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Abstract. Polymers applications have been progressively increased in sciences and engineering including
chemistry, pharmacology science, and chemical and petroleum engineering due to their attractive properties.
Amongst the all types of polymers, partially Hydrolyzed Polyacrylamide (HPAM) is one of the widely used
polymers especially in chemistry, and chemical and petroleum engineering. Capability of solution viscosity
incrementofHPAMisthekeyparameter in its successfulapplications; thus, theviscosityofHPAMsolutionmustbe
determined in any study. Experimental measurement of HPAM solution viscosity is time-consuming and can be
expensive for elevated conditions of temperatures and pressures, which is not desirable for engineering
computations. In this communication, Multilayer Perceptron neural network (MLP), Least Squares Support
Vector Machine approach optimized with Coupled Simulated Annealing (CSA-LSSVM), Radial Basis Function
neural network optimized with Genetic Algorithm (GA-RBF), Adaptive Neuro Fuzzy Inference System coupled
with Conjugate Hybrid Particle Swarm Optimization (CHPSO-ANFIS) approach, and Committee Machine
Intelligent System (CMIS) were used tomodel the viscosity of HPAMsolutions. Then, the accuracy and reliability
of the developedmodels in this studywere investigated through graphical and statistical analyses, trendprediction
capability, outlier detection, and sensitivity analysis.As a result, it has been found that theMLPandCMISmodels
give the most reliable results with determination coefficients (R2) more than 0.98 and Average Absolute Relative
Deviations (AARD) less than 4.0%. Finally, the suggested models in this study can be applied for efficient
estimation of aqueous solutions of HPAM polymer in simulation of polymer flooding into oil reservoirs.
1 Introduction

Polymer flooding is one of the popular technologies for
EnhancedOilRecovery(EOR)that isutilized tomonitor the
mobility ratio of displacing phase to the displaced fluid,
which is a function of viscosity and relative permeability [1].
In details, addition of polymer modifies the properties of
injected water via increasing viscosity and decreasing
relative permeability of water even at low concentrations
ofpolymer leadingtoadecrease inmobility ratio [2]. Itmeans
that for a longer period of time polymer solution could
effectively sweep the oil in a piston-like manner through the
porous media before occurring viscous fingering or early
nding authors: amir_h_mohammadi@yahoo.com (A. H.
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breakthrough. As a consequence, more stable displacement
and higher sweep efficiency could be achieved during this
process [2,3].

One of the extensively employed polymers in petroleum
engineering especially in EOR process partially hydrolyzed
polyacrylamides (HPAMs) due to their moderately good
solubility in water and reasonable economic [4]. As a
definition, HPAMs are synthesized from acrylamide mono-
mers; thus, they will have negatively charged linear chain
macromolecules, in which some of their monomers are
hydrolyzed by an electrolyte [5]. The large viscosities of
HPAM solutions are caused by repulsion forces amongst the
negatively charged polymer chains, which are dependent to
chain extension and degree of acrylamide hydrolysis [6].

The salt concentration and hardness have paramount
impacts on the rheological properties of polymers. In this
regards, when a monovalent cationic solution like Na+Cl�
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is in contact with polymer, electrostatic attraction forces
are created between the aforementioned polymer chains of
negative charges and Na+ which lead to the so-called
phenomenon of polymer coiling up [7,8]. As a result, the
polymers might precipitate and thus the solution viscosity
could be decreased. In the presence of divalent cations like
Ca2+, Ba2+, and Sr2+, the processes of degradation and
precipitation of the polymer will severely happen, which
lead to crucial decreases in the viscosity of HPAM solution
compared with the impact of monovalent cations [8,9].

In addition to high salinity environment, polymer
degradation is the other major concern taking place at
harsh reservoir conditions. Based on the origin of degrada-
tion, it can be comprised of mechanical, chemical, and
biological processes [10,11]. Mechanical degradation occurs
when polymer solution is injected at high flowrates or it
passes through theporousmedia of highpermeability; in this
manner, the HPAM solution viscosity will decrease [12].
Biological degradation frequently happens when we are
dealing with biopolymers such as Xanthan. Moreover,
chemical degradation takes place via oxidation reactions
andacceleratesathigh temperaturesofporousmedia [10,11].
It is worthmentioning that the impact of temperature is not
restricted to the chemical degradation, it also affects its
hydrolysis degree causing precipitation of polymers. The
other issues associated with the application of polymers in
porous media are the hydrodynamic retention [13,14] and
macromolecular adsorption [1]. From operational point of
view, injection of highly viscous fluid through the wellbore
into the reservoir leads to an extreme pressure drop.
Therefore, polymers as non-Newtonian fluids exhibiting
shear thinning behavior are employed to preclude this
phenomenon.

A large number of investigations have been conducted
to study the impact of polymer concentrations, shear rate,
temperature, salt concentration, HPAM hydrolysis degree,
and hardness on the solution viscosity as the main
rheological property of HPAM solutions [5,7,15–23]. Some
researchers have undertaken a number of experimental
investigations to examine the performance of Hydrophobi-
cally Associating Polyacrylamide (HAPAM) [24] and
HPAM/Cr(III) [25] to improve the performance of HPAM
components in EOR. Apart from the experimental
measurements, empirical and semi-empirical methodolo-
gies, different approaches based on mechanical models [26],
continuum theories [27] andmolecular theories [28,29] have
been utilized to calculate and also to apprehend some of the
detected laboratory phenomena.

