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Abstract

Belief revision of knowledge bases represented by a set of sentences in a given logic has

been extensively studied but for specific logics, mainly propositional, and also recently

Horn and description logics. Here, we propose to generalize this operation from a model-

theoretic point of view, by defining revision in an abstract model theory known under the

name of satisfaction systems. In this framework, we generalize to any satisfaction systems

the characterization of the well known AGM postulates given by Katsuno and Mendelzon

for propositional logic in terms of minimal change among interpretations. Moreover, we

study how to define revision, satisfying the AGM postulates, from relaxation notions that

have been first introduced in description logics to define dissimilarity measures between

concepts, and the consequence of which is to relax the set of models of the old belief un-

til it becomes consistent with the new pieces of knowledge. We show how the proposed

general framework can be instantiated in different logics such as propositional, first-order,

description and Horn logics. In particular for description logics, we introduce several con-

crete relaxation operators tailored for the description logic ALC and its fragments EL and

ELU , discuss their properties and provide some illustrative examples.

Key words: Abstract belief revision, Relaxation, AGM theory, satisfaction systems,

description logics

1 Introduction

Belief change is an important field of knowledge representation. It is defined by

three change operations, expansion, contraction and revision, that make an agent’s
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belief evolve with newly acquired knowledge. Belief expansion consists in adding

new knowledge without checking consistency, while both contraction and revision

consist in consistently removing and adding new knowledge, respectively. When

knowledge bases are logical theories, i.e. a set of sentences in a given logic, these

changes are governed by a set of postulates proposed for the first time by Alchour-

ròn, Gardenfors and Makinson [1], and since known as the AGM theory. Although

defined in the abstract framework of logics given by Tarski [38] (so called Tarskian

logics), postulates of the AGM theory make strong assumptions on the considered

logics. Indeed, in [1] the considered logics have to be closed under the standard

propositional connectives in {∧,∨,¬,⇒}, to be compact (i.e. property entailment

depends on a finite set of axioms), and to satisfy the deduction theorem (i.e. en-

tailment and implication are equivalent). While compactness is a standard property

of logics, to be closed under the standard propositional connectives is more ques-

tionable. Indeed, many non-classical logics such as description logics, equational

logic or Horn clause logic, widely used for various modern applications in com-

puting science, do not satisfy such a constraint. Recently, in many works, belief

change has been studied in such non-classical logics [12,17,33,34]. In this direc-

tion, we can cite Ribeiro & al.’s work in [34] that studies contraction at the abstract

level of Tarskian logics, and the recent work in [40] on the extension of AGM

contraction to arbitrary logics. The adaptation of AGM postulates for revision for

non-classical logics has been studied but only for specific logics, mainly description

logics [16,17,27,28,30,32,39] and Horn logics [11,41]. The reason is that revision

can be abstractly defined in terms of expansion and retraction following the Levi

identity, but this requires the use of negation, which rules out some non-classical

logics [33].

In [22] some AGM postulates are interpreted in terms of minimal change, in the

sense that the models of the revision should be as close as possible, according to

some metric, to the models of the initial knowledge set. Recently, both for con-

traction and revision, generalizations of the AGM theory have been proposed in

the framework of Tarskian Logics considering minimality criteria on removed for-

mulas [33,34]. The aim was to study contraction and revision for a larger family

of logics containing non-classical ones such as description logics and Horn logics.

However, to the best of our knowledge, the generalization of AGM theory with min-

imality criteria on the set of models of knowledge bases has never been proposed.

The reason is that semantics is not explicit in the abstract framework of logics de-

fined by Tarski.

We propose here to generalize AGM revision but in an abstract model theory, satis-

faction systems [18,25], which formalizes the intuitive notion of logical system, in-

cluding syntax, semantics and the satisfaction relation. Then, we propose to general-

ize to any satisfaction system the approach developed in [22] for propositional logic

and in [29] for description logics. In this abstract framework, we will also show how

to define revision operators from the relaxation notion that has been introduced in

description logics to define dissimilarity measures between concepts [14,15] and
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the consequence of which is to relax the set of models of the old belief until it

becomes consistent with the new pieces of knowledge. This notion of relaxation,

defined in an abstract way through a set of properties, turns out to generalize sev-

eral revision operators introduced in different contexts e.g. [9,24,28,20]. This is

another key contribution of our work..

We provide examples of relaxations in propositional logics, first order logics, and

Horn logic. The case of description logics (DLs) is more detailed, since DLs are

now pervasive in many knowledge-based representation systems, such as ontologi-

cal reasoning, semantic web, scene understanding, cognitive robotics, to mention a

few. In all these domains, the expert knowledge is not fixed, but rather a flux evolv-

ing over time, hence requiring the definition of rational revision operators. Revision

is then a cornerstone in ontology engineering life-cycle where the expert knowledge

is prone to change and inconsistency. Due to this growing interest in DLs, several

attempts to generalize the well-known AGM theory, making it compliant with the

meta-logical flavor of these logics, have been introduced recently, as mentioned

above. The first efforts concentrated on the adaptation of contraction postulates,

but more recently, the adaptation of revision postulates and the introduction of new

minimality criteria were also addressed [33], not necessarily related to the contrac-

tion operator, throwing out the need for negation. One can find in [28] an attempt

to adapt the AGM revision postulates to DL in a model-theoretic way, following

the seminal work of [22] that translated the AGM postulates in propositional logic

semantics.

