)B (19)

γ1(0) = 0, γ0(0) = 0 (20)

Note that equation (18) is only defined for q 6= 0. If q = 0,
the kernel equations have to be slightly adjusted (see [8]
for instance) and the resulting target system would be
slightly different. However the method presented in this
paper can still be used.

Lemma 1 Consider system (11)-(20). There exists
a unique solution Lαα, Lαβ, Lβα and Lββ in C(T )
and γ0, γ1 in (C1([0, 1]))p.

PROOF. This result follows, with some minor adapta-
tions, from [11, Theorem 3.2]. The main idea consists on
reinterpreting the ODEs in (15)-(16) as PDEs evolving
in the triangular domain T with horizontal characteris-
tic lines (since there is only an evolution along x) and
then solving all the PDEs together. In this case, we ex-
tend the ODEs for γ0 and γ1, defined for x ∈ [0, 1], to
the domain (x, ξ) ∈ T as follows:

γ̃0
x(x, ξ) = −

1

λ
γ̃0(x, ξ)A +

σ+−(x)

λ
γ̃1(x, ξ) − Lαα(x, ξ)C

γ̃1
x(x, ξ) =

1

µ
γ̃1(x, ξ)A −

σ−+(x)

µ
γ̃0(x, ξ) + Lβα(x, ξ)C,

with boundary conditions

γ̃0(x, x) = γ̃1(x, x) = 0,

and the relations

γ0(x) = γ̃0(x, 0) (21)

γ1(x) = γ̃1(x, 0). (22)

This set of PDEs, together with (11)-(14) can be solved
using the procedure detailed in [11, Theorem 3.2]. Fur-
thermore, since all coefficients are continuous, it can
be shown that the unique solution obtained is in fact
in C(T ) componentwise (see [8]). This regularity of solu-
tion to the PDEs implies that the solution to the original
ODEs is in (C1([0, 1]))p. This concludes the proof. ✷

Applying the backstepping transformation defined
in (8)-(10) to the original system (3)-(6) yields

αt(t, x) + λαx(t, x) = 0 (23)

βt(t, x)− µβx(t, x) = 0 (24)

Ẋ(t) = AX(t) +Bβ(t, 0), (25)

with the following boundary conditions

α(t, 0) =qβ(t, 0) + CX(t) (26)

β(t, 1) =ρα(t, 1) + U(t) + (ργ0(1)− γ1(1))X(t)

−

∫ 1

0

(Nα(ξ)α(t, ξ) +Nβ(ξ)β(t, ξ))dξ, (27)

where

Nα(ξ) = Lβα(1, ξ)− ρLαα(1, ξ) (28)

Nβ(ξ) = Lββ(1, ξ)− ρLαβ(1, ξ). (29)

The associated initial condition, denoted (α0, β0, X0),
is related to the initial condition (u0, v0, X0) by the in-
verse of the transformation (8)-(10). Differentiating (8)-
(9) with respect to time and space and using the bound-
ary conditions (11)-(20), one can check that it maps the
system (23)-(27) to the initial system (3)-(6). Due to the
invertibility of the Volterra transformation (8)-(10), the
two systems (23)-(27) and (3)-(6) are then equivalent.
Thus, the stabilization of (23)-(27) implies the stabiliza-
tion of the original system (3)-(6), and conversely.

For the control design of the target system (23)-(25)
with the boundary control (26)-(27), we decompose the
control input U(t) as

U(t) = UODE(t) + UBS(t), (30)

where UODE(·) has to be designed for the stabilization
of the ODE dynamics (25),

UBS(t) =− κα(t, 1)− (ργ0(1)− γ1(1))X(t)

+

∫ 1

0

(Nα(ξ)α(t, ξ) +Nβ(ξ)β(t, ξ))dξ, (31)
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and the coefficient κ is chosen such that

|κq|+ |ρq| < 1. (32)

The existence of such a κ is a consequence of Assump-
tion 2. The particular choice of a value of κ verifying
this inequality provides a tuning parameter for the con-
trol design. Note that if κ does not satisfy (32), it is
straightforward to adjust the proof of [1] and prove that
the system is not robust to arbitrary small delays.

Remark that, due to the invertibility of the Volterra
transformation (8)-(9),UBS(t) can be expressed in terms
of u, v and X .