The experimental measurements of HPAM solution
viscosity are valuable; however, they are expensive and
time-consuming to be conducted. Additionally, conducting
experiments covering wide ranges of data are not normally
feasible in practice. Furthermore, numerical models
normally solve Partial Differential Equations (PDEs)
and use different iterative approaches for converging to
the target solution [30,31]. Physical and mathematical
natures of these models require using some assumptions for
the purpose of simplification. These assumptions introduce
some errors in the results. In addition, numerical models
are not always user-friendly and need advanced knowledge
of physics of the model and advanced mathematics. The
developed empirically derived equations in literature were
mostly established on the basis of limited range of data at a
specific condition [30,31]. The other shortcoming of the
existing correlations is that they do not take into account
the effects of the all input variables on the model output;
thereby, their application to other conditions may lead to
noticeable uncertainties in output estimation. Consequent-
ly, it is crucially important to develop robust modeling
techniques on the basis of the most comprehensive
database existing in literature.

Soft computation technique is a robust computer
technology which could handle and optimize the highly
non-linear engineering problems. The Artificial Neural
Network (ANN)-based algorithms are the early versions of
soft computational methods, which have been proven to
produce precise estimations; however, the main deficiency of
ANN-based approaches is non-reproducibility of results,
which is comparatively caused by the stopping criteria
variation and networks random initialization [32]. To solve
this issue, improved versions of soft computations namely,
Support Vector Machine (SVM)-based schemes as a super-
vised machine learning method, have been presented. The
chief advantages of SVM-based schemes over classical
algorithms are fewer adjustable parameters, less probable
over-fitting problems, no earlier requirement for determina-
tion of the network topology, satisfactory generalization
performance, and no needs for selection of the hidden nodes
quantity [32]. In last years, several investigators have utilized
the SVM-based algorithms in a wide range of petroleum and
chemicalengineeringasarobusttoolsuccessfully [30,33–37]. In
addition to the above-mentioned SVM framework modeling,
Adaptive Neuro Fuzzy Inference System (ANFIS) is another
strong approach for precise estimation of different industrial
and engineering goals. In thismethodology, by combination of
both fuzzy logic and neural network based systems the
disadvantages of both systems will be overcome. The
successful usages of ANFIS modeling have been witnessed
in the open literature through several researches [38–41].

In this work, the innovative advantages of MLP neural
network, GA-RBF neural network, CSA-LSSVM, CHPSO-
ANFIS and CMIS modeling approaches have been used to
model the viscosity of HPAM solution over a wide range of
operational conditions. Based on the authors’ knowledge,
there is no report on modeling of the HPAM solution
viscosities by the aforementioned approaches in the open
literature. These methodologies provide an accurate and
reliable estimation for achieving the target parameter. The
available empirical correlations in the literature are not as
accurate as the proposed smart techniques in this study.
Moreover, the empirical correlations have a lot of tuning
parameters to be determined; although, the above-men-
tioned smart tools applied in this studyuse the leastnumbers
of tuning parameters which make them superior to the
existing models. The higher the numbers of the model
parameters cause more overfitting of the model to the
experimental data. Graphical and statistical analyses have
also been done on the results to check the validity of the
proposedmodels. In addition, trend estimation capability of
the proposed models was checked and confirmed. Finally,
outlier detection and sensitivity analyses were done to check
the validity of the proposed models.
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2 Modeling approaches

2.1 Least Squares Support Vector Machines (LSSVM)

Support Vector Machines (SVM) have been used as a
robust tool for many function approximations in a wide
range of engineering applications [42–44]. Generally,
ordinary SVM method uses the quadratic programming
subjected to the inequality constrains to solve the function
approximation problems, in which its convergence is
achieved very slowly. This scheme consumes a great deal
of time and memory [45], which causes it to be applicable
for small problems dealing with a small number of input
data points. A new type of SVM, called Least Squares SVM
(LSSVM) was developed by Suykens and Vandewalle [46]
in which it was tried to reduce the complexity of the process
and increase its convergence speed. This was achieved by
replacing the inequality constrains in the ordinary SVM by
the equality constrains in LSSVM, which can be solved
more rapidly by an iterative process [45–47]. This causes
LSSVM to be more desirable for problems dealing with a
large number of experimental data and in cases where the
time and memory are limited. As mentioned earlier, the
final goal of LSSVM is to find the optimum separating
hyper plane. If the hyper plane creating vector is called as
w, the LSSVM will try to minimize the below cost function
as follows [45]:

Jðw:eÞ ¼ 1

2
w2 þ 1

2
g
XN
i¼1

e2i ; ð1Þ

subjected to the following linear constraints:

yk ¼ wTgðxkÞ þ bþ ekk ¼ 1: . . . :N; ð2Þ
where e is error variable, m≥ 0 is regularization constant, g
(x) is the mapping function, w and b are weight vectors and
bias terms, respectively, and superscript t denotes the
transpose of the weight matrix. Coupling the two equations
will result in the following equation [45]:

LLSSVM ¼ 1

2
w2 þ 1

2
g
XN
k¼1

e2k

�
XN
k¼1

bk wTgðxkÞ þ bþ ek
� �

; ð3Þ

in which bk are Lagrangian multipliers. Based on
Lagrangian multipliers, initial conditions can be derived
as follows:

XN
k¼1

bk ¼ 0

w ¼
XN
k¼1

bkg xkð Þ ¼ 0

wTg xkð Þ þ bþ ek
� �� yk ¼ 0
bk ¼ gek

k ¼ 1: . . . :N

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
: ð4Þ
In a linear regression problem, in which dependent and
independent variables can be linearly separable, the
LSSVM equation will be as follows [45]:

y ¼
XN
k¼1

bkx
T
k xþ b: ð5Þ

For using the last equation for the nonlinear problems,
kernel functions must be used. By introducing kernel
functions to Eq. (5), the below equation will be resulted
[45]:

y ¼
XN
k¼1

bkK xk:xð Þ þ b; ð6Þ

whereK (xk . x) is the kernel function that is the product of g
(x) and g(xk) in feasible margin as it is provided as follows
[30,45]:

K xk:xð Þ ¼ gðxÞg xkð Þk ¼ 1: . . . :N: ð7Þ
Gaussian Radial Basis kernel Function (RBF) has been

more attractive to the researchers among the other ones
which is defined as follows [42]:

K xk:xð Þ ¼ exp
�‖x� xk‖2

s2

� �
k ¼ 1: . . . :N; ð8Þ

where s2 is squared bandwidth. In this study, this
parameter is optimized using an external optimization
technique namely, Coupled Simulated Annealing (CSA).
More information about CSA is presented in open
literature [41].

2.2 Neuro Fuzzy Inference System (ANFIS)

For the first time, Jang and Chuen-Tsai [48] proposed a
novel version of intelligent-based approaches by combining
Fuzzy Inference Systems (FIS) with Artificial Neural
Network (ANN). By conducting this methodology, the
capability of both ANN and FIS would be enhanced by
achieving advantages of both fuzzy systems and neural
network simultaneously. After that, Takagi and Sugeno
[49] applied ANFIS mathematical strategy by extending to
the highly nonlinear and complex problems. For this goal,
two different training algorithms of hybrid and back
propagation techniques were used. In back propagation
scheme, the resulting parameters and their premise values
are kept constant via gradient descent method; however,
back propagation algorithm modifies the output param-
eters by the approach of least squared error approximation
[50]. A typical ANFIS structure has five hidden layers of 1–
5. There are some modifiable and constant nodes in this
structure, which perform as rules and Membership
Function (MF). Takagi and Sugeno [49] proposed two
rules for development of ANFIS model as followings:
Rule 1:

If x1 ¼ A1 andx2 ¼ B1; then f1 ¼ m1x1 þ n1x2 þ r1: ð9Þ
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Rule 2:

If x1 ¼ A2 andx2 ¼ B2; then f1 ¼ m1x1 þ n1x2 þ r1; ð10Þ
where, A1, A2, B1 and B2 are linguistic labels, and m1, m2,
n1, n2, r1, and r2 are the consequent parameters.

In addition, five hidden layers including fuzzification,
rule, normalization, defuzzification, and output layers are
applied in ANFIS strategy [39]. In fuzzification layer, the
input data are converted to the linguistic expressions. In rule
layer, the truthfulness of the constructed expressions in
previous part will be determined. In next layer, the firing
strength taken from the antecedent layers undergoes
normalization process. A linguistic term for the output
parameter called consequent layer is provided in the fourth
layer. At final stage, the above-mentioned rules for one
outputaregatheredas individualnumericaloutputsusingan
averagingmethod [38]. It is notable that ANFISmethod can
be optimized through theConjugate Hybrid Particle Swarm
Optimization (CHPSO). More information about CHPSO
algorithm is presented in the open literature [41,51].
2.3 Multilayer Perceptron (MLP) neural network

MLP is a special structure of neural systems with three
different types of input, hidden and output layers. There
are some neurons exist in each layer. The number of
neurons in hidden layers can be optimized using trial and
error methods or an intelligent approach like least squares
method. System errors will back propagated through the
network and weights and bias iteratively estimated using
epoch iteration system [52]. Undertraining and over
training of the network quietly dependent on number of
epochs in the network. This method will poorly forecast
output result of test data set in the network.

2.4 Radial Basis Function (RBF) neural network

This method predicts different functions iteratively and
has the same application like MLP method. The internal
structure of this network has only three layers which are
capable to highly noisy input data [53]. The internal
structure of this method is simpler than MLP which uses
feed forward structure with supervise training technique.
In this framework, a nonlinear transformation is applied on
the weighting vector of hidden layer through activation
function f (r). This network has three major properties as
follows [54]:

–
 It can predict multivariable continuous function with the
good accuracy interval if enough units present.
–
 The network uses linear unknown coefficient which
somehow improves its optimal prediction capability.
–
 The solution obtained with this method will be the best
solution according to minimization of cost function and
control oscillation around best solution.