To summarize, our aim is to introduce a general framework for defining easily in-

stantiable concrete revision operators for arbitrary logics. This goes beyond dis-

cussing the validity of the AGM theory for some non-classical logics such as de-

scription logics or Horn clauses logics which have been a focus of intensive re-

search during the last years, as mentioned above. Indeed, by formulating the AGM

theory in the framework of satisfaction systems, we show that one can push the

envelop of the AGM theory to make it suitable to some non-classical logics (at

the price of loosing or adapting some properties) and define revision operators that

can be adapted in quite a straightforward manner to different logics, including non-

classical ones. Hence, our paper participates in the recent effort for generalizing the

AGM theory to non-classical logics. In particular, we introduce a meta-framework

that can, by its general and abstract flavor, reduce this effort or at least make it eas-

ier. Besides, we introduce a concrete way of defining revision operators in different

logics including non-classical ones, and focus on the particular case of DL, which

is of great current interest in semantic web related applications.

The paper is organized as follows. Section 2 reviews some concepts, notations and

terminology about satisfaction systems which are used in this work. In Section 3,

we adapt the AGM theory in the framework of satisfaction systems, and then give

an abstract model-theoretic rewriting of the AGM postulates. We then show in Sec-

tion 3.2 that any revision operator satisfying such postulates accomplishes an up-
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date with minimal change to the set of models of knowledge bases. In Section 3.3,

we introduce a general framework of relaxation-based revision operators and show

that our revision operators lead to faithful assignments and then also satisfy the

AGM postulates. In Section 3.4, we illustrate our abstract approach by providing

revision operators in different logics, including classical logics (propositional and

first order logics) and non-classical ones (Horn and description logics). The case of

DL is further developed in Section 4, with several examples. Finally, Section 5 is

dedicated to related works.

2 Satisfaction systems

Satisfaction systems [25] (“rooms" in the terminology of [18]) generalize Tarski’s

classical “semantic definition of truth” [37] and Barwise’s “Translation Axiom” [4].

For the sake of generalization, sentences are simply required to form a set. All

other contingencies such as inductive definition of sentences are not considered.

Similarly, models are simply seen as elements of a class, i.e. no particular structure

is imposed on them.

2.1 Definition and examples

Definition 1 (Satisfaction system). A satisfaction system R = (Sen,Mod, |=)
consists of

• a set Sen of sentences,

• a class Mod of models, and

• a satisfaction relation |=⊆ (Mod× Sen).

Let us note that the non-logical vocabulary, so-called signature, over which sen-

tences and models are built, is not specified in Definition 1. Actually, it is left im-

plicit. Hence, as we will see in the examples developed in the paper, a satisfaction

system always depends on a signature.

There is an extension of satisfaction systems that takes into account explicitly the

notion of signatures, the theory of institutions [19]. The theory of institutions is

a categorical model theory which has emerged in computing science studies of

software specifications and semantics. Since their introduction, institutions have

become a common tool in the area of formal specification mainly to abstractly

study the preservation of properties through the structuring of specifications and

programs represented by signature morphisms. In this paper, as all the results that

we will study about revision will always be done for logical theories over a same

signature, signature morphisms and their interpretation for model classes and sen-

tence sets are not useful. This is why we consider the framework of satisfaction
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systems in this paper. The advantage is to allow us to abstract from all underlying

categorical concepts such as category, functor and other advanced notions such as

adjunction, pushout, colimit, etc.

Example 1. The following examples of satisfaction systems are of particular im-

portance in computer science and in the remainder of this paper.

Propositional Logic (PL) Given a set of propositional variables Σ, we can define

the satisfaction system R = (Sen,Mod, |=) where Sen is the least set of sen-

tences finitely built over propositional variables in Σ and Boolean connectives

in {¬,∨}, Mod contains all the mappings ν : Σ → {0, 1} (0 and 1 are the

usual truth values), and the satisfaction relation |= is the usual propositional

satisfaction.

Horn Logic (HCL) A Horn clause is a sentence of the form Γ ⇒ α where Γ is a

finite conjunction of propositional variables and α is a propositional variable.

The satisfaction system of Horn clause logic is then defined as for PL except that

sentences are restricted to be conjunctions of Horn clauses.

Many-sorted First Order Logic (FOL) Signatures are triplets (S, F, P ) where S
is a set of sorts, and F and P are sets of function and predicate names respec-

tively, both with arities in S∗ × S and S+ respectively (S+ is the set of all non-

empty sequences of elements in S and S∗ = S+ ∪ {ǫ} where ǫ denotes the empty

sequence). In the following, to indicate that a function name f ∈ F (respectively

a predicate name p ∈ P ) has for arity (s1 . . . sn, s) (respectively s1 . . . sn), we

will note f : s1 × . . .× sn → s (resp. p : s1 × . . .× sn).

