
HAL Id: hal-01823640
https://hal.science/hal-01823640v1

Submitted on 21 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multipolar robust optimization
Walid Ben-Ameur, Adam Ouorou, Guanglei Wang, Mateusz Zotkiewicz

To cite this version:
Walid Ben-Ameur, Adam Ouorou, Guanglei Wang, Mateusz Zotkiewicz. Multipolar robust optimiza-
tion. EURO Journal on Computational Optimization, 2018, 6 (4), pp.395 - 434. �10.1007/s13675-017-
0092-4�. �hal-01823640�

https://hal.science/hal-01823640v1
https://hal.archives-ouvertes.fr


ar
X

iv
:1

60
4.

01
81

3v
2 

 [m
at

h.
O

C
]  

9 
A

pr
 2

01
6

Multipolar Robust Optimization

Walid Ben-Ameur∗1, Guanglei Wang2, Adam Ouorou2, and Mateusz
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Abstract

We consider linear programs involving uncertain parameters and propose
a new tractable robust counterpart which contains and generalizes several
other models including the existingAffinely Adjustable Robust Counterpart
and theFully Adjustable Robust Counterpart. It consists in selecting a set
of poleswhose convex hull contains some projection of the uncertainty set,
and computing a recourse strategy for each data scenario as aconvex com-
bination of some optimized recourses (one for each pole). Weshow that
the proposedmultipolar robust counterpartis tractable and its complexity is
controllable. Further, we show that under some mild assumptions, two se-
quences of upper and lower bounds converge to the optimal value of the fully
adjustable robust counterpart. To illustrate the approach, a robust problem
related to lobbying under some uncertain opinions of authorities is studied.
Several numerical experiments are carried out showing the advantages of the
proposed robustness framework and evaluatingthe benefit of adaptability.

1 Introduction

Uncertainty in optimization parameters arises in many applications due to the dif-
ficulty to measure data or because of their variability. To deal with uncertainty,
there are mainly two approaches: stochastic optimization and robust optimiza-
tion. In the first case, some probabilistic assumptions are made about the uncertain
data [18, 26, 37]. One is then interested in computing a solution optimizing some
moments of random variables depending on the data. Another variant, known as
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chance constrained programming [22], consists in imposingthat some constraints
are satisfied only with some probability.

Robust optimization is a more recent approach dealing with uncertainty. It does
not require specifications of the exact distribution of the problem’s parameters.
Roughly speaking, uncertain data are assumed to belong to a known compact set,
called uncertainty set, and we aim at finding a solution that is immunizedagainst
all possible realizations in the uncertainty set. An early contribution related to
robust optimization is the work of Soyster [50] followed by intensive investigations
in the last 20 years starting with [11, 29] in the context of convex optimization
and the book [40] dealing with discrete optimization. Almost at the same time,
and in an independent way, a lot of work was initiated in [30] and [28] on robust
optimization in communication networks dealing with uncertain traffic matrix, see
[7] for a survey.

Robust optimization and stochastic programming are related in numerous ways.
For example, using some knowledge about the distribution ofuncertain data, it
is sometimes possible to define an uncertainty set in such a way that the robust
solution is an approximated solution of a chance constrained problem (see, e.g.,
[9, 12] for details and references). An approach combining robust optimization
and stochastic programming consists in computing solutions that are distribution-
ally robust where the distribution of parameters is assumedto vary within some
set (for example, when the mean and the covariance matrix areknown) (see, e.g.,
[32, 33]).

The definition of the uncertainty set is a critical issue since a bad choice might
lead to very expensive solutions. One way to alleviate overconservatism of the
robust approach is to assume that a subset of the decision variables are adjustable
on the realization of the uncertain data. Let us for example consider the following
linear problem

min cTx

s.t. Ax ≤ b,

x ∈ R
n,

involving uncertain parameters. We assume thatx is partitioned asx = (u,v),
whereu represents the non-adjustable andv the adjustable variables. The robust
counterpart of this uncertain problem under considerationreads

min
u,v

cTu

s.t. Uu+Vv(ξ )≤ b, [U,b] ∈ Ξ,
(FARC)

where the uncertain parameters areU ∈ R
m×n and b ∈ R

m, while V and c are
assumed to be known. We denote byξ ≡ [U,b] ∈ Ξ the uncertain parameters
belonging to the uncertainty setΞ assumed to be compact, convex and with a non-
empty interior.ξ will be considered as a vector in the rest of the paper.
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The non-adjustable variables are sometimes interpreted “here and now” vari-
ables, while the adjustable ones can be seen as “wait and see”variables. This robust
counterpart above is generally calledfully-adjustable robust counterpart(FARC).
FARC is sometimes called the dynamic robust counterpart since v depends onξ .
FARC can be seen as a two-stage optimization problem whereu are the first-stage
variables andv are the second-stage variables.

If variablesv are also static, then FARC simply becomes the standardstatic
robust counterpartdenoted by SRC. Cases where FARC and SRC are equivalent
have been pointed out in [10] where it is shown that adaptability does not lead to
any improvement in the constraint-wise uncertainty case. Still, FARC is generally
much less conservative than SRC. In other words, there is generally somebenefit
of adaptability. Solving FARC is, unfortunately difficult in general cases as shown
by many authors [10, 23, 45]. Another concern related to FARCis the inherent
difficulty of implementing the solutionv(ξ ) in a practical way.

To get a tractable optimization problem and also to alleviate some of the over-
conservatism of SRC, an affinely adjustable approach was proposed in [10], where
the adjustable variablesv are not fully adaptable (dynamic), but are assumed to
depend on the uncertain dataξ in an affine way:

v(ξ ) = w+Wξ , ξ ≡ [U,b] ∈ Ξ,

wherew and the elements of matrixW are new decision variables (a.k.a. affine
decision rules). The induced formulation is calledaffine-adjustable robust coun-
terpart (AARC). An affine approach was also independently proposed for network
optimization problems where the traffic matrix is supposed to be uncertain and the
way how traffic is splitted through network’s paths is optimized [5, 6, 48]. Further
developments appeared in [2, 47].

Applying affine decision rules naturally leads to less expensive solutions than
those obtained by the static approach. The performance gap quantified by the dif-
ference between optimum of AARC and the optimum of FARC was discussed for
robust linear problems with right-hand-side uncertainty in [14, 16]. One of the re-
sults of [14] states that AARC is equivalent to FARC when the uncertainty set is a
simplex. Some tight approximation bounds relating the optimum of AARC to that
of FARC in the right-hand-side uncertainty case are also given there.

Related investigation on problems with some special uncertainty sets (integer
sublattices of the unit hypercube) are discussed in [36], where they provide suffi-
cient conditions such that the associated affinely adjustable decision rules lead to
exact optimum of FARC.

The affine approach is related to the well-known linear or first-order decision
rules used in the context of multi-stage stochastic optimization [31]. Linear de-
cisions rules were also used in [41] in the context of stochastic programming not
only to get upper bounds (as done above) but also to get lower bounds by properly
approximating the dual problem using linear decision rule.

As observed in [25], even though AARC has been successfully applied to sev-
eral problems, its performance might be unsatisfactory under situations where the
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adjustable variables exhibit high nonlinearity in terms ofthe uncertain parameters.
This led to some extensions of the affine approach in [24, 25] (see also references
therein) by reparametrizing the uncertainties and then applying the affinely ad-
justable approach. Roughly speaking, a new set of variablesis introduced (for
example the positive and the negative parts of the original uncertainties), and the
adjustable variables are assumed to affinely depend on the new set of parameters. A
similar idea is also proposed in [16] in the context of one-dimensional constrained
multistage robust optimization.

Other extensions of affine decision rules have been proposedin literature. In
[17] polynomial recourse actions are considered wherev is expressed as a poly-
nomial in uncertainty parameters with degree no larger thana fixed constant. The
complexity of the robust counterpart problem is then related to testing the positiv-
ity of a polynomial. Using some recent results in algebraic geometry stating that
under mild conditions, a positive polynomial can be expressed as a sum of squares
(not a priori bounded), the robust counterpart is approximated by considering sums
of squares of degree no larger than a fixed constant. As a sum ofsquares can be
represented by a semidefinite programming [43], the proposed robust counterpart
can be efficiently handled [17].

Another robust approach dealing with uncertainty, termed as multi-static ap-
proach in [7], was proposed and studied in [4, 8, 52]. It consists in partitioning
the uncertainty setΞ into a finite number of subsetsΞ1, . . . ,Ξp and using a re-
course actionvi for each subsetΞi. In other words, ifξ ∈ Ξi, then we takev = vi .
The recourse actionsvi are of course subject to optimization. A quite close idea
is proposed in [13], where it was calledfinite adaptability. The performance of
finite adaptability in a fairly general class of multi-stagestochastic and adaptive
optimization problems was investigated in [15].

One can also combine finite adaptability and the affinely-adjustable approach
by partitioning the uncertainty set into some subsets and considering some opti-
mized specific affine decision rules for each subset. This wasalso considered in
[4, 7] in the context of network design problems. This type ofadaptability might
also be calledpiecewise-affine adaptability. Piecewise-affine rules were also con-
sidered in several other papers such as [3, 33].

While a great number of proposals in robust optimization have appeared, there
are still challenges. First, to the best of our knowledges, none are general enough
to encompass static robustness, affinely adjustable robustness and fully adjustable
robustness. Second, as observed in [17], there is no systematic way to influence the
trade-off between the performance of the resulting policies and the computational
complexity required to obtain them. Third, the uncertain parameters of an opti-
mization problem can be sometimes difficult to observe. In several applications,
only a subset of such parameters or some aggregates of them can be observed.

The objective of this paper is to provide a framework addressing those chal-
lenges at the same time. Our contributions are four-fold:

1. A novel approach. We propose a hierarchical and convergent framework of
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adjustable robust optimization –multipolar robust approach, which gener-
alizes notions of static robustness, affinely adjustable robustness, fully ad-
justable robustness and fill the gaps in-between. As a byproduct, a new way
to look at the affine adaptability is proposed. The result of [14] stating that
affine rules are optimal when the uncertainty set is a simplexis also obtained
as a consequence of the multipolar approach.

