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Abstract

We consider linear programs involving uncertain paranseiad propose
a new tractable robust counterpart which contains and gépes several
other models including the existirffinely Adjustable Robust Counterpart
and theFully Adjustable Robust Counterpartt consists in selecting a set
of poleswhose convex hull contains some projection of the uncestaet,
and computing a recourse strategy for each data scenaric@s/ax com-
bination of some optimized recourses (one for each pole). skidav that
the proposednultipolar robust counterparis tractable and its complexity is
controllable. Further, we show that under some mild assiomgpttwo se-
quences of upper and lower bounds converge to the optimas edlthe fully
adjustable robust counterpart. To illustrate the approadiobust problem
related to lobbying under some uncertain opinions of autiberis studied.
Several numerical experiments are carried out showingdhardages of the
proposed robustness framework and evaluatiegoenefit of adaptability

arXiv:1604.01813v2 [math.OC] 9 Apr 2016

1 Introduction

Uncertainty in optimization parameters arises in manyiagfns due to the dif-
ficulty to measure data or because of their variability. Taldeth uncertainty,
there are mainly two approaches: stochastic optimizatiuh rabust optimiza-
tion. In the first case, some probabilistic assumptions a@aabout the uncertain
data [18/ 26, 37]. One is then interested in computing a isolwptimizing some
moments of random variables depending on the data. Ano#r@&ant, known as
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chance constrained programmingl[22], consists in impotiagsome constraints
are satisfied only with some probability.

Robust optimization is a more recent approach dealing witlertainty. It does
not require specifications of the exact distribution of tmebfem’s parameters.
Roughly speaking, uncertain data are assumed to belongrioverkcompact set,
called uncertainty set, and we aim at finding a solution thanimunizedagainst
all possible realizations in the uncertainty set. An eadwtdbution related to
robust optimization is the work of Soystéer [50] followed loyensive investigations
in the last 20 years starting with [11,]29] in the context ofv@x optimization
and the book[[40] dealing with discrete optimization. Almasthe same time,
and in an independent way, a lot of work was initiated_in [38d $28] on robust
optimization in communication networks dealing with uriaér traffic matrix, see
[7] for a survey.

Robust optimization and stochastic programming are riateumerous ways.
For example, using some knowledge about the distributiononakrtain data, it
is sometimes possible to define an uncertainty set in suchyathvea the robust
solution is an approximated solution of a chance constdapreblem (see, e.g.,
[9) [12] for details and references). An approach combiniigust optimization
and stochastic programming consists in computing solsitthat are distribution-
ally robust where the distribution of parameters is assutoedary within some
set (for example, when the mean and the covariance matrikrenen) (see, e.g.,
[32,/33]).

The definition of the uncertainty set is a critical issue siadad choice might
lead to very expensive solutions. One way to alleviate aweservatism of the
robust approach is to assume that a subset of the decisi@blesr are adjustable
on the realization of the uncertain data. Let us for examgiesicer the following
linear problem

min c'x
s.t. Ax<b,
xeR",

involving uncertain parameters. We assume thé partitioned asx = (u,v),
whereu represents the non-adjustable anthe adjustable variables. The robust
counterpart of this uncertain problem under consideratals

min c'u
uv (FARC)
st. Uu+Vv(&)<b, [Ub] ez,

where the uncertain parameters afec R™" andb € R™, while V andc are
assumed to be known. We denote by= [U,b] € = the uncertain parameters
belonging to the uncertainty setassumed to be compact, convex and with a non-
empty interior. will be considered as a vector in the rest of the paper.



The non-adjustable variables are sometimes interpretece “and now” vari-
ables, while the adjustable ones can be seen as “wait andagailes. This robust
counterpart above is generally callkdly-adjustable robust counterpa(FARC).
FARC is sometimes called the dynamic robust counterpacesirdepends orf .
FARC can be seen as a two-stage optimization problem whare the first-stage
variables and are the second-stage variables.

If variablesv are also static, then FARC simply becomes the standatitc
robust counterpardenoted by SRC. Cases where FARC and SRC are equivalent
have been pointed out ih [10] where it is shown that adaptatibes not lead to
any improvement in the constraint-wise uncertainty casd, FARC is generally
much less conservative than SRC. In other words, there isrgiyn somebenefit
of adaptability Solving FARC is, unfortunately difficult in general casessaown
by many authors [10, 23, 45]. Another concern related to FAR®Me inherent
difficulty of implementing the solution(&) in a practical way.

To get a tractable optimization problem and also to allevéatme of the over-
conservatism of SRC, an affinely adjustable approach wampedl in[[10], where
the adjustable variables are not fully adaptable (dynamic), but are assumed to
depend on the uncertain da§an an affine way:

V(&) =w+WE, &=[U,bleZz,

wherew and the elements of matri&/ are new decision variables (a.k.a. affine
decision rules). The induced formulation is callaffine-adjustable robust coun-
terpart (AARC). An affine approach was also independently proposeddtwork
optimization problems where the traffic matrix is supposedd uncertain and the
way how traffic is splitted through network’s paths is optied [5/ 6] 48]. Further
developments appeared n [2]47].

Applying affine decision rules naturally leads to less exgpensolutions than
those obtained by the static approach. The performance wgagified by the dif-
ference between optimum of AARC and the optimum of FARC wasudised for
robust linear problems with right-hand-side uncertaimtyli4,/16]. One of the re-
sults of [14] states that AARC is equivalent to FARC when theartainty set is a
simplex. Some tight approximation bounds relating theropin of AARC to that
of FARC in the right-hand-side uncertainty case are alsergthere.

Related investigation on problems with some special uairgyt sets (integer
sublattices of the unit hypercube) are discussed_ih [36revtthey provide suffi-
cient conditions such that the associated affinely adjlestaéxcision rules lead to
exact optimum of FARC.

The affine approach is related to the well-known linear ot-firsler decision
rules used in the context of multi-stage stochastic optition [31]. Linear de-
cisions rules were also used [n [41] in the context of staahasogramming not
only to get upper bounds (as done above) but also to get logeerds by properly
approximating the dual problem using linear decision rule.

As observed in[25], even though AARC has been successfppliea to sev-
eral problems, its performance might be unsatisfactoryeusduations where the
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adjustable variables exhibit high nonlinearity in termshef uncertain parameters.
This led to some extensions of the affine approach_in[[24, & @lso references
therein) by reparametrizing the uncertainties and theryagpthe affinely ad-
justable approach. Roughly speaking, a new set of variabl@groduced (for
example the positive and the negative parts of the originaktainties), and the
adjustable variables are assumed to affinely depend onthsaief parameters. A
similar idea is also proposed in [16] in the context of onm@lsional constrained
multistage robust optimization.

Other extensions of affine decision rules have been propiosigdrature. In
[17] polynomial recourse actions are considered wihei® expressed as a poly-
nomial in uncertainty parameters with degree no larger théixed constant. The
complexity of the robust counterpart problem is then reldtetesting the positiv-
ity of a polynomial. Using some recent results in algebraorgetry stating that
under mild conditions, a positive polynomial can be expdsss a sum of squares
(not a priori bounded), the robust counterpart is approtéghéy considering sums
of squares of degree no larger than a fixed constant. As a swquafes can be
represented by a semidefinite programming [43], the praposieust counterpart
can be efficiently handled [17].

Another robust approach dealing with uncertainty, termechalti-static ap-
proach in[[7], was proposed and studied[in[[4] 8, 52]. It cetgsin partitioning
the uncertainty seE into a finite number of subsets;,...,=, and using a re-
course actiorv; for each subseE;. In other words, i€ € =, then we taker = v;.
The recourse actiong are of course subject to optimization. A quite close idea
is proposed in[[13], where it was calldithite adaptability The performance of
finite adaptability in a fairly general class of multi-stagg®chastic and adaptive
optimization problems was investigated[in [15].

One can also combine finite adaptability and the affinelystdple approach
by partitioning the uncertainty set into some subsets amdidering some opti-
mized specific affine decision rules for each subset. Thisalss considered in
[4],[7] in the context of network design problems. This typeadéptability might
also be callegiecewise-affine adaptabilityPiecewise-affine rules were also con-
sidered in several other papers such as [B, 33].