Given a signature Σ = (S, F, P ), we can define the satisfaction system R =
(Sen,Mod, |=) where:

• Sen is the least set of sentences built over atoms of the form p(t1, . . . , tn) where

p : s1 × . . .× sn ∈ P and ti ∈ TF (X)si for every i, 1 ≤ i ≤ n (TF (X)s is the

term algebra of sort s built over F with sorted variables in a given set X) by

finitely applying Boolean connectives in {¬,∨} and the quantifier ∀.

• Mod is the class of models M defined by a family (Ms)s∈S of sets (one for

every s ∈ S), each one equipped with a function fM :Ms1 × . . .×Msn → Ms

for every f : s1 × . . . × sn → s ∈ F and with an n-ary relation pM ⊆
Ms1 × . . .×Msn for every p : s1 × . . .× sn ∈ P .

• Finally, the satisfaction relation |= is the usual first-order satisfaction.

As for PL, we can consider the logic FHCL of first-order Horn Logic whose

models are those of FOL and sentences are restricted to be conjunctions of uni-

versally quantified Horn sentences (i.e. sentences of the form Γ ⇒ α where Γ is

a finite conjunction of atoms and α is an atom).

Description logic (DL) Signatures are triplets (NC , NR, I) where NC , NR and I
are nonempty pairwise disjoint sets where elements in NC , NR and I are called

concept names, role names and individuals, respectively.

Given a signature (NC , NR, I), we can define the satisfaction systemR = (Sen,Mod, |=
) where:
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• Sen contains 1 all the sentences of the form C ⊑ D, x : C and (x, y) : r
where x, y ∈ I , r ∈ NR and C is a concept inductively defined from NC ∪
{⊤} and binary and unary operators in {_ ⊓ _, _ ⊔ _} and in {_c, ∀r._, ∃r._},

respectively.

• Mod is the class of models I defined by a set ∆I equipped for every concept

name A ∈ NC with a set AI ⊆ ∆I , for every relation name r ∈ NR with a

binary relation rI ⊆ ∆I × ∆I , and for every individual x ∈ I with a value

xI ∈ ∆I .

• The satisfaction relation |= is then defined as:

· I |= C ⊑ D iff CI ⊆ DI ,

· I |= x : C iff xI ∈ CI ,

· I |= (x, y) : r iff (xI , yI) ∈ rI ,

where CI is the evaluation of C in I inductively defined on the structure of C
as follows:

· if C = A with A ∈ NC , then CI = AI;

· if C = ⊤ then CI = ∆I;

· if C = C ′ ⊔ D′ (resp. C = C ′ ⊓ D′), then CI = C ′I ∪ D′I (resp.

CI = C ′I ∩D′I);

· if C = C ′c, then CI = ∆I \ C ′I;

· if C = ∀r.C ′, then CI = {x ∈ ∆I | ∀y ∈ ∆I , (x, y) ∈ rI implies y ∈
C ′I};

· if C = ∃r.C ′, then CI = {x ∈ ∆I | ∃y ∈ ∆I , (x, y) ∈ rI and y ∈ C ′I}.

2.2 Knowledge base and theories

Let us now consider a fixed but arbitrary satisfaction system

R = (Sen,Mod, |=).

Notation 1. Let T ⊆ Sen be a set of sentences.

• Mod(T ) is the sub-class of Mod whose elements are models of T , i.e. for every

M ∈ Mod(T ) and every ϕ ∈ T , M |= ϕ. When T is restricted to a formula ϕ
(i.e. T = {ϕ}), we will denote Mod(ϕ), the class of model of {ϕ}, rather than

Mod({ϕ}).
• Cn(T ) = {ϕ ∈ Sen | ∀M ∈ Mod(T ), M |= ϕ} is the set of so-called

semantic consequences of T . 2

• Let M ⊆ Mod. Let us note M
∗ = {ϕ ∈ Sen | ∀M ∈ M,M |= ϕ}. Therefore,

we have for every T ⊆ Sen, Cn(T ) = Mod(T )∗. When M is restricted to one

1 The description logic defined here is better known under the acronym ALC.
2 Usually, in the framework of satisfaction systems and institutions, the set of semantic

consequences of a theory T is noted T •. Here, we prefer the notation Cn(T ) because it will

allow us to make a connection with the abstraction of logics as defined by Tarski [38] and

widely used in works dealing with belief change such as revision, expansion or contraction.

6



model M, M∗ will be equivalently noted M∗.

• Let us note Triv = {M ∈Mod | M∗ = Sen}.

Let us note that for every T ⊆ Sen, Triv ⊆Mod(T ).

