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Abstract: It is now accepted that using the multi-agents system (MAS) augments the reactivity to treat 

disturbances within flexible manufacturing system. Each agent could have different capability (evolution, 

learning, etc.) and the whole physical and control system, based on the agent interaction, could lead 

emerging behaviors to dynamically adapt a production schedule. Intelligent control algorithms shall be 

used to define these variables and all smart entities within their environment have to continuously 

negotiate for their final common goal. This paper proposes a negotiation-based reactive control approach 

to deal with variability on manufacturing processes. A simulation experiment on the basis of full sized 

academic experimental platform was used to test how the negotiation-based reactive control approach 

could optimize priority based product sequencing. The product and resource agents have been built to 

negotiate considering different production performance measures. This has been done with expectations 

that the applicability of the negotiation-based reactive decision making process will be more adaptable to 

a production change than myopic decisions. 

Keywords: Control Protocol, Distributed Reactive, Intelligent Decision, Multi-Agents System, 

Negotiation-based Control  

 

1. INTRODUCTION 

In today‟s volatile market world, manufacturing industries 

are facing a severe pressure to deal with the increased 

variability of manufacturing systems, especially with the 

control of their lead times, due dates, and work-in-process 

mainly impacted by the queue times. Meanwhile, the 

paradigm of Industry4.0, which gears towards increasingly 

individualized customer requirements (Koch et al. 2014), is 

urging these industries to focus on technological 

advancement by integrating their intelligent resources, 

products, and augmented human. As a result of this pressure, 

industries are continuously seeking for new control systems 

that enable them to respond quickly. For instance, as a 

response to unpredictable disruptions, they could look for 

proactive control (eliminating problems before they have 

chance to appear), reactive control (responding to past or 

current events after they have happened), or interactive 

control (associates with technologies allowing human-

machine interaction) approaches (Fig. 1).  The last approach 

realizes the capability of smart entities to create a system 

such that production components within the system not only 

interact to each other but also adapt and/or learn.  

In addition to manufacturing industries, research institutions 

have been also showed the interest of designing and 

employing negotiation heuristics for multi-agent 

manufacturing systems (Shen et al. 2006). For example, when 

schedules acquire a reputation for rapid invalidity because of 

frequent changes, using dynamic rescheduling methods to 

conquer such disturbances is proved to be crucial. To do this, 

intelligent optimization protocols shall be used to define 

different variables and all entities within the environment 

have to continuously negotiate for final decision. In this 

paper, negotiation-based reactive control approach (NRC) 

between product and resource agents cooperating to set best 

sequential priority-based production process has been 

presented to show its advantage over pure reactive control 

approach (PRC). In pure reactive control approach, product 

agents are active and well known of their own state but 

resource agents are mostly dormant that simply waits for 

instructions from product agents and hence the overall 

performance of the system is decided by product agents only. 

 

Fig. 1. Three control approaches in manufacturing systems 
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MATLAB simulation experiments on the basis of 

TRACILOGIS test-bed platform was used to test how these 

two production decision approaches affect the priority based 

routing sheet. Resource utilization, product tardiness, and 

makespan as performance measures and work-in-progress 

queue between a machine and its upper stream as constraint 

are considered during the experiment. The work proposed in 

this paper is 

the continuity of Mezgebe et al. (2018). The experimental 

scenario is significantly improved with a greater 

analysis of performance criteria on higher instances. The test 

on the TRACILOGIS Platform is still in progress. 

The rest of the paper is organized as follow. Section 2 

elaborates related works on negotiation-based reactive 

control approach. After this, Section 3 demonstrates the 

negotiation scenario between product and resource agents 

using different control protocols and mathematical models. 

Section 4 analyses the comparative results of the two control 

approaches. Finally, Section 5 forwards further remarks 

mainly relating to the role of consensus algorithm for 

optimizing distributed reactive control by coupling with 

central entities. 