The purpose of such a control law is to dissociate the
stabilization of the ODE to the stabilization of the PDE.
More precisely, the control law UBS(t) is designed to
eliminate in-domain couplings. It preserves some prox-
imal reflection in the target system (with the coeffi-
cient κ) to ensure delay-robustness [1]. This control, by
itself, would guarantee the delay-robust exponential sta-
bilization of (3)-(6) without the ODE subsystem (as
shown in [1]), however, the presence of an ODE (even a
stable one) may easily destabilize the coupled system.

In the next section, we will use (30) and (31) to
rewrite (23)-(27) as a neutral delay differential equation
with control input UODE(t). It becomes then possible
to derive a control law using classical methods [13–15]
to ensure exponential stabilization.

3.2 A neutral delay differential equation

The equations (23)-(24) are transport equations, and
consequently, for any x ∈ [0, 1], we get

α(t, x) = α
(

t−
x

λ
, 0
)

, t ≥
x

λ
(33)

β(t, x) = β

(

t−
1− x

µ
, 1

)

, t ≥
1− x

µ
. (34)

The substitution of (30) and (31) in the boundary con-
dition (27) and the use of (33) lead to,

β(t, 1) = (ρ− κ)α

(

t−
1

λ
, 0

)

+ UODE(t). (35)

Denoting τ = 1
λ
+ 1

µ
, it follows from (26), (34) and (35)

that, for any t ≥ τ ,

β(t, 1) = q(ρ− κ)β(t− τ, 1) + (ρ− κ)CX

(

t−
1

λ

)

+UODE(t). (36)

For almost every t < τ , β(t, 1) remains bounded and
can be expressed as a function of (α0, β0, X0). Conse-

quently (using the inverse of the backstepping trans-
formation (8)-(9)) it can be expressed as a function
of (u0, v0, X0), the initial condition of the PDE (3)-(5).

The ODE dynamics in (25) can be written as

Ẋ(t) = AX(t) +Bβ

(

t−
1

µ
, 1

)

. (37)

This yields, for any t ≥ τ + 1
µ
,

Ẋ(t)− (ρ− κ)qẊ(t− τ) = AX(t)− (ρ− κ)qAX(t− τ)

+Bβ(t−
1

µ
, 1)− (ρ− κ)qBβ(t−

1

µ
− τ, 1).

Thus, using equation (36), we can substitute the term
β(t− 1

µ
, 1) by an expression that only depends onX and

UODE , that is

Ẋ(t)− (ρ− κ)qẊ(t− τ) = AX(t)− (ρ− κ)qAX(t− τ)

+ (ρ− κ)BCX(t− τ) +B UODE

(

t−
1

µ

)

. (38)

Note that this expression still holds for τ ≤ t ≤ τ + 1
µ
.

Taking the Laplace transform and denoting

φ̂(s) = 1− (ρ− κ)q e−τs, (39)

one obtains

(sI −A)φ̂(s)X̂(s) = Be−
s
µ
ˆ̃
UODE(s), (40)

where ˆ̃
UODE(s) = ÛODE(s) + (ρ− κ)Ce−

s
λ X̂(s).

Under Assumption 2, the roots of the characteristic
equation associated to (38) have right-bounded real
parts. Thus, there exists a spectral exponential bound
for the existence of the Laplace transform for (39)-(40).

3.3 Spectral stabilization

We are now able to design the control law ˆ̃
UODE(s)

that stabilizes (40). Denoting Ŷ (s) = φ̂(s)X̂(s), equa-
tion (40) can be rewritten as

(sI −A)Ŷ (s) = Be−
s
µ
ˆ̃
UODE(s). (41)

Due to the detectability of X from the new variable Y ,
we can reduce the stabilization problem of the neutral
equation (40) into that of a finite-dimensional system
with delayed input, that can be rewritten in time domain
as

Ẏ (t) = AY (t) +BŨODE

(

t−
1

µ

)

, t ≥
1

µ
. (42)
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Differentmethods [28] can be used to design a control law
that stabilizes equation (42). A classical result from [18]
states that any control law that stabilizes such an equa-
tion is equivalent to a predictor. We then have the fol-
lowing Lemma.