While a great number of proposals in robust optimizatiorelegpeared, there
are still challenges. First, to the best of our knowledgesienare general enough
to encompass static robustness, affinely adjustable mdmstind fully adjustable
robustness. Second, as observed in [17], there is no syttemay to influence the
trade-off between the performance of the resulting pdieied the computational
complexity required to obtain them. Third, the uncertaimapzeters of an opti-
mization problem can be sometimes difficult to observe. iressd applications,
only a subset of such parameters or some aggregates of tineloe cdoserved.

The objective of this paper is to provide a framework addngsthose chal-
lenges at the same time. Our contributions are four-fold:

1. A novel approach. We propose a hierarchical and convefgamework of



adjustable robust optimization multipolar robust approachwhich gener-
alizes notions of static robustness, affinely adjustableistmess, fully ad-
justable robustness and fill the gaps in-between. As a byptpd new way
to look at the affine adaptability is proposed. The resulildf [stating that
affine rules are optimal when the uncertainty set is a simiglaiso obtained
as a consequence of the multipolar approach.

2. A comprehensive analysis. We show thattingtipolar robust counterpart
is tractable by either a cut generation procedure or a cotripemulation.
Further, we prove that the multipolar approach can generatquence of
upper bounds and a sequence of lower bounds at the same tim@tn
sequences converge to the robust value of FARC under sordeassump-
tions.

3. A general constructive algorithm pble-sets The multipolar approach is
based on some tools related related to the uncertaintytegtve term as
pole-sets. For their construction, we start with a simpled hen compute
the best homothetic transformation of this simplex to alibwo enclose a
given convex set. An efficient algorithm is proposed to cotapuich homo-
thetic set. As a byproduct, we provide a very simple proohefgeometric
results of [46] related to hypercubes. The pole-sets obtadrfiter this homo-
thetic transformation are then improved using a tightemiraredure.

4. Anapplication. To numerically illustrate the multipplgpproach, a lobbying
problem is considered where a lobby aims to minimize the budgeded to
convince a set of voters taking into account a reasonabl@aptynamics
model under some uncertainty. The benefit of adaptabilittearly shown
for this problem.

Outline. In Section 2, we present the concept and ingredients of polgi
robust optimization and show that static robustness, &ffendjustable robustness,
fully adjustable robustness are special cases of multigolaust framework. In
Sectior[ 8, we discuss the tractability, the monotonicitgt tie convergence of the
proposed approach. A simple illustrative example is dbsdriin Sectioh 4. In
Sectiorl b, we propose algorithms for pole-set generatienti®{6 is dedicated to
a numerical example on a lobbying problem under severalrtaingy scenarios.
Finally, concluding remarks follow in Sectién 7.

Notation. Throughout this paper, we useto represent a compact convex
uncertainty set and to denote a member &. We usel to denote the identity
matrix. Vectors and matrices are marked in bold, and theilascomponents are
presented in italic. Given any matri®, CT denotes its transpose. We also use
[C,D] to denote the matrix wher@ andD are concatenated by columns assuming
they have the same number of rows. Similafty, D) denotes the matrix obtained
by row concatenation of two matric€sandD when they have the same number
of columns. Observe that = (vy,...,Vy) is then a vector anéy,...,vn] = v'.



We used;j to represent the Kronecker's delta function, whgge=1if i = j, O
otherwise. For a s&c R", we use extS) to represent the set of its extreme points,
convSto represent its convex hull and diB) to denote its dimension. 8is finite,
we use|S to represent its cardinality. We also use the standardiontéir usual
norms: ||-||. for the infinity norm,||-||1 for the Manhattan norm anj||, for the
Euclidean norm.

2 The multipolar robust optimization concept

In this section, we introduce the main ingredients of moltp robustness and then
setup the multipolar robust counterpart as a novel appratkim of FARC.

Shadow matrix. Like other robust approaches, multipolar approach is also
based on an uncertainty sét In addition, we consider a matrix associated with
certain operations on the uncertain information, whichlwadata aggregation, fil-
tering, and selection. Note that these operations canrditheatural or artificial.
Natural operations are induced by the difficulty of measwets or shortage of
data. For example, in communication networks, traffic floveswsually observed
in an aggregated manner (the consequence of aggregatiagainaemands from
multiple origin-destination pairs). Nevertheless, atfjbe recourse actions should
be implemented based the observed partial information.h@mwther hand, artifi-
cial operations can be certain techniques to control theptexty of the multipolar
robust counterpart, as explained in the concluding remafriisis section. We call
the associated matrix of an operatisimadow matrixsince the operation either re-
duces the size of the multipolar robust counterpart or isr@ctliconsequence of
observations. We uge € R*dm(Z) tg denote a shadow matrix, whemg is the
dimension of the shadow (i.e., the resulting partial infation) and ding=) is the
dimension of the uncertainty sét The resulting partial information is defined by

Zp:=P=={P§,Ec ). (1)

WhenP is identity matrix, we have a complete measure of uncestaint

We will assume thaP is full row rank matrix. Consequentlgp is also com-
pact, convex and has a non-empty interior.

Pole-set. A key component of the multipolar approach is a finite sgpaks
which are given vectors in the range space of the shadowxnétk denote by
such apole-set We say thaf is a pole-set oEp iff for any & € =, P& belongs to
the convex hull o2 (a convex combination of poles) denoted by c@mGiven a
set=p, a collection of pole-sets &p is defined as

F=, :={Q:=p CconvQ}. (2

Obviously, extreme points &p form a pole-set, i.e., ekEp) € F=,.
Multipolar robust counterpart. We now setup the multipolar robust counter-
part w.r.t. an uncertainty s&, a shadow matri®, a pole-seQ € .#=,. For each



& € =, we consider a weighzkf) for each polew in Q. Then, for each scenario
¢ € =, the following system has a solution

T Aow=PE,
weQ

T AS=1, ©)
weQ
Ao>0, weQ.

Let Ag be the set of weight vectord¢ satisfying the above system for a given
& € =. In the considered paradigm, each pole is associated wébaurse action,
and the recourse action in the presence af = is approximated by a convex
combination of the recourse actions associated with thespoSpecifically, let
vectorv,, be the recourse action associated with polan the above system. We
require the adjustable variable&) to be restricted to

V(&)=Y Ave, (@)

weQ

whereX? ¢ As. We can readily present thsultipolar robust counterpartiefined
by
N=(P,Q)=min cTu (MRC)

u,v
st. Uu+V Z)\f)vwgb,fez, AS e Ag. (5)
weQ

Following the spirits of robust optimization, the multipokobust counterpaff (MBC)
seeks a pair of non-adjustable solutionand a set of recourse actions related
to polesv,,, w € Q such that the objective function is minimized while hedging
against the uncertainty sgt In brief, given=, the multipolar robust approach can
bee seen as a set function of a pole@eind a shadow matriR. We denote the
function by

M= : ROXAME) w0 2= 5 (P,Q) — M= (P,Q) e R

and calll= (P, Q) multipolar robust valuav.r.t. (P, Q). Also, we call(u,v) multi-
polar solution

To conclude this section, we add few remarks on the concegitaafow matrix
and pole-set to clarify the motivation behind these ingratii.

¢ Note that by[(b), the solution is protected against the camed uncertainty
=. Neither a shadow matri® nor a pole-sef2 changes the uncertainty set,
soP andQ are not used to approximate the uncertainty set.

e Observe that ¥ dim(Zp) < |Q|, so we can use the shadow matRxto
reduce the number of recourse actions and therefore theanuwhizariables
of (B). Reducing the number of poles leads to an MRC which $seedo
solve as will be shown in Sectidn 3.



¢ In several applications, after data is revealed, the aaljlestariables should
be quickly chosen and used. This is fortunately easy to doemtultipolar
robust framework since the only thing to do is to find the co'&fﬁts)\f) and
use them to combine the already computed recourse vegioos € Q.

2.1 Special cases

We show in this section that MR C generalizes SRC, AARC, andEAy different
settings of pole-sets and recourse actions associateguolis.

First, we show that SRC is a special case of MRC. Imposing- v,y for any
pair of w and &’ belonging toQ leads tov(§) = vy, VE € =, which means that
the recourse action is static. Another way to get SRC is tmsaphatP is a null
matrix having one row (relaxing in this case the full row rargstraint related to
P) andQ contains just the zero vector.