From the above notations, we obviously have:

Cn(T ) = Cn(T ′) ⇔ Mod(T ) =Mod(T ′). (1)

The two functions Mod(_) and _∗ form what is known as a Galois connection in

that they satisfy the following properties: for all T, T ′ ⊆ Sen and M,M′ ⊆ Mod,

we have (see [13])

(1) T ⊆ T ′ =⇒ Mod(T ′) ⊆Mod(T )
(2) M ⊆ M

′ =⇒ M
′∗ ⊆ M

∗

(3) T ⊆ Mod(T )∗

(4) M ⊆Mod(M∗)

Definition 2 (Knowledge base and theory). A knowledge base T is a set of sen-

tences (i.e. T ⊆ Sen). A knowledge base T is said to be a theory if and only if

T = Cn(T ).
A theory T is finitely representable if there exists a finite set T ′ ⊆ Sen such that

T = Cn(T ′).

Proposition 1. For every satisfaction system R, we have:

Inclusion ∀T ⊆ Sen, T ⊆ Cn(T );
Iteration ∀T ⊆ Sen, Cn(T ) = Cn(Cn(T ));
Monotonicity ∀T, T ′ ⊆ Sen, T ⊆ T ′ =⇒ Cn(T ) ⊆ Cn(T ′).

Proof. Inclusion and iteration are obvious properties of the mapping Cn by defini-

tion (inclusion is Property 3 of the Galois Connection above).

Suppose T ⊆ T ′. By the first property of the Galois connection above, we have

that Mod(T ′) ⊆ Mod(T ) and Mod(T )∗ ⊆ Mod(T ′)∗ from Property 2, hence

Cn(T ) ⊆ Cn(T ′).

Hence, satisfaction systems are Tarskian according to the definition of logics given

by Tarski under which a logic is a pair (L, Cn) where L is a set of expressions (for-

mulas) and Cn : P(L) → P(L) is a mapping that satisfies the inclusion, iteration

and monotonicity properties [38]. Indeed, from any satisfaction system R we can

define the following Tarskian logic (L, Cn) where L = Sen andCn is the mapping

that associates to every T ⊆ Sen, the set Cn(T ) of semantic consequences of T .

Classically, the consistency of a theory T is defined as Mod(T ) 6= ∅. The problem

of such a definition of consistency is that its significance depends on the actual

7



logic. Hence, this consistency is significant for FOL, while in FHCL it is a trivial

property since each set of sentences is consistent because Mod(T ) always contains

the trivial model. Here, for the consistency notion be more appropriate with our pur-

pose to define revision for the largest family of logics, we propose a more general

definition of consistency, the meaning of which is that there is at least a sentence

which is not a semantic consequence.

Definition 3 (Consistency). T ⊆ Sen is consistent if Cn(T ) 6= Sen.

Proposition 2. For every T ⊆ Sen, T is consistent if and only ifMod(T )\Triv 6=
∅.

Proof. Let us prove that Cn(T ) = Sen iffMod(T )\Triv = ∅. Let us first assume

that Mod(T ) \ Triv = ∅. Therefore, by definition of Cn(T ), this means that the

only models that satisfy T are M such that M∗ = Sen (if they exist). Hence, we

have Cn(T ) = Sen.

Conversely, let us assume that Cn(T ) = Sen. This means that every model M
such that M∗ 6= Sen does not belong to Mod(T ), and Mod(T ) \ Triv = ∅.

Corollary 1. For every T ⊆ Sen, T is inconsistent is equivalent to Mod(T ) =
Triv.

3 AGM postulates for revision in satisfaction systems

3.1 AGM postulates

AGM postulates for knowledge base revision in satisfaction systems are easily

adaptable. We build upon the model-theoretic characterization introduced by Kat-

suno and Mendelzon (KM) [22] for propositional logic. Note, however, that in

propositional logic, a belief base can be represented by a formula, and then KM pos-

tulates exploit this property. This is no more the case in our context, but we argue

that the postulates are still appropriate. Given two knowledge bases T, T ′ ⊆ Sen,

T ◦ T ′ denotes the revision of T by T ′, that is, T ◦ T ′ is obtained by adding consis-

tently new knowledge T ′ to the old knowledge base T . Note that T ◦ T ′ cannot be

defined as T ∪ T ′ because nothing ensures that T ∪ T ′ is consistent. The revision

operator has then to change minimally T so that T ◦ T ′ is consistent. This is what

the AGM postulates ensure.

(G1) If T ′ is consistent, then so is T ◦ T ′.

(G2) Mod(T ◦ T ′) ⊆Mod(T ′).
(G3) if T ∪ T ′ is consistent, then T ◦ T ′ = T ∪ T ′.

(G4) if Cn(T ′
1) = Cn(T ′

2), then Mod(T ◦ T ′
1) =Mod(T ◦ T ′

2).
(G5) Mod((T ◦ T ′) ∪ T ′′) ⊆Mod(T ◦ (T ′ ∪ T ′′)).
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(G6) if (T ◦T ′)∪T ′′ is consistent, thenMod(T ◦(T ′∪T ′′)) ⊆Mod((T ◦T ′)∪T ′′).

