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Abstract

Market size has been predicted to play an influential role in a broad class of economic environ-

ments. We study the performance of the Boston and the Deferred Acceptance (DA) mechanism in

a laboratory where we increase the market size. Our results show that increasing the market size

from 4 to 40 students per match increases participant truth-telling under the DA but decreases it

under the Boston mechanism, leading to a decrease in efficiency but no change in the large stabil-

ity advantage of the DA over the Boston mechanism. Furthermore, increasing the scale to 4,000

students per match has no effect on either individual behavior or mechanism performance. Our

results indicate that “large" might be much smaller than predicted.
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1 Introduction

Market size has been predicted to play an influential role in a broad class of economic environ-

ments. In a large market, existing impossibility results about incentives, welfare, and stability may

be overturned, while other existing possibility results may be sharpened to unique solutions. This

theoretical phenomenon becomes particularly important for practical market design cases, such as

combinatorial auctions, school choice, labor market clearinghouses, course allocation, and kidney

exchange, where the market size can range from hundreds to millions. For example, the National

Resident Matching Program matches roughly 30,000 doctors and hospitals per year. In another

setting, the centralized college admissions systems in Turkey and China match millions of students

respectively. Within the United States, school assignments in New York City match nearly 100,000

students per year.

Motivated by practical concerns, there has been a surge of interest in the theoretical study of

large matching markets within the last decade by either investigating the asymptotic properties of

finite discrete markets or modeling either or both sides of the market as a continuum mass of agents.

Within this literature, a significant number of papers have examined the question of whether good

incentive and stability properties under the Gale-Shapley deferred acceptance mechanism (Gale

and Shapley, 1962) hold as the market size grows, as conjectured in Roth and Peranson (1999).

One strand of this literature has shown that, under this mechanism, partner incentives for preference

misrepresentations in marriage problems (Immorlica and Mahdian, 2005), college incentives for

capacity and preference misrepresentations in college admissions problems (Kojima and Pathak,

2009), and school incentives to disrespect quality improvements in school choice problems (Hat-

field et al., 2012) vanish with the market size. Similarly, another line of research has shown that,

in a large market satisfying certain regularity assumptions, this mechanism always produces a sta-

ble matching in a discrete two-sided matching model, allowing for complementarities (in the form

of couples) in the context of the entry-level labor market for U.S. doctors (Kojima et al., 2013;

Ashlagi et al., 2011) as well as in continuum models of many-to-one and many-to-many matching

(Azevedo and Leshno, 2011; Azevedo and Hatfield, 2013; Che et al., 2013).

In designing practical markets, institutions have relied on economic theory, computation, and

controlled laboratory experiments (Roth, 2002). In the school choice reforms in New York City

(Abdulkadiroğlu et al., 2005a) and Boston (Abdulkadiroğlu et al., 2005b), for example, matching

theorists were directly involved to influence the adoption of the Gale-Shapley deferred acceptance

mechanism (Gale and Shapley, 1962; Abdulkadiroğlu and Sönmez, 2003). This represents an

improvement over the Boston mechanism, which is severely vulnerable to strategic manipulation

in the laboratory (Chen and Sönmez, 2006). Experimental data helped to persuade the Boston

public-school authorities to switch from the Boston mechanism to the student-optimal deferred
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acceptance mechanism in 2005 (Abdulkadiroğlu et al., 2005b).

Such institutional redesigns rely on computational as well as laboratory experiments to provide

the first data on a theoretically superior mechanism for which field data is not yet available and to

compare the performance of different mechanisms at a level of detail that cannot be obtained from

field data. Yet another reason for experimentally studying large market dynamics can be attributed

to limitations of theoretical analysis. While the theoretical literature characterizes the performance

of the canonical matching mechanisms in the large, it is often silent about the question of how

large is “large."1 To answer this question, empirical, simulation, and experimental work might

shed some light.

Matching experiments in particular have been used to study mechanism stability as well as

related unraveling issues under different types of clearinghouses (Kagel and Roth, 2000; Niederle

and Roth, 2003), performance evaluation of different assignment methods in complete information

environments (Chen and Sönmez, 2004; Chen and Kesten, 2014) and the effect of informational

and institutional constraints on mechanism performance (Pais and Pintér, 2008; Calsamiglia et al.,

2010). Despite the theoretical interest in understanding effects of the market size, attention has not

been transferred to the experimental setting for several reasons. First, while laboratory experiments

are often compared to a wind tunnel for evaluating new institutions, the scale of a laboratory ex-

periment is often small compared to the corresponding real-world implementations. For example,

the largest school choice experiments have 36 subjects per match (Chen and Sönmez, 2006; Cal-

samiglia et al., 2010), a far cry from the hundreds of thousands of students in Beijing and Shanghai

assigned to various high schools each year (He, 2014).

Given the practical importance of understanding how market size impacts mechanism perfor-

mance, our goal in this paper is to experimentally complement the active and growing literature in

matching theory on large market properties within the context of student assignment. To bridge

the gap between laboratory experiments and real-world implementations, we compare the perfor-

mance of two school choice mechanisms in the laboratory when market size increases. Studying

large matching markets in the laboratory is of interest for two main reasons. First, large markets

often have different theoretical properties than their smaller counterparts. Second, a large market

may impact participant behavior due to the complexity of thought it brings to decision making.

We focus our experiment on school choice as it is a widely-debated education policy across the

world (Hoxby, 2003; He, 2014), affecting the education experiences and labor market outcomes

for millions of students each year. To contribute insight to this debate, we compare and contrast

the large market characteristics of the Gale-Shapley deferred acceptance (DA) mechanism to the

1A notable exception is Rustichini et al. (1994) who show in the context of double auctions six traders of each type
are sufficient to obtain efficiency to within one percent. In the context of assignment problems, for a fixed set of object
types and a given agent’s utility function, Kojima and Manea (2010) calculate the number of copies of each object
type needed in order for the probablistic serial mechanism to become strategy-proof.
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Boston mechanism. Unlike the DA, which is known in this context to be strategy-proof regardless

of market size, the Boston mechanism has been shown to be prone to strategic play in both small

and large markets (Kojima and Pathak, 2009; Azevedo and Budish, 2013).

Creating a large market in the laboratory is challenging because of both physical and financial

constraints. To address this challenge, we first vary the scale of our all-human sessions from 4 to 40

students per match. To enable random rematching, the latter treatment requires 80-subject sessions.

We then let human subjects play against robots whose strategies are drawn from empirical human

strategies from the 40-subject matches, and further increase the scale from 40 to 4,000 students per

match. In doing so, we find that when the number of students increases from 4 to 40, the proportion

of truth-telling significantly increases under the DA but decreases under Boston. These results

point to nuanced scale effects under each mechanism, though in opposite directions. Our finding of

a scale effect under the DA mechanism is unexpected, whereas the increased manipulation under

Boston with an increase in scale leads to an even stronger finding than the theoretical view that

Boston is likely to remain manipulable in a large market. Further we find that increasing the scale

from 40 to 4,000 has no additional effect on the performance of either mechanism. Finally, we

find that the matching outcomes under the DA mechanism remain stable as market size increases.

Overall, our results indicate that “large" might be much smaller than predicted in the theoretical

literature and provide additional support for the replacement of the Boston mechanism with the

DA mechanism in practice.

2 Literature Review

Incentives for truthful preference revelation in large markets have been studied in matching theory

as well as other economic contexts. For example, Roberts and Postlewaite (1976) have shown that

the Walrasian mechanism is approximately strategy-proof in a large exchange economy.2 In auc-

tion theory, Gresik and Satterthwaite (1989), Rustichini et al. (1994), Pesendorfer and Swinkels

(2000) and Cripps and Swinkels (2006), and Fudenberg et al. (2007) all show that strategic mis-

reporting vanishes in double auctions in large markets under various informational assumptions.

Swinkels (2001) shows a similar result for uniform-price and pay-as-bid auctions.

In indivisible good allocation problems large market arguments have been used to support par-

ticular market design approaches. In kidney exchange problems, Roth et al. (2005, 2007) show

that conducting only small size kidney exchanges is sufficient to achieve full efficiency when the

number of incompatible patient-donor pairs is large. When multiple hospitals are involved in

an organized exchange program, Ashlagi and Roth (2011) show that it becomes individually ra-

2Specifically, they show that when equilibrium prices vary continuously with reports, truthtelling is approximately
ex-post optimal.
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tional for each hospital to participate in the joint exchange program (as opposed to conducting

exchanges internally) when the population of hospitals and patients grows large. Finally, in the

object assignment context, Kojima and Manea (2010) show that the probabilistic serial mechanism

of Bogomolnaia and Moulin (2001) becomes exactly strategy-proof in a sufficiently large finite

market.

Relevant to our experimental design, Azevedo and Budish (2013) propose the concept of

strategy-proofness in the large (SP-L). They examine the manipulability properties of well known

mechanisms as the market size increases and provide a unified view of the large market approaches

to incentive issues. In the school choice context, using two different large-market models, Kojima

and Pathak (2009) and Azevedo and Budish (2013) both conclude that the Boston mechanism

remains manipulable even in a large market. For finite markets Pathak and Sönmez (2013) intro-

duce a metric for ranking different mechanisms according to their manipulability. Interestingly,

our experimental results indicate the possibility of varying degrees of manipulability of the same

mechanism depending on the scale of the market.

It has been well-documented that the DA mechanism is manipulable in a two-sided matching

market (Dubins and Freedman, 1981; Roth, 1982). Some empirical studies and simulations results

support the large market predictions of the DA and Boston mechanisms. For example, Roth and

Peranson (1999) analyze the NRMP data by conducting simulations on randomly generated simple

markets and show that when there is a bound on the length of preferences acceptable to one side

of agents, the set of stable matchings becomes small as the market grows.3 They observe that,

of the more than 20,000 applicants and 3,000-4,000 programs in their study, less than one percent

could benefit from truncating preference lists or capacities. During the transition from the previous

NRMP algorithm to the new algorithm, less than one percent of applicants and programs are found

to be affected by such change, which is comparably small and unsystematic.4 By contrast, the

DA is strategy-proof in the school choice context where only students are assumed to be strategic

agents. Thus the non-manipulability of DA is robust to market size. Using data from the Boston

school district prior to the reform, Abdulkadiroğlu et al. (2006) find empirical evidence for both

strategically sophisticated and naive play under the Boston mechanism. Based on these theoretical

3Recently, Azevedo and Leshno (2014) develop a continuum model of the college admissions problem to present
a more appealing and general property about the set of stable matchings: that is, a generic continuum economy has
a unique stable matching, to which a sequence of the set of stable matchings in large discrete economies converges.
Such “core convergence” and uniqueness properties of set of stable matchings have an important implication on other
asymptotic properties of the DA mechanism. In particular, Azevedo and Leshno (2014) and Azevedo and Leshno
(2011) investigate the DA with single tie-breaking and show that the mechanism is robust to aggregate randomness:
whatever tie-breaking results, students will be assigned to almost the same schools under the DA mechanism in a large
market.

4In the school choice context, Abdulkadiroğlu et al. (2009) also find small changes in matching outcomes when
investigating New York City school choice preference data. In several different runs of the DA algorithm, using
different lottery outcomes to break the ties in priorities, the aggregate statistics of the match do not vary much.
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and empirical results, we expect to see misrepresentation of preferences in the Boston mechanism

regardless of market size. We expect no scale effect on the proportion of truth-telling under either

mechanism.