2. A comprehensive analysis. We show that themultipolar robust counterpart
is tractable by either a cut generation procedure or a compact formulation.
Further, we prove that the multipolar approach can generatea sequence of
upper bounds and a sequence of lower bounds at the same time and both
sequences converge to the robust value of FARC under some mild assump-
tions.

3. A general constructive algorithm ofpole-sets. The multipolar approach is
based on some tools related related to the uncertainty set, that we term as
pole-sets. For their construction, we start with a simplex and then compute
the best homothetic transformation of this simplex to allowit to enclose a
given convex set. An efficient algorithm is proposed to compute such homo-
thetic set. As a byproduct, we provide a very simple proof of the geometric
results of [46] related to hypercubes. The pole-sets obtained after this homo-
thetic transformation are then improved using a tighteningprocedure.

4. An application. To numerically illustrate the multipolar approach, a lobbying
problem is considered where a lobby aims to minimize the budget needed to
convince a set of voters taking into account a reasonable opinion dynamics
model under some uncertainty. The benefit of adaptability isclearly shown
for this problem.

Outline. In Section 2, we present the concept and ingredients of multipolar
robust optimization and show that static robustness, affinely adjustable robustness,
fully adjustable robustness are special cases of multipolar robust framework. In
Section 3, we discuss the tractability, the monotonicity and the convergence of the
proposed approach. A simple illustrative example is described in Section 4. In
Section 5, we propose algorithms for pole-set generation. Section 6 is dedicated to
a numerical example on a lobbying problem under several uncertainty scenarios.
Finally, concluding remarks follow in Section 7.

Notation. Throughout this paper, we useΞ to represent a compact convex
uncertainty set andξ to denote a member ofΞ. We useI to denote the identity
matrix. Vectors and matrices are marked in bold, and their scalar components are
presented in italic. Given any matrixC, CT denotes its transpose. We also use
[C,D] to denote the matrix whereC andD are concatenated by columns assuming
they have the same number of rows. Similarly,(C,D) denotes the matrix obtained
by row concatenation of two matricesC andD when they have the same number
of columns. Observe thatv = (v1, . . . ,vn) is then a vector and[v1, . . . ,vn] = vT .
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We useδi j to represent the Kronecker’s delta function, whereδi j = 1 if i = j, 0
otherwise. For a setS∈R

n, we use ext(S) to represent the set of its extreme points,
convSto represent its convex hull and dim(S) to denote its dimension. IfSis finite,
we use|S| to represent its cardinality. We also use the standard notation for usual
norms: ‖·‖∞ for the infinity norm,‖·‖1 for the Manhattan norm and‖·‖2 for the
Euclidean norm.

2 The multipolar robust optimization concept

In this section, we introduce the main ingredients of multipolar robustness and then
setup the multipolar robust counterpart as a novel approximation of FARC.

Shadow matrix. Like other robust approaches, multipolar approach is also
based on an uncertainty setΞ. In addition, we consider a matrix associated with
certain operations on the uncertain information, which canbe data aggregation, fil-
tering, and selection. Note that these operations can either be natural or artificial.
Natural operations are induced by the difficulty of measurements or shortage of
data. For example, in communication networks, traffic flows are usually observed
in an aggregated manner (the consequence of aggregating uncertain demands from
multiple origin-destination pairs). Nevertheless, adjustable recourse actions should
be implemented based the observed partial information. On the other hand, artifi-
cial operations can be certain techniques to control the complexity of the multipolar
robust counterpart, as explained in the concluding remarksof this section. We call
the associated matrix of an operationshadow matrixsince the operation either re-
duces the size of the multipolar robust counterpart or is a direct consequence of
observations. We useP ∈ R

n0×dim(Ξ) to denote a shadow matrix, wheren0 is the
dimension of the shadow (i.e., the resulting partial information) and dim(Ξ) is the
dimension of the uncertainty setΞ. The resulting partial information is defined by

ΞP := PΞ ≡ {Pξ ,ξ ∈ Ξ}. (1)

WhenP is identity matrix, we have a complete measure of uncertainty.
We will assume thatP is full row rank matrix. Consequently,ΞP is also com-

pact, convex and has a non-empty interior.
Pole-set.A key component of the multipolar approach is a finite set ofpoles,

which are given vectors in the range space of the shadow matrix. We denote byΩ
such apole-set. We say thatΩ is a pole-set ofΞP iff for any ξ ∈ Ξ, Pξ belongs to
the convex hull ofΩ (a convex combination of poles) denoted by convΩ. Given a
setΞP, a collection of pole-sets ofΞP is defined as

FΞP := {Ω : ΞP ⊆ convΩ} . (2)

Obviously, extreme points ofΞP form a pole-set, i.e., ext(ΞP) ∈ FΞP.
Multipolar robust counterpart. We now setup the multipolar robust counter-

part w.r.t. an uncertainty setΞ, a shadow matrixP, a pole-setΩ ∈ FΞP. For each
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ξ ∈ Ξ, we consider a weightλ ξ
ω for each poleω in Ω. Then, for each scenario

ξ ∈ Ξ, the following system has a solution

∑
ω∈Ω

λ ξ
ω ω = Pξ ,

∑
ω∈Ω

λ ξ
ω = 1,

λ ξ
ω ≥ 0, ω ∈ Ω.

(3)

Let Λξ be the set of weight vectorsλξ satisfying the above system for a given
ξ ∈ Ξ. In the considered paradigm, each pole is associated with a recourse action,
and the recourse action in the presence ofξ ∈ Ξ is approximated by a convex
combination of the recourse actions associated with the poles. Specifically, let
vectorvω be the recourse action associated with poleω in the above system. We
require the adjustable variablesv(ξ ) to be restricted to

v(ξ ) = ∑
ω∈Ω

λ ξ
ωvω , (4)

whereλξ ∈ Λξ . We can readily present themultipolar robust counterpartdefined
by

ΠΞ(P,Ω) =min
u,v

cTu (MRC)

s.t. Uu+V ∑
ω∈Ω

λ ξ
ω vω ≤ b, ξ ∈ Ξ, λξ ∈ Λξ . (5)

Following the spirits of robust optimization, the multipolar robust counterpart (MRC)
seeks a pair of non-adjustable solutionu and a set of recourse actions related
to polesvω ,ω ∈ Ω such that the objective function is minimized while hedging
against the uncertainty setΞ. In brief, givenΞ, the multipolar robust approach can
bee seen as a set function of a pole-setΩ and a shadow matrixP. We denote the
function by

ΠΞ : Rn0×dim(Ξ)×FΞP ∋ (P,Ω) 7→ ΠΞ (P,Ω) ∈ R

and callΠΞ (P,Ω) multipolar robust valuew.r.t. (P,Ω). Also, we call(u,v) multi-
polar solution.

To conclude this section, we add few remarks on the concept ofshadow matrix
and pole-set to clarify the motivation behind these ingredients.

• Note that by (5), the solution is protected against the considered uncertainty
Ξ. Neither a shadow matrixP nor a pole-setΩ changes the uncertainty set,
soP andΩ are not used to approximate the uncertainty set.

• Observe that 1+ dim(ΞP) ≤ |Ω|, so we can use the shadow matrixP to
reduce the number of recourse actions and therefore the number of variables
of (5). Reducing the number of poles leads to an MRC which is easier to
solve as will be shown in Section 3.
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• In several applications, after data is revealed, the adjustable variables should
be quickly chosen and used. This is fortunately easy to do in the multipolar
robust framework since the only thing to do is to find the coefficientsλ ξ

ω and
use them to combine the already computed recourse vectorsvω ,ω ∈ Ω.

2.1 Special cases

We show in this section that MRC generalizes SRC, AARC, and FARC by different
settings of pole-sets and recourse actions associated withpoles.

First, we show that SRC is a special case of MRC. Imposingvω = vω ′ for any
pair of ω andω ′ belonging toΩ leads tov(ξ ) = vω ,∀ξ ∈ Ξ, which means that
the recourse action is static. Another way to get SRC is to impose thatP is a null
matrix having one row (relaxing in this case the full row rankconstraint related to
P) andΩ contains just the zero vector.

Second, we show that FARC is a special case of MRC. LetΩ be the set of
extreme points ofΞ andP= I . Then convΩ=Ξ, that is forξ ∈Ξ, there existsλξ ≥
0 such that ∑

ω∈Ω
λ ξ

ω = 1 and ∑
ω∈Ω

λ ξ
ω ω = ξ . By linearity of inequalities (5), imposing

that Uu+Vvω ≤ b for each extreme pointω ∈ Ω is necessary and sufficient to
ensure the satisfaction of all inequalities (5) for eachξ ∈ Ξ. We get here the fully
adjustable case representing the best that we can obtain forthis problem since it
is equivalent to assuming thatv can vary with no restrictions. Note that if the
number of extreme points ofΞ is limited, then the robust optimization counterpart
can be efficiently solved. However, if the number of extreme points of Ξ is non-
polynomial, the problem is generally difficult (as already mentioned in Section 1,
see for example [10, 23, 45]).

Third, we show that AARC can also be generalized by MRC by proving the
following theorem.

Theorem 1. LetΩ ∈FΞP such that|Ω|= 1+dim(PΞ). Then the optimal solution
of the corresponding MRC problem is exactly the best solution that is affine inPξ .

Proof. SincePΞ has non-empty interior,PΞ ⊂ convΩ and |Ω| = 1+ dim(PΞ),
the elements ofΩ are affinely independent. Letd = dim(PΞ) and assumeΩ =
{ω(1), . . . ,ω(d+1)}. The shadow matrixP is here the identity matrix. Consider ma-
trix D obtained by taking vectorsω(i) as columns and adding a final line containing
only coefficients equal to 1.

D =













ω(1)
1 . . . ω(d+1)

1
...

...
...