In the literature such as in [22,29], the following stronger version of Postulate (G4)

can be found:

(G’4) if Cn(T1) = Cn(T ′
1) and Cn(T2) = Cn(T ′

2), then

Mod(T1 ◦ T2) =Mod(T ′
1 ◦ T

′
2)

Remark 1. This stronger version of Postulate (G4) states a complete independence

of the syntactical forms of both the original knowledge base and the newly acquired

knowledge. The problem with Postulate (G’4) is that it is almost never satisfied

when we want to preserve the structure of knowledge bases and then apply revision

operators over the formulas that compose knowledge bases. Indeed, let us consider

in the logic PL the following knowledge bases T1 = {p, q} and T2 = {q ⇒ p, q}
over the signature {p, q}. Obviously, we have that Mod(T1) = Mod(T2) = {ν :
p 7→ 1, q 7→ 1}. Let us consider the knowledge base T ′ = {¬q}. We have now that

T1 ∪ T ′ (and then T2 ∪ T ′) is inconsistent. A way to retrieve the consistency is to

replace in T1 and T2 the atomic formula q by ¬q. Hence, T1 ◦ T
′ = {p,¬q} and

T2◦T
′ = {q ⇒ p,¬q}. ThenMod(T1◦T

′) = {ν : p 7→ 1, q 7→ 0},Mod(T2◦T
′) =

{ν : p 7→ 1, q 7→ 0; ν ′ : p 7→ 0, q 7→ 0}, and Mod(T1 ◦ T
′) 6=Mod(T2 ◦ T

′).
In [22], the authors bypass the problem by representing any knowledge base K
(which is a theory in [22]) by a propositional formula ψ such that K = Cn(ψ).
Hence, they apply their revision operator on ψ and not on K, and so they lose the

structure of the knowledge base K.

Another remarkable point to note is that now Postulate (G4) in this weaker form

can be derived from the other postulates.

Proposition 3. Postulates (G1)-(G3), (G5) and (G6) imply Postulate (G4).

Proof. Let us suppose that Cn(T ′
1) = Cn(T ′

2). Here, three cases have to be consid-

ered:

(1) One of T ′
1 and T ′

2 is inconsistent (say T ′
1 without loss of generality). Since

Cn(T ′
1) = Cn(T ′

2) by hypothesis, T ′
2 is also inconsistent. By Postulate (G2),

we then have that, for i = 1, 2, Mod(T ◦ T ′
i ) ⊆ Mod(Ti), and Mod(Ti) =

Triv (Corollary 1). HenceMod(T◦T ′
i ) ⊆ Triv, andMod(T◦T ′

1) =Mod(T◦
T ′
2) = Triv.

(2) Both T ∪T ′
1 and T ∪T ′

1 are consistent. Since Cn(T ′
1) = Cn(T ′

2), we know that

Mod(T ′
1) =Mod(T ′

2) (Equation 1), and then Mod(T ∪ T ′
1) =Mod(T ∪ T ′

2).
Therefore, by Postulate (G3), we have that Mod(T ◦ T ′

1) =Mod(T ◦ T ′
2).

(3) T ′
1 and T ′

2 are consistent but T ∪ T ′
1 or T ∪ T ′

2 is not (say T ∪ T ′
1). From

Cn(T ′
1) = Cn(T ′

2), we derive that T ∪ T ′
2 is also inconsistent. By Postulate

9



(G1), both T ◦ T ′
1 and T ◦ T ′

2 are consistent. Let M ∈ Mod(T ◦ T ′
1). If

M ∈ Triv, then obviously M ∈ Mod(T ◦ T ′
2). Therefore, let us suppose

that M 6∈ Triv. By Postulate (G2), M ∈Mod(T ′
1), and then M ∈Mod(T ′

2).
Let M′ ∈ Mod(T ◦ T ′

2) \ Triv. Such a model exists as T ◦ T ′
2 is consistent.

By Postulate (G2) and the hypothesis that Cn(T ′
1) = Cn(T ′

2), {M,M′}∗

contains both T ′
1 and T ′

2. Obviously, we have that (T ◦ T ′
1) ∪ {M,M′}∗ and

(T ◦ T ′
2) ∪ {M,M′}∗ are consistent. Therefore, By Postulates (G5) and (G6),

we have that Mod((T ◦ T ′
1) ∪ {M,M′}∗) =Mod((T ◦ (T ′

1 ∪ {M,M′}∗) =
Mod(T ◦ {M,M′}∗) and Mod((T ◦ T ′

2) ∪ {M,M′}∗) = Mod((T ◦ (T ′
2 ∪

{M,M′}∗) =Mod(T ◦{M,M′}∗). We can then derive thatMod((T ◦T ′
1)∪

{M,M′}∗) =Mod((T ◦T ′
2)∪{M,M′}∗), and conclude that M ∈Mod(T ◦

T ′
2). Similarly, by reversing the roles of T ′

1 and T ′
2, if M ∈ Mod(T ◦ T ′

2), we

can conclude that M ∈Mod(T ◦ T ′
1).

Intuitively, any revision operator ◦ satisfying the six postulates above induces min-

imal change, that is the models of T ◦ T ′ are the models of T that are the closest to

models of T ′, according to some distance for measuring how close are models. This

is what will be shown in the next section by establishing a correspondence between

AGM postulates and binary relations over models with minimality conditions.