Lemma 2 Take A, B and K verifying Assumption 1
and any κ such that (32) holds. Then, the control law

ŨODE(t) = K

(

e
A
µ Y (t) +

∫ t

t− 1

µ

eA(t−ν)BŨODE(ν)dν

)

,

exponentially stabilizes Y (t) in (42). Furthermore, the
state feedback

UODE(t) = ŨODE(t)− (ρ− κ)CX

(

t−
1

λ

)

exponentially stabilizes X(t) in (38).

PROOF. For the state-predictor feedback ŨODE(·),
the closed-loop system in (42) satisfies

Ẏ (t) = (A+BK)Y (t), t ≥
1

µ
.

Exponential stability is guaranteed by the fact that (A+
BK) is Hurwitz. By construction of Y (t) and using (39),
we have that X(t), solution of (38), satisfies for any t ≥
τ ,

X(t) = (ρ− κ)qX(t− τ) + Y (t).

Since |(ρ − κ)q| < 1 by (32), X(t) is also exponentially
stable. ✷

We conclude this section with the following theorem.

Theorem 1 The control law

U(t) = UODE(t) + UBS(t),

where UBS(t) is given in (31) and UODE(t) is defined in
Lemma 2, exponentially stabilizes in the sense of equa-
tion (7) the system (3)-(6) to its zero-equilibrium.

PROOF. We have proved in Lemma 2 that the con-
trol law U(t) = UODE(t) + UBS(t) exponentially sta-
bilizes X(t) and Y (t) described by (38) and (42), re-
spectively. Furthermore, according to the decomposi-
tion introduced in (40), the state-predictor feedback in
Lemma 2 can be written as

ŨODE(t) = KY (t+
1

µ
),

which implies that ŨODE(·) exponentially converges to
zero. Consequently, using (32), the state β(t, 1) gov-
erned by (36) exponentially converges to zero, which
in turn implies from (34) that β(t, ·) converges L2-
exponentially to zero.
This implies, from (33) and the boundary condi-
tion (26), that α(t, ·) converges also L2-exponentially
to zero. This yields the existence of κ0 > 0 such
that ||(α, β,X)|| ≤ κ0e

−νt||(α0, β0, X0)||. Thus the
control law U(t) = UODE(t) + UBS(t) ensures the ex-
ponential stabilization of (23)-(27). Due to the invert-
ibility of the backstepping transformation (8)-(9), it is
straightforward to prove the stabilization of (3)-(6). ✷

Using a backstepping approach combined with a time-
delay approach, we have derived a control law ensuring
the exponential stabilization of (3)-(6) to its zero equi-
librium. We need now to prove that this control law is
delay-robust. This is the purpose of the next section.

4 Delay-robust stabilization

In this section we prove the delay-robustness of the con-
trol law designed in the previous section. Let us consider
a small positive delay δ > 0 on the actuation input U(·).
We now get from (27), (26), (33) and (34)

β(t, 1) = ρα(t−
1

λ
, 0) + U(t− δ) + (ργ0(1)− γ1(1))X(t)

−

∫ 1

0

(Nα(ξ)α(t, ξ) +Nβ(ξ)β(t, ξ))dξ

=ρα(t−
1

λ
, 0) + U(t− δ) + (ργ0(1)− γ1(1))X(t)

−

∫ 1

0

(Nα(ξ)α(t −
ξ

λ
, 0) +Nβ(ξ)β(t −

1− ξ

µ
, 1))dξ

=qρβ(t− τ, 1) + U(t− δ) + ρCX(t−
1

λ
)

+ (ργ0(1)− γ1(1))X(t)−

∫ τ

0

Ñ(ξ)β(t− ξ, 1)dξ

−

∫ 1

0

Nα(ξ)CX(t−
ξ

λ
)dξ, (43)

where

Ñ(ξ) =

{

µNβ(1− µξ) for ξ ∈ [0, 1
µ
)

λqNα(λξ − λ
µ
) for ξ ∈ ( 1

µ
, τ ]

.

The function Ñ(·) has therefore a unique extension to
the whole interval [0, τ ] that is C0 on [0, 1

µ
] and also a

unique extension to that interval that is C0 on [ 1
µ
, τ ] (de-

pending only on the value assigned at 1
µ
). These exten-

sions are k1-Lipschitz on [0,
1
µ
] and k2-Lipschitz on [

1
µ
, τ ],

respectively. However, there is in general a discontinuity
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at 1
µ
such that

Ñ

(

1

µ−

)

− Ñ

(

1

µ+

)

= (γ1(1)− ργ0(1))B.