ω(1)
d . . . ω(n+1)

d
1 . . . 1













.

Observe thatD is a non-singular square matrix of size(d+1).
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Given anyξ , there are unique coefficientsλ ξ
ω such thatPξ = ∑

ω∈Ω
λ ξ

ω ω and

∑
ω∈Ω

λ ξ
ω = 1. This can be written as

(

Pξ ,1
)

= Dλξ whereλξ is the vector

whose components are theλ ξ
ω for ω ∈ Ω. This immediately implies thatλξ =

D−1
(

Pξ ,1
)

. UsingE to denote the matrix whose columns are the recourse vec-
tors vω , equation (4) becomesv = ED−1

(

Pξ ,1
)

. This clearly implies thatv
affinely depends onPξ .

Let us now consider any affine policyw+WPξ . As shown above, the recourse
vector v provided by the multipolar approach is given byED−1

(

Pξ ,1
)

. By
taking E = [W,w]D, we getv = w+WPξ . In other words, any recourse policy
that is affine inPξ can be obtained through the multipolar approach.

WhenP= I , we get the desired result below.

Corollary 1. The affinely adjustable approach is a special case of the multipolar
approach. It corresponds to any set of(dimΞ+ 1) affinely independent poles, in
multipolar robust optimization whenP= I .

The following corollary is also immediate.

Corollary 2. If the uncertainty setΞ is a simplex, then the affinely adjustable
robust counterpart is equivalent to the fully adjustable robust counterpart in the
sense that their objective values are equal.

Proof. Taking all the vertices of the simplex uncertainty set as theset of poles
in multipolar robust approach leads to the optimum of FARC. By Corollary 1, this
pole-set corresponds to affine adjustable approach, which completes the proof.

Corollary 2 has been presented in [14] in the special case of right-hand-side
uncertainty, so we may treat the result here as an alternative proof using the frame-
work of multipolar approach.

3 Analysis

In this section, we first analyze the tractability of the multipolar robust counterpart
MRC. Then, we show that the proposed framework can generate amonotonic se-
quence converging to the fully adjustable robust value of FARC. In fact, we will
simultaneously generate a lower and an upper bound both converging to the opti-
mal value of FARC under some mild assumptions.

3.1 Tractability

In this section, we show that MRC is computationally tractable. It can be solved
either by cut generation or using a compact reformulation.

First, a cutting plane algorithm for solving MRC may be devised as follows.
Assume that|Ω| is finite and has a reasonable size. Given a solution(u,v), we
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have to check if there exists a pair ofξ ∈ Ξ andλξ ∈ Λξ violating the constraints
of MRC. This can be done by checking the sign of the optimum of eachith problem

max
λ,ξ

Uiu+V i ∑
ω∈Ω

λ ξ
ω vω −bi (6a)

s.t. ∑
ω∈Ω

λ ξ
ω ω = Pξ , (6b)

∑
ω∈Ω

λ ξ
ω = 1, (6c)

λ ξ
ω ≥ 0, ω ∈ Ω, (6d)

ξ ∈ Ξ, (6e)

whereUi andV i are theith rows ofU andV. If it is positive, then constraint

Uiu+V i ∑
ω∈Ω

λ̂ ξ̂
ω vω ≤ bi , (7)

needs to be added to the restricted problem, where(λ̂ ξ̂ , ξ̂ ) solves (6). Problem (6)
can generally be solved easily whenΞ is polyhedral or ellipsoidal. In these cases,
by equivalence of separation and optimization [35], the multipolar robust optimiza-
tion counterpart problem can also be solved in polynomial time if the number of
poles|Ω| is polynomially bounded.

Second, we may solve MRC by duality. It is sometimes possiblefor sev-
eral kinds of convex uncertainty sets to write a strong dual of (6) leading to an
extended reformulation of MRC. This holds for example ifΞ is a polytope de-
fined by a limited number of constraints, i.e.,Ξ := {ξ ≡ [U,b] : Cξ ≤ d}, where
C = [C1, . . . ,Cm], Ci ∈ R

nd×(n+1),d ∈ R
nd andξ is expressed as a column vector

of size(n+1)×m. ξ containsmblocks of sizen+1 vectors: theith block contains
UT

i followed bybi . By strong duality, the constraints of the multipolar robust coun-
terpart MRC w.r.t.Ξ can be replaced with a polynomial number of inequalities. For
eachi, the inequalitiesUiu+V i ∑

ω∈Ω
λ ξ

ωvω ≤ bi ,ξ ∈ Ξ, λξ ∈ Λξ are replaced with

dTηi +V ivω −ωTσi ≤ 0, ω ∈ Ω,

CT
j ηi −PT

j σi = δi j
(

u,−1
)

, j = 1, . . . ,m,

ηi ∈ R
nd
+ , σi ∈R

n0,

(8)

where the shadow matrixP= [P1, . . . ,P j , . . . ,Pm],P j ∈R
n0×(n+1), j = 1, . . . ,m, δi j

is Kronecker’s delta function.

WhenΞ is ellipsoidal, i.e.,Ξ := {ξ : ‖Fξ‖2 ≤ 1}, the multipolar robust coun-
terpart can be represented by a second order cone program. Then for eachi, theith
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constraint of MRC is replaced with

‖ηi‖2+V ivω −ωTσi ≤ 0,

FTηi −L i = 0,

ηi ∈R
nq, σi ∈R

n0.

(9)

whereL i =
(

L i1, . . . ,L im
)

, L i j = δi j
(

u,−1
)

+PT
j σi , j = 1, . . . ,m, nq is number of

rows of matrixF. For sake of completeness, a proof of (9) is provided in Appendix.

3.2 Monotonicity

We show in this section that the functionΠΞ(P, ·) is monotonic w.r.t. a partial order
defined onFΞP when the shadow matrixP is fixed.

Given an uncertainty setΞ, we now define a partial order over the collection
of its pole-setsFΞP denoted by�FΞP

. We set members ofFΞP ordered by the
inclusion of their convex hulls, i.e., for anyΩ′,Ω ∈ FΞP,

Ω′ �FΞP
Ω ⇐⇒ convΩ′ ⊆ convΩ. (10)

The next theorem emphasizes the fact that the functionΠΞ(P, ·) is monotonic re-
garding the partial order�FΞP

for each fixedP∈ R
n0×dim(Ξ). In other words, the

multipolar value gets smaller whenΩ is smaller w.r.t.�FΞP
.

Theorem 2. GivenP ∈ R
n0×dim(Ξ), for any Ω′,Ω ∈ FΞP, if Ω′ �FΞP

Ω, then we
haveΠΞ(P,Ω′)≤ ΠΞ(P,Ω).

Proof. If (u,(vω)ω∈Ω) is an optimal solution of MRC, then a feasible solution,
when the set of poles is defined byΩ′, is given as follows. Eachω ′ ∈ Ω′ writes as a
convex combination of the poles ofΩ: ω ′ = ∑

ω∈Ω
λ ω ′

ω ω . Let vω ′ = ∑
ω∈Ω

λ ω ′
ω vω . The

solution given by(u,(vω ′)ω ′∈Ω′) is clearly feasible for MRC w.r.t. the set of poles
defined byΩ′, which completes the proof.

Theorem 2 not only implies that the smaller theΩ w.r.t. �FΞP
, the lower the

multipolar robust value, but also implies that for a givenP, ΠΞ(P,Ω) is minimum
if Ω = ext(ΞP).

Given two pole-setsΩ,Ω′ ∈ FΞP, Theorem 2 also indicates that: first, for a
fixed shadow matrixP, if |Ω| > |Ω′|, thenΠΞ(P,Ω) is not necessarily less than
ΠΞ(P,Ω′); second, the functionΠΞ(P, ·) is not strictly monotonically increas-
ing. For example, letS,S′ ∈ FΞP,S

′ �FΞP
Sand their convex hulls are simplices.

By Theorem 1,ΠΞ(P,S′) = ΠΞ(P,S) while by Theorem 2,ΠΞ(P,S′) ≤ ΠΞ(P,S),
which illustrates the second point. Now take any pole-setΩ whose cardinality is
strictly greater than 1+ dim(ΞP), such thatS′ �FΞP

Ω �FΞP
S, thenΠΞ(P,S′) =

ΠΞ(P,Ω) = ΠΞ(P,S), which illustrates the first point.
Observe also that whenP = I , any pole-set whose convex hull containsΞ is

contained in a simplex. This immediately implies that the optimal value of AARC
represents the worst that can be obtained by the multipolar approach.
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3.3 Convergence

The aim of this section is to show that under some mild assumptions, using the mul-
tipolar framework, one can simultaneously compute a sequence of upper bounds
and a sequence of lower bounds converging toΠΞ (I ,ext(Ξ)), the optimal robust
value of FARC. Throughout this section the shadow matrix is the identity matrix.

Definition 1. LetΩ ∈FΞ be a pole-set of a non-empty setΞ, the distance function
between them is defined as d(Ω,Ξ) = max

ω∈Ω
min
ξ∈Ξ

‖ω −ξ‖2.

The distance function is well-defined sinceΩ andΞ are closed and bounded. It
characterizes the furtherest distance between pole-setΩ and the uncertainty setΞ.
This distance is nothing other than the well-known Hausdorff distance.

Let Ω ∈FΞ such thatd(Ω,Ξ) = ε . For eachω ∈ Ω, we haved(Ω,Ξ)≤ ε . Let
zω be the projection ofω on Ξ, i.e.,

zω = argmin
x∈Ξ

d(ω ,x) , eω = ω −zω , (11)

where‖eω‖2 ≤ ε . For eachξ ∈ Ξ, consider convex combination coefficients
(

β ξ
ω

)

such that

ξ = ∑
ω∈Ω

β ξ
ω ω , and let E = ∑

ω∈Ω
β ξ

ωeω . (12)

Let us add subscripts to avoid confusion:ξ ≡ [Uξ ,bξ ], E ≡ [UE,bE] andzω ≡
[Uzω ,bzω ]. We define the convex set

Ξ′
zΩ

= conv{zω : ω ∈ Ω} . (13)

We obviously haveΞ′
zΩ

⊆ Ξ. Let (u∗,(v∗zω )ω∈Ω) be the optimal solution of the
MRC problem related toΞ′

zΩ
. Due to the definition ofΞ′

zΩ
, MRC and FARC are

equivalent. Moreover, fromΞ′
zΩ

⊆ Ξ, we get that

cTu∗ = ΠΞ′
zΩ
(I ,ext(Ξ′

zΩ
))≤ ΠΞ(I ,ext(Ξ)).