3.2 Faithful assignment and AGM postulates

Let M ⊆ Mod. Let � be a binary relation over M. We define ≺ as M ≺ M′ if

and only if M � M′ and M′ 6�M. We define Min(M,�) = {M ∈ M | ∀M′ ∈
M,M′ 6≺M}.

Definition 4 (Faithful assignment). An assignment is a mapping that assigns to

each knowledge base T a binary relation�T overMod. We say that this assignment

is faithful (FA) if the following two conditions are satisfied:

(1) if M,M′ ∈Mod(T ), M6≺TM
′.

(2) for every M ∈Mod(T ) and every M′ ∈Mod \Mod(T ), M ≺T M′.

A binary relation �T assigned to a knowledge base T by a faithful assignment will

be also said faithful.

Remark 2. The definition of FA differs from the one originally given in [22] on two

points:

(1) In [22], a third condition is stated:

∀T, T ′ ⊆ Sen,Mod(T ) =Mod(T ′) ⇒�T=�T ′ .
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As for (G’4), this condition expresses a syntactical independence.

(2) It is no longer required for �T to be a pre-order. As shown below, the only

important feature to have to make a correspondence between a FA and the

fact that ◦ satisfies Postulates (G1)-(G6) is that there is a minimal model for

�T in Mod(T ′) as expressed by Theorem 1.

Theorem 1. Let ◦ be a revision operator. ◦ satisfies AGM Postulates if and only if

there exists a FA that maps each knowledge base T ⊆ Sen to a binary relation �T

such that for every knowledge base T ′ ⊆ Sen:

• Mod(T ◦ T ′) \ Triv =Min(Mod(T ′) \ Triv,�T );
• if T ′ is consistent, then Min(Mod(T ′) \ Triv,�T ) 6= ∅;

• for every T ′′ ⊆ Sen, if (T ◦T ′)∪T ′′ is consistent, thenMin(Mod(T ′)\Triv,�T

) ∩Mod(T ′′) =Min(Mod(T ′ ∪ T ′′) \ Triv,�T ).

Note that if T ′ is inconsistent, then so is T◦T ′, and we can set arbitrarily T◦T ′ = T ′,

which corresponds to a cautious revision. The case where T is inconsistent is not

considered in this paper, since in that case other operators could be more relevant

than revision, in particular debugging methods (see e.g. [35] for debugging of ter-

minologies, or [31] for base revision for ontology debugging, both in description

logics.

Proof. (1) Let us suppose that ◦ satisfies AGM Postulates. For every knowledge

base T , let us define the binary relation �T⊆ Mod×Mod by: for all M,M′ ∈
Mod,

M �T M′ iff











either M ∈Mod(T )

or M ∈Mod(T ◦ {M,M′}∗) and M′ 6∈Triv

Let us first show that �T satisfies the two conditions of FA.

• The first condition easily follows from the definition of �T .

• To prove the second one, let us assume that M ∈ Mod(T ) and M′ 6∈
Mod(T ). Since M ∈ Mod(T ), we have M �T M′. Here two cases have

to be considered:

(a) M ∈ Triv. In this case, we directly have by definition that M′ 6�T M.

(b) M 6∈ Triv. Then T ∪ {M,M′}∗ is consistent since M ∈ Mod(T ) \
Triv and M ∈ Mod(M∗) ⊆ Mod({M,M′}∗). Then by Postulate

(G3), we have that T ◦ {M,M′}∗ = T ∪ {M,M′}∗. Therefore, we

have that M′ 6∈Mod(T ◦ {M,M′}∗), and M′ 6�T M.

Hence M ≺T M′ in both cases.

Let us now prove the three supplementary conditions.

• First, let us show that Mod(T ◦ T ′) = Min(Mod(T ′) \ Triv,�T ). If T ′

is inconsistent, then by Proposition 2 Mod(T ′) \ Triv = ∅, and by (G2)

Mod(T ◦ T ′) ⊆ Mod(T ′) ⊆ Triv, hence Mod(T ◦ T ′) \ Triv = ∅ =
Min(Mod(T ′) \ Triv,�T ).
Let us assume now that T ′ is consistent.
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· Let us first show thatMod(T◦T ′)\Triv ⊆ Min(Mod(T ′)\Triv,�T ).
Let M ∈ Mod(T◦T ′)\Triv. Let us assume thatM 6∈Min(Mod(T ′)\
Triv,�T ). By (G2), M ∈ Mod(T ′) \ Triv. By hypothesis, there ex-

ists M′ ∈Mod(T ′)\Triv such that M′ ≺T M. Here, two cases have

to be considered:

(a) M′ ∈ Mod(T ). As M′ ∈ Mod(T ′) \ Triv, then T ∪ T ′ is con-

sistent, and then by (G3), T ◦ T ′ = T ∪ T ′. Thus, M ∈Mod(T ),
and then M �T M′, which is a contradiction.