With the development of matching theory, a growing number of laboratory experiments have

tested mechanism performance as well as participant behavior under different incentives. In one

study with 36 students per match, Chen and Sönmez (2006) observe that the proportion of prefer-

ence manipulation under the Boston mechanism is significantly higher than either the DA or the

Top Trading Cycles (TTC) mechanisms. Subsequent studies have examined the impact of different

information conditions (Pais and Pintér, 2008), a limit on the number of schools in the rank order

list (Calsamiglia et al., 2010), participant risk attitude and preference intensities (Klijn et al., 2013)

on participant behavior in school choice experiments. Featherstone and Niederle (2014) observe

that the Boston mechanism achieves higher efficiency than the DA mechanism when preferences

are private information and when school priorities involve ties which are broken randomly.

Table 1: Representative Experimental Studies of School Choice
Representative Studies Mechanisms # per match

Chen and Sönmez (2006) Boston, DA, TTC 36
Pais and Pintér (2008) Boston, DA, TTC 5
Calsamiglia et al. (2010) Boston, DA, TTC 36
Featherstone and Niederle (2014) Boston, DA 5
Klijn et al. (2013) Boston, DA 3
Chen and Kesten (2014) Boston, DA, Chinese Parallel 4, 6

This paper Boston, DA 4, 40, 4,000

Table 1 summarizes the design features of several representative experimental studies of school

choice. In addition to the mechanisms examined in each study, we document the number of stu-

dents per match. While these experiments use various market sizes, none studies the scale effect.

To our knowledge, the only other matching experiment which studies the scale effect is that of

Chen and Sönmez (2002), who study house allocations when the number of students increases

from 12 to 60 per match. They find that the change in scale has no significant effect on the pro-

portion of truth-telling or participation rate under either TTC or Random Serial Dictatorship with

Squatting Rights.

3 The matching problem and two mechanisms

A school choice problem (Abdulkadiroğlu and Sönmez, 2003) is comprised of a set of students,

each of whom is to be assigned a seat at one school from a set of schools. Each school has a
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number of available seats called the quota for that school.5 For each school, there is a strict priority

order for all students, and each student has strict preferences over all schools.

Within this context, a matching µ is a list of assignments such that each student is assigned to

one school and the number of students assigned to a particular school does not exceed the quota of

that school. A matching µ is Pareto efficient if there is no other matching which makes all students

at least as well off and at least one student better off.

The college admissions problem (Gale and Shapley, 1962) is closely related to the school

choice problem. By contrast though, in the college admissions problem, schools have preferences

over students, whereas in a school choice problem, schools are objects to be consumed. A key

concept in the school choice problem is stability, i.e., there is no unmatched student-school pair

(i, s) such that student i prefers school s to his assignment, and either school s has not filled its

quota or student i has a higher priority than at least one student j who is enrolled in s. In the latter

case, we say that student i justifiably envies student j for school s. A (school choice) mechanism is

a systematic procedure that chooses a matching for each problem. A mechanism is Pareto efficient

(stable) if it always selects Pareto efficient (stable) matchings. A mechanism ϕ is strategy-proof if

it is a dominant strategy for each student to truthfully report her preferences.

In our study, we focus on two school choice mechanisms. Our first mechanism, the Boston

mechanism, is the most common school choice mechanism observed in practice. Its outcome can

be calculated via the following algorithm:

Step 1: For each school, consider only those students who have listed it as their first choice. Those

students among them with the highest priority for that school are assigned that school up to

its quota.

Step k, k ≥ 2: Consider the remaining students who are unassigned and the schools that have not

filled their quota. For each such school, consider only those students who have listed it as

their k-th choice. In this group, those students with the highest priority for that school are

assigned that school up to its remaining quota.

The algorithm terminates when there are no students left to assign. Importantly, note that the

assignments in each step are final. Based on this feature, an important critique of the Boston

mechanism is that it gives students strong incentives for gaming through misreported preferences.

Because a student who has high priority for a school may lose her priority advantage for that school

if she does not list it as her first choice, the Boston mechanism forces students to make hard and

potentially costly choices, which leads to a high-stakes game among participants with different

5We assume that there are enough seats for all the students, an assumption often met in practice. However, the
model is easily modified to accommodate outside options and a shortage of seats.
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levels of strategic sophistication (see e.g., Abdulkadiroğlu and Sönmez (2003); Ergin and Sönmez

(2006); Chen and Sönmez (2006); Pathak and Sönmez (2008); He (2014)).

In addition to the Boston mechanism, we consider the student-optimal stable mechanism (Gale

and Shapley, 1962), which has played a central role in the school choice reforms in Boston and

New York City (Abdulkadiroğlu et al., 2005b,a) and, more recently, in Paris. Its outcome can be

calculated via the following deferred acceptance (DA) algorithm:

Step 1: Each student applies to her favorite school. Each school tentatively retains those applicants

who have the highest priority at that school. The remaining applicants are rejected.

Step k, k ≥ 2: Each student rejected from a school at step k − 1 applies to his next choice school.

Each school then tentatively retains those applicants who have the highest priority among

the new applicants as well as those tentatively retained at an earlier step. The remaining

applicants are rejected.

The algorithm terminates when each student is tentatively retained at some school. Note that,

in the DA, assignments in each step are temporary, until the last step. The DA has several desirable

theoretical properties, most notably in terms of incentives and stability. First, the DA is strategy-

proof (Roth, 1982; Dubins and Freedman, 1981). Furthermore, it produces the stable matching

that is most favorable to each student. Although its outcome is not necessarily Pareto efficient, it

is constrained efficient among the stable mechanisms.

4 Experimental Design

We design our experiment to compare the performance of the Boston and the DA mechanisms in

a small scale (m = 4 per match), a medium scale (m = 40), and a large scale matching market

(m = 4, 000). We adapt our economic environment from the four-school treatment in Chen and

Kesten (2014) to capture the key aspects of the school choice problem under complete information.

To study the impact of scale on mechanism performance, our experiment replicates the m = 4

per match economy to m = 40 and m = 4000. We use all-human sessions for the small and

medium scale treatments. To make large scale matching market possible in the laboratory, we let

human subjects play with computerized agents (robots) programmed to follow empirical strategies

previously used by our human subjects under similar conditions. To check for any behavioral

differences when human subjects play with other humans versus “empirical" robots, we also design

an “empirical" human-robot treatment under the medium scale condition. Lastly, we use a human-

vs-truthful-robot design, where all robots always reveal their true preferences, to study subject

behavior when there is no uncertainty in opponent strategies and when the human best responses

are easy to calculate.
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4.1 Economic Environment

In our experiment, there are four schools, s ∈ {A,B,C,D}. Each school has 1, 10 or 1000 slots,

corresponding to the scale of the matching market m ∈ {4, 40, 4000}, respectively. There are four

types of students, i ∈ {1, 2, 3, 4}, with 1, 10 or 1000 of each type, again corresponding to the scale

of the matching market.

The payoffs for each type are presented in Table 2. The square brackets, [ ], indicate the

district school of the student, where she has higher priority than non-district applicants. Payoffs

range from 16 points for the most preferred school to 5 points for the least-preferred school. Each

student resides in the district of her second preferred school.

Table 2: Payoff Table
A B C D

Payoff to Type 1 [11] 7 5 16
Payoff to Type 2 5 [11] 7 16
Payoff to Type 3 7 16 [11] 5
Payoff to Type 4 5 16 7 [11]

The game preserves the properties of the four-school design in Chen and Kesten (2014): (1) no

one lives in her top or bottom choices; (2) the first choice accommodation index, i.e., the proportion

of first choices an environment can accommodate, is 1/2, with a fair amount of competition; and (3)

the average efficiency under truth-telling is 81% for DA, reflecting the trade-off between stability

and efficiency.

For our all-human small-scale (medium-scale) sessions, there are 12 (80) human subjects of

four different types in each session. Subjects are randomly assigned to one of the four types at the

beginning of the session and keep their type throughout the experiment. At the beginning of each

subsequent round, they are randomly re-matched into three (two) groups of 4 (40) in each small-

scale (medium-scale) session. Each 4-participant (40-participant) group has 1 (10) student(s) of

each type.

For our human-robot medium-scale (large-scale) sessions, each human subject is paired with

39 (3999) robots. Including the human subject, there are 10 (1000) of each type per match. While

a human-robot experimental session can start with any number of human subjects, we control the

size of each session to between 19 and 21 human subjects.

In all treatments, we run the experiment for 20 periods to facilitate learning. To investigate

whether participant strategies are conditional on their priority, we change the priority queue for

each student type every five periods, as indicated in Table 10 in Appendix B. The priority lottery

within each type is randomly drawn at the beginning of every five-period block and remains fixed
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for the block. A smaller lottery number indicates a higher priority.

Given this design, we compute the stable outcomes for the school choice game. Using the fact

that all stable outcomes are contained between the student-optimal (µS) and school-optimal DA

outcome (µC) (Roth and Sotomayor, 1990), µS and µC coincide in our environment. The unique

stable outcome is that each student is assigned to his or her district school. Therefore, while the

scale of the market increases, the number of stable outcomes remains as one.

µS/C = µS = µC =

(
1 2 3 4

A B C D

)
;µ∗ =

(
1 2 3 4

A D C B

)
.

Furthermore, in the Boston mechanism, as the Nash Equilibrium outcomes equal to the stable

outcomes under complete information (Ergin and Sönmez, 2006), there is a unique Nash equilib-

rium outcome µS/C in our experiment design, in which all students get into their district schools.

By contrast, the DA mechanism has one more Nash equilibrium outcome, µ∗.

More generally, under our replication method, the number of stable outcomes and the school

each type of student gets into do not change with the scale of the market.

Table 3: Truth-telling and Nash Equilibrium Outcomes in the Four-School Game

Truthful Preference Revelation Nash Equilibrium Outcomes

Boston DA Boston DA

Block 1 not NE dominant strategy

µS/C {µS/C ,µ∗}
Block 2 not NE dominant strategy
Block 3 not NE dominant strategy
Block 4 not NE dominant strategy

In addition, we also look at subjects’ incentives to reveal their true preferences in large markets.

Here, we find that truth-telling is not a Nash equilibrium strategy under the Boston mechanism for

any of the priority queues. Table 3 summarizes the properties of this game.

4.2 Human-vs-Robot Design

A unique design feature in our study is the pairing of human subjects with computerized agents

("robots") to create a large matching market in the laboratory setting. Previous studies have in-

cluded robots in their experimental design. In auction experiments, robots follow the dominant

strategy in multi-unit Vickrey and English auctions (Kagel and Levin, 2001), Vickrey and iBEA

package auctions (Chen and Takeuchi, 2010) and a single-unit Vickrey auction (Davis et al., 2010).
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In Chen and Takeuchi (2010), robots follow a random bidding strategy. Lastly, in a VCM public

goods game, robots follow a pre-determined set of actions to eliminate potential other-regarding

behavior (Ferraro and Vossler, 2010).

In our experiment, we design two kinds of robots. Our “empirical robots” use strategies previ-

ously used by human subjects under similar conditions in the medium scale sessions, i.e., human

subjects of the same type, in the same period, with a corresponding priority lottery number. For

example, in the medium scale (40 participants per match) sessions, a robot of Type 2 with priority

lottery number 15 in period 12, will randomly pick one out of the two choices human subjects

of Type 2 with priority lottery number 15 made at period 12. Likewise, in the large-scale (4000

participants per match) sessions, 100 robots with priority lotteries 1401 to 1500, will randomly

pick one of the two choices human subjects of Type 2 with priority lottery number 15 made at

period 12, etc. Our human subjects in the human-robot sessions know how their robots counter-

parts’ strategies are drawn and used. To our knowledge, our empirical robot design is new to the

experimental literature.