We will also assume that there is a positive numberµ such that‖(u∗,1)‖2 ≤ µ .
This assumption generally holds. For example, if the cost vector c is positive and
variablesu are non-negative, thencTu∗ ≤ ΠΞ(I ,ext(Ξ)) implies that‖(u∗,1)‖2 is
upper-bounded. The numberµ does not depend onε .

Assumption 1. There exists a constant numberµ such that‖(u∗,1)‖2 ≤ µ for any
Ξ′

zΩ
⊆ Ξ and any optimal solutionu∗ of the FARC problem related toΞ′.

Lemma 1. Under Assumption 1, for eachξ ∈ Ξ, (UEu∗−bE) is bounded from
above byεµ1, where1 is an all-ones vector.

Proof. The result follows from Cauchy-Schwartz inequality applied to each row of
E ≡ [UE,bE].
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Let δ be a small positive number and let

Ξδ =
{

ξ ≡ [U,b] : ∃ξ ′ ≡ [U,b′] ∈ Ξ,‖b−b′‖∞ ≤ δ
}

. (14)

Observe that ifξ ≡ [U,b]∈ Ξ, then[U,b−δ1]∈Ξδ . We will assume that for some
small numberδ , the static robust counterpart problem SRC is still solvable.

Assumption 2. There exists a static robust solution(uδ ,vδ ) w.r.t. uncertainty set
Ξδ .

Theorem 3. Under Assumptions 1 and 2, for each pole-setΩ ∈ FΞ such that
d(Ω,Ξ) = ε ≤ δ

µ , we have

ΠΞ(I ,Ω)≤
(

1− εµ
δ

)

cTu∗+
εµ
δ

cTuδ ,

wherecTu∗ and cTuδ are respectively fully adjustable robust cost w.r.t.Ξ′
zΩ

and
static cost w.r.t.Ξδ .

Proof. Assume that the optimal solution of FARC w.r.t. uncertaintyset Ξ′
zΩ

is
(

u∗,(v∗zω
)
)

. Consider the solution

û =
(

1− εµ
δ

)

u∗+
εµ
δ

uδ , v̂ω =
(

1− εµ
δ

)

v∗zω
+

εµ
δ

vδ . (15)

Let us show that(û, v̂ω) is a feasible solution of the MRC problem related toΞ and
Ω. For anyξ ≡ [U,b] ∈ Ξ, by (12), one can write:

Uξ û+V ∑
ω∈Ω

β ξ
ω v̂ω = Uξ û+

(

1− εµ
δ

)

V ∑
ω∈Ω

β ξ
ωv∗zω +

εµ
δ

Vvδ

≤ Uξ û+
(

1− εµ
δ

)

∑
ω∈Ω

β ξ
ω (bzω −Uzω u∗)

+
εµ
δ
(

bξ −δ1−Uξ uδ
)

(16)

= Uξ û+
(

1− εµ
δ

)

(

bξ −bE+UEu∗−Uξ u∗)

+
εµ
δ
(

bξ −δ1−Uξ uδ
)

(17)

=
(

1− εµ
δ

)

(UEu∗−bE)− εµ1+bξ

≤
(

1− εµ
δ

)

εµ1− εµ1+bξ (18)

= bξ −
ε2µ2

δ
1

≤ bξ ,

where (16) follows from the fact that
(

u∗,v∗zω

)

satisfies constraintUu+Vv ≤ b
for zω = [Uzω ,bzω ]

T and the static solution(uδ ,vδ ) satisfiesUξ u+Vv ≤ bξ −δ1,
(17) follows from (11) and (12), and (18) is due to Lemma 1.

The robust cost incurred by(û,(v̂ω)) is
(

1− εµ
δ
)

cTu∗+ εµ
δ cTuδ and is an up-

per bound of the optimum of MRC.
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Corollary 3. Given any sequence of pole-setsΩi ∈FΞ such thatlim
i→∞

d(Ωi,Ξ) = 0,

then under Assumptions 1 and 2,

ΠΞ (I ,Ωi)≥ ΠΞ (I ,ext(Ξ)) and lim
i→∞

ΠΞ (I ,Ωi) = ΠΞ (I ,ext(Ξ)) .

Moreover, the corresponding sequence of setsΞ′
zΩi

defined in(13)satisfies

ΠΞ′
zΩi

(

I ,ext
(

Ξ′
zΩi

))

≤ ΠΞ (I ,ext(Ξ)) and lim
i→∞

ΠΞ′
zΩi

(

I ,ext
(

Ξ′
zΩi

))

= ΠΞ (I ,ext(Ξ)) .

Proof. Let εi = d(Ωi ,Ξ) ,∀i. From Theorem 3, we have

ΠΞ (I ,Ωi)≤
(

1− εiµ
δ

)

ΠΞ′
zΩi

(

I ,ext
(

Ξ′
zΩi

))

+
εiµ
δ

cTuδ , ∀i,

and we know that

ΠΞ′
zΩi

(

I ,ext
(

Ξ′
zΩi

))

≤ ΠΞ (I ,ext(Ξ))≤ ΠΞ (I ,Ωi) .

Consequently,

lim
i→∞

ΠΞ′
zΩi

(

I ,ext
(

Ξ′
zΩi

))

= ΠΞ (I ,ext(Ξ)) and lim
i→∞

ΠΞ (I ,Ωi) = ΠΞ (I ,ext(Ξ))

hold in the limit at the same time.

4 An illustrative example

To illustrate the multipolar concept, we present a simple example, which had been
previously studied in [25] and is as follows:

min u
s.t. ∀ξ ∈ R

n,‖ξ‖1 ≤ 1, ∃v,vi ≥ ξi,vi ≥−ξi, i = 1, . . . ,n

u≥
n
∑

i=1
vi .

(19)

Observe thatu is here the unique first-stage (non adjustable) variable. Onthe other
handvi , for eachi = 1, . . . ,n, are second-stage (adjustable) variables. The uncer-
tainty set is given byΞ ≡ {ξ ∈ R

n,‖ξ‖1 ≤ 1}.
As noticed in [25], an optimal fully adjustable solution is given byu= 1 and

vi = ‖ξi‖1, whereas the optimal affinely adjustable solution requiresthatu= n. In
other words, the affine approach does not lead to any improvement compared to
the static approach.

Following the paradigm of multipolar approach in Section 2,let us takePξ =
(ξ1, . . . ,ξn0), wheren0 ∈ N,n0 ≤ n. In other words, the shadow matrixP limits the
dimension ofΞ to n0 by leavingξi as they are fori ≤ n0 and disregarding the other
components fori > n0. Let Ω ⊆R

n0 be the set of poles containing fori = 1, . . . ,n0,
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vectorsφ i = (0, . . . ,0,1,0, . . . ,0) andφ i
= −φ i , whose components are 0 except

the ith component. HenceΩ contains 2n0 poles andΞP = convΩ.
Given anyξ ⊆ Ξ, let λφ i andλφ i be the convex combination coefficients such

thatPξ =
n0

∑
i=1

(

λφ i φ i +λφ i φ i
)

. The equation can be transformed toPξ =
n0

∑
i=1

φ i
(

λφ i

−λφ i

)

; thus these coefficients should satisfy the equationsλφ i −λφ i = ξi for 1≤
i ≤ n0. Let vφ i (resp.vφ i ) be the recourse vector associated with poleφ i (resp.φ i

).
These vectors belong toRn.

In the considered example, inequalities (7) are equivalentto the following set
of inequalities:

n0

∑
i=1

(

λφ i vφ i +λφ i vφ i

)

≥ (|ξ1| , |ξ2| , . . . , |ξn|) , (20a)

u≥ ‖
n0

∑
i=1

(

λφ i vφ i +λφ i vφ i

)

‖1. (20b)

Let us takevφ i = vφ i = (0, . . . ,0,1,0, . . . ,0,1, . . . ,1), where the firstn0 compo-

nents are 0 except theith component, which is equal to 1, while the last(n− n0)
components are equal to 1.

Observe that the last(n−n0) components of the vector
n0

∑
i=1

(

λφ i vφ i +λφ i vφ i

)

are equal to 1. Moreover, for 1≤ i ≤ n0, we haveλφ i + λφ i ≥ |λφ i − λφ i | = |ξi |.
This clearly implies that inequalities (20a) are satisfied.In addition, inequality

(20b) leads tou≥
n0

∑
i=1

(

λφ i +λφ i

)

(1+n−n0), where(1+n−n0) is theL1 norm

of each recourse vectorvφ i . Consequently,u≥ 1+n−n0. Since we are minimizing
u, we getu= 1+n−n0. The cost decreases whenn0 increases. Whenn0 is equal
to 1, we get a static solution, while the optimal fully adjustable solution is obtained
whenn0 = n. Finally, taking 1< n0 < n, we obtain a compromise between the
simplicity of the static approach and the efficiency of the fully adjustable solution.
As mentioned earlier, such a compromise cannot be obtained for this example with
the affinely adjustable approach.

Consider now a slightly changed example with the uncertainty set being the
non-polyhedral set defined byΞ := {ξ ∈ R

n : ‖ξ‖2 ≤ 1}. The rest of the problem
remains as in (19); thus the new problem can be formulated as follows:

min u
s.t. ∀ξ ∈ R

n, ||ξ ||2 ≤ 1, ∃v,vi ≥ ξi ,vi ≥−ξi, i = 1, . . . ,n,

u≥
n
∑

i=1
vi .