2. REVIEW OF RELATED MATERIALS 

In the manufacturing control systems survey, it is well 

accepted that multi-agents system model is a good way to 

deal with disturbances observed within a shop floor. Without 

being exhaustive, some intelligent manufacturing control 

systems based on MAS could be cited: Leitão (2009), Herrera 

et al. (2016), Saharidis et al. (2006), Anderson & Bartholdi 

(2000), Mezgebe et al. (2018) etc. Successively, many 

researchers are still working on this control system as it 

employs different models depending on the nature of real 

time events. Multi-agent system (MAS) is a system that 

consist a society of agents that could potentially collaborate 

with each other with capability to perceive, reason, and 

communicate to solve problems (Wooldridge, 2009; Botti & 

Giret, 2008; Isern et al., 2011). Wooldridge (2009) has raised 

two questions that could always come when one needs to 

implement these cooperative agents: (a) How one can build 

agents that are capable of autonomy? (b) How one can build 

agents that are capable of cooperating with other agents?  

In answering these questions, an agent has to cooperate with 

other nearby agents in several different ways. Validating this 

cooperation, Isern et al. (2011) has presented that even 

though agents are perceived as autonomous entities, they are 

also members of a society and have to exchange information 

with other agents and maintain some relationships at an 

organizational level. Consequently, the mere presence of 

multiple agents makes the environment appear dynamic from 

the point of view of each agent, with the control system they 

follow, typically distributed reactive control (Vlassis 2003). 

On the other hand, to create an environment that provides an 

infrastructure specifying communication and interaction 

protocols of agents, Weiss (1999) has pointed out the 

knowability, reactivity, and sociability of agents as basic 

characteristics of multi-agent environment. Meanwhile, 

Holvoet & Valckenaers (2006) have stated that the 

applicability of MAS is characterized by their large scale in 

terms of number of agents & physical distribution, their very 

dynamic nature, and their complex functional & non-

functional requirements. To sustain these characteristics, 

different application models and control architectures could 

always take appropriate attention as they bring amplified 

benefits. Examples are ant colony (Valckenaers & Van 

Brussel, 2015; Blum & Sampels, 2004; Liang & Smith, 2004; 

termite colony (Pannequin R. & Thomas A. (2012), potential 

field (Pach et al., 2014), and negotiation between intelligent 

entities (Tonino, 2002; Rahwan et al., 2003; Kraus, 1997), 

among many others. 

From these applicability models, the negotiation of agents 

has taken viable attention. For instance, Dimopoulos & 

Moraitis (2006) has stated that individual agents can generate 

and execute their plans independently. However, as they 

operate in the same environment, conflicts may arise and 

hence they need to coordinate their course of action. 

(Zambrano et al., 2011; Wooldridge, 2009) have also 

indicated that negotiation among agents is foreseen to host a 

robust-predictive-reactive scheduling and also to tackle 

myopia. On the other hand, Tonino et al. (2002) has 

illustrated the investigations of different automated agent 

negotiation approaches including game-theoretic, heuristic-

based, and argumentation-based approaches. Globally, three 

of them emphasize the importance of exchanging information 

between agents in order to mutually influence their 

behaviours. The game-theoretic approach helps to determine 

an optimal strategy by analyzing the interaction of agents as a 

game rule between identical and self-interested participants 

(Nagarajan & Sošić, 2008; Rosenschein & Zlotkin, 1994) but 

unbounded computational resources as limitation. To 

overcome this limitation, the heuristic approach has come 

with the principle of “produce good enough rather than 

optimal outcomes” (Aydogan et al., 2013; Kraus, 2001). 

Irrespective of its advantage, this approach is also known for 

its sub-optimal outcome as it does not examine the full space 

of possible outcomes (Jennings et al. 2001). 

Argumentation-based negotiation approach has evolved to 

overcome the knowledge limitations of agents in game-

theoretic and heuristic negotiation approaches. As it has been 

surveyed by Rahwan et al. (2003), this negotiation approach 

allows agents to exchange additional information, or to argue 

about their beliefs & other‟s mental attitudes during the 

negotiation process. Agents accept, reject, or critique an offer 

proposed by other agent until they agree on this offer. 

Generally, the work of Rahwan et al. (2003) has magnified 

that argumentation-based negotiation approach has been 

gained increasing popularity for its potential ability to 

overcome the limitations of other conventional approaches. 