Our second type of robot is our “truthful robot,” who always ranks schools truthfully, regardless

of its priority, a dominant strategy under the DA mechanism, but a “naïve” one under the Boston

mechanism (Ergin and Sönmez, 2006). Again, our human subjects know the robot strategies.

There are three advantages associated with the human-vs-robots design. The first advantage is,

of course, the scale. In an all-human experiment, the number of subjects in a group is limited by the

capacity of the lab, whereas in a human-vs-robots design, the scale is only limited by the processing

power of the computers. The second advantage is to reduce the strategic uncertainty faced by

human subjects when they play robots with well defined strategies, which enables the experimenter

to study human subjects responses toward opponents of different levels of strategic sophistication.

The third advantage is related to statistical independence. Since there is no interaction among

human subjects, each human subject is an independent observation.

4.3 Experimental Procedure

In each experimental session, each subject is randomly assigned an ID number and seated in front

of the corresponding terminal in the laboratory. The experimenter reads the instructions aloud.

Subjects are given the opportunities to ask questions, which are answered in public. We check

subjects’ understanding of the instructions by asking them to answer incentivized review questions

at their own pace. After everyone finishes the review questions, the experimenter distributes the

answers and goes over the answers in public. Afterwards, subjects go through 20 periods of the

school choice experiment. In each period, each subject is asked to submit a full ranking of schools.

Robots also submit the rankings of schools under certain strategies in the human-robot sessions.
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After all rankings are submitted, the server allocates the schools and informs each subject of his

allocated school and respective payoff. At the end of the 20 periods, each subject fills out a de-

mographics and strategy survey on the computer, and is then paid in private. Each session lasts

approximately 90 minutes, of which 30 minutes are devoted to instruction. The experiment is

programmed in z-Tree (Fischbacher, 2007) and Python.

Table 4: Features of Experimental Sessions
Mechanisms Composition Match size Robot strategies #Sbj. × # sessions Total# of sbj.

Boston

All-human 4 n/a 12 × 4 48
40 n/a 80 × 2 160

Human-robot
40 Empirical 20 × 2 40

Truthful 20 × 2 40

4000 Empirical 20× 2 40

Truthful 20× 2 40

DA

All-human 4 n/a 12 × 4 48

40 n/a 80 × 2 160

Human-robot
40 Empirical 20 × 2 40

Truthful 20 × 2 40

4000 Empirical 20 × 2 40

Truthful 20 × 2 40

Table 4 summarizes the features of the different experimental sessions. For each mechanism,

we conduct four independent sessions for the all-human small-scale treatments, two independent

sessions for the all-human intermediate-scale treatments, and two independent sessions for each

human-robot intermediate-scale and large-scale treatment, respectively. All sessions are conducted

in Chinese at the Experiment Economics Laboratory and the Finance Simulation Laboratory at

Beijing Normal University between June 2012 and May 2013. The subjects are students from

Beijing Normal University and the Beijing University of Posts and Telecommunications. No sub-

ject participates more than once. This gives us a total of 12 independent sessions for the all-human

treatments and 320 independent observations for the human-robot treatments. In total, 736 subjects

participated in the experiment.

The exchange rate is 5 experiment points for 1 RMB for all sessions. Each subject also receives

a participation fee of 5 RMB. The average earning (including participation fee) is 63.8 RMB.6 The

English translations of the experimental instructions can be found in Appendix A.

6The average wage of part-time work for university students in Beijing was around 30 RMB per hour. The exchange
rate at the time of the experiment was around $1 = 6 RMB.
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5 Results

In this section, we present results for our experiment, first for the effect of scale on individual

behavior and then for the effect of scale on mechanism performance.

5.1 Individual Behavior

We first examine the extent to which individuals reveal their preferences truthfully, as well as any

patterns in preference manipulation for the two mechanisms when the scale changes. In particular,

when there is misrepresentation, we look at a common behavior: listing one’s district school as

one’s first choice.

For the Boston mechanism, we define truth-telling as reporting an entire ranking as identical to

one’s true preference ranking. For the DA, however, we define truth-telling as reporting a ranking

that is identical to the true preference ranking from the first choice to one’s district school, as the

remaining rankings are irrelevant under DA.

Based on Azevedo and Budish (2013), we expect that participants will misrepresent their pref-

erences under the Boston mechanism regardless of the size of the market, whereas they will reveal

their preferences truthfully under the DA mechanism regardless of the size of the market. There-

fore, we formulate the following hypotheses on truth-telling:

Hypothesis 1 (Truth-telling: mechanism effect). The proportion of truth-telling under the DA is

greater than that under the Boston mechanism, regardless of scale.

Hypothesis 2 (Truth-telling: scale effect). Scale has no effect on the proportion of truth-telling

under either the Boston mechanism or the DA mechanism.

We first examine our all-human sessions in treatments with m = 4, and 40. Figure 1 presents

the proportion of truth-telling (left panel) and district school bias (right panel) for each of the four

all-human treatments. The ranking of mechanisms in the truth-telling graph follows the order of

DA-40 > DA-4 > BOS-4 > BOS-40, whereas the proportion of district school bias follows the

reverse order.

Table 5 presents the results from four probit regressions investigating the scale and mechanism

effects in the all-human (upper panel) and human-vs-empirical-robot treatments (lower panel). The

dependent variable is truth-telling in specifications (1) and (2), and District School Bias in spec-

ifications (3) and (4). In the upper panel, the independent variables include (omitted variables in

parentheses): Scale40 (Scale4), DA (Boston), DA × Scale40, Period, LotteryPosition, LotteryPo-

sition × DA, LotteryPosition × Scale40. In each specification, standard errors are clustered at the

session level. We summarize the results below.
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Table 5: Truth-telling and district school bias: probit regressions
Truth-telling District School Bias

All-human treatments (1) (2) (3) (4)

Scale40 -0.081*** -0.122*** 0.110*** 0.166***
(0.024) (0.033) (0.033) (0.041)

DA 0.132*** 0.111*** -0.211*** -0.205***
(0.031) (0.025) (0.046) (0.046)

DA × Scale40 0.146*** 0.143*** -0.098** -0.094*
(0.041) (0.041) (0.049) (0.049)

Period 0.004*** -0.004**
(0.001) (0.002)

LotteryPosition -0.125*** 0.127***
(0.010) (0.012)

LotteryPosition× DA 0.009 -0.003
(0.006) (0.009)

LotteryPosition × Scale40 0.017 -0.022*
(0.012) (0.013)

No. of observations 8,320 8,320 8,320 8,320
Human-vs-e-robots treatments (1) (2) (3) (4)

Scale4K -0.018 0.020 0.012 -0.011
(0.069) (0.083) (0.066) (0.080)

DA 0.160** 0.040 -0.229*** -0.128
(0.064) (0.082) (0.061) (0.078)

DA × Scale4K 0.063 0.064 -0.072 -0.073
(0.091) (0.091) (0.088) (0.088)

Period 0.003* -0.003*
(0.002) (0.002)

LotteryPosition -0.097*** 0.090***
(0.017) (0.015)

LotteryPosition × DA 0.047** -0.039**
(0.020) (0.019)

LotteryPosition × Scale4K -0.016 0.009
(0.020) (0.019)

No. of Human Observations 3,200 3,200 3,200 3,200

Notes: Standard errors in parentheses are clustered at the session (individual) level for the all-
human (human-vs-empirical-robot) treatments; coefficients are marginal effects. *** p < 0.01, **
p < 0.05, * p < 0.1.
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Figure 1: Truth-telling and district school bias in all-human treatments

Result 1 (Truth-telling: mechanism effect, all human). The proportion of truth-telling is 13%

(28%) higher under the DA mechanism than under the Boston mechanism in the 4(40)-student

environment.

Support. In specification (1) of the upper panel of Table 5, we see that the coefficients of DA as

well as DA × Scale40 are positive and significant, indicating that truth-telling under DA in the 4-

student (40-student) matches is 13% (28%) higher compared to that in the corresponding sessions

under the Boston mechanism.

By Result 1, we reject the null in favor of Hypothesis 1 under both m = 4 and m = 40. Our

mechanism effect under m = 4 is consistent with the identical treatments in Chen and Kesten

(2014), as well as with prior experimental studies of school choice in comparable markets. We

also note that the gap between the two mechanisms more than doubles when we increase the scale

by a factor of 10. This leads to our next result.

Result 2 (Truth-telling: scale effect 4 → 40). The proportion of truth-telling under the DA

(Boston) mechanism significantly increases (decreases) when the number of students per match

increases from 4 to 40.

Support. In specification (1) of the upper panel of Table 5, the coefficient of DA × Scale40 is

positive and significant, indicating that truth-telling in the 40-student matches under DA increases

by 7% compared to that in the 4-student matches. In comparison, the coefficient of Scale40 is neg-

ative and significant, indicating that truth-telling in the 40-student sessions under Boston decreases

by 8% compared to that in the 4-student sessions.
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By Result 2, we reject Hypothesis 2 that scale has no effect on truth-telling under either mech-

anism. Indeed, we find a significant and sizeable scale effect for both mechanisms. Specifically,

when the number of students per match increases from 4 to 40, participants exhibit less manipula-

tion of the DA but more manipulation of the Boston mechanism. Consequently, we conclude that

scale magnifies the performance gap between the two mechanisms.

We next explore the patterns of manipulation behind our scale effect. As documented in several

experiments (Chen and Sönmez, 2006; Calsamiglia et al., 2010), the most prevalent form of ma-

nipulation in school choice experiments is the district school bias, where a student gives her district

school a higher ranking than its true ranking. In particular, when a district school is ranked as the

top choice, a participant is guaranteed to be assigned to this school under the Boston mechanism.

In our experiment, we find significant scale and mechanism effects in this type of manipulation.

Result 3 (District school bias: mechanism and scale effects). The proportion of DSB under the

Boston mechanism is 21% (30%) higher than that under the DA mechanism in the 4-student (40-

student) treatment. Under the DA (Boston) mechanism, the proportion of district school bias in-

creases by 1% (11%) when the size of the match increases from 4 to 40.

Support. In specification (3) in the upper panel of Table 5, the coefficient of DA is -0.21 (p <

0.01), that of DA × Scale40 is -0.098 (p < 0.05), and that of Scale40 is 0.11 (p < 0.01).

Furthermore, we observe a significant, albeit moderate, learning effect across periods, i.e.,

the proportion of truth-telling (DSB) increases (decreases) by about 0.4% per period (p < 0.01,

specifications (2) and (4)). We also find that, under the Boston mechanism, a one point increase in

the lottery position decreases the likelihood of truth-telling by 12.5% (p < 0.01, specification (2)),

but increases the likelihood of DSB by 12.7% (p < 0.01, specification (4)), indicating a tendency

to seek secure allocations as one’s priority deteriorates. In comparison, such effect under the DA

mechanism is smaller (p < 0.01, specifications (2) and (4)).