(21)

Observe that since the new uncertainty setΞ contains the previous one based on
L1 norm, the optimal value of (21) is greater than or equal to that of (19). Opti-
mal solutions based on either the static approach or the affine approach still incur
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a cost ofn while the optimal fully adjustable solution has a cost of
√

n. Let us now
consider the multipolar approach, whereP is still defined byPξ = (ξ1, . . . ,ξn0).

Let us choose the following set of poles:Ω = {√n0φ i}i=n0
i=1 ∪{√n0φ i}i=n0

i=1 . One
can easily show thatΞP ⊆ conv(Ω). Moreover, by takingv√n0φ i = v√

n0φ i = (0, . . . ,

0,
√

n0,0, . . . ,0,1, . . . ,1), where the firstn0 components are 0 except theith compo-
nent, which is equal to

√
n0, while the lastn−n0 components are equal to 1, we get

a solution of the multipolar robust counterpart withu=
√

n0+n−n0. Similarly to
the previous case, whenn0 is equal to 1, we get a static solution, while the optimal
fully adjustable solution is obtained whenn0 = n.

5 The construction of pole-sets

We know from Section 3 that the multipolar robust value converges to a fully ad-
justable robust value when the distance betweenΩ and ΞP gets close to 0, and
P= I . We also proved the monotonicity of multipolar robust valuew.r.t. the inclu-
sion of convΩ. Therefore, the objective of this section is to find a pole-set Ω ∈ FP

as close toΞP as possible, while minimizing the number of poles. This is clearly
related to the theory of approximation of convex sets by polytopes.

A considerable amount of work has been done in this area. A recent survey of
relevant results is given in [21]. It is proved in [20, 27] that given a convex body
ΞP ∈ R

n0, there exists a polytopeFn ∈ R
n0 havingn vertices containingΞP such

that dH(ΞP,Fn) ≤ k(ΞP)

n2/(n0−1) wheredH denotes the Hausdorff distance andk(ΞP) is
a constant only depending onΞP. More precise approximations are obtained in
dimension 2, where we can ensure the existence ofFn ⊂R

2 such thatdH(ΞP,Fn)≤
l

2n sinπ
n wherel is the length of the boundary ofΞP. Moreover, if the boundary

of ΞP is two-times smooth, then an explicit asymptotic result is known about the
distance betweenΞP and the set of circumscribed polytopes havingn vertices:
the closest polytopeFn satisfiesdH(ΞP,Fn) ∼ k(ΞP)

n2/(n0−1) wherek(ΞP) is a constant
depending onn0 and the Gaussian curvature of the boundary ofΞP [19].

The monotonicity of multipolar robust values w.r.t. pole-sets might suggest us-
ing minimum volume circumscribed polytopes. Considering the Nikodym distance
(related to volumes) instead of the Hausdorff distance, thesame kind of results can
be obtained [21]. One might be interested in a minimum volumesimplex contain-
ing a convex setΞP. We know for example that ifΞP is the hypercubeHn0, then a
minimum volume circumscribed simplex has a volume equal ton0

n0

n0! [42]. If ΞP is
the unit ball, then a minimum volume simplex containing the ball is a regular sim-

plex whose volume isn
n0/2
0 (n0+1)(n0+1)/2

n0! [21] and whose dihedral angle is arccos( 1
n0
)

[49]. It is also known that a minimum volume simplex enclosing ΞP satisfies the
centroid property: the centroid of each facet of this simplex should be inΞP [39].
A polynomial-time algorithm to find such a minimum volume simplex enclosing a
set of points inR3 is given in [51]. However, it is generally unknown how to solve
the problem in higher dimensions [34].
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As observed by [21], most constructive algorithms were generally proposed for
low dimensional cases (2 or 3). For more general cases, constructive algorithms of
circumscribed polytopes such as the algorithm of [38] are generally based on the
addition of inequalities without controlling the number ofvertices of the circum-
scribed polytope. This can hardly accommodate the need of multipolar framework
since we want to control the complexity of MRC by limiting thenumber of poles.

Note also that we are required to construct the pole-set ofΞP in a reasonable
time. Algorithms checking whether each extreme point ofΞP belongs to the convex
hull of Ω fail to work, since the number of extreme points of a polytopecan be
exponential or even infinite.

The rest of this section is organized as follows. First, we describe a general
algorithm to construct a simplex enclosingΞP. The resulting simplex is guaranteed
to be smallest in the sense that it cannot be shrinked. Then, aproject-and-cut based
tightening procedure is proposed to construct pole-sets that are closer toΞP.

5.1 Generation of a circumscribed simplex

In this section, we describe a general algorithm for the construction of a circum-
scribed simplex ofΞP. Specifically, we first randomly generate a set of(n0 + 1)
affinely independent points, whose convex hull forms a simplex S. Then, we com-
pute the best homothetic transformation ofS such that the resulting simplex con-
tainsΞP.

We denote by theω(i), i = 1, . . . ,(n0 + 1) the (n0 + 1) affinely independent
points. Then then0-simplex set can be expressed as{x : Dλ= (x,1),λ ≥ 0},
where

D =













ω(1)
1 . . . ω(n0+1)

1
...

...
...

ω(1)
n0 . . . ω(n0+1)

n0

1 . . . 1













.

Since the(n0+1) points are affinely independent, matrixD is invertible; therefore,
λ j , j = 1, . . . ,(n0+1), can be expressed as a affine function ofx; the coefficients
of the affine functionλi are the components of theith row ofD−1, i.e.,

λi(x) =
n0

∑
j=1

l i j x j + l i(n0+1), i = 1, . . . ,(n0+1). (22)

Note thatλi(x)≥ 0, i = 1, . . . ,(n0+1) iff x belongs to then-simplex.
Let Σσ ,Tt be the associate matrices for the operations of scaling withfactor

σ > 0 and translationt ∈R
n0. Thus the associated matrixDσ ,t of the simplex with

homothetic transformation on the simplexS is Dσ ,t = TtΣσ D, where

Tt =

(

In0 t
0 1

)

, Σσ =

(

σ In0 0
0 1

)

.
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Its corresponding inverse is then

D−1
σ ,t = D−1

( 1
σ In0 0
0 1

)(

In0 −t
0 1

)

=





















1
σ l11 . . . 1

σ l1n0 l1(n0+1)− 1
σ

n0

∑
k=1

tkl1k

...
...

...
...

1
σ ln01 . . . 1

σ ln0n0 ln0(n0+1)− 1
σ

n0

∑
k=1

tkln0k

1
σ l(n0+1)1 . . . 1

σ l(n0+1)n0
l(n0+1)(n0+1)− 1

σ

n0

∑
k=1

tkl(n0+1)k





















.

Let σ ∗ be the smallest scaling factorσ such that a translate ofσScontainsΞP. The
translate used whenσ = σ ∗ is denoted byt∗.

Theorem 4. σ ∗ and t∗ are given by:t∗ =
n0+1
∑

i=1
ziω(i) andσ ∗ =−

n0+1
∑

i=1
zi , where for

each i= 1, . . . ,(n0+1), zi = min{
n0

∑
j=1

l i j x j : x ∈ ΞP}.

Proof. Assume that the homothetic copy ofSgiven byσS+ t containsΞP. Then
the coefficientsλi(x) defined in (22) should be nonnegative for any pointx ∈ ΞP.
Considering the matrixD−1

σ ,t defined above and computing the minimum values of
λi(x), i = 1, . . . ,(n0+1), we get

l i(n0+1)−
1
σ

n0

∑
k=1

tkl ik +
1
σ

zi ≥ 0, i = 1, . . . ,(n0+1),

For ease of notation, we express this asl ′i(n0+1)+zi ≥ 0, i = 1, . . . ,(n0+1), where

l ′i(n0+1) = σ l i(n0+1)−
n0

∑
k=1

tkl ik, i = 1, . . . ,(n0+1).

Since the matrix(l)i, j=1,...,(n0+1) is the inverse of matrixD, we have

n0+1

∑
i=1

l i j = 0, j = 1, . . . ,n0 and
n0+1

∑
i=1

l i(n0+1) = 1. (23)

Summing alll ′i(n0+1), we get

σ =
n0+1

∑
i=1

l ′i(n0+1) ≥−
n0+1

∑
i=1

zi . (24)

Observe that havingl ′i(n0+1) (andσ ∗ as a consequence), we can get the translate

t through the linear system
n0

∑
k=1

tkl ik = σ l i(n0+1)− l ′i(n0+1), i = 1, . . . ,(n0+1). Multi-

plying by D, we get that(t1, ..., tn0,0) = σ(0, ...,0,1)−D(l ′1(n0+1), ..., l
′
(n0+1)(n0+1))

which leads tot =
n0+1
∑

i=1
ziω(i).
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According to (24), the smallestσ ∗ is −
n0+1
∑

i=1
zi . We should however check if

σ ∗ ≥ 0. This holds since by considering anyx∈ ΞP, one can write that

n0+1

∑
i=1

zi ≤
n0+1

∑
i=1

n0

∑
j=1

l i j x j

=
n0

∑
j=1

x j

n0+1

∑
i=1

l i j

=0,

where the last equality is based on (23).
Since the matrixD−1

σ ,t does not exist whenσ ∗ = 0, we have to study this special
case. It is clear thatσ ∗ = 0 if and only if ΞP is a single point. Observe that in

this case, we necessarily have
n0+1
∑

i=1
zi = 0 sincezi = ∑n0

j=1 l i j x j , wherex is the single

point of ΞP. Then formulaσ ∗ = −
n0+1
∑

i=1
zi is still valid andt∗ = x =

n0+1
∑

i=1
ziω(i) also

occurs.

Note that values ofzi , i = 1, . . . ,(n0 + 1) defined in Theorem 4 can easily be
computed for anyΞP since we only have to minimize a linear function over a
convex set.