Second, we show that FARC is a special case_of MRC.Q dte the set of
extreme points of andP=1. Then con = =, that is foré € =, there exista\é >
Osuchthaty A ¢ —1and > )\f)w: . By linearity of inequalities (5), imposing

weQ weQ
that Uu + Vv, < b for each extreme poin € Q is necessary and sufficient to

ensure the satisfaction of all inequalitie$ (5) for edch =. We get here the fully
adjustable case representing the best that we can obtathi$goroblem since it
is equivalent to assuming thatcan vary with no restrictions. Note that if the
number of extreme points & is limited, then the robust optimization counterpart
can be efficiently solved. However, if the number of extreroggs of = is non-
polynomial, the problem is generally difficult (as alreadgntioned in Sectiohl 1,
see for example [10, 23, 45]).

Third, we show that AARC can also be generalized_by MRC by ipgpthe
following theorem.

Theorem 1. LetQ € .=, such thafQ| = 1+dim(P=). Then the optimal solution
of the corresponding MRC problem is exactly the best saiutiat is affine inP¢.

Proof. SinceP= has non-empty interio®= C convQ and |Q| = 1+ dim(P=),
the elements of2 are affinely independent. Let= dim(P=) and assum& =
{wW,... 0@}, The shadow matriR is here the identity matrix. Consider ma-
trix D obtained by taking vecto!) as columns and adding a final line containing
only coefficients equal to 1.

1 d+1
o
D= 1 :1
wé) wénJr)

1 1

Observe thab is a non-singular square matrix of si@+ 1).



Given any¢, there are unique coefficienfsi such thatPé = 3 )\f)co and
we

5 A& =1. This can be written a$ P&,1 ) = DA? where A? is the vector
weQ

whose components are thé, for w € Q. This immediately implies thaAé =
D‘l( Pé.1 ) UsingE to denote the matrix whose columns are the recourse vec-
tors v, equation [() becomes = ED*l( P&, 1 ) This clearly implies that
affinely depends oRE.

Let us now consider any affine poligy+WP¢. As shown above, the recourse
vector v provided by the multipolar approach is given Bp*( P£,1 ). By
taking E = [W,w|D, we getv = w+ WP¢. In other words, any recourse policy
that is affine inP& can be obtained through the multipolar approach. O

WhenP = |, we get the desired result below.

Corollary 1. The affinely adjustable approach is a special case of theipolsir
approach. It corresponds to any set(@im= + 1) affinely independent poles, in
multipolar robust optimization whela = 1.

The following corollary is also immediate.

Corollary 2. If the uncertainty seE is a simplex, then the affinely adjustable
robust counterpart is equivalent to the fully adjustabléust counterpart in the
sense that their objective values are equal.

Proof. Taking all the vertices of the simplex uncertainty set asgbtof poles
in multipolar robust approach leads to the optimum of FARZ ®rollary[1, this
pole-set corresponds to affine adjustable approach, whitipketes the proof. O

Corollary[2 has been presented (inl[14] in the special casabf-hand-side
uncertainty, so we may treat the result here as an alteenatoof using the frame-
work of multipolar approach.

3 Analysis

In this section, we first analyze the tractability of the ripgtar robust counterpart
[MRC. Then, we show that the proposed framework can genenaenatonic se-
guence converging to the fully adjustable robust value oREAIN fact, we will
simultaneously generate a lower and an upper bound botrering to the opti-
mal value of FARC under some mild assumptions.

3.1 Tractability

In this section, we show th&t MRC is computationally tratgalit can be solved
either by cut generation or using a compact reformulation.

First, a cutting plane algorithm for solving MRRC may be dedisas follows.
Assume thatQ| is finite and has a reasonable size. Given a solutior), we
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have to check if there exists a pair & = andA¢ € A; violating the constraints
of [MRC. This can be done by checking the sign of the optimunaché" problem

max Uju+V; z AoV — Db (6a)
A’E we
st Y Abw=PE, (6b)
weQ
> A =1, (6C)
weQ
Ao>0, weQ, (6d)
¢ez, (6e)

whereU; andV; are theit" rows of U andV. If it is positive, then constraint

Uu+Vi ¥ Adve <b, )

we

needs to be added to the restricted problem, Wbiafe 3 ) solves[(6). Probleni.{6)
can generally be solved easily whens polyhedral or ellipsoidal. In these cases,
by equivalence of separation and optimization [35], thetipallar robust optimiza-
tion counterpart problem can also be solved in polynomiaktif the number of
poles|Q| is polynomially bounded.

Second, we may sohMe MRC by duality. It is sometimes posdiiesev-
eral kinds of convex uncertainty sets to write a strong ddgblp leading to an
extended reformulation ¢f MRC. This holds for examplesifs a polytope de-
fined by a limited number of constraints, i.&;={& = [U,b] : C¢ <d}, where
C=|[Cy,...,Cy],Ci € RYx (1) d ¢ R and€ is expressed as a column vector
of size(n+1) x m. & containamblocks of sizen+ 1 vectors: thé'" block contains
U/ followed byb;. By strong duality, the constraints of the multipolar rabcsun-
terparf MRC w.r.t= can be replaced with a polynomial number of inequalities. Fo

eachi, the inequalitedJju+V; ¥ )\f)vw <b,fe=, Nc A are replaced with
we

d"ni+Vive—w'oi <0, we Q,
Cini—Ploi=3gj(u-1),j=1....m (8)
n € RY, oj e R™,

where the shadow matrR= [Py,...,Pj,...,Py],Pj e R j=1 . 'm, §;
is Kronecker’s delta function.

WhenZ= is ellipsoidal, i.e.= := {¢& : |F||2 < 1}, the multipolar robust coun-
terpart can be represented by a second order cone program fdtheach, theit"
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constraint of MRC is replaced with
Imill2+ Vive— w'ai <0,

ni €R™, o € R™.

whereL; = (Li1,...,Lim), Lij = &; (u,— )+PTG,, j=1,...,m, ngis number of
rows of matrixF. For sake of completeness a proofdf (9) is provided in Appen

3.2 Monotonicity

We show in this section that the functidlx (P, -) is monotonic w.r.t. a partial order
defined on%=, when the shadow matri is fixed.

Given an uncertainty séf, we now define a partial order over the collection
of its pole-sets7=, denoted by<._ . We set members of’z, ordered by the
inclusion of their convex hulls, i.e., for any’, Q € %=,

Q' =< 7, Q= convQ’ C convQ. (10)

The next theorem emphasizes the fact that the fundlie(P, -) is monotonic re-
garding the partial ordex 5 for each fixedP € R"*4M=)_ n other words, the
multipolar value gets smaller whéhis smaller W.ILL= 7.

Theorem 2. GivenP € R™*4ME) for any Q' Q € .=, if Q' <7, Q, then we
haveN=(P,Q’) <MN=(P,Q).

Proof. If (u,(Ve)weq) is an optimal solution of MRIC, then a feasible solution,
when the set of poles is defined &, is given as follows. Eacty’ € Q' writes as a

convex combination of the poles & o/ = S AYw. Letvy = 5 A%V, The
weQ weQ
solution given by(u, (Vo )weq) is clearly feasible for MRIC w.r.t. the set of poles

defined byQ’, which completes the proof. O

Theoren 2 not only implies that the smaller few.r.t. 2T the lower the
multipolar robust value, but also implies that for a gi1=(P,Q) is minimum
if Q= ext(Ep).

Given two pole-set®), Q' € %=, Theoren{R also indicates that: first, for a
fixed shadow matrixP, if |Q| > |Q'|, thenM=(P,Q) is not necessarily less than
MN=(P,Q’); second, the functioml=(P,-) is not strictly monotonically increas-
ing. For example, 1e§,S e ff—P,S’ ==, Sand their convex hulls are simplices.
By Theoren{lL[1=(P,S) = N=(P,S) while by Theoreni2[N=(P,S) < N=(P,9),
which illustrates the second point. Now take any poles¥ethose cardinality is
strictly greater than * dim(Zp), such thatS 27, Q 27, S thenMNz=(P,S) =
MN=(P,Q) =Nxz(P,S), which illustrates the first point.

Observe also that wheR = |, any pole-set whose convex hull contaifss
contained in a simplex. This immediately implies that théropl value of AARC
represents the worst that can be obtained by the multippfanoach.
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3.3 Convergence

The aim of this section is to show that under some mild assomgtusing the mul-
tipolar framework, one can simultaneously compute a semehupper bounds
and a sequence of lower bounds convergin@ltql,ext(=)), the optimal robust
value of FARC. Throughout this section the shadow matrixiésitientity matrix.