However, too little attention has been paid to the role of 

smart agents in improving the performance of negotiation 

approaches. Consequently, as it is stated earlier, Mezgebe et 

al. (2018) have proposed negotiation model considering 

smart product agents scheduled to be processed on two 

resource agents. The communication protocol was fully 

controlled by these product agents and the role of RFID 

technology was partly used to help detect disturbances and 

send back to product agents for its management. As 



 

 

     

 

continuation of this work, this paper has considered a full 

sized academic experimental platform configured with four 

executing resource agents and many real time events that 

demand more dynamic decisions; zone B of (Fig. 2). Product 

& resource agents are made to broadcast information among 

each other with complete involvement of RFID technology 

and PLC technology. Meanwhile, the experimental 

simulation scenario has been significantly improved with a 

greater analysis of performance criteria on higher instances.  

3. THE NEGOTIATION-BASED REACTIVE 

CONTROL SCENARIO 

As it has been emphasized in (Fig. 1), if unexpected system 

disturbance that has significant impact on a master 

production schedule (MPS) has occurred, heuristic 

rescheduling is expected right after the interruption to save 

the master schedule. The big concern at this juncture is how 

to make all control agents to define best decision in order to 

behave in a sense that the whole system stays globally 

sufficient for its immediate goal. To simulate this decision, a 

physical system of carpentry factory with four chronological 

work activities namely cutting (resizing), drilling, sanding, 

and coating is modeled based on the TRACILOGIS platform 

shown in (Fig. 2). The modeled physical system is composed 

of four intelligent machines M1, M2, M3, and M4 to execute 

these operations. In case of unpredictable failure of one 

machine, others have the capability to perform all operations. 

3.1 The TRACILOGIS platform 

TRACILOGIS test-bed platform lets studying different types 

of identification, traceability, and control (either centralized, 

distributed, or hybrid of the two) for products & logistic 

chains in wood industry. It is composed of an extensive 

system of networks, linking different actors of the system, be 

they sensors, actuators to automata or even automata to 

computers, RFID (Radio Frequency IDentification) sensors, 

PLC (Production Line Controller agents that manage all of 

the automaton actions of their area) etc. Additionally, it 

allows to assess the impact of new & smart technologies, test 

& demonstrate new production decision modes, and confirm 

running modes for production control through its four 

automations; Zone-A to Zone-D in (Fig. 2).  

3.2 Simulated configuration of the physical system  

Three product types from three customer orders Order-1, 

Order-2, and Order-3 are considered to be executed on the 

system at full batch horizon and for each order; ten intelligent 

products (Pi) are launched on the platform. Each product 

agent follows the standard routing sheet based on the MPS 

given in Error! Reference source not found.. Products are 

made to enter the system based on their sequential arrival 

order; order-1 enters first and order-2 & order-3 follows 

(Order3 Order2 Order1). However, Order-2 precedes 

order-1 and order-3 follows at the exit of the system as the 

production decision has used SPT first heuristic 

(Order3 Order1 Order2) in order to minimize extra 

routing time by products of order-2. In the MPS based 

routing sheet shown in Table 1 and (Fig. 2), products in 

order-3, for example, passes on M1 for their first operation 

(O1), moves to M2 for their next operation (O2), loops on 

buffer zone until the products of order-1 completes their 

processing time in M3, travels to M3 for their third operation 

(O3), and finally routes to M4 for their fourth operation (O4). 

The looping in buffer zone by products of order-3 helps to 

minimize machine buffer in M3 and hence ensures optimal 

utilization rate of the machine, “(1)”. 

While following this route, if unexpected event (e.g., 

unfortunate work-in-process pile-up between M1 and its 

upstream has encountered) has occurred, it will lead to high 

resource setup time, tardiness, and other subsequent 

problems. Hence, the work-in-process piled-up routing sheet 

is made to pursue negotiation-based reactive decision. 

Simulation with MATLAB is performed in order to compare 

this negotiation-based approach with pure reactive control 

approach and to pinpoint the best priority based product 

sequencing. Accordingly, all agents have been cooperated by 

computing and analyzing intention of products, step-1 in 

(Fig. 3). The intention of each product „i‟ is to arrive and 

process in each machine „m‟ and each product compute (step-

2 in (Fig. 3)) its intention and broadcast to machine that it is 

approaching based on its arrival, process, and release times, 

“(1)”, and to other products, step-3 in (Fig. 3). 