Since for integration purposes these two extensions are
equivalent, and to avoid unnecessarily complex notation,
depending on the context we may refer to one or the
other as Ñ(·).

Substituting the expression of U(t) in (30) into (43)
yields

β(t, 1) = qρβ(t− τ, 1)− κqβ(t− τ − δ, 1) + UODE(t− δ)

+ ρCX

(

t−
1

λ

)

− κCX

(

t−
1

λ
− δ

)

+ (ργ0(1)− γ1(1))(X(t)−X(t− δ))

−

∫ τ

0

Ñ(ξ)(β(t − ξ, 1)− β(t− ξ − δ, 1))dξ

−

∫ 1

0

Nα(ξ)C

(

X

(

t−
ξ

λ

)

−X

(

t−
ξ

λ
− δ

))

dξ.

(44)

Taking the Laplace transform of (44) and multiplying
by B one can get

Bβ̂(s, 1)− qρBe−τsβ̂(s, 1) + κqe−(τ+δ)sBβ̂(s, 1)

+

∫ τ

0

Ñ(ξ)(e−ξs − e−(ξ+δ)s)dξBβ̂(s, 1) = e−δsBÛODE(s)

+BC(ρe−
1

λ
s − κe−( 1

λ
+δ)s)X̂(s)

+B(ργ0(1)− γ1(1))(1 − e−δs)X̂(s)

−

∫ 1

0

Nα(ξ)BC(e−
ξ
λ
s − e−( ξ

λ
+δ)s)dξX̂(s). (45)

The Laplace transform of equation (37) implies

that (sI − A)X̂(s) = Be−
s
µ β̂(s, 1). Moreover, using the

expression of the state feedback in Lemma 2, we have

ÛODE(s) =
ˆ̃
UODE(s)− (ρ− κ)Ce−

s
λ X̂(s)

= K0(s)φ̂(s)X̂(s)− (ρ− κ)Ce−
s
λ X̂(s), (46)

where K0(s) stands for the Laplace transform of the
predictor state feedback in Lemma 2, namely

K0(s) =
[

I −K(sI −A)−1(I − e−(sI−A) 1

µ )B
]−1

Ke
A
µ .

In what follows, we denote

φ̂1(s, δ) =1− qρe−τs + κqe−(τ+δ)s

+ (1− e−δs)

∫ τ

0

Ñ(ξ)e−ξsdξ. (47)

Multiplying equation (45) by e−
s
µ and using (46), we

obtain

(sI −A)(φ̂1(s, δ))X̂(s) = Be−
s
µ [Ce−

s
λ (ρ− κe−δs)

+ e−δsK0(s)φ̂(s)− (ρ− κ)Ce−
s
λ
−sδ

+ (ργ0(1)− γ1(1))(1 − e−δs)

− (1− e−δs)

∫ 1

0

Nα(ξ)Ce−
ξs
λ dξ]X̂(s), (48)

where φ̂ is defined in (39).

From [26, Theorem 1], we know that φ1(·, δ) ∈ A has a
unique inverse in A if and only if

inf
Re(s)≥0

|φ̂1(s, δ)| > 0.

We have the following lemma on invertibility of φ̂1(s, δ)

in Â (where the Banach algebra Â is defined in sec-
tion 2.1).

Lemma 3 There exists δ⋆ ∈ (0, τ ] such that

inf
δ∈[0,δ⋆]

inf
Re(s)≥0

|φ̂1(s, δ)| > 0. (49)

PROOF. Consider a fixed δ ∈ [0,min( 1
µ
, 1
λ
)]. The el-

ement φ̂1(s, δ) lies in Â, since Ñ(·) is in L1(R+,R).

Furthermore, we have that φ̂1(s, δ) is invertible in the

Banach algebra Â provided that ‖1 − φ̂1(s, δ)‖Â < 1.

Since Ñ(·) with support in [0, τ ] belongs to L∞([0, τ ],R),
a direct calculation using the triangular inequality for
the L1-norm shows that

‖1− φ̂1(s, δ)‖Â ≤ |qρ|+ |κq|+

∫ δ

0

|Ñ(ξ)| dξ

+

∫ 1

µ

δ

|Ñ(ξ)− Ñ(ξ − δ)| dξ +

∫ τ

1

µ
+δ

|Ñ(ξ) − Ñ(ξ − δ)| dξ

+

∫ 1

µ
+δ

1

µ

(|Ñ(ξ − δ)|+ |Ñ(ξ)|)dξ +

∫ τ+δ

τ

|Ñ(ξ − δ)| dξ.