Definition 1. LetQ € .#= be a pole-set of a non-empty &etthe distance function
between them is defined ag@,=) = meggnin lw— &2
we €=

The distance function is well-defined sinr@eand= are closed and bounded. It
characterizes the furtherest distance between pol@-setd the uncertainty sét.
This distance is nothing other than the well-known Haudabstance.

LetQ € .= such thad (Q,=) = €. For eachw € Q, we haved (Q,=) < ¢. Let
Z., be the projection ofvon =, i.e.,

e = argmind (w,X), € = W— Zg, (11)
Xe=

where||ey||2 < €. For eack€ € =, consider convex combination coeﬁicie(tﬁé)
such that

&= Z Bf)w, andlet E= Z Bf,ew. (12)

weQ weQ

Let us add subscripts to avoid confusidn= [Ug,b;], E = [Ug,bg] andz, =
[Ug,,bz,]. We define the convex set

=, =conv{z,: we Q}. (13)

We obviously haves}, C =. Let (u*,(v;,),.o) be the optimal solution of the
MRC problem related t&; . Due to the definition oE}, , MRC and FARC are
equivalent. Moreover, frorﬁ’ZQ C =, we get that

c'u* =Nz (1,ext(=})) < N=(1,ext(2)).

We will also assume that there is a positive numpesuch that||(u*,1)[]> < u.
This assumption generally holds. For example, if the costore is positive and
variablesu are non-negative, thesf u* < M=(1,ext(Z)) implies that||(u*,1)]|2 is
upper-bounded. The numbgrdoes not depend on

Assumption 1. There exists a constant numhiesuch that|(u*,1)||> < u for any
=7, € = and any optimal solution* of the FARC problem related &'

Lemma 1. Under Assumptioll, for each € =, (Ugu* — bg) is bounded from
above byeul, wherel is an all-ones vector.

Proof. The result follows from Cauchy-Schwartz inequality applie each row of
E = [Ug,bg]. O
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Let d be a small positive number and let
Z5={&=[U,b]:3&=[U,b €=, |b-b|. <d}. (14)
Observe that i = [U,b] € =, then[U,b— d1] € =5. We will assume that for some
small numbe, the static robust counterpart problem SRC is still solwabl
Assumption 2. There exists a static robust solutidng,vs) w.r.t. uncertainty set
5.
Theorem 3. Under Assumptiong] 1 arid 2, for each pole-€t .#= such that
d(Q,Z) =& <2, we have
EU T, % EU T
MN=(1,Q) < <1——)c u®+—c ug,
=(1,Q) < 5 +5CUs
wherec'u* andc'ug are respectively fully adjustable robust cost w.E,  and
static cost w.r.t=;.

Proof. Assume that the optimal solution of FARC w.r.t. uncertaisgt=)_ is
(u*,(v3,)). Consider the solution
N eu eu N EU EU
0= l——)u* —Ug, v :(1——>v* —V;5. 15
(1-F)w+ue % 5 )Vt sV 19

Let us show thatQ, V,,) is a feasible solution of the MRC problem relatecttand
Q. For anyé = [U,b] € =, by (12), one can write:

. . . £ R
Ui +V S BETe = u5u+(1—7”)v s Bf,vzw+7”w5
weQ weQ
< U50+(1—%) Zﬂﬁ;‘,(bzw_uzwu*)
we
n %“ (b — 51— Ugus) (16)
= Ugl+ (1—%“) (bg — be + Ugu® — Ugu®)
+% (bg —51—UEU5) (17)
= (1-5F) (Ve —be) — 1+ by
el
< (1_F> eULl—epl+ by (18)
- £2)2
=Pt

< by,

where [I6) follows from the fact theu*,v; ) satisfies constraintu+ Vv <b

Zy
for zy = [Uy,, bzw]T and the static solutious, V) satisfiedJsu+Vv <b; — 41,
(I2) follows from [11) and(12), an@(L8) is due to Lemima 1.
The robust cost incurred ki, (V4,)) is (1— &) cTu* + Zcus and is an up-
per bound of the optimum &6f MRC. O



Corollary 3. Given any sequence of pole-s&sc .%= such thatim d(Q;,=) =0,
1—00
then under Assumptiofs 1 ad 2,

M=(1,Q;) > N=(I,ext(=)) and lim M= (1,Q;) =M= (l,ext(Z)).

|—00
Moreover, the corresponding sequence of Sgfs defined in(13) satisfies

Nz, (I,ext(E’ZQi)) <M= (1,ext(Z)) and fim Nz, (I,ext(E’ZQi)) —M=(1,ext(2)).

i |—00

Proof. Letg =d(Q;,=),Vi. From Theoreril3, we have

M=(1,Q) < (1—%) Nz, (1,ext(2},)) +%0Tu5, Vi,

and we know that
Mz, (I,ext(E’zﬂi» <M= (1,ext(=)) < M= (1,Q).
Consequently,

lim M, (I,ext(E’ZQi)) =M= (1,ext(Z)) and limM=(1,Q;) = N= (1, ext(3))

I—00 —®

hold in the limit at the same time. O

4 Anillustrative example

To illustrate the multipolar concept, we present a simpingale, which had been
previously studied in [25] and is as follows:

min u
st VEER" &L <1, 3Fv,vi>¢&,vi>-¢,i=1,...,n
n

uz > v.
i=1

(19)

Observe thati is here the unigue first-stage (non adjustable) variableth®other
handyv;, for eachi = 1,...,n, are second-stage (adjustable) variables. The uncer-
tainty setis given by = {& e R",||&||1 < 1}.

As noticed in [25], an optimal fully adjustable solution isen byu= 1 and
vi = ||&i||1, whereas the optimal affinely adjustable solution requinasu = n. In
other words, the affine approach does not lead to any impremegompared to
the static approach.

Following the paradigm of multipolar approach in Secfibme? us takePé =
(é1,...,&n,), Wherenyg € N, ng < n. In other words, the shadow matixlimits the
dimension of= to ny by leavingé; as they are for < ny and disregarding the other
components for > ng. LetQ C R™ be the set of poles containing foe 1,..., ng,

14



vectorsg' = 0,...,0,1,0,...,0) andEi — —¢', whose components are 0 except
theit" component. Henc@ contains 2y poles andEp = convQ.
Given anyé C =, Iet)\(ﬂi and)\a be the convex combination coefficients such

Ny ) _ N, )
thatP& = zo <)\¢i<p' +A6i (p'). The equation can be transformed?d = zo @ ()\(pi
i=1 i=1
— )\(—Di); thus these coefficients should satisfy the equatigns- )\(—Di =& forl<

i <np. Letv,, (resp.vai) be the recourse vector associated with ppiléresp@').
These vectors belong ®".

In the considered example, inequalities (7) are equivdtetiie following set
of inequalities:

No

2, (Apve +Agvg) = (1&]. I8l oo &), (20a)
uz= Hi (A(inq)i +)\6ivai> I|1- (20b)

Let us takev, = Vg = (o,...,0,1,0,...,0,1,...,1), where the firshy compo-

nents are 0 except th# component, which is equal to 1, while the Igst— ng)
components are equal to 1.

n,
Observe that the lagh —ng) components of the vecto{0 ()\q)ivq)i +)\5ivq—oi>
i=1

are equal to 1. Moreover, for4i < ng, we haveA, +)\¢ > |Ag _)\?' =&
This clearly implies that inequalitie§_(20a) are satisfied.addition, inequality

n
(20B) leads tau > zo <)\(pi +A$) (1+n—ng), where(1+n—np) is theL! norm
i=1

of each recourse vectop;. Consequentlyy > 1+n—ng. Since we are minimizing
u, we getu= 1+ n—ng. The cost decreases whegincreases. Whery is equal
to 1, we get a static solution, while the optimal fully adalde solution is obtained
whenng = n. Finally, taking 1< np < n, we obtain a compromise between the
simplicity of the static approach and the efficiency of thiyfadjustable solution.
As mentioned earlier, such a compromise cannot be obtaoratis example with
the affinely adjustable approach.