Our finding of a significant scale effect (4 → 40) under both mechanisms is consistent with

individual players adopting secure strategies as the size of the market increases. Under the Boston

mechanism, district school bias guarantees that a player is matched with her second choice, re-

gardless of what others do. Similarly, truth-telling is a weakly dominant strategy under the DA

mechanism. Thus, regardless of what others do, a player cannot be worse off adopting this strat-

egy. However, the unstable Nash equilibrium outcome under the DA requires half of the players to

coordinate their manipulation. Doing so becomes increasingly difficult when the scale increases.

Therefore, when the market size increases by a factor of 10, we observe increased adoption of the

dominant strategy under the DA mechanism and increased district school bias under the Boston

mechanism.
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Next, we investigate the scale effect when the number of students per match increases from 40

to 4,000. As we transition from our all-human to human-vs-empirical-robot sessions, we note that

our human subjects have the same behavioral responses in the all-human m = 40 treatments as in

the human-vs-39-empirical-robots treatments. Table 12 in Appendix B presents p-values computed

from Kolmogorov-Smirnov tests, comparing the probability distributions of submitted preference

rankings between the all-human 40-student and human-versus-39-empirical-robots sessions for

each mechanism period by period. These results show no statistically significant difference in

participant behaviors in the respective treatments. These results indicate that humans do not re-

spond differently when playing against robots whose strategies are drawn from the same human

population.

In our human-vs-empirical-robot treatments, each human participant plays against either 39

or 3,999 robots whose strategies are randomly drawn from the all-human 40-student treatments.

Figure 2 presents the proportion of truth-telling (left panel) and district school bias (right panel)

for each of the human-vs-empirical-robot treatments. The ranking of treatments in the truth-telling

graph follows the order of DA-4000 > DA-40 > BOS-40 ∼ BOS-4000, whereas the proportion of

district school bias follows the reversed order.
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Figure 2: Truth-telling and district school bias in human-vs-empirical-robot treatments

The lower panel of Table 5 presents the results of four probit regressions investigating the

scale and mechanism effects in the human-vs-empirical-robot treatments. The dependent variable

is Truth-telling in specifications (1) and (2), and District School Bias in (3) and (4). The inde-

pendent variables include (omitted variables in parentheses): Scale4K (Scale40), DA (Boston),

DA × Scale4K, Period, LotteryPosition, LotteryPosition × DA, LotteryPosition × Scale4K. In
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each specification, standard errors are clustered at the individual subject level as each subject is an

independent observation. We summarize the results below.

Result 4 (Truth-telling: mechanism effects, human-vs-empirical-robots). The proportion of truth-

telling is significantly higher under the DA than under the Boston mechanism in the human-vs-

empirical-robots treatments. Furthermore, this mechanism effect works through the subjects’ lot-

tery positions, i.e., a one-position increase in lottery position decreases the likelihood of truth-

telling by 10% (5%) under the Boston (DA) mechanisms.

Support. In specification (1) of Table 5 (lower panel), the coefficient of DA is positive and signifi-

cant, indicating that the proportion of truth-telling under the DA in the 40-student sessions is about

16% higher compared to that in the corresponding sessions under the Boston mechanism. The

effect of the lottery position under the Boston mechanism, indicated by the coefficient of Lottery-

Position, is -0.097 (p < 0.01), while the effect under the DA mechanism is indicated by the sum

of the coefficients of LotteryPosition and LotteryPosition × DA (0.047, p < 0.05) in specification

(2).

By Result 4, we again reject the null in favor of Hypothesis 1 in our human-vs-empirical-robots

treatments. However, we note that the coefficient of Scale4K (DA× Scale4K) is negative (positive)

but insignificant, indicating a lack of scale effect. This leads to our next result.

Result 5 (Truth-telling: scale effect 40 → 4K). The proportion of truth-telling under the DA

(Boston) mechanism increases (decreases) when the size of the match increases from 40 to 4,000;

however, this effect is statistically insignificant.

Support. In specification (1) of Table 5 (lower panel), the coefficient of Scale4K (DA× Scale4K)

is negative (positive) but insignificant, indicating that the proportion of truth-telling in the 40-

student sessions under Boston (DA) is not different from that in the 4000-student sessions.

By Result 5, we fail to reject Hypothesis 2 when the scale increases from 40 to 4,000 students

per match in our human-vs-empirical-robots treatments.

Finally, looking at specification (3) in the lower panel of Table 5, we see that the proportion of

district school bias under the DA mechanism is 23% less than that under the Boston mechanism

when the size is 40 (p < 0.01), comparable to the magnitude of bias in the all-human 40-student

per match treatments in Result 3. Additionally, we have analyzed human subjects’ likelihood of

best response in each treatment, and find both a mechanism (more best responses under the DA

mechanism) and a scale effect (more best responses with increased scale). This analysis is relegated

to Appendix C due to space constraints.
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5.2 Aggregate Performance

In this section, we examine the scale and mechanism effects on measures of aggregate perfor-

mance: the proportion of students admitted by both their reported and true first choice schools, indi-

vidual rationality, efficiency and stability. For each measure, we first compare the all-human treat-

ments (m = 4, 40), and then compare the human-vs-empirical-robots treatments (m = 40, 4000).

5.2.1 First Choice Accommodation and Individual Rationality

We first look at the first-choice accommodation rate, differentiating between the proportion of

students admitted by their true versus reported first choice schools.

Based on Ergin and Sönmez (2006), we expect that a higher proportion of participants will

receive their true first choices under the DA mechanism compared to the Boston mechanism. In

contrast, we expect that a larger proportion will receive their reported top choices under the Boston

mechanism (Chen and Kesten, 2014).

Hypothesis 3 (First-choice accommodation: mechanism effect). If subjects play Nash equilibrium

strategies, a higher proportion will receive (a) their true first choices under the DA mechanism, and

(b) their reported first choices under the Boston mechanism.

Figures 4 and 5 in Appendix B present the first-choice accommodation rate for the all-human

and the human-vs-empirical-robots treatments, respectively, comparing the proportion of subjects

receiving their reported (top panel) and true first choices (bottom panel). We see that a greater

proportion receive their reported top choice under the Boston mechanism, but the gap between the

two mechanisms is much smaller when examining subjects’ true top choices.

Table 6 reports the results from four probit specifications for students’ true (1-2) and reported

first choices (3-4) for both the all-human (upper panel) and the human-vs-empirical-robots treat-

ments (lower panel). The independent variables for the upper panel include: Scale40 (Scale4),

DA (Boston), DA × Scale40, Period, LotteryPosition, LotteryPosition × DA, and LotteryPosition

× Scale40. The lower panel reports similar specifications except for Scale4K (Scale40). In the

all-human sessions, we cluster the standard errors at the session level, whereas in the human-vs-

empirical-robots treatment, we cluster the standard errors at the individual level as each human

subject interacts with only robots.

Result 6 (First-choice accommodation: mechanism effect). Regardless of scale, both the reported

and the true first-choice accommodation rates are significantly higher under the Boston than the

DA mechanism.

Support. In the upper panel of Table 6, the coefficients of DA are negative and significant (p <

0.01 in each of the four specifications), indicating a 5.8% (26.6%) reduction in receiving one’s true
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Table 6: First choice accommodation: Probit regressions
Dependent Variable: True First Choice Reported First Choice

All-Human Treatments (1) (2) (3) (4)

Scale40 -0.042*** -0.035** 0.055** 0.030
(0.010) (0.014) (0.028) (0.036)

DA -0.058*** -0.067*** -0.266*** -0.279***
(0.016) (0.019) (0.033) (0.039)

DA × Scale40 -0.044** -0.044** -0.104*** -0.107***
(0.020) (0.018) (0.039) (0.039)

Period 0.000 -0.005***
(0.001) (0.001)

LotteryPosition -0.034*** 0.066***
(0.004) (0.013)

Lottery × DA 0.005 0.006
(0.007) (0.011)

Lottery × Scale40 -0.003 0.010
(0.005) (0.015)

Number of observations 8,320 8,320 8,320 8,320
Human-vs-e-Robots (1) (2) (3) (4)

Scale4K 0.007 0.010 0.025 0.010
(0.019) (0.029) (0.052) (0.066)

DA -0.087*** -0.057* -0.279*** -0.214***
(0.021) (0.032) (0.050) (0.067)

DA × Scale4K -0.025 -0.023 -0.089 -0.090
(0.030) (0.030) (0.073) (0.073)

Period -0.001 -0.005***
(0.001) (0.002)

LotteryPosition -0.031*** 0.054***
(0.008) (0.016)

Lottery × DA -0.017 -0.026
(0.012) (0.020)

Lottery × Scale4K -0.002 0.006
(0.010) (0.020)

Number of human obs. 3,200 3,200 3,200 3,200

Notes: Standard errors in parentheses are clustered at the session (individual) level for the all-
human (human-vs-empirical-robots) treatments; reporting marginal effects. *** p < 0.01, ** p <
0.05, * p < 0.1
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(reported) first choice under the DA in the m = 4 treatments in specification 1 (3). Furthermore,

the coefficients of DA × Scale40 are negative and significant (p < 0.05 in specifications (1) and

(2), p < 0.01 in specifications (3) and (4)), indicating a further reduction of 4.4% (10.4%) of

students receiving their true (reported) first choice under the DA in the m = 40 treatments.

In comparison, from the lower panel of Table 6, we see that the coefficients of DA are also

negative and significant (p < 0.01 in each of the six specifications), indicating a 8.7% (27.9%)

reduction in receiving one’s true (reported) first choice under the DA in the m = 40 treatments in

specification 1 (3). However, the coefficients of DA × Scale4K are negative but insignificant (p >

0.10), indicating no further reduction in receiving one’s first choice under m = 4, 000 treatments.

By Result 6, we reject the null in favor of Hypothesis 3 (b), but fail to reject the null in favor

of Hypothesis 3 (a). Our findings confirm the theoretical prediction that the Boston mechanism

places heavy weight on how students report their first choices. In our study, the true first-choice

accommodation rate is lower under the DA because the dominant strategy equilibrium assigns

everyone to his second choice.

Result 7 (First-choice accommodation: scale effect). The increase in scale from 4 → 40 signifi-

cantly decreases (increases) the true (reported) first-choice accommodation rate by 4% (5%) under

the Boston mechanism, but significantly decreases the rate by 8% (5%) under the DA mechanism.

By contrast, the increase in scale from 40 → 4, 000 has no significant effect on either first-choice

accommodation rate.

Support. In the upper panel of Table 6, the coefficients of Scale40 are -0.04 (p < 0.01 in specifi-

cation (1), p < 0.05 in (2)), and 0.055 (p < 0.05) in specification (3). Furthermore, the coefficients

of DA × Scale40 are -0.044 (p < 0.05) in specifications (1) and (2), and -0.104 (p < 0.01) in

specification (3) and (4). In comparison, in the lower panel of Table 6, none of the coefficients of

Scale4K or DA × Scale4K is significant (p > 0.10).

Result 7 is consistent with the scale effect on truth-telling (Results 2 and 5). Increased district

school bias under the Boston mechanism under the medium scale leads to a significantly higher

(lower) proportion receiving their reported (true) first choice schools. By contrast, increased truth-

telling under the DA leads to an increased proportion receiving their second choice, which is the

dominant strategy equilibrium.

We next examine any scale and mechanism effect on individual rationality, i.e., the proportion

of students placed at a school which is at least as good as her district school. Since students are

guaranteed a seat at their district schools under the DA mechanism by playing the truth-telling

strategy, which is not the case under the Boston mechanism, we have the following hypothesis.
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Hypothesis 4 (Individual rationality). More students will receive individually rational allocations

under the DA than under the Boston mechanism regardless of scale.