As a special case, pole-sets of a hypercube are of great use inmultipolar ro-
bust approach. First, hypercubes are one of the most common uncertainty sets in
many applications. Second, general box sets of the form{x : x ∈ [l,u]n0 ⊆ R

n0} are
simply affine transformations of a hypercube, so the pole-sets of a hypercube also
apply to boxes with some simple transformations.

Corollary 4. If ΞP is a hypercube, thenσ ∗ and t∗ are given by:

t∗ =
n+1

∑
i=1

n0

∑
j=1

min{0, l i j }ω(i) andσ ∗ =
1
2

n0+1

∑
i=1

n0

∑
j=1

∣

∣l i j
∣

∣ .

Proof. If ΞP is a hypercube, by Theorem 4, we havezi =
n0

∑
j=1

min{0, l i j }, i =

1, . . . ,n0. By (23), we have−
n0+1
∑

i=1

n0

∑
j=1

min{0, l i j }= 1
2

n0+1
∑

i=1

n0

∑
j=1

∣

∣l i j
∣

∣, which completes

the proof.

According to Corollary 4, we have a closed formula for the homothetic trans-
lation for an0-simplexScontaining then0-hypercube, i.e,

xσ ,t =
1
2

n0+1

∑
i=1

n0

∑
j=1

∣

∣l i j
∣

∣x+
n0+1

∑
i=1

ω(i)
n0

∑
j=1

min
{

0, l i j
}

, ∀x ∈ S. (25)
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Figure 1: (Left) Poleω0 is replaced with poles(ω i)3
i=1. (Right) The updated con-

vex hull of the new set of poles.

Note that the valueσ ∗ presented in Corollary 4 has been given in [46] but the proof
here is much simpler.

To sum up the foregoing, we present a general algorithm for the generation of
a circumscribed simplex as follows.

1. Generate(n0+1) affinely independent points(ω(i))i=n0+1
i=1 .

2. Computeσ ∗ andt∗ by Theorem 4 and output theσ ∗ω(i)+ t∗, i = 1, . . . ,(n0+
1).

5.2 A tightening procedure

In this section, we propose a general procedure to constructpole-sets of good qual-
ity by tightening a given pole-set.

The procedure is the following: among the vertices ofΩ select the farthest one
in L2 sense fromΞP and compute the projection of this vertex onΞP. Then we
consider the hyperplane separating this vertex fromΞP (containing the projection)
and compute the extreme points of the intersection of this hyperplane with convΩ.
These extreme points are added toΩ while the vertex that has been projected is
removed fromΩ. Figure 1 illustrates a tightening procedure of a 3-D simplex
coveringH3. The procedure is repeated until the cardinality ofΩ reaches some
fixed upper bound. Details are given below:

1. AssumeΩ =
{

ω(k),k∈ I
}

. For eachk ∈ I , compute the distance between
ω(k) and ΞP. Let zk be the projection ofω(k) on ΞP. zk can be usually
expressed in a closed form. For example, in the ball case, we have zk =

ω (k)

‖ω (k)‖2
, while in the hypercube case we getzk

i = ω(k)
i if ω(k)

i ∈ [0,1], zk
i = 1

if ω(k)
i ≥ 1 andzk

i = 0 if not. The distance betweenω(k) andΞP is then given
by ‖ω(k)−zk‖2. Let ω(k0) be the vertex ofΩ maximizing the distance from
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ΞP:
ω(k0) = arg max

ω (k)∈Ω
‖ω(k)−zk‖2.

2. Letα = ω(k0)− zk0 and letB
(

ω(k0),‖α‖2
)

be the ball of radius‖α‖2 cen-
tered atω(k0). SinceB

(

ω(k0),‖α‖2
)

∩ΞP = {zk0} andB
(

ω(k0),‖α‖2
)

and
ΞP are convex, there is a hyperplane separating them. This hyperplane, de-
noted byh(ω(k0)), is here uniquely defined since it containszk0 and is or-
thogonal toα. It is then given byh

(

ω(k0)
)

=
{

x : (x−zk0)Tα= 0
}

. We use
h−
(

ω(k0)
)

=
{

x : (x−zk0)Tα< 0
}

andh+
(

ω(k0)
)

=
{

x : (x−zk0)Tα≥ 0
}

to respectively denote the inner and outer half spaces.

3. Now partition the vertices
(

ω(k)
)

k∈I into two disjoint sets:Ω− and Ω+,

whereΩ−=
{

ω(k) : ω(k) ∈ h−
(

ω(k0)
)}

andΩ+=
{

ω(k) : ω(k) ∈ h+
(

ω(k0)
)}

.
Then consider the set of verticesΩ′ obtained as intersections between the
hyperplaneh(ω(k0)) and the set of lines(ω(i),ω( j)) whereω(i) ∈ Ω+ and
ω( j) ∈Ω−: Ω′ =

⋃

ω (i)∈Ω+,ω ( j)∈Ω− h(ω(k0))∩(ω(i),ω( j)). The number of such
intersections is of course less than|Ω−|× |Ω+|. Also note that we need to
remove redundant points fromΩ′ if they are convex combinations of other
points ofΩ′. Finally updateΩ by deletingΩ+ and addingΩ′: Ω = Ω−∪Ω′.
If cardinality of Ω is still under a prescribed upper bound, the procedure is
repeated.

To conclude this section, we might add that it is sometimes more efficient to start
with a pole-set having more than(n0 + 1) poles. Assume, for example, thatΞP

is the unit ball{x ∈ R
n0 : ‖x‖2 ≤ 1}. Then one can consider a2n-pole-setwhere

poles are the 2n0 extreme points of
{

x ∈R
n0 : ‖x‖1 ≤

√
n0
}

. Of course, 2n-pole-
sets can also be easily generated for many other convex sets.

6 A numerical example: the lobbying problem

Let us consider a lobbying problem where a set of voters (for example, legislators
or members of regulatory agencies) have to take some decisions. The opinion of
each voter depends on the opinion of some authorities. Authority’s opinions are
generally uncertain. A lobby would like to ensure that an important decision will
be unanimously approved by all voters. The lobby will spend some effort (energy,
money, etc.) to convince each voter, while the total lobbying budget is minimized.
Assume that there aremvoters andn authorities. The opinion of voteri is given by
∑n

j=1Qi j ξ j whereQi j is an estimated number belonging to[−1,1] andξ j represents
the uncertain opinion of authorityj. If Qi j is close to 1, thenj has a big impact
on i, while Qi j = 0 means thati does not care aboutj, while a negative value of
Qi j can be interpreted as a negative effect (i.e., whenj recommends something,
i is inclined to have an opposite opinion). We assume here thatthe lobby would
be satisfied if∑n

j=1Qi j ξ j ≤ 0 for each voter. Since this might not occur for some
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voters, some effort modeled here byvi(ξ ) can be made by the lobby to convince
them. The total effort is quantified by∑m

i=1 r ivi(ξ ) wherer i is a unit effort price
corresponding with voteri. The problem can be formulated as follows,

min u

s.t.
m

∑
i=1

r ivi(ξ )≤ u, ξ ∈ Ξ,

Qξ ≤ v(ξ ), ξ ∈ Ξ,
v(ξ )≥ 0, ξ ∈ Ξ,

(26)

whereQ ∈ [−1,1]m×n, Ξ is the convex uncertainty set andu is the budget that has
to be secured by the lobby. The lobby problem is related to opinion dynamics
in social networks (see [1] and the references therein). Notice that interactions
between voters are also possible since the set of authorities might include the set
of voters as a subset.

To illustrate the multipolar robust approach, we consider here two different
uncertainty sets: the hypercubeHn and a unit volume ballBn. The numbersr i are
assumed to be equal to 1. Specializing (8) toHn, we get the following formulation
for MRC associated with a shadow matrixP and a feasible pole-setΩ ∈ FPHn,

ΠHn(P,Ω) = min
u,vω

u

s.t.
m

∑
i=1

vi
ω +

n

∑
j=1

σ jω j +
n

∑
j=1

β j ≤ u, ω ∈ Ω,

n

∑
j=1

ηT
i j ω j +

n

∑
j=1

αi j −vi
ω ≤ 0, ω ∈ Ω, i = 1, . . . ,m,

n

∑
j=1

µi j −V i
ω −

n

∑
j=1

δi j ω j ≤ 0, ω ∈ Ω, i = 1, . . . ,m,

β+PTσ ≥ 0,

αi j +PTηi ≥ Qi j , i = 1, . . . ,m, j = 1, . . . ,n,

µi −PTτi ≥ 0, i = 1, . . . ,m,

αi j ,β j ,µi j ≥ 0, i = 1, . . . ,m, j = 1, . . . ,n,

σ,ηi ,τi ∈ R
n0, i = 1, . . . ,m.

(27)

As said above, we also consider the case where the uncertainty set is a unit volume
ball Bn, whose center is̄ξ = (1

2, . . . ,
1
2, . . . ,

1
2) and radiusρ = (Γ(n/2+1)

πn/2 )
1
n . Accord-
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ing to (9), the dual of the multipolar robust counterpart w.r.t. Bn, writes

ΠBn(P,Ω) = min
u,vω

u

s.t. ρ‖PTσ‖2+1Tvω −ωTσ ≤ u, ω ∈ Ω,

ρ‖QT
i +PTηi‖2−vi

ω −ωTηi +Qiξ̄ ≤ 0, ω ∈ Ω, i = 1, . . . ,m,

ρ‖PTµi‖2−vi
ω −ωTµi ≤ 0, ω ∈ Ω, i = 1, . . . ,m,

σ,ηi ,µi ∈R
n0, i = 1, . . . ,m,

(28)

whereΩ ∈ FPBn.
As stated in Section 2.1, the fully adjustable robust value w.r.t. hypercubeHn

can be achieved by simply takingP= I andΩ = ext(Hn). The problem looks more
complex in the ball case since the number of extreme points isinfinite. Assume
again thatP is identity. Givenξ ∈ Bn, the optimal solution ofvi is max{0,Qiξ}
for eachi = 1, . . . ,m. Denote byP the power set of the index set{1,. . . ,m}.
We partition the ballBn into a family of disjoint subsets by a set valued mapping
S: P 7→ 2Bn, i.e., for eachJ ∈ P,

S(J) :=
{

ξ ∈ Bn : Qiξ ≥ 0, i ∈ J, Q jξ ≤ 0, j ∈ J̄
}

,

whereJ̄ = {1, . . . ,m}\J. Therefore, the fully adjustable robust program writes

Π∗
Bn

= max
J∈P:S(J) 6= /0

max
ξ∈S(J)

∑
i∈J

Qiξ . (29)

Notice that (29) takes an exponential number (in the number of constraintsm) of
seconder order cone programs to obtain the fully adjustablerobust valueΠ∗

Bn
. We

show that (29) is equivalent to a much simpler problem.