Consider now a slightly changed example with the uncestaést being the
non-polyhedral set defined 1:= {&§ € R": ||€||2 < 1}. The rest of the problem
remains as il (19); thus the new problem can be formulatedliasvt:

min u
S-t- VEERILHEHZS]_, 3V7Vi25ivviZ_Ei7i:17"'7n7
n

uz 3> v.
i=1

(21)

Observe that since the new uncertainty Setontains the previous one based on
L! norm, the optimal value of (21) is greater than or equal to ¢ig19). Opti-
mal solutions based on either the static approach or theeadfproach still incur
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a cost ofn while the optimal fully adjustable solution has a cost4i. Let us now
consider the multipolar approach, whevas still defined byPé = (El, v €ng)-

Let us choose the following set of pole€ = {,/fog }.=° U {\/—(p }=". One
can easily show thaip C con(Q). Moreover, by takiny g, = V e (O,...,

0,,/Mo,0,...,0,1,...,1), where the firshg components are 0 except ttfecompo-
nent, which is equal t¢/ng, while the lash—ng components are equal to 1, we get
a solution of the multipolar robust counterpart withk= /Mg +n— ng. Similarly to
the previous case, whey is equal to 1, we get a static solution, while the optimal
fully adjustable solution is obtained wheg= n.

5 The construction of pole-sets

We know from Sectiof]3 that the multipolar robust value coges to a fully ad-
justable robust value when the distance betw@eand =p gets close to 0, and
P =I. We also proved the monotonicity of multipolar robust valuet. the inclu-
sion of comQ. Therefore, the objective of this section is to find a polesse .%p
as close ta&p as possible, while minimizing the number of poles. This &adly
related to the theory of approximation of convex sets by foplgs.

A considerable amount of work has been done in this area. éntesurvey of
relevant results is given in [21]. It is proved in [20,/ 27] tlggven a convex body
=p € R™, there exists a polytopE, € R™ havingn vertices containingep such
thatdy (=p, Fy) < % wheredy denotes the Hausdorff distance aq&p) is
a constant only dependlng GIp. More precise approximations are obtained in
dimension 2, where we can ensure the existendg af R? such thatly (Zp, F,) <
%sin’—nT wherel is the length of the boundary &p. Moreover, if the boundary
of =p is two-times smooth, then an explicit asymptotic resultriskn about the
distance betwee&p and the set of circumscribed polytopes havimgertices:
the closest polytop&, satisfiesdy (=p, Fn) ~ % wherek(=p) is a constant
depending omg and the Gaussian curvature 'of the boundarg®fl9].

The monotonicity of multipolar robust values w.r.t. poltssmight suggest us-
ing minimum volume circumscribed polytopes. ConsiderimgNikodym distance
(related to volumes) instead of the Hausdorff distances#imee kind of results can
be obtained [21]. One might be interested in a minimum volsm®lex contain-
ing a convex seEp. We know for example that iEp is the hypercubcHnO, then a
minimum volume circumscribed simplex has a volume equéﬁLfo[42] If =pis
the unit ball, then a minimum volume simplex containing thad bs aregular sim-

plex whose volume &2 i (n°+1 ot [21] and whose dihedral angle is arc¢gs
[49]. Itis also known that a mlnlmum volume simplex enclgsip satisfies the
centroid property: the centroid of each facet of this simleould be in=p [39].
A polynomial-time algorithm to find such a minimum volume giex enclosing a
set of points ifR? is given in [51]. However, it is generally unknown how to selv
the problem in higher dimensioris |34].
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As observed by [21], most constructive algorithms were gadlyeproposed for
low dimensional cases (2 or 3). For more general cases,ractige algorithms of
circumscribed polytopes such as the algorithm_of [38] areegaly based on the
addition of inequalities without controlling the numberafrtices of the circum-
scribed polytope. This can hardly accommodate the need bijpmiar framework
since we want to control the complexity of MRC by limiting thember of poles.

Note also that we are required to construct the pole-sé&-dh a reasonable
time. Algorithms checking whether each extreme poirEgbelongs to the convex
hull of Q fail to work, since the number of extreme points of a polytapa be
exponential or even infinite.

The rest of this section is organized as follows. First, wecdbe a general
algorithm to construct a simplex enclosifg. The resulting simplex is guaranteed
to be smallest in the sense that it cannot be shrinked. Thaoject-and-cut based
tightening procedure is proposed to construct pole-seatsaite closer t&p.

5.1 Generation of a circumscribed simplex

In this section, we describe a general algorithm for the waogon of a circum-
scribed simplex oEp. Specifically, we first randomly generate a sefiaf + 1)
affinely independent points, whose convex hull forms a s&xfl Then, we com-
pute the best homothetic transformationSuch that the resulting simplex con-
tains=p.

We denote by theo).i = 1,...,(ng + 1) the (ng+ 1) affinely independent
points. Then thep-simplex set can be expressed {as: DA = (x,1),A > 0},
where

‘Uil) wino+1)
D= :1) (n.+1
w§0 e Wy )

1 ... 1

Since the(ng + 1) points are affinely independent, matbxs invertible; therefore,
Aj, 1=1,...,(no+1), can be expressed as a affine functionx;athe coefficients
of the affine function\; are the components of tli row of D71, i.e.,

No

Ai¥) = > lijXj +ling 1), i=1,.... (N0 +1). (22)
=1

Note thatAj(x) >0, i=1,...,(no+ 1) iff x belongs to the-simplex.

Let X4, T be the associate matrices for the operations of scaling faitor
o > 0 and translation € R™. Thus the associated matiiX; of the simplex with
homothetic transformation on the simplgis Dy = TtX 4D, where

| t ol 0
Tt:((go 1)’2":<0n0 1>‘
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Its corresponding inverse is then

1_p1 Ling 0\ [ln, -t
ot o 1)\o 1

1 1 19
sl .0 Sl l1(no+1) — 5 kzltkllk

1 1 [ _1
o 'nol o 'NoNg no(no+1) — o

1 1
sl - Flioryne et ynory — 7

Let o* be the smallest scaling factorsuch that a translate ofScontains=p. The
translate used whem = ¢* is denoted by*.

i no+1 . np+1
Theorem 4. g* andt* are given byit* = 5 zw ando* = — S 2z, where for
i=1 i=1

n
eachi=1,...,(np+1), z :min{z0 lijxj : X € =p}.
=1

Proof. Assume that the homothetic copy 8fiven by oS+t contains=p. Then
the coefficients\;(x) defined in[(2R) should be nonnegative for any poimt =p.
Considering the matriDg} defined above and computing the minimum values of
Ai(x),i=1,...,(np+ 1), we get

1 o 1
I(n0+1 Ztkhk—i— —z>0i=1. (n0+1),
For ease of notatlon we express thigd/ i@ T4 0,i=1,...,(np+1), where
Il(n 1) = = ol; i(No+1) — z tlik, I=1,...,(no+1).
Since the matrix| ),,J:Lm’(nﬁl) is the inverse of matrip, we have
n0+1 n0+1
Zlij:O, j=1,...,np and Zli(no+l):1. (23)
i= =
Summing aIIIi’(nOH), we get
np+1 no+1
/
0= z I n0+1 z Z| (24)
Observe that having (o +1 (ando™* as a consequence), we can get the translate
t through the linear systenz tilik = Tling+2) — 1 f(no+1)" i=1,...,(np+1). Multi-
plying by D, we get tha(tl, ,th,0) = 0(0,...,0,1) — D(I’l(n0+l), ---7|fn0+1)(n0+1))
no+1

which leadstd = 3 zw.

i=1
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no+1
According to [(24), the smallest* is — Oz z. We should however check if
i=1

o* > 0. This holds since by considering amge =p, One can write that

no+1 no+1 ng

i; z < ; Z lij X;

no+l

= 1

where the last equality is based 6nl(23).
Since the matriDg} does not exist whea™® = 0, we have to study this special

case. ltis clear that* = 0 if and only if =p is a single point. Observe that in
no+1
this case, we necessarily havg z =0sincez = ZJ 1lijXj, wherex is the single

_ 3 no-+1 no+1
point of =p. Then formulacg™ = — z z is still valid andt* = x = z zw\ also
i= i=
occurs. O

Note that values of;,i = 1,...,(no + 1) defined in Theorerhl4 can easily be
computed for anyep since we only have to minimize a linear function over a
convex set.

As a special case, pole-sets of a hypercube are of great usaliipolar ro-
bust approach. First, hypercubes are one of the most comnumartainty sets in
many applications. Second, general box sets of the fornx € [I,u]™ C R™} are
simply affine transformations of a hypercube, so the padig-ska hypercube also
apply to boxes with some simple transformations.