(b) M′ 6∈ Mod(T ). By definition of �T , this means that M′ ∈
Mod(T ◦{M,M′}∗). As M,M′ ∈Mod(T ′), by Postulate (G2),

(T ◦ T ′) ∪ {M,M′}∗ is consistent, and then by Postulates (G5)

and (G6), we have that Mod(T ◦ {M,M′}∗) =Mod((T ◦ T ′)∪
{M,M′}∗). By the hypothesis that M′ ≺T M, we can deduce

that M 6∈ Mod(T ◦ {M,M′}∗), whence by Postulate (G6) we

have that M 6∈Mod(T ◦ T ′) \ Triv, which is a contradiction.

Finally we can conclude that M ∈ Min(Mod(T ′) \ Triv,�T ), and

then Mod(T ◦ T ′) \ Triv ⊆Min(Mod(T ′) \ Triv,�T ).
· Let us now show that Min(Mod(T ′) \ Triv,�T ) ⊆ Mod(T ◦ T ′) \
Triv. Let M ∈ Min(Mod(T ′) \ Triv,�T ). Let us assume that M 6∈
Mod(T ◦ T ′) \ Triv. As T ′ is consistent, by Postulates (G1) and (G2),

there exists M′ ∈ Mod(T ◦ T ′) such that M′∗ 6= Sen, and M′ ∈
Mod(T ′). Since T ′ ⊆ {M,M′}∗, we also have thatMod(T ′∪{M,M′}∗) =
Mod({M,M′}∗). By Postulates (G5) and (G6), we can writeMod(T◦
T ′) ∩ Mod({M,M′}∗) = Mod(T ◦ {M,M′}∗), since (T ◦ T ′) ∪
{M,M′}∗ is consistent. Hence, M 6∈Mod(T ◦{M,M′}∗), and then

M′ ≺T M, which is a contradiction. We can conclude that M ∈
Mod(T ◦T ′)\Triv, and then Min(Mod(T ′)\Triv,�T ) ⊆Mod(T ◦
T ′) \ Triv.

• Secondly, let us show thatMin(Mod(T ′)\Triv,�T ) 6= ∅ if T ′ is consistent.

By Postulate (G1), we have that T ◦T ′ is consistent, and then Mod(T ◦T ′)\
Triv 6= ∅. We can directly conclude by the previous point thatMin(Mod(T ′)\
Triv,�T ) 6= ∅.

• Finally, let us show that for every T ′, T ′′ ⊆ Sen, Min(Mod(T ′) \Triv,�T

)∩Mod(T ′′) =Min(Mod(T ′∪T ′′)\Triv,�T ) if (T ◦T ′)∪T ′′ is consistent.

By (G5) and (G6), we have thatMod(T ◦ (T ′∪T ′′)) =Mod((T ◦T ′)∪T ′′).
Therefore, by the first point, we can directly conclude that Min(Mod(T ′) \
Triv,�T ) ∩Mod(T ′′) =Min(Mod(T ′ ∪ T ′′) \ Triv,�T ).

(2) Let us now suppose that for a revision operation ◦ there exists a FA which

maps any knowledge base T ⊆ Sen to a binary relation �T⊆ Mod ×Mod
satisfying the three conditions of Theorem 1. Let us prove that ◦ verifies the

AGM Postulates.

(G1) This postulate directly results from the fact thatMin(Mod(T ′)\Triv,�T

) 6= ∅ when T ′ is consistent, hence Mod(T ◦ T ′) \ Triv 6= ∅.

(G2) Let M ∈ Mod(T ◦ T ′). If M ∈ Triv, then obviously M ∈ Mod(T ′).
Now, if M /∈ Triv, then by definition, M ∈ Min(Mod(T ′) \ Triv,�T ).
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This means that M ∈Mod(T ′).
(G3) Suppose that T ∪ T ′ is consistent (hence Mod(T ∪ T ′) \ Triv 6= ∅).

• Let us first prove that Mod(T ◦ T ′) ⊆ Mod(T ∪ T ′). Let M ∈
Mod(T ◦ T ′). Here two cases have to be considered:

(a) M ∈ Triv. In this case, we obviously have that M ∈ Mod(T ∪
T ′).

(b) M 6∈ Triv. By definition, M ∈ Min(Mod(T ′) \ Triv,�T ).
Hence, we have that M ∈ Mod(T ′). Let us suppose now that

M6∈Mod(T ). As T is consistent,Mod(T ) \Triv 6= ∅ by Propo-

sition 2. Therefore, there exists M′ ∈ Mod(T ) \ Triv such

that M′ ≺T M (from M /∈ Mod(T ) and the second prop-

erty of FA), which is a contradiction. Hence M ∈ Mod(T ) and

M ∈Mod(T ∪ T ′).
• Let us now prove that Mod(T ∪ T ′) ⊆ Mod(T ◦ T ′). Let M ∈
Mod(T ∪ T ′) such that M6∈Mod(T ◦ T ′). Therefore, M ∈Mod(T ).
By hypothesis, there exists M′ ∈ Mod(T ′) \ Triv such that M′ ≺T

M (since M /∈ Min(Mod(T ′) \ Triv,�T )), and then M′ 6∈Mod(T )
by the first condition of FA. However, by the second condition of FA,

we have that M ≺T M′, which is a contradiction.