There are some differences between two previous
mentioned neural network systems of MLP and RBF
which include [55]:

–
 MLP structure is more complicated in comparison with
RBF method.
–
 Training process of RBF is easier than MLP due to its
simple structure of three layers with only one hidden
layer.
–
 MLP network performs global approximation on input
data and the outputs are estimated by neurons, while in
RBF networks, the local performance can be obtained on
input data with certain units determination of outputs.
–
 Discrimination process of these two artificial systems
have shown some differences. In MLP networks, cluster
classification is performed using hyper surfaces, while in
RBF hyper spheres are used for this purpose.

It is notable that RBF network can be optimized
through the Genetic Algorithm (GA) technique. More
information about GA strategy is presented in the open
literature [41].

2.5 Committee Machine Intelligent System (CMIS)

Committee Machine (CM) was introduced by Nilsson [56]
for the first time as a way for doing supervised learning
tasks. CM has a parallel structure, in which different
experts run simultaneously and the results of these experts
are combined together to find the better solution rather
than the solution of individual experts [57,58]. CMs are
categorized in two distinct categories including static and
dynamic structures which are completely defined and
expressed in literature [57]. In this study, ensemble
averaging, which is one of the members of static structures,
is used. After the creation of intelligent network of experts,
it is essential to find a method for combining the results of
individuals to find the optimum solution [59–61], which can
be the linear averaging using the weighted average [62,63]
that was used in this study to increase the contribution of
the better expert’s result in the final solution. Note that in
this study a modified version of weighted average with a
bias term for better fitness was used. In this work, the
genetic algorithm, which is a very applicable method in
optimum solution finding problems was used and its details
has been discussed previously. In this study, Mean Square
Error values (MSE) between the CMIS results and
experimental values were used as the objective function
for the genetic algorithm. The MSE can be defined as
below:

MSECMIS ¼ 1

n

Xn
i¼1

Xm
j¼1

wjy
Expertj
i þ w0

 !
� yExperimental

i

!2

;

0
@

ð11Þ
in which n andm are the number of data and the number of
experts, w is the weight of expert, y is the value of the
HPAM solution viscosity, and w0 is the bias term.

3 Data gathering

Accuracy and reliability of a model is completely
dependent on the accuracy and comprehensiveness of the
data set used for its developing and testing [64–75]. For this
reason, a comprehensive data set, covering a wide range of
operating conditions, was gathered from the confident open



Table 1. Minimum, maximum and average values of the used parameters in each data set.

Minimum Maximum Average

Train Test All Train Test All Train Test All

Hydrolysis (%) 25 25 25 30 30 30 29.30 29.36 29.31
MW (Dalton) 8 8 8 20 20 20 15.01 14.46 14.92
HPAM concentration (ppm) 0.5 0.5 0.5 3 3 3 2.84 2.87 2.85
T (K) 298 298 298 363 363 363 308.19 307.42 308.06
Salt concentration (ppm) 0 0 0 3 3 3 1.3984 1.3782 1.3980
Hardness (10�3 ppm) 0 0 0 3 3 3 0.47 0.47 0.47
Shear rate (s�1) 1 1 1 10 000 10 000 10 000 463.41 461.51 463.03
HPAM solution viscosity (mPa.s) 0.4344 0.4344 0.4344 2.9174 2.9174 2.9174 1.3922 1.5423 1.4179

Fig. 1. The convergence of GA to the optimum value regarding
the MSE of the developed ANFIS.
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literature. Based on the literature, the most important
parameters affecting the viscosity of HPAM solution (mPa.
s) are degree of hydrolyzes (%), molecular weight of the
polymer (Dalton), polymer concentration (ppm), temper-
ature (K), salt concentration (ppm), water hardness
(10�3 ppm), and shear rate condition (s�1), under which
the HPAM solution viscosity is measured [3,5,21,76]. Thus,
the prediction function was considered as below:

HPAM solution viscosity = f (degree of hydrolysis,
HPAM molecular weight, HPAM concentration, tempera-
ture, salt concentration, water hardness, shear rate) (12)

The final data set used for developing and testing the
models contained 403 data points, which were gathered
from the most accurate and confident literature [5,21,76].
In a model development process, the data set is needed to
be divided into two sets of data for development and testing
of the models. For this reason, the gathered data set was
randomly divided into two data sets, one containing 80% of
data points namely train data set and the other containing
the remaining 20% of data points namely test data set used
for training and testing the models, respectively. The train
data set was used for building the models and the test data
set was used for testing the validity, generality, and over-
fitting and under-fitting problems detection of models. The
proposed model will be valid and reliable if the statistical
parameters of the model for train and test data sets are
nearly the same, which show that the model is well-
designed. It is very crucial that the range of the applied
database in each of the mentioned data set must be nearly
the same. The minimum, maximum and average of the
parameters in each of the data sets are given in Table 1. As
shown in this table, the minimum, maximum, and average
of the data in each of the data sets are nearly the same
which are consistent with the main data set confirming the
appropriate division of the data set.