Corollary 4. If Zp is a hypercube, thea* andt* are given by:

n+1 ng no+1 no

Zme{OI.J}w ando* = ZZ\I.J\

n
Proof. If =p is a hypercube, by Theoreh 4, we haxe= zo min{0,lj; }, i =
i=1

1" +1n
1,...,no. By (23), we have- Z z min{0,l;j } = Oz Zo |lij |, which completes
i=1 j=1 i:l =1

the proof. O

According to Corollary ¥4, we have a closed formula for the btmetic trans-
lation for ang-simplexS containing theng-hypercube, i.e,

no+l No no+1

Xogt = Z zl||ij |X+ i; ) Jilmin{o,lij}, vx € S (25)

19



Figure 1: (Left) Polew® is replaced with poleaoi)?zl. (Right) The updated con-
vex hull of the new set of poles.

Note that the value* presented in Corollafyl 4 has been giveriin [46] but the proof
here is much simpler.

To sum up the foregoing, we present a general algorithm fogéneration of
a circumscribed simplex as follows.

1. Generaténo+ 1) affinely independent pointgo) =702,
2. Computes* andt* by Theorem{# and output thefw +t*,i=1,..., (no+
1).

5.2 Atightening procedure

In this section, we propose a general procedure to congtaletsets of good qual-
ity by tightening a given pole-set.

The procedure is the following: among the verticeddelect the farthest one
in L2 sense fromEp and compute the projection of this vertex 8a. Then we
consider the hyperplane separating this vertex fEgnfcontaining the projection)
and compute the extreme points of the intersection of thielane with conQ.
These extreme points are added@owhile the vertex that has been projected is
removed fromQ. Figure[l illustrates a tightening procedure of a 3-D simple
coveringHs. The procedure is repeated until the cardinalityCbfeaches some
fixed upper bound. Details are given below:

1. AssumeQ = {w® ke 1}. For eachk € I, compute the distance between
w® and=p. Let Z¥ be the projection oto®¥ on =p. Z¢ can be usually
expressed in a closed form. For example, in the ball case,ave#f =

©Y_ while in the hypercube case we = cq(k) if oq(k> €0,1,z=1

lw®]l2”
if 0 > 1andZ = 0if not. The distance between¥ and=p is then given
by ||w® — Z¥||2. Let w be the vertex of2 maximizing the distance from
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=p-
@) = arg max||w® — Z|,.
w®eQ

2. Leta = w*) — 7% and letB (w), ||c2) be the ball of radiugie||> cen-
tered atw®). SinceB (w® ), |all2) NZp = {Z} andB (w, |a2) and
=p are convex, there is a hyperplane separating them. Thigbigoe, de-
noted byh(w®)), is here uniquely defined since it contairs and is or-
thogonal towx. Itis then given byh (w®)) = {x: (x— )T = 0}. We use
h™ (w)) = {x: (x—2°)Ta < 0} andh* (w®)) = {x: (x— 2°)Tax > 0}
to respectively denote the inner and outer half spaces.

3. Now partition the verticegw®), , into two disjoint sets:Q~ and Q*,
whereQ™ = {w® : w® € h™ (w)) } andQ* = {w® : WM € ht (wk)}.
Then consider the set of vertic€® obtained as intersections between the
hyperplaneh(w*)) and the set of linegw!, w()) wherew® € Q* and
W e Q1 Q' =Uyiecq wiveq M@ )N (0, w!). The number of such
intersections is of course less thg | x |Q"|. Also note that we need to
remove redundant points fro@’ if they are convex combinations of other
points ofQ’. Finally updateQ by deletingQ™ and adding?: Q =Q UQ'.

If cardinality of Q is still under a prescribed upper bound, the procedure is
repeated.

To conclude this section, we might add that it is sometimesenafficient to start
with a pole-set having more thamg + 1) poles. Assume, for example, thap
is the unit ball{x € R™ : ||x|2 < 1}. Then one can consider2m-pole-setwhere
poles are the® extreme points of x € R™ : ||x||y < /ng}. Of course, 2n-pole-
sets can also be easily generated for many other convex sets.

6 A numerical example: the lobbying problem

Let us consider a lobbying problem where a set of voters ffanple, legislators
or members of regulatory agencies) have to take some desisithe opinion of
each voter depends on the opinion of some authorities. Aitgsoopinions are
generally uncertain. A lobby would like to ensure that anamg@nt decision will
be unanimously approved by all voters. The lobby will spemthes effort (energy,
money, etc.) to convince each voter, while the total lobfyodget is minimized.
Assume that there aravoters and authorities. The opinion of voteiis given by
ZT:l Qij&; whereQj; is an estimated number belongingtal, 1] andé; represents
the uncertain opinion of authority. If Qjj is close to 1, therj has a big impact
oni, while Q;; = 0 means that does not care aboyt while a negative value of
Qij can be interpreted as a negative effect (i.e., wheacommends something,
i is inclined to have an opposite opinion). We assume herettieaiobby would
be satisfied ify|_; Qij; < 0 for each voter. Since this might not occur for some
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voters, some effort modeled here gy¢) can be made by the lobby to convince
them. The total effort is quantified by";rivi(&) wherer; is a unit effort price
corresponding with votear The problem can be formulated as follows,

min u

&= (26)

whereQ € [-1,1]™", = is the convex uncertainty set ands the budget that has
to be secured by the lobby. The lobby problem is related toiopidynamics

in social networks (see [1] and the references therein).icBdhat interactions
between voters are also possible since the set of auttsonitight include the set
of voters as a subset.

To illustrate the multipolar robust approach, we considerehwo different
uncertainty sets: the hypercublg and a unit volume balB,. The numbers; are
assumed to be equal to 1. Specializing (8t we get the following formulation
for MRC associated with a shadow matfxand a feasible pole-s€l € Fpy,,

My, (P,Q)=min u

e m n n

s.t. v+ S ojw + i<u weQ,
i; W Z j i ZBJ
Z

i wj + Za.l V, <0, weQi=1,...,m

n
Zu.l VI Zc},w,<0 weQi=1,....m (27)
=1

B+PTo >0,

aij +P i >Qj,i=1,....mj=1...n,
—P';>0,i=1,....m

aij, By, kij >0, i=1,....mj=1....n,

o, TeR™ i=1...m

As said above, we also consider the case where the uncgrsaint a unit volume

ball By, whose center i§ = (,...,%,. )and radiup = (M) Accord-
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ing to (9), the dual of the multipolar robust counterparttwB,,, writes
Mg,(P,Q)=min u

UVe
st. pIPTal2+1"vy—w'e <u, weQ,
PIQI +P iV, — 0 m+ Q€ <0, weQ,i=1,...,m
pHPTIJ’iHZ_Vi&)—wTu’iSO7 werizlv"'vm
o, i, i €ER™ i=1....m
(28)

whereQ € Zpg,.

As stated in Section 2.1, the fully adjustable robust valug.whypercubeH,
can be achieved by simply takify= | andQ = ext(H,). The problem looks more
complex in the ball case since the number of extreme poiritsiigte. Assume
again thatP is identity. Givené € By, the optimal solution of; is max0,Q;¢ }
for eachi = 1,...,m. Denote byZ the power set of the index séd,...,m}.
We partition the balBy, into a family of disjoint subsets by a set valued mapping
S: 2+ 25 i.e., foreachl € 2,

SJ):={£€By:QiE>0,i€d, Q€ <0, jel},
whereJ = {1,...,m}\ J. Therefore, the fully adjustable robust program writes
(29)

*

Bn — JGJ/’S(J;&(D EeS(JZ Q-

Notice that[(2D) takes an exponential number (in the numbeowstraintsm) of
seconder order cone programs to obtain the fully adjustatbest valudTg . We
show that[(2B) is equivalent to a much simpler problem.

Lemma 2. Program(29)is equivalent to

n—g;z}x{pIIZQHﬁZQ E} (30)
Proof. Observe first that ma%pH S Qill2+ ¥ Qif_} is an upper bound offl}
Jez i€l i€l "

since it is obtained by relaxing the constraifts S(J).
We show that it is also a lower bound Bf; . Let Jnax€ & be a subset for
which the maximum is achieved:

Jmax:argjrgg,X{pHIZQiHﬁI;QiE}.
P JZ Qi
] ?maxQ”
Qi€ >0,ieK,

Qé <0 ie{l....m\K.