( ) [ ], i 1, 2, ......, ni m i i iv a p r   (1) 

where vi(m) is intention of product „i‟ in machine „m‟, ai, pi, ri, 

respectively are the arrival, process, and release times of 

product „i‟ and „n’ number of products in the system. 

Therefore, for instance, from Error! Reference source not 

found. and “(1)”, 

v1(1) = [5 2 7], v1(2) = [36.5 1 37.5], v1(3) = [97.5 4 101.5], v1(4) 

= [109 4 113], v2(1) = [0 0 0], v2(2) = [0 0 0], v2(3) = [22.5 4 

26.5], v2(4) = [34 4 38], v3(1) = [5 2 7], v3(2) = [36.5 1 37.5], 

v3(3) = [141 4 145], and v3(4) = [152.5 4 156.5] 

After each product sends its intention, resources are expected 

to being used in order to utilize their capacity, taking the 

predetermined optimal capacity of resources to reduce the 

queuing time based on the utilization model given in “(2)”. 

ai=ri implies optimal machine utilization rate  

Actual process time
Utilization rate *100%

Maximum available time 
 (2) 

Table 1. The MPS for three customer orders 

Custom

er 

orders 

Completion time (Cim) of 

each product in each order 

Due 

date 
Remark 

M1 M2 M3 M4   
Order-1 7 37.5 101.5 113 150 Ends its route 

Order-2 0 0 26.5 38 70 Ends its route 

Order-3 7 37.5 145 156.5 193.5 Ends its route 

The values presented in Table 1 are cumulative sum of 

product‟s transportation time from machines‟ Mm to Mm+1 

(with 5, 29.5, 18.5, 60, 7.5, & 43.5 seconds for startM1, 

M1M2, M1M3, M2M3, M3M4, & one full loop in zone 



 

 

     

 

B respectively) and its processing time on machine Mm (with 

2, 1, 4, & 4 seconds for M1, M2, M3, & M4 respectively). 

Once the utilization rate has been determined, products 

should keep their due date by computing their makespan and 

tardiness in order to complete their route before the due date. 

Thus, products calculate their makespan and tardiness from 

“(3)” and “(4)” respectively.  

, _
1 ,1 ( )

i n in
imim im imi ic O TW    &

)......C ,C,max(C j21max C (3) 

imim XC iL & 0) ,max(LiiTard (4) 

where, Cim is product completion time, Cmax is the makespan, 

Oim is processing time of product ‟i‟ in machine „m‟, Tim is 

the transportation time of product ‟i‟ to next machine „m‟, Xim 

is the mean of product completion time, Li is product 

lateness, and Tardi is product tardiness 

To maximize utilisability, to minimize input buffer, and to 

minimize queuing time of remaining operations, resource 

agents request each product to arrive based on their critical 

ratio order with an intention to process a product with least 

critical ratio first. This makes the machine agents to 

understand whether product „i‟ is approaching tardy or not. 

Hence, each resource agent has to calculate the critical ratio 

(CRi) of product „i‟ based on the model shown in “(5)”.  

Fig. 2. The TRACILOGIS test-bed platform model 

  

Fig. 3. Products intention versus resources efficiency 

In “(5)” total routing sheet time remaining is the setup, 

processing, transportation, and expected queuing times of all 

remaining operations. 

remaining sheet time routing Total

mecurrent ti-date Due
CR i  (5) 

After a product i computes its intention and sends to all 

neighbor j products, the j
th

 products, in turn, evaluate the 

intention set by product „i‟ and they will accept if it doesn‟t 

affect their predetermined critical ratio or ask product „i‟ to 

revisit its intention, step-4 in (Fig. 3). For example, when the 

last product of order-2 and first product of order-1 meets in 

decision point „2‟ of (Fig. 2), the intention of product of 

order-2 is to precede product of order-1 as the due date of 

product of order-2 is less than that of order-1. This in turn, 

could delay the setup and completion times. Finally, products 

prioritization has to be validated by resources through 

recalculating their utilization rate for every acceptance of 

intention of products, step-4 of (Fig. 3).  