Table 7: Individual rationality in all-human and empirical robots treatments: Probit regressions
Dependent Variable: Individual Rationality

Treatments: All-human Human-vs-empirical-robots

(1) (2) (3) (4)

Scale 0.027*** 0.048*** -0.015 -0.008
(0.009) (0.018) (0.018) (0.027)

DA 0.072*** 0.105*** 0.048*** 0.094***
(0.016) (0.026) (0.018) (0.028)

DA × Scale -0.007 -0.007 0.004 0.005
(0.023) (0.022) (0.025) (0.025)

Period 0.001** 0.003***
(0.000) (0.001)

Lottery 0.029*** 0.025***
(0.005) (0.007)

Lottery × DA -0.015* -0.020**
(0.008) (0.008)

Lottery × Scale -0.009 -0.003
(0.006) (0.008)

Observations 8,320 8,320 3,200 3,200

Notes: Standard errors in parentheses are clustered at the session (individual) level for the all-
human (human-vs-empirical-robots) treatments; reporting marginal effects. *** p < 0.01, ** p <
0.05, * p < 0.1

Table 7 presents four probit specifications for the all-human (1-2) and human-vs-empirical-

robots treatments (3-4), whereas Figure 6 in Appendix B presents the proportion of individual

rational allocations in each treatment.

Result 8 (Individual rationality: mechanism and scale effects). Regardless of scale, the proportion

of individually rational allocations is significantly higher under the DA than the Boston mecha-

nism. The increase in scale from 4 → 40 significantly increases the proportion of individually

rational allocations under both mechanisms.

Support. In Table 7, the coefficients of DA are 0.072 and 0.048 for all-human and human-vs-

empirical robots treatments respectively (p < 0.01 in all specifications). In addition, increasing

the scale in all-human treatment from 4 to 40 also increase the proportion of students receiving

individually rational allocations for both mechanisms (p < 0.01).
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5.2.2 Efficiency and Stability

To study the effect of scale on mechanism efficiency, we define payoff-based efficiency in our all-

human treatments as the sum of the individual payoffs in each match in each period, normalized

according to the following formula:

Payoff-based Efficiency =
Actual sum of payoffs−Minimum sum of payoffs

Maximum sum of payoffs−Minimum sum of payoffs
.

In our environment, the minimum sum of payoffs is 240 for the 40-student environment, and

24,000 for the 4,000-student environment. Likewise, the maximum sum of payoffs is 540 for the

40-student environment, and 54,000 for the 4,000-student environment.

In the human-vs-empirical-robots treatments, the equivalence of the payoff-based efficiency

is the human players’ expected payoffs. Specifically, for each human subject in each period, we

recombine the subject with 39 (or 3999) group members in the same period, of the same type, and

with the same (or corresponding) lottery number, taken from the all-human session. While there

are 239 (23999) possible recombinations, to reduce computation, we randomly generate 2000 groups

for each subject. We then estimate the expected payoff for each human subject by averaging her

payoffs over the 2000 group recombinations.

Table 8: Payoff-based efficiency and justified envy in all-human treatments: OLS regressions
Dependent Variable: Payoff-based Efficiency Justified Envy

(1) (2) (3) (4)

Scale40 -0.014*** -0.014*** -0.006 -0.006
(0.004) (0.004) (0.022) (0.022)

DA 0.004 0.004 -0.076*** -0.076***
(0.011) (0.011) (0.021) (0.021)

DA × Scale40 -0.019 -0.019 -0.024 -0.024
(0.012) (0.012) (0.028) (0.028)

Period 0.000 0.000
(0.001) (0.001)

Constant 0.690*** 0.688*** 0.140*** 0.141***
(0.003) (0.012) (0.018) (0.024)

Observations 640 640 640 640
R-squared 0.018 0.019 0.096 0.096

Notes: Standard errors in parentheses are clustered at the session level. *** p < 0.01, ** p < 0.05,
* p < 0.1
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Tables 8 and 9 report the results of our OLS regression analysis of efficiency and justified envy

in the all-human and human-vs-empirical-robots treatments, respectively. Specifications (1) and

(2) in Table 8 indicate that increasing the scale from 4 to 40 significantly reduces payoff-based

efficiency under the Boston mechanism (-0.014, p < 0.01), but has no further significant effect on

the DA. Similarly, specifications (1) and (2) in Table 9 indicate that further increasing the scale

from 40 to 4000 has no effect on the efficiency of either mechanism.

Result 9 (Efficiency: scale effect). From 4 → 40, payoff-based efficiency under the Boston (DA)

mechanism decreases by 1.4% (3.3%). Further increasing the scale to 4000 has no additional

effect on the efficiency of either mechanism.

Support. In specifications (1) and (2) of Table 8, the coefficients for both Scale40 (-0.014, p <

0.01) and Scale40+DA×Scale40 (-0.033, p = 0.0147) are negative and significant. In comparison,

none of the coefficients for the scale variables is significant in specifications (1) and (2) in Table 9.

The small but significant decrease in efficiency is likely due to the increased manipulation of

preferences under the Boston mechanism, as the scale increases from 4 to 40. While the effi-

ciency comparisons between the DA and the Boston mechanism depend on the environment, in

our environment, we do not observe a mechanism effect.

Finally, we investigate the mechanism and scale effect on stability. Empirically, we evaluate

mechanism stability by calculating the proportion of students in each group who exhibit justified

envy toward at least one other student. As the DA mechanism is stable while the Boston mechanism

is not, we expect that the proportion of students exhibiting justified envy will be lower under the

DA at any given scale.

Hypothesis 5 (Stability: mechanism effect). The proportion of students exhibiting justified envy

is lower under the DA than under the Boston mechanism at any given scale.

Theoretical work on the scale effect implies that, in general, the set of stable matchings de-

creases for both mechanisms when the scale increases. However, since we have a unique stable

outcome in our environment, we do not expect any scale effect on stability.

Hypothesis 6 (Stability: scale effect). Scale has no effect on the proportion of students exhibiting

justified envy under either the Boston or the DA mechanism.

Figure 3 presents the results for the average proportion of students with justified envy in our all-

human treatments (left panel) and the average expected probability of having justified envy in the

human-vs-empirical-robots (right panel) treatments. For the human-vs-empirical-robot treatments,

we investigate stability through the use of simulations. More specifically, we randomly generate
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Table 9: Efficiency and justified envy in human-vs-empirical-robots treatments: OLS regressions
Dependent Variable: Expected Payoff Justified Envy

(1) (2) (3) (4)

Scale4K -0.052 0.004 0.012 -0.001
(0.224) (0.346) (0.023) (0.039)

DA -0.277* -0.231 -0.063*** -0.135***
(0.162) (0.279) (0.019) (0.035)

DA × Scale4K 0.055 0.055 -0.012 -0.012
(0.240) (0.240) (0.027) (0.027)

Period -0.002 -0.004***
(0.008) (0.001)

Lottery -0.048 -0.037***
(0.064) (0.009)

Lottery × DA -0.019 0.029***
(0.071) (0.009)

Lottery × LargeScale -0.022 0.005
(0.071) (0.009)

Constant 11.172*** 11.312*** 0.116*** 0.251***
(0.154) (0.295) (0.017) (0.038)

Observations 3,200 3,200 3,200 3,200
R-squared 0.005 0.007 0.017 0.037

Notes: Standard errors clustered at individual level, shown in parentheses. *** p < 0.01, ** p <
0.05, * p < 0.1

groups of size 40 or 4000 for each period and mechanism by drawing on human subject behavior

from the m = 40 all-human sessions. For each simulated group, students are assigned to schools

based on their reported preferences. We then randomly generate 2000 groups for each human

observation, and calculate the probability that a student may exhibit justified envy in the 2000

simulated matchings. The results are summarized below.

Result 10 (Stability: mechanism effect). For each given market size, the proportion of students

exhibiting justified envy is significantly lower under the DA than under the Boston mechanism.

Support. In specifications (3) and (4) of Table 8, the coefficients for DA are negative and sig-

nificant (-0.076, p < 0.01), whereas neither of the coefficients for DA × Scale40 is significant.

Likewise, the coefficients for DA are negative and significant (-0.063 and -0.135, p < 0.01) in

specifications (3) and (4) in Table 9, whereas neither of the coefficients for DA × Scale4K is

significant.

By Result 10, we reject the null in favor of Hypothesis 5. We also observe that the none of

25



All−human Human−empirical−robots

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 1011121314151617181920 1 2 3 4 5 6 7 8 9 1011121314151617181920
Period

P
ro

po
rt

io
n

Treatment

Boston 4

Boston 40

DA 4

DA 40

Boston 4000

DA 4000

Justified envy

Figure 3: Justified envy in all-human (left panel) and human-vs-empirical-robots (right panel)
treatments

the scale variables in Tables 8 and 9 is significant, indicating the absence of any scale effect on

stability, which is consistent with the theoretical predictions. Thus, we fail to reject Hypothesis 6.

6 Conclusion

In practice, matching mechanisms are implemented across all size markets, from hundreds of stu-

dents in course allocations, to tens of thousands in school choice, to millions in centralized college

admissions markets. However, it is unclear whether market size plays a role in either partici-

pant behavior or mechanism performance. Complicating the issue is the fact that most laboratory

matching experiments work with only small-scale markets.

In this paper, we use the school choice context to present a laboratory experiment investigating

how matching market scale affects individual behavior and the performance of the Boston and the

DA mechanisms. Specifically, we investigate the scale effect by varying the number of students

per match from 4 to 40, and then from 40 to 4,000. The results of our study reveal a significant

scale effect on individual behavior when we increase the scale from 4 to 40. Specifically, subjects

become more likely to reveal their preferences truthfully under the DA mechanism but less likely

to do so under the Boston mechanism. Thus, we conclude that the well-known preference manip-

ulation gap between the DA and the Boston mechanisms in small markets increases when the size

of the market increases by tenfold. Furthermore, we find that this magnification effect is due to an

increased likelihood of individual players to adopt secure strategies in larger markets. Under the
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Boston mechanism, this secure strategy comes through in district school bias, while under the DA

mechanism, it comes through in truthful preference revelation. However, increasing the market

size to 4,000 students per match has no additional effect on individual behavior.

Examining mechanism performance at the aggregate level, we find that, while the Boston

mechanism assigns more students to their first choices, the DA mechanism assigns more students

to their top two choices, i.e., individually rational outcomes. Furthermore, the DA mechanism

has a large and significant stability advantage over the Boston mechanism, which remains robust

across all size markets. A further increase to 4,000-student per match makes no additional change

on the aggregate performance of either mechanism.

In addition to our finding regarding participant behavior and mechanism performance, we con-

tribute to the literature by using robots to create our large matching markets in a standard laboratory

setting. Specifically, we group human subjects with robots whose strategies are drawn from em-

pirical human strategies obtained from our all-human sessions. Previous experiments with robots

endow the robots with either a dominant or random choice strategy. In comparison, we endow them

with empirical strategies, providing a novel solution to the problems associated with conducting

large group experiments in the lab.