Since Ñ(·) is k1-Lipschitz in [0, 1
µ
] and k2-Lipschitz

in [ 1
µ
, τ ], we get

‖1− φ̂1(s, δ)‖Â ≤ |qρ|+ |κq|+δ

(

4‖Ñ‖L∞ +
k1

µ
+

k2

λ

)

.

Noting that with the condition (32) we have |qρ|+|κq| <
1, there exists δ⋆ > 0 with

δ⋆ < min

(

1− |qρ| − |κq|

4‖Ñ‖L∞ + k1

µ
+ k2

λ

,min(
1

µ
,
1

λ
)

)

,
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such that for any δ ∈ [0, δ⋆], ‖1 − φ̂1(s, δ)‖Â < 1. This
implies that φ1(t, δ) is a unit of A, that is (49) holds. ✷

One can now fully understand the importance of the
choice of κ made in (32). This choice is possible due to
Assumption 2.

Equation (48) yields

(sI −A)(φ̂1(s, δ))X̂(s) = Be−
s
µ [Ce−

s
λ (ρ− κe−δs)

− (1− e−δs)

∫ 1

0

Nα(ξ)Ce−
ξs
λ dξ − (ρ− κ)Ce−

s
λ
−sδ

+ (ργ0(1)− γ1(1))(1 − e−δs) + e−δsK0(s)φ̂(s)

−K0(s)φ̂1(s, δ) +K0(s)φ̂1(s, δ)]X̂(s).

We consequently get the following characteristic
quasipolynomial p(s)

det((sI −A−BK0(s)e
− s

µ )φ̂1(s, δ)−Be−
s
µ (ρCe−

1

λ
s

− κCe−
1

λ
s−δs − (1− e−δs)

∫ 1

0

Nα(ξ)Ce−
ξ
λ
sdξ

+ e−δsK0(s)φ̂(s)− (ρ− κ)Ce−
s
λ
−sδ −K0(s)φ̂1(s, δ)

+ (ργ0(1)− γ1(1))(1 − e−δs)) = 0. (50)

Let us now denote

F (s) = (sI − (A+BK0(s)e
− s

µ ))φ̂1(s, δ) (51)

H(s) = Be−
s
µ (ργ0(1)− γ1(1) + ρCe−

s
λ + (ρqe−τs − 1

−

∫ τ

0

Ñ(ξ)e−ξsdξ)K0(s)−

∫ 1

0

Nα(ξ)Ce−
ξ
λ
sdξ). (52)

Using the definitions of φ̂(s) and φ̂1(s, δ), equation (50)
can be rewritten as

p(s) = det(F (s)− (1− e−δs)H(s)) = 0. (53)

Since K0(s) is bounded in the right-half plane, H(s) is
bounded in the right-half plane. We are now finally able
to prove that the control law U(t) as defined in (30)
delay-robustly stabilizes the system (3)-(6).

Theorem 2 The control law U(t) = UODE(t) +UBS(t)
as defined in (30) delay-robustly stabilizes the system (3)-
(6). That is, there exists δ⋆ > 0 such that, for all δ ∈
[0, δ⋆], U(t) = UODE(t − δ) + UBS(t − δ) exponentially
stabilizes the system (3)-(6).

PROOF. The closed-loop characteristic equation can
be written as in (53), where F (s) has all its roots in
the left-half complex plane (see Lemma 3), and H(s) is
bounded in the right-half complex plane. By contradic-
tion, assume that there exists z ∈ C, z 6= 0 and Re(z) ≥

0, such that p(z) = 0. There exists η 6= 0 such that

F (z)η = (1− e−δz)H(z)η.

This yields

η∗F ∗(z)F (z)η = |1− e−δz|2η∗H∗(z)H(z)η,

where ∗ denotes the conjugate transpose. Since F (z) is
non singular in C+, there exists M0 > 0 such that M0 <
η∗F ∗(z)F (z)η. Similarly,H(z) is bounded inC+, so that
there exists M1 > 0 such that

M0 ≤ |1− e−δz|2η∗H∗(z)H(z)η ≤ |1− e−δz|2M1.