4. ANALYSIS & MANIPULATION OF 

SIMULATION EXPERIMENTS 

Two hundred MATLAB simulation runs have been executed 

for each control approaches. The pure reactive control 

approach was simulated considering the “change the product 

intention and routing” principle such that products only have 

a little information about other‟s state, resource status, and 

routing. While products do not allow sending their correct 

intention, resources become unutilized and are led to high 

setup time when the products are tardy and hence the global 

makespan increases linearly. After this, the negotiation-based 

reactive control approach is simulated with “update the 

product intention and routing” principle. To compare the 

significance of these two control approaches, three 

performance measures were used and presented as follow. 

The simulation results considering the product lateness (or 

tardiness) is illustrated in the lower part of (Fig. 4). In the 

negotiation-based control approach, agents have able to 

reduce the lateness to a minimum of 10,019 unit times in one 

of their simulation run but in pure reactive control approach, 

the minimum lateness has recorded to be 23,021 unit times. 

This shows that the product lateness in the routing sheet has 

reduced, on average, by 30.5% as a result of the environment 

created for the former approach. Following the minimization 

of product lateness, the utilization rate of resource (M1) has 

also improved; upper part of (Fig. 4). On average, capacity of 

M1 and M2 is utilized 11.3% and 10.3% respectively better 

than the pure reactive control approach. On the other hand 

(Fig. 5) presents that in pure reactive control approach, once 

product agent has set its sequential route, it almost continue 

to follow this route instead of setting another optimal route 

that helps him minimize its makespan. But in the case of 

negotiation-based control approach, product agent updates its 

preset route to all other agents to help minimize its makespan. 

The makespan during the former approach is exposed to be 

5,022 unit times but it is reduced to 4,851 unit times 

following the pursuance of the second approach. This 



 

 

     

 

predicates that the makespan is minimized by 3.4% after 

employing the second approach.  

 

Fig. 4. Analysis of product lateness and resource utilization 

rate in both control approaches  

 

Fig. 5. The makespan analysis in both control approaches 

 

Fig. 6. Makespan versus resource utilization (M1) in PRC   

 

Fig. 7. Makespan versus resource utilization (M1) in NRC  

The simulation experiment has also compared two 

performance indicators to each other. For instance, as shown 

in (Fig. 6), while the resource utilization rate increases, the 

makespan also increases gradually. Though the machine is 

busy in processing the operations of predecessor products, it 

could not be able to minimize the makespan as successor 

products reach the resource without understanding its status. 

Hence, the successor products are obligated to wait close to 

the resource (machine buffer) until their processing time start 

on the resource. (Fig. 7) has reversed this tendency; the 

makespan values are shifting downward when the resource 

utilization increases. Statistically, results from Minitab, (Fig. 

6) illustrates that the variability of the makespan are closer to 

the fitted regression line by 1.3% (the R-squared or 

coefficient of determination, „R-Sq‟) but in (Fig. 7), the 

variability of makespan are closer to the coefficient of 

regression line by 3.5%. R-squared is a statistical measure of 

how close a data are to the fitted regression line. This shows 

that after employing the negotiation-based control approach, 

all the makespan values are positioned around the regression 

line and consequently the routing sheet has optimized by 

52.09% than following the pure reactive control approach. To 

recap the analysis, three of the performance indicators have 

shown significant advantage of negotiation based control 

approach in increasing adaptability and flexibility of decision 

entities within a disturbed industrial environment. 

5. CONCLUSION AND FURTHER REMARK 

This paper has presented that the role of negotiation based 

multi-agents system is increasing in supporting decision 

making capability of manufacturing entities. For instance, the 

simulated experiment has improved the routing sheet by 

minimizing the makespan by 3.4% over the pure reactive 

control approach. However, it has left to fully enrich the 

system as agents might decide alone while they are on their 

route. Thus, to enhance the validated results, a consensus-

based distributed control system has to be explored with an 

objective to make agents to converge towards a predefined 

intention. For example, the maximum resource utilization rate 

obtained using the negotiation model was 68.2%. Why not 

more than this? To bring such advancement, agents have to 

continuously negotiate before they start an execution and 

converge to a common offer. And the design and 

development of this algorithm will be the continuous work of 

this paper.  
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