Lastly, our findings provide insight into the ongoing theoretical debate on when market size

becomes a factor in matching mechanism performance. Our results indicate that "large" might be

much smaller than predicted in the theoretical literature.
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Subsequent appendices are for online publication only.
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A Instructions (Translated from Chinese)

The complete instructions for the Boston Empirical 4000 treatment (i.e., the treatment for the

Boston mechanism where each human subject plays with empirical robots to form a group of

4000) are shown here. The instruction for the Boston Empirical 40 treatment are identical except

for the number of players, and instructions for the Boston Truthful 4000 treatment are identical ex-

cept for the subsection "Computer Programs’ Strategy ..."; the instructions for the Boston Truthful

40 treatment are identical except for the number of players and the subsection "Computer Pro-

grams’ Strategy..."; the instructions for the Boston All-human treatment are identical except that

the number of players per group is 40 and all the players are human subjects (there is no com-

puter program). Thus, only the different parts of the instructions for the other Boston mechanism

treatments are presented here.

The instructions for the DA treatments are identical to their Boston counterparts except for the

subsection "The process school admission..." and the worksheet for Review Questions # 1 and #11.

Hence, only these two parts for DA Empirical 4000 instruction are provided here; instructions for

the other DA mechanism treatments are omitted, but are available from the authors upon request.

A.1 Instructions for the Boston Empirical 4000 Treatment

Instruction - BE4000

This is an experiment in the economics of decision making. In this experiment, we simulate a

procedure to allocate students to schools. The procedure, payment rules, and student allocation

method are described below. The amount of money you earn will depend upon the decisions you

make and on the decisions other participants make. Do not communicate with each other during

the experiment. If you have questions at any point during the experiment, raise your hand and the

experimenter will help you. At the end of the instructions, you will be asked to provide answers to

a series of review questions. Once everyone has finished the review questions, we will go through

the answers together.

Procedure

• In this experiment, you are matched with 3999 automated computer programs as a group of

4000, which will make decisions under the same situation as yours. We will describe their

strategies later.

• Other than you, there is no other human participant in your group. 4000 participants (includ-

ing 3999 computer programs and yourself) are classified into 4 different types, depending on
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their preferences over schools. Therefore, each group contains 1000 of each of the four dif-

ferent types. Your type will be shown on your computer screen when the experiment starts.

Your type remains the same throughout the experiment.

• In this experiment, 4 schools are available for each group. Each school has 1000 slots.

• Your payoff amount depends on the school you are assigned to at the end of each period.

Payoff amount for 4 types of students are outlined in the following table.

A B C D
Payoff to Type 1 11 7 5 16
Payoff to Type 2 5 11 7 16
Payoff to Type 3 7 16 11 5
Payoff to Type 4 5 16 7 11

Your district school is underlined. In other words, you reside in the underlined school district. If

a school is your district school, you have the higher priority than other non-district-school students

at this school.

• In this experiment, participants are defined as belonging to the following school districts:

The district school for Type 1 students is school A;

The district school for Type 2 students is school B;

The district school for Type 3 students is school C;

The district school for Type 4 students is school D.

• Your assigned school and your payoff have the following relation:

If you are Type 1 student:

You will be paid 11 points if you hold a slot of School A at the end of a period.
You will be paid 7 points if you hold a slot of School B at the end of a period.
You will be paid 5 points if you hold a slot of School C at the end of a period.
You will be paid 16 points if you hold a slot of School D at the end of a period.

The same goes for other types.

• Just like you, computer programs will also make the decision based on the above payoffs

table and whether the school is district/non-district school.
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• The experiment consists of 20 periods. In each period, you are matched with 3999 computer

programs to form a group of 4000; each group contains 1000 of each of the four different

types. Your earnings for each period depend on your choices as well as the choices of the

3999 other participants (computer programs) you are matched with.

• Every period, each participant (including computer programs) will rank the schools. Note

that you need to rank all 4 schools in order to indicate your preferences.

• After all participants have submitted their rankings, the server will start the school placement

in each group and inform each person of his/her admitted school and respective payoff. Note

that your allocation in each period is independent of your allocations in the previous periods.

• Your total payoff equals the sum of your payoffs in all 20 periods. Your earnings are given

in points. At the end of the experiment you will be paid based on the exchange rate:

1 RMB = 5 points.

You will be paid 5 points for answering each Review Question correctly.

In addition, you will be paid 5 RMB for participation. Everyone will be paid in private and you

are under no obligation to tell others how much you earn.

Admission Method

• The priority order for each school depends on two factors:

- Whether the student lives within the school district: the school will give higher priority

to participants who live within the school district, and give low priority to participants

who do not live within the school district.

- Random lottery number: the server will generate random lottery number at the begin-

ning of every 5 periods. Each student (human or computer program) gets a unique

lottery number in the range 1~4000. The smaller the lottery number is, higher the

priority a student has among the district students or non-district students.

The lottery numbers for each type in each period are shown below:

Periods 1-5 Periods 6-10 Periods11-15 Periods 16-20
Type 1 1~1000 3001~4000 2001~3000 1001~2000
Type 2 1001~2000 1~1000 3001~4000 2001~3000
Type 3 2001~3000 1001~2000 1~1000 3001~4000
Type 4 3001~4000 2001~3000 1001~2000 1~1000
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For example, if you are student of Type1, in the periods 1~5, you will be given a random

number in the range 1~1000 at the beginning of 1st period, and the number is fixed for the rest 4

periods; in the periods 6~10, you will be given a random number in the range 3001~4000 at the

beginning of 6th period; the rest can be done in the same manner.

• The process school admission is described by the following method:

Step1: a. An application to the first ranked school is sent for each participant.
b. Each school accepts the student with highest priority in that school. These students

and their assignments are removed from the system.The remaining applications for
each respective school are rejected.

Step2: a. The rejected applications are sent to his/her second choice.
b. If a school is still vacant, then it accepts the student with the highest priority and

rejects the remaining applications.
Step3: a. The application of each participant who is rejected by his/her top two choices is

sent to his/her third choice.
b. If a school is still vacant, then it accepts the student with the highest priority and

rejects the remaining applications.
Step4: Each remaining participant is assigned a slot at his/her last choice.

Computer Programs’ Strategy

Computer programs will make their decisions based on the following rule:

Before this experiment, there was another similar experiment. The differences between these two

experiments are:

• In this experiment, there are 3999 computer programs in a 4000-students group; in the pre-

vious experiment, all 40 participants in the group are human participants like you (not com-

puter programs). There are 4 types of students in the previous experiment, which are the

same as this experiment. But there are only 10 students of each type in the previous experi-

ment. There are 4 schools, each with 10 slots in the previous experiment, not 1000 slots as

this experiment.

• There are 80 participants in that experiment. Two 40-participants groups are randomly

formed at the begining of every round. That is, each round each participant is matched

with 39 different others.

Everything else, such as the student allocation method is the same in these two experiments.
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In this experiment, each period, a computer program will randomly pick one out of the two partic-

ipants (not computer program) of the same type and with the corresponding lottery numbers in the

previous experiment, and rank schools in the same order as her or him.

The correspondence of lottery numbers between the two experiments: the rule of generating lottery

numbers in the previous experiment is similar as this experiment, which is tabulated below.

Periods 1-5 Periods 6-10 Periods11-15 Periods 16-20
Type 1 1~10 31~40 21~30 11~20
Type 2 11~20 1~10 31~40 21~30
Type 3 21~30 11~20 1~10 31~40
Type 4 31~40 21~30 11~20 1~10

In each period, students of the same type, with lottery number 1 correspond to the computer pro-

grams of the same type with the lottery numbers 1~100; students with lottery number 2 correspond

to the computer programs of the same type with the lottery numbers 101~200; and so forth.

For example:

A computer program is a student of Type 1; in the 2nd round, its lottery number is 150, which

corresponds to the lottery number 2 in the previous experiment. Meanwhile in the previous exper-

iment, two participants of Type 1 in that same round, with lottery number 2, ranked schools in the

order of D, B, C, A and A, B, C, D, respectively. Then the computer program will rank schools

in the order of D, B, C, A with probability 50%, and A, B, C, D with probability 50%. Other

computer programs of Type 1, with lottery numbers 101~200 will also rank schools based on such

rule.

All computer programs in each period will follow this rule.

An example:

We will go through a simple example to illustrate how the admission method works. This example

has fewer students than the actual decisions you will make. You will be asked to work out the allo-

cation of this example for Review Question 1. There are 6 blank spaces to fill in on the computer

screen. You will be given 5 points for entering each correct answer in each space.

Students and Schools: in this example, there are 6 students, 1-6, and 3 schools, A, B and C.

Student ID number: 1,2,3,4,5,6 Schools: A, B, C
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School A is the district school of student 1 and 2; school B is the district school of student 3 and

4; school C is the district school of student 5 and 6.

Ranking of schools based on the lottery: Students’ lottery numbers are indicated in the table below.

Student Lottery number
1 1
2 2
3 3
4 4
5 5
6 6

Submitted School Rankings:

Student 1st Choice 2nd Choice 3rd Choice
1 C A B
2 C A B
3 A B C
4 A B C
5 C B A
6 A C B

The assignment method consists of the following steps: Please use this sheet to work out the

allocation and enter it into the computer for Review Question 1.

Step 1: Each student applies to his/her first choice. If a school receives more applications than its

capacity, then it accepts the applicant with the highest priority and rejects the remaining students.

Student School Accept Reject
3,4,6 −→ A −→

B
1,2,5 −→ C −→

Step 2: Each student rejected in Step 1 applies to his/her second choice. If a school still has

vacancy, it accepts the applicant with the highest priority and rejects the rest. If a school is already

full, it rejects all new applications.

Student School Accept Reject
−→ A −→

B
−→ C −→
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Step 3: Each student rejected in Step 2 applies to his/her next choice.

Student School Accept Reject
−→ A −→

B
−→ C −→

The allocation process terminates at the end of step 3.

• Please enter your answer to the computer for Review Question 1. After all have entered their

answers, we will distribute an answer sheet and go through the answer together.

• Afterwards, you will be asked to answer another 10 review questions. When everyone is

finished with them, we will again go through the answers together.

• Feel free to refer to the experimental instructions before you answer any question.

Answer to Review Question 1: The allocation method consists of the following steps:

Step 1: Each student applies to his/her first choice: students 3, 4 and 6 apply to A, and student 1,

2 and 5 apply to C.

• School A accepts the applications of students 3 and 4, rejects student 6, because 3 and 4 have

smaller lottery numbers than 6, and none of them are school district residents of school A.

• School C accepts the applications of student 1 and 5, rejects student 2, because 5 is a district

resident, and therefore has the highest priority; between 1 and 2, 1 has a higher priority based

on lottery. There is only one vacancy for school C, so it accepts student 1 and rejects student

2.

Student School Accept Reject
3,4,6 −→ A −→ 3,4 6

B
1,2,5 −→ C −→ 1,5 2

Step 2: Each student rejected in Step 1 applies to his/her next choice. Student 2 applies to school

A, and student 6 applies to school C. Although they both live in the school district, since school A

and C are already full, they are both rejected.
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Student School Accept Reject
2 −→ A −→ 3,4 2

B
6 −→ C −→ 1,5 6

Step 3: Each student rejected in Step 2 applies to his/her next choice. Both students 2 and 6 apply

to School B.

School B accepts the applications of students 2 and 6.

Student School Accept Reject
A 3,4

2,6 −→ B −→ 2,6
C 1,5

Answers to Review Questions 2-11:

2. How many participants are there in your group each period?

Answer: 4000

3. How many human participants are there in your group each period?

Answer: 1

4. True or false: Participant living in a school district has higher priority than applicants for

that school who do not live in the school district.

Answer: True.