Construct δm(z) = δ̄
|z| , for some δ̄ > 0 such that eδ̄ <

1 +
√

M0

M1

. It follows that for any δ ≤ δm(z),

|1− e−δz| ≤ eδ̄ − 1 <

√

M0

M1
. (54)

Since p(s) has only a finite number of zeros in the right-
half plane, where the zeros have finite module [15], the
quantity δ⋆ = minz δm(z) is strictly positive. This im-
plies that for any δ ≤ δ⋆, (54) holds. This leads to a
contradiction with the previous inequality. Hence there
does not exist any z ∈ C+ such that p(z) = 0. Further-
more, since the principal term of p(s) is precisely the

principal term of φ̂1(s, δ) which is stable by construction
(see Lemma 3), the asymptotic vertical chain of zeros of
p(s) can not be the imaginary axis. This implies delay-
robust stability since all zeros of p(s) are in the open
left-half complex plane. ✷

5 Simulation results

In this section we illustrate our results with simulations.

Let us consider the unstable system (3)-(6) for which the
coefficients are defined by

λ = µ = σ+− = σ−+ = q = 1, ρ = 0.6. (55)

A = 0.1, B = 0.1, C = 0.2. (56)

The parameters values are chosen such that

• the ODE and the PDE open-loop system are unsta-
ble [3],

• the reflexion terms satisfy 0 < |ρq| < 1, so that As-
sumption 2 is fulfilled.

We consider the norm || · || defined by (1). The initial
condition is chosen as a C1 function. Similarly to [1], the
condition (32) means that one cannot completely cancel
the proximal reflexion term ρu(t, 1) to design a delay-
robust control law when |ρq| > 1

2 . To emphasize this
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property, we choose |ρq| = 0.6 > 1
2 in our simulations.

The algorithm we use is adapted from the one proposed
in [2]. Using the method of characteristics, we write the
integral equations associated to the PDE-system (11)-
(20). These integral equations are solved using a fixed-
point algorithm. These kernels are then used to compute
the control law. Finally, the original system (3)-(6) is
simulated using a Godunov’s discretization scheme. The
predictor is adjusted from the one presented in [19]

Fig. 2. Time evolution of the || · ||-norm of system (3)-(5)
for the parameters (55)-(56) for different values of κ without
any delay

Fig. 3. Time evolution of the || · ||-norm of system (3)-(5) for
the parameters (55)-(56) for different values of κ in presence
of a 0.02s delay.

Figure 2 pictures the || · ||-norm of the state (u, v,X)
using the control law (31) for different values of κwithout
any delay whereas a small delay in the loop (δ = 0.02 s)
is considered in Figure 3. Choosing κ so that (32) holds,
the resulting stabilizing control law is delay-robust. For
such a value of κ, due to the definition of ||·||, the stateX
converges to zero. Figure 4 shows the evolution of u(t, x)
in presence of the delay δ = 0.02 s for a value of κ = 0.3.
Note that the convergence is only guaranteed in the sense

of (7). Finally, Figure 5 depicts the control effort for
different values of κ in presence of the delay δ = 0.02 s.

Fig. 4. Evolution of u(t, x) for a value of κ = 0.3 in presence
of a 0.02s delay.

Fig. 5. Time evolution of the control effort U(t) for different
values of κ in presence of a 0.02s delay.

6 Concluding remarks

In this paper, a delay-robust stabilizing feedback control
law was developed for a coupled hyperbolic PDE-ODE
system. The proposed method combines a first feedback
constructed using the backstepping approach with a sec-
ond predictor-type feedback. The second feedback con-
trol is obtained after a suitable change of variables that
reduces the stabilization problem of the PDE-ODE sys-
tem to that of an ODE with input delay for which clas-
sical results for delay equations can be used. The ro-
bustness to small delays (in the actuation) of our com-
bined feedback strategy is ensured by preserving some
proximal reflection terms in the PDEs in the backstep-
ping design. The degree to which these reflection terms
are canceled introduces a tuning parameter that enables
some trade-offs between convergence rates in the nom-
inal system and delay-robustness. In future works, the
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delay-robustness properties of the output-feedback con-
troller (crucial for application on an industrial problem)
remains to be considered.
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