TakeE € B, such thaTE E +15 0% LetK € & such that
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We have that

p“ie%ain“2+ie%aing: iezmainé

where the first equality follows from the choice §f The second inequality is due
to JnaxN K C K, while the third inequality is from the fact thgtbelongs taS(K)
by the definition oK. The last inequality is a direct consequence of (29). O

Although problem[(3D) is easier than probldm]|(29), it id stimputationally
costly when the number of constraintsis large. Notice thati(30) can also be
seen as a integer quadratic program that can be approximateemidefinite pro-
gramming and solved using standard quadratic programnoiolg.t We will not
elaborate more on this since this falls out of the scope opéeer.

6.1 Numerical experiments

The problem instances are randomly generated followingutes below.
1. Letme {10,20,30,40,50}, n € {5,9,10,12 15,20, 30}.
2. Generate the components@funiformly over[—1,1].

3. We build four different sizes of pole-sets for each comsd hypercube by
the circumscribed simplex generation algorithm and thbtéiging proce-
dure described in Sectigh 5. As a result, for a hyperddih€Q;) is a mono-
tonic sequence w.r.t. the set inclusion of their convexshule.,Q; <n, Q;
foralli > j. Table[1 displays the cardinality of different pole-set$ipf The
number of vertices dfl,, is also provided in the last column.

4. As an illustration of multipolar robust approach for sitooonvex uncer-
tainty sets, we generate pole-sets of Igllas well. In Tablé PQy denotes
a first pole-set whose convex hull is a simplex, wiidgis the Z—pole-set
defined at the end of Sectibh 5. Starting fr@nand applying the tightening
procedure, we get the pole-sé€ds,i = 2,3,4 as outputs. The cardinality of
pole-sets are shown in Taljlk 2.

The pole-sets had been readily generated before the gojutiwedure. Compact
formulations [2V) and_(28) are modeled by YALMIP [44] andthak problem in-
stances are solved by the Linux version of CPLEX 12.5 wittadkfsettings on
a Dell E6400 laptop with Intel Core(TM)2 Duo CPU clocked &3 GHz and
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Table 1: The pole-sets of hypercubes

Hypercube |Qo| |Q] |Qa| |Q3| #ext.
Ho 10 32 162 387 512
Hio 11 36 112 322 1,024
Hiz 13 44 144 449 4,046
His 16 56 192 353 32,768
Hao 21 76 144 514 1,048,576
Hso 31 60 116 432 1,073,741,824

Table 2: The pole-sets of the unit volume ball

Unitball  |Qo| Q4 Q)| Q3 Q|

Bs 6 10 118 218 308
Bg 10 18 62 152 352
B1o 11 20 72 132 374
B12 13 24 88 164 478

with 4 GB of RAM. We evaluate our multipolar approach fromfelient measur-
ing: the impact of pole-sets, the impact of the shadow m&tiand the benefit of
adaptability.

6.1.1 The influence of pole-sets

Recall that multipolar robust approach closes to some dxtengap between affine
robust value and the fully adjustable value. To test the ghpapole-sets, we fix
P = 1. For relatively lower dimensional cases, we report the ipolhr robust
values w.r.t. different pole-sets, and compute the peagenbf the closed gap
induced by the multipolar robust appro fz("g)z;)'j:rf?'> x 100. For higher dimen-
sional cases, where FARC can hardly be solved in a reasotiaigiewe report the
multipolar robust values w.r.t. different pole-sets.

Results related to hypercubes are presented in Table 3. [dbedcgap per-
centages are given within parentheses. Overall, thesésegqpear encouraging
as indicated by the closed gaps. Observe that when the aimtgrset is fixed, the
multipolar robust values in general get lower as the polegsgets smaller. Also,
we report the computing time for higher dimensional instangssociated with hy-
percube uncertainty set in Talile 4. While the computatitineé compared with

the affine robust approach scales in magnitude, the contpleiinultipolar robust

25



Table 3: The multipolar robust values with different po&ss(hypercube uncer-

tainty sets)

(m,n) static affindly, (Qo) My, (Q1) My, (Q2) My, (Q3) I'I’,iln
(10,9) 24.84 12.42 12.18(9.45) 10.55(73.62) 10.16(88.98) 9.88
(10,10) 25.50 12.75 11.53(58.65) 10.96(86.06) 10.7098.5 10.67
(10,12) 30.66 15.33 14.63(35.18) 13.71(81.41) 13.43@®5.4 13.34
(20,9) 50.75 25.37 23.82(46.69) 22.08(99.10) 22.06(99.70 22.05
(20,10) 50.88 25.44 23.56(16.95) 20.74(42.38) 18.58(1.8 14.35
(20,12) 59.79 20.89 27.54(23.64) 25.40(45.17) 23.5883.4 19.95
(10,15) 35.81 17.90 16.91 15.98 15.29

(10,20) 50.88 25.44 24.82 24.35 23.33

(10,30) 64.32 32.16 31.70 31.14 30.22

(20,15) 82.49 41.25 39.36 36.20 34.87

(20,20) 99.28 49.64 47.17 45.66 40.80

(20,30) 157.20 78.60 77.82 76.83 73.77 -

approach is controlled by the choice of pole-sets. In paeic¢ in higher dimen-
sional cases, where fully adjustable robust values areudliffio obtain, the robust
multipolar approach brings lower cost (compared with afipproach) in a rea-
sonable time.

Table 4: Computing time (in seconds)

(m,n) static affindy, (Qo) My, (Q1) My, (Q2) My, (Q3)

(10,15) 0.00 0.01 0.20 1.49 6.31

(10,20) 0.00 0.03 0.87 2.66 27.54
(10,30) 0.00 0.04 1.15 453 39.12
(20,15) 0.00 0.03 0.68 10.43 34.98
(20,20) 0.00 0.07 4.65 16.41 152.79
(20,30) 0.00 0.14 3.91 15.40 220.48

A sequence of lower bounds can also be generated as stateddha@y[3 of
Sectior:3.B. Allwe need to do is to generate a sequeng Jit3 by projecting the
poIe-sets(Qi)Eg onto the surface of hypercubes. The obtained lower bouras ar
denoted byTy, (T';). Note that con®’ C Q does not necessarily lead to cdrC I
or convi’ D I'. Thus it may happen thdiy, () > My, (Tiy1). The results are
summarized in Tablgl 5, where the best lower bound for eadblgmmoinstance is
marked in bold.

26



Table 5: Lower bounds related to hypercubes

(mn) My (To) My, (T1) My, (T2) My, (T3) M,
(10,9) 6.88 8.18 9.52 9.65 0.88
(10,10) 7.11 8.12 9.62 8.34 10.67
(10,12)  10.50 8.88 9.48 9.57 13.34
(20,9) 20.08 16.05 18.70 21.98 22.05
(20,10) 11.88 11.88 12.44 12.92 14.35
(20,12) 14.73 16.65 16.96 19.07 19.95
(10,15) 7.62 7.63 8.40 8.40 -
(10,20) 7.86 10.20 10.20 10.36 -
(10,30) 7.11 9.03 9.03 9.79 -
(20,15)  23.49 25.86 23.56 23.56 -
(20,20) 15.23 16.08 16.08 19.61 -
(20,30)  30.53 31.12 32.53 33.81 -

Let us now focus on the ball case. Remember that FARC is tatobe in
general. However, as shown in Lemfja 2, we can compute thenoptiof FARC
by solving problem[(30) whem is small. We report the robust values obtained
by solving multipolar robust counterpart with differentl@sets in Tablélé. The
results may indicate the following. First, the approximetleust values associated
with balls appear lower than those associated with hypesalihough the volume
and symmetric center of balls and hypercubes are the sanmmn&ethe closed
gaps by multipolar robust approach on robust problems wathumcertainty sets
might be less significant than that with hypercube uncdstaiets. As might be
expected, larger poles-sets are required for balls cordparbypercubes. Third,
despite the limitations, multipolar approach closes ado89% of the optimality
gap. In particular, it appears compelling when the numbeoaoktraints are large,
while the dimension of the uncertainty set is small.

The lower bounds obtained in the ball case are reported iteTablnterest-
ingly, the observed sequences of lower bounds associatadbali B, are mono-
tonically increasing and their best bounds in general aisedo the fully adjustable
robust value.