4 Models development

4.1 LSSVM

In this study, the LSSVMmodeling approach developed by
Pelckmans et al. [77] and Suykens et al. [78] was used for
modeling of HPAM solution viscosity. In the CSA-LSSVM
model development, the radial basis kernel function, which
is the most widely used kernel function [42,79], was used. In
addition, MSE parameter between model results and
experimental values was used as the objective function. For
optimization of parameters of the LSSVMmodel, CSA was
used which resulted the optimum values of 22.97105 and
0.000361 for g and s, respectively.

4.2 CHPSO-ANFIS

For development of CHPSO-ANFISmodel, after preparing
the train and test data, the first step is to create an initial
FIS. There are three different methods provided by
MATLAB. The first method, namely, genfis1 uses grid
partitioning. This method consumes a great deal of time
and memory. The second method, namely, genfis2, which
was utilized in this study enjoys from subtractive clustering
method. The third method which is none of concern of this
study, namely, genfis3 generates an FIS using Fuzzy C-
Means (FCM) clustering by extracting a set of rules that
models the data behavior.

As mentioned earlier, genfis2 benefits from subtractive
clustering method to generate a Sugeno-type initial FIS. In
this method, using the subclass function, the number of



Fig. 2. The MFs for a) degree of hydrolysis, b) HPAM molecular weight, c) HPAM concentration, d) temperature, e) salt
concentration, f) water hardness, and g) shear rate for the initial FIS.
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Table 2. Parameters of the CHPSO-ANFIS training
functions using the CHPSO method.

Parameter Value

(Initial FIS) minimum value of influence radius 0.7
(Initial FIS) maximum value of influence radius 1
(Initial FIS) maximum number of GA iterations 20
(Initial FIS) number of GA initial population 30
(Hybrid) Training epoch number 10
(Hybrid) training error goal 0
(Hybrid) initial step size 0.01
(Hybrid) step size decrease rate 0.9
(Hybrid) step size increase rate 1.1
(Hybrid) number of each steps for the hybrid
training

3

(PSO) Training epoch number 200
(PSO) number of initial population 100
(PSO) number of each steps for the PSO
optimization training

1

(Conjugate) number of Stages 50

Fig. 3. The performance of the ANFIS training by CHPSO
method.
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rules and antecedent membership functions are deter-
mined. After that, each rule’s consequent equations are
determined using least squares estimation. After that,
the least squares estimation is utilized to determine each
rule’s consequent equations. These membership func-
tions include a set of fuzzy rules to cover the feature
space. In this method, the most important parameter is
the radius of influence. This parameter spans between 0
and 1. Lower values of this parameter result in better
performance of the FIS; however, it makes the FIS more
complex and training stage consumes more time and
memory. In this study, this parameter is assumed to be a
value between 0.7 and 1. It is possible to find the
optimum value by trial and error; however, it is more
sophisticated to use an optimization method to deter-
mine the optimum value. In this study, GA was utilized
to determine the optimum value of the radius of
influence such that the generated FIS has acceptable
accuracy and do not make the FIS too complex for
training stage. For the data set used in this study, the
optimum value for the radius influence was determined
to be 0.8485. The convergence of the radius influence is
depicted in Figure 1. In this figure, the vertical axis is
the value of the MSE and the horizontal axis is the
number of generation regarding the GA optimization
method.

With this value, 9 rules were generated. The member-
ship functions are depicted in Figure 2. As shown in
Figure 2, all the values of the input parameters are
normalized between �1 and 1. In this study, we have
7 input parameters; thus, there are correspondingly
7 subfigures showing the membership functions. The
corresponding rules in indexed format are as follows:

1 1 1 1 1 1 1, 1 (1) : 1
2 2 2 2 2 2 2, 2 (1) : 1
3 3 3 3 3 3 3, 3 (1) : 1
4 4 4 4 4 4 4, 4 (1) : 1
5 5 5 5 5 5 5, 5 (1) : 1
6 6 6 6 6 6 6, 6 (1) : 1
7 7 7 7 7 7 7, 7 (1) : 1
8 8 8 8 8 8 8, 8 (1) : 1
9 9 9 9 9 9 9, 9 (1) : 1
Now, it is time to tune the initial FIS to reach the best

solution, i.e. the minimum MSE between the target and
output values. MATLAB provides two methods to train
the FIS, namely, back propagation and hybrid method.
Another method to train the initial FIS is using
optimization methods. In this case, the MF parameters
are regarded as the tuning parameters. In this study, a
population-based optimization algorithm, namely Particle
Swarm Optimization (PSO) algorithm was utilized. PSO
considers the MFs parameters as the tuning parameters
and the MSE between the target and ANFIS output as the
cost function. This method continues searching the best
tuning parameters in search space until reaching to the
stopping criteria.