Lemma 2. Program(29) is equivalent to

Π∗
Bn

= max
J∈P

{

ρ‖∑
i∈J

Qi‖2+∑
i∈J

Qi ξ̄

}

. (30)

Proof. Observe first that max
J∈P

{

ρ‖∑
i∈J

Qi‖2+ ∑
i∈J

Qi ξ̄
}

is an upper bound ofΠ∗
Bn

since it is obtained by relaxing the constraintsξ ∈ S(J).
We show that it is also a lower bound ofΠ∗

Bn
. Let Jmax∈ P be a subset for

which the maximum is achieved:

Jmax= argmax
J∈P

{

ρ‖∑
i∈J

Qi‖2+∑
i∈J

Qi ξ̄

}

.

Takeξ̂ ∈ Bn such thatξ̂ = ξ̄ +
ρ ∑

i∈Jmax
Qi

‖ ∑
i∈Jmax

Qi‖2
. Let K ∈ P such that

Qi ξ̂ ≥ 0, i ∈ K,

Qi ξ̂ ≤ 0, i ∈ {1, . . . ,m}\K.
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We have that

ρ‖ ∑
i∈Jmax

Qi‖2+ ∑
i∈Jmax

Qi ξ̄ = ∑
i∈Jmax

Qi ξ̂

≤ ∑
i∈K

Qi ξ̂

≤ max
ξ∈S(K)

∑
i∈K

Qiξ

≤ Π∗
Bn

where the first equality follows from the choice ofξ̂ . The second inequality is due
to Jmax∩K ⊆ K, while the third inequality is from the fact thatξ̂ belongs toS(K)
by the definition ofK. The last inequality is a direct consequence of (29).

Although problem (30) is easier than problem (29), it is still computationally
costly when the number of constraintsm is large. Notice that (30) can also be
seen as a integer quadratic program that can be approximatedby semidefinite pro-
gramming and solved using standard quadratic programming tools. We will not
elaborate more on this since this falls out of the scope of thepaper.

6.1 Numerical experiments

The problem instances are randomly generated following therules below.

1. Letm∈ {10,20,30,40,50}, n∈ {5,9,10,12,15,20,30}.

2. Generate the components ofQ uniformly over[−1,1].

3. We build four different sizes of pole-sets for each considered hypercube by
the circumscribed simplex generation algorithm and the tightening proce-
dure described in Section 5. As a result, for a hypercubeHn, (Ωi) is a mono-
tonic sequence w.r.t. the set inclusion of their convex hulls, i.e.,Ωi �Hn Ω j

for all i > j. Table 1 displays the cardinality of different pole-sets ofHn. The
number of vertices ofHn is also provided in the last column.

4. As an illustration of multipolar robust approach for smooth convex uncer-
tainty sets, we generate pole-sets of ballBn as well. In Table 2,Ω0 denotes
a first pole-set whose convex hull is a simplex, whileΩ1 is the 2n−pole-set
defined at the end of Section 5. Starting fromΩ1 and applying the tightening
procedure, we get the pole-setsΩi , i = 2,3,4 as outputs. The cardinality of
pole-sets are shown in Table 2.

The pole-sets had been readily generated before the solution procedure. Compact
formulations (27) and (28) are modeled by YALMIP [44] and allthe problem in-
stances are solved by the Linux version of CPLEX 12.5 with default settings on
a Dell E6400 laptop with Intel Core(TM)2 Duo CPU clocked at 2.53 GHz and
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Table 1: The pole-sets of hypercubes

Hypercube |Ω0| |Ω1| |Ω2| |Ω3| #ext.

H9 10 32 162 387 512

H10 11 36 112 322 1,024

H12 13 44 144 449 4,046

H15 16 56 192 353 32,768

H20 21 76 144 514 1,048,576

H30 31 60 116 432 1,073,741,824

Table 2: The pole-sets of the unit volume ball

Unit ball |Ω0| |Ω1| |Ω2| |Ω3| |Ω4|

B5 6 10 118 218 308

B9 10 18 62 152 352

B10 11 20 72 132 374

B12 13 24 88 164 478

with 4 GB of RAM. We evaluate our multipolar approach from different measur-
ing: the impact of pole-sets, the impact of the shadow matrixP, and the benefit of
adaptability.

6.1.1 The influence of pole-sets

Recall that multipolar robust approach closes to some extend the gap between affine
robust value and the fully adjustable value. To test the impact of pole-sets, we fix
P = I . For relatively lower dimensional cases, we report the multipolar robust
values w.r.t. different pole-sets, and compute the percentage of the closed gap
induced by the multipolar robust approachΠΞ(Ω0)−ΠΞ(Ωi)

ΠΞ(Ω0)−Π∗
Ξ

×100. For higher dimen-
sional cases, where FARC can hardly be solved in a reasonabletime, we report the
multipolar robust values w.r.t. different pole-sets.

Results related to hypercubes are presented in Table 3. The closed gap per-
centages are given within parentheses. Overall, these results appear encouraging
as indicated by the closed gaps. Observe that when the uncertainty set is fixed, the
multipolar robust values in general get lower as the pole-set Ω gets smaller. Also,
we report the computing time for higher dimensional instances associated with hy-
percube uncertainty set in Table 4. While the computationaltime compared with
the affine robust approach scales in magnitude, the complexity of multipolar robust
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Table 3: The multipolar robust values with different pole-sets (hypercube uncer-
tainty sets)

(m,n) static affine/ΠHn(Ω0) ΠHn(Ω1) ΠHn(Ω2) ΠHn(Ω3) Π∗
Hn

(10,9) 24.84 12.42 12.18(9.45 ) 10.55(73.62) 10.16(88.98) 9.88

(10,10) 25.50 12.75 11.53(58.65) 10.96(86.06) 10.70(98.56) 10.67

(10,12) 30.66 15.33 14.63(35.18) 13.71(81.41) 13.43(95.48) 13.34

(20,9) 50.75 25.37 23.82(46.69) 22.08(99.10) 22.06(99.70) 22.05

(20,10) 50.88 25.44 23.56(16.95) 20.74(42.38) 18.58(61.86) 14.35

(20,12) 59.79 29.89 27.54(23.64) 25.40(45.17) 23.58(63.48) 19.95

(10,15) 35.81 17.90 16.91 15.98 15.29 -

(10,20) 50.88 25.44 24.82 24.35 23.33 -

(10,30) 64.32 32.16 31.70 31.14 30.22 -

(20,15) 82.49 41.25 39.36 36.20 34.87 -

(20,20) 99.28 49.64 47.17 45.66 40.80 -

(20,30) 157.20 78.60 77.82 76.83 73.77 -

approach is controlled by the choice of pole-sets. In particular, in higher dimen-
sional cases, where fully adjustable robust values are difficult to obtain, the robust
multipolar approach brings lower cost (compared with affineapproach) in a rea-
sonable time.

Table 4: Computing time (in seconds)

(m,n) static affine/ΠHn(Ω0) ΠHn(Ω1) ΠHn(Ω2) ΠHn(Ω3)

(10,15) 0.00 0.01 0.20 1.49 6.31

(10,20) 0.00 0.03 0.87 2.66 27.54

(10,30) 0.00 0.04 1.15 4.53 39.12

(20,15) 0.00 0.03 0.68 10.43 34.98

(20,20) 0.00 0.07 4.65 16.41 152.79

(20,30) 0.00 0.14 3.91 15.40 220.48

A sequence of lower bounds can also be generated as stated in Corollary 3 of
Section 3.3. All we need to do is to generate a sequence of(Γi)

i=3
i=0 by projecting the

pole-sets(Ωi)
i=3
i=0 onto the surface of hypercubes. The obtained lower bounds are

denoted byΠHn(Γi). Note that convΩ′ ⊆Ω does not necessarily lead to convΓ′ ⊆Γ
or convΓ′ ⊇ Γ. Thus it may happen thatΠHn(Γi) ≥ ΠHn(Γi+1). The results are
summarized in Table 5, where the best lower bound for each problem instance is
marked in bold.
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Table 5: Lower bounds related to hypercubes

(m,n) ΠHn(Γ0) ΠHn(Γ1) ΠHn(Γ2) ΠHn(Γ3) Π∗
Hn

(10,9) 6.88 8.18 9.52 9.65 9.88

(10,10) 7.11 8.12 9.62 8.34 10.67

(10,12) 10.50 8.88 9.48 9.57 13.34

(20,9) 20.08 16.05 18.70 21.98 22.05

(20,10) 11.88 11.88 12.44 12.92 14.35

(20,12) 14.73 16.65 16.96 19.07 19.95

(10,15) 7.62 7.63 8.40 8.40 -

(10,20) 7.86 10.20 10.20 10.36 -

(10,30) 7.11 9.03 9.03 9.79 -

(20,15) 23.49 25.86 23.56 23.56 -

(20,20) 15.23 16.08 16.08 19.61 -

(20,30) 30.53 31.12 32.53 33.81 -

Let us now focus on the ball case. Remember that FARC is intractable in
general. However, as shown in Lemma 2, we can compute the optimum of FARC
by solving problem (30) whenm is small. We report the robust values obtained
by solving multipolar robust counterpart with different pole-sets in Table 6. The
results may indicate the following. First, the approximaterobust values associated
with balls appear lower than those associated with hypercubes although the volume
and symmetric center of balls and hypercubes are the same. Second, the closed
gaps by multipolar robust approach on robust problems with ball uncertainty sets
might be less significant than that with hypercube uncertainty sets. As might be
expected, larger poles-sets are required for balls compared to hypercubes. Third,
despite the limitations, multipolar approach closes around 30% of the optimality
gap. In particular, it appears compelling when the number ofconstraints are large,
while the dimension of the uncertainty set is small.