6.1.2 The impact of the shadow matrix

To investigate the impact of the shadow matrix on the robakievof the robust
problem, we conduct some experiments on problem instancgshypercube un-
certainty sets. The shadow matrices considered here apéyginojection matrices
on lower subspaces. The results are displayed in Table 8gwihe uncertainty set
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Table 6: The multipolar robust values with different potgss(ball)

(mn)  static Mg (Qo) Mg, (Q1) Mp(Q2) Mg, (Q3) Mg, () ng
(10,9) 17.27 9.43 9.28(11.11) 9.21(16.30) 9.11(23.70) 1@D.11) 8.08
(10,10) 16.09 9.21 8.98(23.00) 8.95(26.00) 8.94(27.0089(32.00) 8.21
(10,12) 19.64 10.93 10.76(20.99) 10.76(20.99) 10.746)314.70(28.40) 10.12
(20,9)  35.87 19.86 19.54(20.92) 19.51(22.88) 19.45(2618036(32.68) 18.33
(20,10) 33.12 17.19 16.42(18.08) 15.62(36.85) 15.57@81%5.36(42.96) 12.93
(20,12) 39.85 20.93 20.05(17.25) 19.96(19.02) 19.90(901®.81(21.96) 15.83
(30,5) 19.51 11.00 10.39 9.22 9.14 9.03
(40,5)  37.57 21.63 21.11 20.71 20.63 20.55
(50,5)  38.14 20.94 20.06 19.33 19.14 19.02

Table 7: The lower bounds in the ball case
(m,n) Mg, (Fo) Mg, (1) Mg, (l2) Mg, (l3) Mg, (la) I'I’{3n
(10,9) 6.60 6.70 6.70 6.71 7.67 8.08
(10,10) 6.07 6.28 6.93 7.44 7.60 8.21
(10,12) 7.26 7.51 8.01 8.08 8.44 10.12
(20,9) 16.04 16.17 16.89 16.89 16.89 18.33
(20,10) 12.03 12.03 12.03 12.03 12.03 12.93
(20,12) 12.35 13.41 13.67 13.67 13.67 15.83
(30,5) 7.48 7.48 8.11 8.11 8.34 -
(40,5) 16.54 17.31 19.27 19.27 19.87 -
(50,5) 15.53 15.53 17.22 17.22 17.80 -

is a hypercube and several projections are considereti{phl;, Hio, andHi»).
The pole-set considered is the set of extreme points of ijegied set. As might
be expected, the robust value decreases as more infornsgarployed in MRC.

6.1.3 The benefit of adaptability

To illustrate the concept dienefit of adaptabilityn the framework of multipolar
robust approach, we compute the multipolar robust valugsaflem [26) with
different proportions of adjustable variablesWe allow the firs§ 6m| components
of v to be adaptable to the realization§fwhile keeping the remainingn— | 6m|

variables independent of the realization&fwhere6 € [0,1]. Note that when
6 = 0, we get the static case SRC. The results are summarizedie@and we
emphasize here two observations:
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Table 8: Impact of the shadow matrix

(m,n) Hs H7 Hio Hio
(10,30) 56.95 51.50 45.59 43.29
(10,50) 109.84 105.68 100.69 96.11
(10,70) 162.14 159.52 156.12 154.53
(10,100) 246.98 244.13 239.34 237.43
(20,30) 133.35 126.59 117.63 111.53
(20,50) 233.73 224.82 213.04 203.89
(20,70) 345.56 340.41 328.49 319.79
(20,100) 462.51 453.26 439.71 431.39

1. For each problem instance, as the adaptability @tiocreases, the robust
value decreases significantly, which is reasonable botteiory and practice.

2. As the adaptability rati@ increases, the influence of pole-sets on the robust
value increases. For example, when the adaptability éaid0.25, the mul-
tipolar robust values of all problem instances remain timeeswith different
pole-sets except instance (20,20). When the adaptahilifseases, the ro-
bust values of more instances improve as the better padeasetised, which
can be clearly seen whéh= 0.75 andf = 1.

7 Conclusion

In this paper, we have presented a novel approach to handéstaimty in opti-
mization problems called the multipolar robust approachictvis based on a set
of poles that are used to approximate the fully adjustablieypby a set of associ-
ated recourse decisions at poles. The approach generdilestatic approach, the
affinely adjustable approach, and the fully adjustable @, still we can control
its complexity by using the concept of the shadow matrix amastering a rea-
sonable number of poles. Several algorithms are proposeatidaonstruction of
proper pole-sets for hypercubes and balls. Comprehensivesrical experiments
are carried out to evaluate the performance of the propaggeabach in terms of
the robust values, the complexity, and the benefit of addjpyalin general, the
results appear encouraging.

It would be interesting to investigate further the perfonteof the multipolar
robust approach on other problems. A systematic study odl ggroximations
of convex bodies by enclosing polytopes with a limited nundfeextreme points
should help to alleviate overconservatism and get clostretoptimal fully adapt-
able robust value. One can also put more focus on the appativimof convex
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Table 9: The benefit of adaptability (hypercube)

(m,n),Q 6=025 6=05 6 =0.75 6=1
(10,9) 23.42 19.88 16.56 12.18
(10,15) 32.64 24.83 21.83 16.91
(10,20) 46.13 37.06 32.78 24.82
(10,30) 59.72 47.14 41.59 31.70
(20,9) 45.01 36.57 28.99 23.82
(20,15) 73.99 58.66 46.80 39.36
(20,20) 85.18 73.46 59.54 47.17
(20,30) 137.78 118.51 99.94 77.82
(m,n),Q, 6=025 6=05 6=0.75 6=
(10,9) 23.42 19.88 15.91 10.55
(10,15) 32.64 24.55 21.21 15.98
(10,20) 46.13 36.86 32.46 24.35
(10,30) 59.72 46.95 41.32 31.14
(20,9) 45.01 36.52 27.24 22.08
(20,15) 73.99 58.16 45.06 36.20
(20,20) 84.98 72.98 58.77 45.66
(20,30) 137.78 117.96 99.13 76.83
(m,n), Q3 6=025 6=05 6 =0.75 6=
(10,9) 23.42 19.88 15.88 10.16
(10,15) 32.64 24.54 20.96 15.29
(10,20) 46.13 36.60 31.81 23.33
(10,30) 59.72 46.70 40.74 30.22
(20,9) 45.01 36.52 27.06 22.06
(20,15) 73.99 58.14 44.89 34.87
(20,20) 84.78 72.42 57.23 40.80
(20,30) 137.78 116.78 96.99 73.77

bodies from inside using, for example, maximum volume it polytopes to
get better lower bounds of the fully adjustable robust value

While the approach was proposed in the context of a two-stagjenization
problem, it can be adapted to multistage optimization. Malar decision rules
can also be considered in stochastic programming. Thepoldti approach might
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also be combined with finite adaptability or multi-statibustness by partitioning
the uncertainty set into several subsets and considerimg soultipolar decision
rules for each subset.

Appendix: the derivation of (9)

We derive the compact formulatiohl (9) of Sectionl 3.1 w.rm.edlipsoidal uncer-
tainty set defined b¥ := {& : |[F&||2 < 1}.

For eachit constraint, MRC requires the optimum of the following pehl
non-positive.

max Uju—b+ Z )\f,vivw
£,5A>0

weQ
s.t. HSHZ <1,
Fé=s, ni € R"
Aow = PE, oi €ER™
weQ
ZQ)\(i =1, T eR
we

whereé = [U,b] andmn;, i, T; are dual multipliers corresponding to each group of
constraints. Consider the corresponding Lagrangian

ZLAEsm,T,00) = Uu—bi+ 3 ASVivo+n] (s—F&)

we

(g asoec) o g6
we weQ

The dual function is theQE Hr‘rllax Z (N, &,mi, 1i,04). Setting the derivative w.r.t.
,€l8l2<1

A, € leads to the dual constrains
Vivy+T —w' oy <0,
F'ni—Li=0,

whereP = [Py,...,Px,...,Pml,Li = (Lit,.-,Lim) ,Lij = &j (u,—1) +P]ai, j =
1,...,m. The dual objective is

(31)

min  [|nill2 — Ti. (32)

7i,Ti,0i

By duality, the optimum of the above dual problem is equalh® optimum of
the problem. Thus restricting the non-positivity of thenpal optimum can be
equivalently represented as

[mill2+ Vive — @' <0,
FTni—Li=0, (33)
ni € R, o e R™.
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