In this study, a combination of hybrid method
(provided by MATLAB) and innovative PSO method
was utilized. The method is called Conjugate Hybrid PSO
ANFIS (CHPSO-ANFIS). In this method, there is a
determined number of stages. At first stage, the initial FIS
undergo hybrid training for 3 successive times. Afterwards,
the output FIS undergoes PSO method just for the first
time. It should be noted that individual hybrid and PSO
training steps are comprised of 10 and 200 epochs,
respectively. After training by the PSO optimization
method one stage is completed. The resulted tuned FIS is
passed to the next stage. This process will be continued
until reaching the stopping criteria. The parameters of the
ANFIS training functions using the CHPSO method are
listed in Table 2.

Figure 3 shows the performance of the CHPSO-ANFIS.
The vertical and horizontal axes are cost function (i.e., the
MSE between the target and output values) and the



Fig. 4. The MFs for a) degree of hydrolysis, b) HPAM molecular weight, c) HPAM concentration, d) temperature, e) salt
concentration, f) water hardness, and g) shear rate for the CHPSO-trained FIS.
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number of stages, respectively. The overfitting problem is
controlled during the training. The best stage is a stage
that there is a balance between the MSE value for the train
and test data sets. In this figure, the solid red line is the best
MSE of the initial FIS. As it is evident, there have been two
great jumps in the MSE value for both train and test data
sets at 3rd and 13th stages. However, the best stage was
determined to be the 36th stage. After this stage, although



Table 3. Comparison of the static parameters of the initial and CHPSO trained FIS.

Predictor Data Set R2 AARD STD RMSE N

Initial FIS

Train Data 0.8365 11.33 0.1397 0.1986 322
Test Data 0.7275 14.13 0.1712 0.2429 81
All Data 0.8156 11.89 0.1476 0.2082 403

CHPSO trained FIS

Train Data 0.9773 4.06 0.0506 0.0740 322
Test Data 0.9575 5.05 0.0676 0.0955 81
All Data 0.9736 4.26 0.0544 0.0788 403

Fig. 5. Agreement between the estimated and experimental
viscosities.
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the MSE value for the training data sets continuously
reduces, the MSE for the testing data sets little by little
increases and this leads to overfitting problem. The final
membership functions for each input data are illustrated in
Figure 4. As it is obvious, the MFs will tremendously
change after training. As it is evident, the MSE value for
the CHPSO-ANFIS is much less than theMSE of the initial
FIS. In order to have a better comparison, the statistical
parameters of the initial FIS and the CHPSO trained FIS
are listed in Table 3.
4.3 MLP

It has been demonstrated that the efficient estimation of
each nonlinear function could be done by applying one
hidden layer in MLP structure [80]. Thus, in this study,
only one hidden layer was selected so as to reduce the
calculation time. Moreover, the suggested MLP model has
one neuron in its output layer and seven neurons in its
input layer corresponding to one output parameter and
seven input variables, respectively. By varying the
neurons number from 4 to 25, the MSE value as an
Objective Function (OF) was evaluated. In other words,
the number of neurons with the lowest MSE value was
selected. In this study, there are six neurons in hidden
layers in which the best performance of the MLP would be
achieved.
4.4 GA-RBF

The best performance of the RBF network will be
accomplished when the tuning parameters, which
control the accuracy of the model, are optimal values.
These parameters are known as Maximum Neurons
Number (MNN) and spread. For tuning these values,
the GA technique was utilized. First, 60 arbitrary
solution pairs were generated and categorized based on
the value of MSE between the measured data and model
estimates. The best values for MNN and spread
parameters were obtained after 30 generations. As a
result, the MNN and spread values are, respectively,
173 and 1.15612.
4.5 CMIS

For CMIS development, the GA method was employed to
find the optimum weights of the model according to the
following equation:

yiCMIS ¼ lyiGA�RBF þmyiCSA�LSSVM þ nyiMLP

þ ryiCHPSO�ANFIS þ s; ð13Þ
where, l, m, n, r and s were found to be �0.031781,
0.201029, 0.641679, 0.2011969, and 0.004969, respectively.
5 Results and discussion

5.1 Models validation

In this section, the accuracy and validity of the proposed
models are investigated through statistical and graphical
analyses. The graphical agreement between the estimated
HPAM solution viscosity values using the proposed models
and experimental values is shown in Figure 5. As it is shown
in this figure, there exists a good agreement between the
experimental viscosities and estimated values with high
value of the determination coefficient of 0.9826 for CMIS
model, respectively. This figure also shows that the CSA-
LSSVM and GA-RBF models estimations are more
scattered around the 45° line as compared with other
models. In addition, it shows that CMIS model has a good
estimation capability for lower HPAM solution viscosity
values, which decrease slightly but not unreliably for higher
viscosity values. For further investigation of the reliability
of the proposed models, the relative error distributions of



Table 4. Statistical parameters of the proposed models.