5. True or false: The priority among residents of a school district is determined by their lottery

number.

Answer: True.

6. True or false: The priority among non-residents of a school district is determined by their

lottery number.

Answer: True.

7. True or false: The lottery is fixed for the entire 20 periods.

Answer: False. It is randomly determined each five periods.

8. True or false: A lottery number of 1 means that I have the highest priority among the other

non-resident applicants in a school.

Answer: True.
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9. True or false: If you are accepted by a school of your choice, the schools ranked below are

irrelevant.

Answer: True.

10. True or false: If you are not rejected at a step, then you are accepted into that school.

Answer: True.

11. True or false: The allocation is final at the end of each step.

Answer: True.

You will have 5 minutes to go over the instructions at your own pace. Feel free to earn as much as

you can.

Are there any questions?

A.2 Instructions for the Boston Empirical 40 Treatment

(......)

Procedure

• In this experiment, you are matched with 39 automated computer programs as a group of

40, which will make decisions under the same situation as yours. We will describe their

strategies later.

• Other than you, there is no other human participant in your group. 40 participants (including

39 computer programs and yourself) are classified into 4 different types, depending on their

preferences over schools. Therefore, each group contains 10 of each of the four different

types. Your type will be shown on your computer screen when the experiment starts. Your

type remains the same throughout the experiment.

• In this experiment, 4 schools are available for each group. Each school has 10 slots.

(......)

• The experiment consists of 20 periods. In each period, you matched with 39 computer

programs to form a group of 40; each group contains 10 of each of the four different types.
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Your earnings for each period depend on your choices as well as the choices of the 39 other

participants (computer programs) you are matched with.

(......)

Admission Method

(......)

- Random lottery number: the server will generate random lottery number at the beginning of

every 5 periods. Each student (human or computer program) gets a unique lottery number in

the range 1~40. The smaller the lottery number is, higher the priority a student has among

the district students or non-district students.

The lottery numbers for each type in each period are shown below:

Periods 1-5 Periods 6-10 Periods11-15 Periods 16-20
Type 1 1~10 31~40 21~30 11~20
Type 2 11~20 1~10 31~40 21~30
Type 3 21~30 11~20 1~10 31~40
Type 4 31~40 21~30 11~20 1~10

For example, if you are student of Type1, in the periods 1~5, you will be given a random

number in the range 1~10 at the beginning of 1st period, and the number is fixed for the rest

4 periods; in the periods 6~10, you will be given a random number in the range 31~40 at the

beginning of 6th period; the rest can be done in the same manner.

(......)

Computer Programs’ Strategy

Computer programs will make their decisions based on the following rule:

Before this experiment, there was another similar experiment. The differences between these two

experiments are:

• In this experiment, there are 39 computer programs in a 40-students group; in the previous

experiment, all 40 participants in the group are human participants like you (not computer

programs).
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• There are 80 participants in that experiment. Two 40-participants groups are randomly

formed at the begining of every round. That is, each round each participant is matched

with 39 different others.

Everything else, such as the types of students, the payoff for being admitted to each school, the

student allocation method, and the arrangement of lottery numbers are the same in these two ex-

periments.

In this experiment, each period, a computer program will randomly pick one out of the two partic-

ipants (not computer program) of the same type and with the same lottery number in the previous

experiment, and rank schools in the same order as her or him.

For example:

A computer program is a student of Type 1: in the 2nd round, its lottery number is 2. Meanwhile

in the previous experiment, two participants of Type 1 in that same round, with lottery number 2,

ranked schools in the order of D, B, C, A and A, B, C, D, respectively. Then the computer program

will rank schools in the order of D, B, C, A with probability 50%, and A, B, C, D with probability

50%.

All computer programs in each period will follow this rule.

(......)

Answers to Review Questions 2-11:

2. How many participants are there in your group each period?
Answer: 40

(......)

A.3 Instructions for the Boston Truthful 4000 Treatment

(......)

Computer Programs’ Strategy

Computer programs will make their decisions based on the following rule:
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Computer programs will always rank schools based on their true preference orders.

For example, a computer program is a student of Type 2, therefore its preference order of schools

is (D, B, C, A). It then will also rank school (D, B, C, A) on his list.

(......)

A.4 Instructions for the Boston Truthful 40 Treatment

(......)

Procedure

• In this experiment, you are matched with 39 automated computer programs as a group of

40, which will make decisions under the same situation as yours. We will describe their

strategies later.

• Other than you, there is no other human participant in your group. 40 participants (including

39 computer programs and yourself) are classified into 4 different types, depending on their

preferences over schools. Therefore, each group contains 10 of each of the four different

types. Your type will be shown on your computer screen when the experiment starts. Your

type remains the same throughout the experiment.

• In this experiment, 4 schools are available for each group. Each school has 10 slots.

(......)

• The experiment consists of 20 periods. In each period, you matched with 39 computer

programs to form a group of 40; each group contains 10 of each of the four different types.

Your earnings for each period depend on your choices as well as the choices of the 39 other

participants (computer programs) you are matched with.

(......)

Admission Method

(......)
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- Random lottery number: the server will generate random lottery number at the beginning of

every 5 periods. Each student (human or computer program) gets a unique lottery number in

the range 1~40. The smaller the lottery number is, higher the priority a student has among

the district students or non-district students.

The lottery numbers for each type in each period are shown below:

Periods 1-5 Periods 6-10 Periods11-15 Periods 16-20
Type 1 1~10 31~40 21~30 11~20
Type 2 11~20 1~10 31~40 21~30
Type 3 21~30 11~20 1~10 31~40
Type 4 31~40 21~30 11~20 1~10

For example, if you are student of Type1, in the periods 1~5, you will be given a random

number in the range 1~10 at the beginning of 1st period, and the number is fixed for the rest

4 periods; in the periods 6~10, you will be given a random number in the range 31~40 at the

beginning of 6th period; the rest can be done in the same manner.

(......)

Computer Programs’ Strategy

Computer programs will make their decisions based on the following rule:

Computer programs will always rank schools based on their true preference orders.

For example, a computer program is a student of Type 2, therefore its preference order of schools

is (D, B, C, A). It then will also rank school (D, B, C, A) on his list.

(......)

Answers to Review Questions 2-11:

2. How many participants are there in your group each period?
Answer: 40

(......)
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A.5 Instructions for the Boston All-human Treatment

(......)

Procedure

• There are 80 participants of 4 different types in this experiment. Your type will be shown

on your computer screen after the experiment starts. Your type remains the same throughout

the experiment.

• You will be randomly matched with other 39 participants into groups of 40 at the beginning

of each period. 4 schools are available for each group. Each school has 10 slots.

(......)

• The experiment consists of 20 periods. In each period, you are randomly matched with other

39 participants to form a group of 40; each group contains 10 of each of the four different

types. Your earnings for each period depend on your choices as well as the choices of the 39

other participants you are matched with.

• Every period, each participant will rank the schools. Note that you need to rank all 4 schools

in order to indicate your preferences.

(......)

Admission Method

(......)

- Random lottery number: the server will generate random lottery number at the beginning of

every 5 periods. Each student gets a unique lottery number in the range 1~40. The smaller

the lottery number is, higher the priority a student has among the district students or non-

district students.

The lottery numbers for each type in each period are shown below:
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Periods 1-5 Periods 6-10 Periods11-15 Periods 16-20
Type 1 1~10 31~40 21~30 11~20
Type 2 11~20 1~10 31~40 21~30
Type 3 21~30 11~20 1~10 31~40
Type 4 31~40 21~30 11~20 1~10

For example, if you are student of Type1, in the periods 1~5, you will be given a random

number in the range 1~10 at the beginning of 1st period, and the number is fixed for the rest

4 periods; in the periods 6~10, you will be given a random number in the range 31~40 at the

beginning of 6th period; the rest can be done in the same manner.

(......)

[There is no subsection "Compter Programs’ Strategy..." in the instructions for the Boston

All-human Treatment.]

(......)

Answers to Review Questions 2-11:

2. How many participants are there in your group each period?
Answer: 40

3. True or false: You will be matched with the same 39 participants each period.
Answer: False. You are randomly re-matched with 39 other participants each period.

(......)

A.6 Instructions for the Deferred Acceptance Empirical 4000 Treatment

(......)

• The process school admission is described by the following method:
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Step1: Each student applies to his first choice school. For each school, up to the number
of applicants that does not exceed its capacity, who have the highest priority for this
school, are tentatively accepted. The remaining applicants are rejected.

Step2: Each student rejected from a school at step 1 applies to his next favorite acceptable
school. For each school, it pools together the new applicants and the students that have
already been tentatively placed, and tentatively accepts those who have the highest
priority within its capacity. The remaining applicants are rejected.
... ...

The process continues until there is no student being rejected. Then all tentative acceptances

become permanent.

(......)

An example:

(......)

Submitted School Rankings:

Student 1st Choice 2nd Choice 3rd Choice
1 C B A
2 C A B
3 A B C
4 A B C
5 C B A
6 A C B

The assignment method consists of the following steps: Please use this sheet to work out the

allocation and enter it into the computer for Review Question 1.

Step 1: Each student applies to his/her first choice. If a school receives more applications than its

capacity, then it temporarily holds the applications with the highest priority within its capacity and

rejects the remaining students.

Student School Hold Reject
3,4,6 −→ A −→

B
1,2,5 −→ C −→

Step 2: Each student rejected in Step 1 applies to his/her next choice. When a school receives

new applications, these applications are considered together with the application on hold for that
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school. Among the new applications and those on hold, the one with the highest priority is on hold

within the school’s capacity, while the rest are rejected.

Hold New Applicants School Hold Reject
−→ A −→
−→ B −→
−→ C −→

Step 3: Each student rejected in Step 2 applies to his/her next choice. No one is rejected at this

step. All students on hold are accepted.

Hold New Applicants School Accept Reject
−→ A −→
−→ B −→
−→ C −→

The allocation process terminates at the end of step 3.

• Please enter your answer to the computer for Review Question 1. After all have entered their

answers, we will distribute an answer sheet and go through the answer together.

• Afterwards, you will be asked to answer another 10 review questions. When everyone is

finished with them, we will again go through the answers together.

• Feel free to refer to the experimental instructions before you answer any question.

Answer to Review Question 1: The allocation method consists of the following steps:

Step 1: Each student applies to his/her first choice: students 3, 4 and 6 apply to A, and student 1,

2 and 5 apply to C.

• School A accepts the applications of students 3 and 4, rejects student 6, because 3 and 4 have

smaller lottery numbers than 6, and none of them are school district residents of school A.

• School C accepts the applications of student 1 and 5, rejects student 2, because 5 is a district

resident, and therefore has the highest priority; between 1 and 2, 1 has a higher priority based

on lottery. There is only one vacancy for school C, so it accepts student 1 and rejects student

2.
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Student School Hold Reject
3,4,6 −→ A −→ 3,4 6

B
1,2,5 −→ C −→ 1,5 2

Step 2: Each student rejected in Step 1 applies to his/her next choice. Student 2 applies to school

A, and student 6 applies to school B.

• School A considers the application of student 2 together with the applications of students 3

and 4 which were on hold. Student 2 is a resident in that school district, and student 3 has a

smaller lottery number, therefore school A holds students 2 and 3’s applications, and rejects

student 4.

• Similarly, school C holds students 5 and 6’s applications, and rejects student 1.