The lower bounds obtained in the ball case are reported in Table 7. Interest-
ingly, the observed sequences of lower bounds associated with ball Bn are mono-
tonically increasing and their best bounds in general are close to the fully adjustable
robust value.

6.1.2 The impact of the shadow matrix

To investigate the impact of the shadow matrix on the robust value of the robust
problem, we conduct some experiments on problem instances w.r.t. hypercube un-
certainty sets. The shadow matrices considered here are simply projection matrices
on lower subspaces. The results are displayed in Table 8, where the uncertainty set
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Table 6: The multipolar robust values with different pole-sets (ball)

(m,n) static ΠBn(Ω0) ΠBn(Ω1) ΠBn(Ω2) ΠBn(Ω3) ΠBn(Ω4) Π∗
Bn

(10,9) 17.27 9.43 9.28(11.11) 9.21(16.30) 9.11(23.70) 9.01(31.11) 8.08

(10,10) 16.09 9.21 8.98(23.00) 8.95(26.00) 8.94(27.00) 8.89(32.00) 8.21

(10,12) 19.64 10.93 10.76(20.99) 10.76(20.99) 10.74(23.46) 10.70(28.40) 10.12

(20,9) 35.87 19.86 19.54(20.92) 19.51(22.88) 19.45(26.80) 19.36(32.68) 18.33

(20,10) 33.12 17.19 16.42(18.08) 15.62(36.85) 15.57(38.03) 15.36(42.96) 12.93

(20,12) 39.85 20.93 20.05(17.25) 19.96(19.02) 19.90(20.20) 19.81(21.96) 15.83

(30,5) 19.51 11.00 10.39 9.22 9.14 9.03 -

(40,5) 37.57 21.63 21.11 20.71 20.63 20.55 -

(50,5) 38.14 20.94 20.06 19.33 19.14 19.02 -

Table 7: The lower bounds in the ball case

(m,n) ΠBn(Γ0) ΠBn(Γ1) ΠBn(Γ2) ΠBn(Γ3) ΠBn(Γ4) Π∗
Bn

(10,9) 6.60 6.70 6.70 6.71 7.67 8.08

(10,10) 6.07 6.28 6.93 7.44 7.60 8.21

(10,12) 7.26 7.51 8.01 8.08 8.44 10.12

(20,9) 16.04 16.17 16.89 16.89 16.89 18.33

(20,10) 12.03 12.03 12.03 12.03 12.03 12.93

(20,12) 12.35 13.41 13.67 13.67 13.67 15.83

(30,5) 7.48 7.48 8.11 8.11 8.34 -

(40,5) 16.54 17.31 19.27 19.27 19.87 -

(50,5) 15.53 15.53 17.22 17.22 17.80 -

is a hypercube and several projections are considered (onH5, H7, H10, andH12).
The pole-set considered is the set of extreme points of the projected set. As might
be expected, the robust value decreases as more informationis employed in MRC.

6.1.3 The benefit of adaptability

To illustrate the concept ofbenefit of adaptabilityin the framework of multipolar
robust approach, we compute the multipolar robust values ofproblem (26) with
different proportions of adjustable variablesv. We allow the first⌊θm⌋ components
of v to be adaptable to the realization ofξ , while keeping the remainingm−⌊θm⌋
variables independent of the realization ofξ , whereθ ∈ [0,1]. Note that when
θ = 0, we get the static case SRC. The results are summarized in Table 9 and we
emphasize here two observations:
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Table 8: Impact of the shadow matrix

(m,n) H5 H7 H10 H12

(10,30) 56.95 51.50 45.59 43.29

(10,50) 109.84 105.68 100.69 96.11

(10,70) 162.14 159.52 156.12 154.53

(10,100) 246.98 244.13 239.34 237.43

(20,30) 133.35 126.59 117.63 111.53

(20,50) 233.73 224.82 213.04 203.89

(20,70) 345.56 340.41 328.49 319.79

(20,100) 462.51 453.26 439.71 431.39

1. For each problem instance, as the adaptability ratioθ increases, the robust
value decreases significantly, which is reasonable both in theory and practice.

2. As the adaptability ratioθ increases, the influence of pole-sets on the robust
value increases. For example, when the adaptability ratioθ = 0.25, the mul-
tipolar robust values of all problem instances remain the same with different
pole-sets except instance (20,20). When the adaptability increases, the ro-
bust values of more instances improve as the better pole-sets are used, which
can be clearly seen whenθ = 0.75 andθ = 1.

7 Conclusion

In this paper, we have presented a novel approach to handle uncertainty in opti-
mization problems called the multipolar robust approach, which is based on a set
of poles that are used to approximate the fully adjustable policy by a set of associ-
ated recourse decisions at poles. The approach generalizesthe static approach, the
affinely adjustable approach, and the fully adjustable approach, still we can control
its complexity by using the concept of the shadow matrix and considering a rea-
sonable number of poles. Several algorithms are proposed for the construction of
proper pole-sets for hypercubes and balls. Comprehensive numerical experiments
are carried out to evaluate the performance of the proposed approach in terms of
the robust values, the complexity, and the benefit of adaptability. In general, the
results appear encouraging.

It would be interesting to investigate further the performance of the multipolar
robust approach on other problems. A systematic study of good approximations
of convex bodies by enclosing polytopes with a limited number of extreme points
should help to alleviate overconservatism and get closer tothe optimal fully adapt-
able robust value. One can also put more focus on the approximation of convex
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Table 9: The benefit of adaptability (hypercube)

(m,n),Ω1 θ = 0.25 θ = 0.5 θ = 0.75 θ = 1

(10,9) 23.42 19.88 16.56 12.18

(10,15) 32.64 24.83 21.83 16.91

(10,20) 46.13 37.06 32.78 24.82

(10,30) 59.72 47.14 41.59 31.70

(20,9) 45.01 36.57 28.99 23.82

(20,15) 73.99 58.66 46.80 39.36

(20,20) 85.18 73.46 59.54 47.17

(20,30) 137.78 118.51 99.94 77.82

(m,n),Ω2 θ = 0.25 θ = 0.5 θ = 0.75 θ = 1

(10,9) 23.42 19.88 15.91 10.55

(10,15) 32.64 24.55 21.21 15.98

(10,20) 46.13 36.86 32.46 24.35

(10,30) 59.72 46.95 41.32 31.14

(20,9) 45.01 36.52 27.24 22.08

(20,15) 73.99 58.16 45.06 36.20

(20,20) 84.98 72.98 58.77 45.66

(20,30) 137.78 117.96 99.13 76.83

(m,n),Ω3 θ = 0.25 θ = 0.5 θ = 0.75 θ = 1

(10,9) 23.42 19.88 15.88 10.16

(10,15) 32.64 24.54 20.96 15.29

(10,20) 46.13 36.60 31.81 23.33

(10,30) 59.72 46.70 40.74 30.22

(20,9) 45.01 36.52 27.06 22.06

(20,15) 73.99 58.14 44.89 34.87

(20,20) 84.78 72.42 57.23 40.80

(20,30) 137.78 116.78 96.99 73.77

bodies from inside using, for example, maximum volume inscribed polytopes to
get better lower bounds of the fully adjustable robust value.

While the approach was proposed in the context of a two-stageoptimization
problem, it can be adapted to multistage optimization. Multipolar decision rules
can also be considered in stochastic programming. The multipolar approach might
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also be combined with finite adaptability or multi-static robustness by partitioning
the uncertainty set into several subsets and considering some multipolar decision
rules for each subset.

Appendix: the derivation of (9)

We derive the compact formulation (9) of Section 3.1 w.r.t. an ellipsoidal uncer-
tainty set defined byΞ := {ξ : ‖Fξ‖2 ≤ 1}.

For eachith constraint, MRC requires the optimum of the following problem
non-positive.

max
ξ ,s,λ≥0

Uiu−bi + ∑
ω∈Ω

λ ξ
ω V ivω

s.t. ‖s‖2 ≤ 1,

Fξ = s, ηi ∈ R
nq

∑
ω∈Ω

λ ξ
ω ω = Pξ , σi ∈ R

n0

∑
ω∈Ω

λ ξ
ω = 1, τi ∈ R

whereξ ≡ [U,b] andηi,σi ,τi are dual multipliers corresponding to each group of
constraints. Consider the corresponding Lagrangian

L (λ ,ξ ,s,ηi ,τi ,σi) = Uiu−bi + ∑
ω∈Ω

λ ξ
ω V ivω +ηT

i (s−Fξ )

+σT
i

(

∑
ω∈Ω

λ ξ
ω ω −Pξ

)

+ τi

(

∑
ω∈Ω

λ ξ
ω −1

)

.

The dual function is then max
λ ,ξ ,‖s‖2≤1

L (λ,ξ ,ηi,τi ,σi). Setting the derivative w.r.t.

λ,ξ leads to the dual constrains

V ivω + τi −ωTσi ≤ 0,

FTηi −L i = 0,
(31)

whereP= [P1, . . . ,Pk, . . . ,Pm] ,L i =
(

L i1, . . . ,L im
)

,L i j = δi j
(

u,−1
)

+PT
j σi , j =

1, . . . ,m. The dual objective is

min
ηi ,τi ,σi

‖ηi‖2− τi. (32)

By duality, the optimum of the above dual problem is equal to the optimum of
the problem. Thus restricting the non-positivity of the primal optimum can be
equivalently represented as

‖ηi‖2+V ivω −ωTσi ≤ 0,

FTηi −L i = 0,

ηi ∈ R
nq,σi ∈R

n0.

(33)
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