R2 ARD AARD RMSE min RD max RD

MLP

Train 0.9841 �0.0508 3.48 0.0620 0.0125 25.43
Test 0.9617 �0.1319 4.81 0.0901 0.1090 20.68
All 0.9800 �0.0671 3.74 0.0685 0.0125 25.43

GA-RBF

Train 0.9285 �0.2548 6.73 0.1313 0.0232 19.87
Test 0.8801 �3.4229 8.82 0.1626 0.2560 21.85
All 0.9188 �0.8916 7.15 0.1382 0.0232 21.85
Train 0.9687 �0.4695 3.15 0.0877 0.0156 15.26

CSA-LSSVM

Test 0.8501 �6.1658 10.64 0.1822 0.0996 87.45
All 0.9460 �1.6144 4.66 0.1132 0.0156 87.45
Train 0.9773 �0.1700 4.06 0.0740 0.0038 23.73

CHPSO-ANFIS

Test 0.9575 0.2008 5.05 0.0955 0.2521 27.15
All 0.9736 �0.0955 4.26 0.0788 0.0038 27.15
Train 0.9869 �0.0755 2.77 0.0562 0.0031 14.12

CMIS
Test 0.9627 �1.2070 4.19 0.0885 0.0570 24.26
All 0.9826 �0.3029 3.05 0.0640 0.0031 24.26

Determination coefficient: R2 ¼ 1�

XN
i¼1

ðlPredðiÞ�lExpðiÞÞ2

XN
i¼1

ðlPredðiÞ�lExp Þ2
:

Average Relative Deviation: %ARD ¼ 100
N

XN
i¼1

ðlPredðiÞ�lExpðiÞÞ
lExpðiÞ :

Average Absolute Relative Deviation: %AARD ¼ 100
N

XN
i¼1

ðlPredðiÞ�lExpðiÞÞ
lExpðiÞ :

Root Mean Square Error: RMSE ¼ ð

XN
i¼1

ðlPredðiÞ�lExpðiÞÞ2

N Þ0:5:

Fig. 6. Relative deviation of estimated values using both
proposed models.
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the models results against corresponding experimental
values are shown in Figure 6. As shown in this figure, the
data points for CMIS model are highly concentrated
around the zero horizontal error line, which confirm the
relative superiority of this model in comparison with the
other proposed models.
The statistical investigation of the proposed models is
shown in Table 4 through numerous statistical parameters
including coefficient of correlation (R2), Average Relative
Deviation (ARD), Average Absolute Relative Deviation
(AARD), Root Mean Square Error (RMSE), minimum
Relative Deviation (min RD) and maximum Relative
Deviation (max RD) for all train, and test data sets. As
known, the two most important parameters for evaluation
of any model are AARD and R2. When the value of AARD
is close to zero and R2 value is near unity, it can be
concluded that the suggested model is well-predictive and
efficient. According to Table 4, it is obvious that the CMIS
and GA-RBF models are, respectively, the most accurate
and the least accurate techniques for prognostication of
HPAM solution viscosity in this study. Moreover, MLP
statistical quality measures show that it is the second most
precise model after CMIS model.

5.2 Models trend estimation capability

One of the very important points in reliability and
estimation capability of the models is the ability to
estimate the true trend of viscosity changes by variations of
different parameters. It is a critical point for examining the
usefulness of any developed model. In this section, the



Fig. 7. Trend estimation of the CMIS and MLP models for comparison with experimental HPAM solution viscosity values versus: a)
HPAM concentration, b) Temperature, c) Salt concentration, d) Water hardness, and e) Shear rate.
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trend predictability of the best developed models (i.e.,
MLP and CMIS) is investigated. Figure 7 shows the trend
estimation capability of CMIS and MLP models for
changes with respect to the HPAM concentration,
temperature, salt concentration, water hardness, and shear
rate. As it is shown in these figures, trends have successfully
been captured by both models; however, the proposed
CMIS model is a slightly better tool rather than the
proposed MLP model.

In dealing with polymer solutions, the behavior of the
solution with respect to the shear rate is very important.
For this reason, a model will be reliable if it can estimate
the HPAM solution viscosity variations with respect to
shear rate. Figure 7e shows the estimation capability of the
proposedMLP andCMISmodels for shear rate changes. As
it is shown in this figure, both proposed models have
estimated the trend, successfully; however, the proposed
CMIS model has better estimation performance. To deeper
investigate, the Figure 7e was re-drawn with the logarith-
mic x-axis (shear rate) as it is shown in Figure 8. This figure
clearly confirms the better performance of the proposed
CMIS model rather than MLPmodel. For shear rates more
than 10, CMISmodel exhibits a decreasing and linear trend
for estimating HPAM solution viscosity.



Fig. 8. Trend estimation of the proposed models for shear rate
changes (logarithmic scale).
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5.3 Outlier detection

In any modeling study, the accuracy and the reliability of
the proposed model is completely dependent on the
accuracy of used experimental data, as mentioned earlier
[81]. The erroneous data lower the accuracy and applica-
bility of the proposed models; thus, these data must be
specified. Fortunately, these data normally behave in a
different scheme rather than the bulk of data, which could
be distinguished by using outlier detection methods.
Normally, the outlier detection is done graphically through
William’s plot [42, 82–84]. This graphical approach needs
standardized residual values and hat values. The outliers
will be detected using two limits including leverage and
residual limits. The hat values for each of the data points
are the diagonal values of H matrix, which can be
calculated as follows [82–84]:

H ¼ X XtX
� ��1

Xt; ð14Þ
in which, X is a matrix containing m rows and n columns.
The parameterm is the number of data points and n is the
number of input parameters. The residual values are the
difference between the estimated values using proposed
model and experimental values. The standardized
residual values can be calculated using Eq. (15) as
follows [82,83]:

SRi ¼
mexp � mpredffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE 1�Hið Þp ; ð15Þ

in which SRi is the standardized residual value of i-th data
point, mexp is the experimental HPAM solution viscosity,
mpred is the estimated HPAM solution viscosity using the
proposedmodel, MSE is themean square error, andHi is the
hat valueof the i-thdatapoint.Thewarning leveragevalue is
normally denoted byH* and from the leverage point of view,
the data that applies in 0� h�H, in which h is the hat value
of the data point. This limit is indicated by a red dashed line
inWilliam’s plot shown inFigure 9.TheH* canbe calculated
using the following equation:

H� ¼ 3ðnþ 1Þ
m

; ð16Þ
in which n is the number of input parameters and m is the
number of data point. In this study,H*was calculated to be
equal to 0.06045. The other limit, which is the residual limit,
is normally selected as the radius of 3, which means the
standard residual values tobebetween3 and�3.Thismeans
that from the residual point of view, the data points with
�3� SR� 3 are reliable for the developed model, which are
shown by two green dashed lines in Figure 9. Considering
both leverages and residual limits, the data points that are
applied to 0� h�H and �3� SR� 3 are highly accurate
and the model is increasingly reliable. These data points are
shown by blue star in Figure 9.

Figure 9 shows the William’s plots for the proposed
CSA-LSSVM, CHPSO-ANFIS, MLP, GA-RBF and CMIS
models in this study over the entire database applied for
modeling. This figure shows that only 2.23% of data (9 data
points), 1.24% of data (5 data points), 1.99% of data
(8 data points), 0.74% of data (3 data points) and 1.24% of
data (5 data points) are suspected outliers for the proposed
CSA-LSSVM, CHPSO-ANFIS, MLP, GA-RBF and CMIS
models, respectively, which are very small and negligible;
therefore, the major portion of the data are concentrated in
the valid region, which are bounded by 0� h�H* and
�3� SR� 3. This confirms almost always our modeling
techniques in this study lie in valid range based on the pre-
discussed outlier analysis presented in Figure 9.

5.4 Sensitivity analysis

Amodel can be reliable when the sensitivity of the model to
the input parameters is the same as the sensitivity of the
experimental values to them.Thisapproachwasfirstusedby
Chenetal. [85] forsensitivityanalysisofmodels,whichshows
the degree and the sign of the effect of that parameter on the
output values. In this approach, Equation (17) is used to
calculate the relevancy factor of each of input parameters on
the output estimation:

Relevency factor Ik:mð Þ ¼
Xn

i¼1
Ik:i � Ikð Þ mi � mð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
Ik:i � Ikð Þ2 mi � mð Þ2

q :

ð17Þ

In the previous equation, m is the HPAM solution
viscosity, Ik is the k-th input parameter, Ik.i is the i-th value
of the k-th parameter, and Ik and m are the average values
of k-th input parameter and HPAM solution viscosity,
respectively. Figure 10 shows the calculated normalized
relevancy factors for all the input parameters affecting the
experimental target values as well as the proposed CSA-
LSSVM, CHPSO-ANFIS, MLP, RBF and CMIS models.
This figure shows that the sensitivities of the proposed
models are nearly the same as the sensitives of the
experimental values, which confirm the reliability of all the
proposed models in this study. As it is obvious from this
figure, the temperature is the most effective parameter on



Fig. 9. Outlier detection for the proposed models including: a) CSA-LSSVM, b) CHPSO-ANFIS, c) MLP, d) GA-RBF, and e) CMIS.
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Fig. 10. Relevancy factor of input parameters.
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the HPAM solution viscosity, and it has the negative
effect which is normally expected for HPAM solution
viscosity.

6 Conclusion

In this study, Multilayer Perceptron (MLP) neural
network, Least Squares Support Vector Machine approach
optimized with Coupled Simulated Annealing (CSA-
LSSVM), Radial Basis Function neural network optimized
with Genetic Algorithm (GA-RBF), Adaptive Neuro
Fuzzy Inference System coupled with Conjugate Hybrid
Particle Swarm Optimization (CHPSO-ANFIS) approach
and Committee Machine Intelligent System (CMIS) were
used to model the viscosity of HPAM solution over a wide
range of operational conditions. The accuracy of the
proposed models was investigated through statistical and
graphical analyses, which show the good accuracy and
reliability of the proposed models. As a result, it was found
that the CMIS model gives the most accurate estimates for
HPAM solution viscosity. Trend analysis of the CMIS and
MLP methods as the best models confirms the large fitness
of the proposed models estimations to the target solution
viscosities. Outlier detection was executed through lever-
age values statistics; accordingly, the applicability of the
developed models here with a very small number of outlier
data points was confirmed. Based on the results of
sensitivity analysis, it was demonstrated that the temper-
ature is the most affecting parameter on HPAM solution
viscosity estimation. Finally, it can be stated that the
results of this study are of significant usefulness for
engineers and researchers working on polymer flooding
projects of hydrocarbon reservoirs.
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