Hold New Applicants School Hold Reject
3,4 2 −→ A −→ 2,3 4

B
1,5 6 −→ C −→ 5,6 1

Step 3: Each student rejected in Step 2 applies to his/her next choice. Student 1 and 4 both apply

to School B in the next choice.

School B holds the applications of student 1 and 4.

Since no student is rejected after this step, all tentative holdings become permanent acceptance.

Hold New Applicants School Accept Reject
2,3 A 2,3

1,4 −→ B −→ 1,4
5,6 C 5,6

Answers to Review Questions 2-11:

(......)

11. True or false: The allocation is final at the end of each step.
Answer: False. The allocation at the end of every step is temporary except the final step.
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Appendix B. Additional Tables and Figures

This appendix presents additional tables and figures, organized by section.

B.1. Experimental Design

Table 10: Priority Queue
Scale Type 1 Type 2 Type 3 Type 4

Block 1: periods 1-5
4 students 1 2 3 4
40 students 1~10 11~20 21~30 31~40

4000 students 1~1000 1001~2000 2001~3000 3001~4000

Block 2: periods 6-10
4 students 4 1 2 3
40 students 31~40 1~10 11~20 21~30

4000 students 3001~4000 1~1000 1001~2000 2001~3000

Block 3: periods 11-15
4 students 3 4 1 2
40 students 21~30 31~40 1~10 11~20

4000 students 2001~3000 3001~4000 1~1000 1001~2000

Block 4: periods 16-20
4 students 2 3 4 1
40 students 11~20 21~30 31~40 1~10

4000 students 1001~2000 2001~3000 3001~4000 1~1000

B.2. Results - Individual Behavior

Table 11: Proportion of truthful preference revelation and district school bias
All-human treatments

Truthful Preference Revelation District School Bias

BOS-4 DA-4 BOS-40 DA-40 BOS-4 DA-4 BOS-40 DA-40

Session1 0.421 0.696 0.353 0.644 0.550 0.183 0.607 0.259
Session2 0.483 0.596 0.409 0.693 0.375 0.271 0.568 0.261
Session3 0.492 0.554 0.496 0.204
Session4 0.463 0.567 0.442 0.338

Average 0.465 0.603 0.381 0.668 0.466 0.249 0.588 0.260

Human-vs-empirical-robot treatments

Truthful Preference Revelation District School Bias

BOS-40 DA-40 BOS-4K DA-4K BOS-40 DA-40 BOS-4K DA-4K

Session1 0.419 0.602 0.498 0.708 0.538 0.283 0.460 0.216
Session2 0.487 0.629 0.368 0.614 0.476 0.247 0.585 0.212

Average 0.453 0.616 0.433 0.661 0.507 0.265 0.523 0.214
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We present two additional tables for individual behavior. Table 11 presents the proportion of

truthful preference revelation and district school bias at the session level.

Table 12: K-S test for all-human 40-student and human-vs-39-empirical-robots sessions
Boston-40 (Ha : All human 6= Empirical robot) DA-40 (Ha : All human 6= Empirical robot)

Period P-value Period P-value Period P-value Period P-value

1 0.218 11 0.914 1 0.078 11 0.627
2 0.997 12 0.814 2 0.254 12 0.989
3 0.868 13 0.868 3 0.949 13 0.691
4 0.914 14 0.997 4 0.563 14 0.974
5 0.997 15 0.949 5 0.754 15 0.814
6 0.389 16 0.989 6 1 16 0.691
7 1 17 0.868 7 0.868 17 0.627
8 0.949 18 0.627 8 0.997 18 0.218
9 0.502 19 0.914 9 1 19 0.814

10 0.295 20 0.949 10 0.914 20 0.989

Notes: p-values calculated for Ha : All human 6= Empirical robot, with K-S test at the individual
level.

Table 12 presents the results of the Kolmogorov-Smirnov tests of the equality of distributions

of strategies between the all-human 40-student treatment and the corresponding human-vs-39-

empirical-robots treatment, period by period. We do not pool across all periods because of the

interdependency of strategies across periods.
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B.3. Results - Aggregate Performance

Figures 4 and 5 present the first-choice accommodation rate for the all-human and the human-

vs-empirical-robots treatments, respectively, comparing the proportion of subjects receiving their

reported (top panel) and true first choices. We see that a greater proportion receive their reported

top choice under the Boston mechanism, but the gap between the two mechanisms is much smaller

when examining subjects’ true top choices.
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Figure 4: First choice accommodation in all-human experiment

Figure 6 presents the proportion of individually rational allocations in each treatment.
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Figure 5: First choice accommodation in human-vs-empirical-robots experiment
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Appendix C. Best Response Analysis

In this section, we investigate whether students’ strategies are the best responses under differ-

ent mechanisms with different market sizes. We start by examining the human-vs-truthful-robots

treatment, where there is no strategic uncertainty regarding other players’ behavior.

C.1. Human-vs-truthful-robots experiment

Using a human-robot design allows us to control robots’ strategies and thus study the nature of

subjects’ responses. In our experiment, robots are designed to always reveal their true preferences.

This, in the school choice context, is considered a “naïve” strategy (Ergin and Sönmez, 2006).

Table 13 presents the best response strategies for each type in each lottery block under the Boston

mechanism.

Table 13: Best Responses in the Truthful-robot Boston Treatment

Type 1 Type 2 Type 3 Type 4

Block 1: T1 D T1 D
Block 2: T2 or D T1 T1 D
Block 3: T1 D T1 D
Block 4: T1 D T2 or D T1

Note: T1 = Truthful first choice revelation; T2 = Truthful revelation of the first two choices; D =
District school bias

Under the DA mechanism, when human players are matched with truthful robots, all strategies

yield the same outcome. Therefore, there is no single best response. However, significantly more

than 25% (if chosen by random) of first choices are truthful (Chi-square goodness of fit test against

multinomial distribution, p < 0.01).

Under the Boston mechanism, the situation becomes more interesting. We first establish the

following definitions:

• Best response truth-telling: revealing the true preference as the best response.

• Naïve truth-telling: revealing the true preference when district bias is the best response.

• Justified district bias: having district bias when it is the best response.

• Unjustified district bias: having district bias when truth telling is a better option.
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Table 14: Breakdown of strategies in the Truthful Boston treatments
Small Scale Large Scale

Best response 0.884 0.921

BR truth-telling 0.465 0.505
Justified DB 0.419 0.416

Non-best response 0.102 0.063

Naive truth-telling 0.023 0.031
Unjustified DB 0.079 0.031

Table 14 summarizes the proportion of best responses as well as the proportion of strategies that

could be classified as each of the four types listed above.

Note that the proportion of best responses is probably overestimated, as naïve truth-telling

cannot be discarded when truth-telling is a best response strategy. Furthermore, justified district

bias in a certain period is unlikely to be viewed as a best response if subjects still exhibit district

bias in the later periods when it is no longer a best response (such as students of Type 4 in block

4).

As a result, we need to refine what constitutes a best response: in accordance with behavioral

consistency, the best response in a given period is considered only when a subject always best-

responds starting that period. If a subject best responds in one period, she should best respond in

subsequent periods. Although this refined best response definition does not allow for any mistake

or learning by trial and error when best response strategies switch, it may provide greater insight

in our analysis.

Figure 8 presents the proportion of refined best responses over time, interpreted as the propor-

tion of subjects who always best-respond to the environment starting that period. It is interesting

to observe that this behavior increases sharply in the first three periods and then slows its growth

until the last period. In the last period, 92.5% of subjects play best responses, while 42.5 % of

subjects play their best responses from Period 1.

In contrast, the proportion of truth-telling shown in Figure 9 indicates no learning over periods.

While there is no indication of learning, Figure 8 better captures human participants’ likelihood of

giving a best response in such environments.

C.2. All-human and human-vs-empirical-robots experiment

Using the definition and concepts developed in the human-vs-truthful-robots experiment, we apply

the same method to the other two sets of treatments. This time, however, players do not know
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others’ strategies when they decide theirs. To capture this scenario, we implement counterfactual

simulations using a strategy of either truth-telling or district bias. For the all-human treatments, for

each observation, we control the strategies of all other players in the group, calculate the possible

payoffs under truth-telling and district bias respectively, and compare them with what that player

actually earned. For the human-vs treatments, we again recreate 2000 groups for each human

observation, calculate the expected payoff under truth-telling and district bias respectively, and

compare them with what that player actually earned. Figures 10 and 11 present the proportions

of players who best respond to other players’ strategies as well as exhibit either naive truth-telling

or unjustified district bias. Figures 12 and 13 present the proportions of players who always best

respond since a certain period.

Result 11 (Best responses). More students play best response strategies under the DA than under

Boston, and more students play best response strategies under large scale than under smaller scale

market conditions.

Support. In specification (1) and (4) of Table A.6, the marginal effect of the LargeScale dummy

is 0.034 (p < 0.05), and the marginal effect of DA is 0.115 (p < 0.01). In specification (4),

the marginal effect of LargeScale is 0.084. (p < 0.01), and the marginal effect of DA is 0.104

(p < 0.01). There is not interaction effect.

When we look at the set of subjects who do not play best response strategies, we can see that,

for the all-human treatments, the DA significantly reduces the proportion of subjects who exhibit

district bias when it is not a best response strategy (-7.1%, p < 0.05). On the other hand, when

playing against robots, subjects are less like to reveal their true preferences when it is not in their

interest to do so under Boston (-10%, p < 0.01).

Finally, Figures 12 and 13, and Table 16 confirm the above result when we look at the conver-

gence over time as a result of subjects learning to play best response strategies.
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Figure 10: Best responses and other strategies in all-human experiment
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Figure 11: Best responses and other strategies in human-empirical-robots experiment
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Figure 12: Proportion of subjects who always best respond in subsequent periods in all-human
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Table 15: Strategies in all-human and human-vs-empirical-robots treatments: probit regressions
Treatment All-human Empirical-robots

(1) (2) (3) (4) (5) (6)

Dependent Best Naïve Unjustified Best Naïve Unjustified
Variables Response Truth-telling District Bias Response Truth-telling District Bias

LargeScale 0.034** -0.024 -0.032 0.084*** -0.100*** -0.047
(0.017) (0.046) (0.029) (0.020) (0.031) (0.032)

DA 0.115*** -0.071** 0.104*** -0.009
(0.020) (0.035) (0.022) (0.032)

DA × LargeScale -0.001 -0.021 -0.010 -0.060
(0.031) (0.041) (0.034) (0.047)

Observations 8,320 4,381 3,397 3,200 1,726 1,209

Notes: Standard errors in parentheses are clustered at the session level for specification (1), (2) and
(3), at subject level for specification (4), (5) and (6). *** p < 0.01, ** p < 0.05, * p < 0.1

Table 16: Probability of always playing best response after a certain period: probit regressions
Treatment All-human Empirical-robots

(1) (2) (3) (4)

LargeScale 0.040* 0.040* 0.147** 0.155**
(0.021) (0.022) (0.067) (0.067)

DA 0.196*** 0.197*** 0.207*** 0.214***
(0.067) (0.067) (0.063) (0.063)

DA × LargeScale 0.113 0.111 0.013 0.002
(0.091) (0.092) (0.102) (0.101)

Period 0.022*** 0.035***
(0.001) (0.002)

Observations 8,320 8,320 3,200 3,200

Notes: Standard errors in parentheses are clustered at the session level for specification (1) and (2),
at subject level for specification (3) and (4). *** p < 0.01, ** p < 0.05, * p < 0.1
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