Finally, we can conclude that Mod(T ◦ T ′) =Mod(T ∪ T ′).
(G5) Let M ∈Mod(T◦T ′)∩Mod(T ′′). Let us assume that M6∈Min(Mod(T ′∪
T ′′)\Triv,�T ). This means that M ∈ Triv or there existsM′ ∈Mod(T ′∪
T ′′) such that M′∗ 6= Sen and M′ ≺T M. In the first case, we obviously

have that M ∈ Mod(T ◦ (T ′ ∪ T ′′)). In the second case, we then have that

M′ ∈Mod(T ′), and then M′ 6≺TM since M ∈Min(Mod(T ′)\Triv,�T

), which is a contradiction.

(G6) Let us suppose that (T ◦T ′)∪T ′′ is consistent. Let M ∈Mod(T ◦(T ′∪
T ′′)). By hypothesis, either M ∈ Triv and in this case, obviously we have

that M ∈Mod((T ◦ T ′) ∪ T ′′), or M ∈ Min(Mod(T ′ ∪ T ′′) \ Triv,�T )
as Mod(T ◦ (T ′ ∪ T ′′))\Triv = Min(Mod(T ′ ∪ T ′′) \ Triv,�T ). As

(T ◦T ′)∪T ′′ is consistent, we have that Min(Mod(T ′∪T ′′)\Triv,�T ) =
Min(Mod(T ′)\Triv,�T )∩Mod(T ′′) and then M ∈Mod((T ◦T ′)∪T ′′).

Given a revision operator ◦ satisfying the AGM postulates, any FA satisfying the

supplementary conditions of Theorem 1 will be called FA+. To a revision operator

◦ satisfying the AGM postulates, we can associate many FA+. An example of such

a FA+ is the mapping f that associates to every T ⊆ Sen the binary relation �T

defined as follows:

Given T ′ ⊆ Sen, let us start by defining �T ′

T ⊆Mod(T ′)×Mod(T ′) as:

M �T ′

T M′ ⇐⇒ M ∈Mod(T ◦ T ′) and M′ 6∈Mod(T ◦ T ′).
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Let us then set f(T ) = �T=
⋃

T ′ �T ′

T (i.e. M �T M′ ⇔ ∃T ′,M �T ′

T M′).

Theorem 2. If ◦ satisfies the AGM postulates, then the mapping f defined above is

a FA+.

Proof. First, let us show that f is a FA.

• Let M,M′ ∈ Mod(T ). Let us suppose that M ≺T M′. This means that there

exists T ′ ⊆ Sen such that M,M′ ∈ Mod(T ′), M ∈ Mod(T ◦ T ′) and M′ 6∈
Mod(T ◦T ′). Hence we have that T∪T ′ is consistent, and then by Postulate (G3),

T ◦T ′ = T ∪T ′. We then have that M′ ∈Mod(T ◦T ′) which is a contradiction.

• Let M ∈ Mod(T ) and let M′ ∈ Mod \Mod(T ). We have that M �∅
T M′,

and then M �T M′ by definition of �T . Now, let us suppose that M′ �T M.

This means that there exists T ′ ⊆ Sen such that M,M′ ∈ Mod(T ′), M′ ∈
Mod(T ◦ T ′) and M 6∈ Mod(T ◦ T ′). But, as M ∈ Mod(T ), we have that

T ∪ T ′ is consistent, and then by Postulate (G3), T ◦ T ′ = T ∪ T ′. Hence, we

have that M ∈Mod(T ◦ T ′) which is a contradiction.

Let us show now the supplementary conditions of Theorem 1.

• First, let us show that Mod(T ◦ T ′) \ Triv = Min(Mod(T ′) \ Triv,�T ). The

case where T ′ is inconsistent follows the same proof as in Theorem 1.

Let us suppose that T ′ is consistent. Let M ∈ Mod(T ◦ T ′) \ Triv. Let us

suppose that M 6∈ Min(Mod(T ′) \ Triv,�T ). This means that there exists

M′ ∈ Mod(T ′) \ Triv such that M′ ≺T M. Therefore, there exists T ′′ ⊆ Sen
such that M,M′ ∈ Mod(T ′′), M′ ∈ Mod(T ◦ T ′′) and M 6∈ Mod(T ◦ T ′′).
Hence, both (T ◦T ′)∪T ′′ and (T ◦T ′′)∪T ′ are consistent, and then by Postulates

(G5) and (G6),Mod((T ◦T ′)∪T ′′) =Mod((T ◦T ′′)∪T ′) =Mod(T ◦(T ′∪T ′′)).
We can then derive that M ∈Mod(T ◦ T ′′) which is a contradiction.

Let M ∈ Min(Mod(T ′) \ Triv,�T ). Let us suppose that M 6∈ Mod(T ◦
T ′) \ Triv. As T ′ is consistent, by Postulates (G1) and (G2), there exists M′ ∈
Mod(T ◦ T ′) \ Triv. By definition of �T ′

T , we have that M′ �T ′

T M, and then

M′ �T M which is a contradiction.

• The proof of the two other conditions corresponds to the one given in Theorem 1.

Actually, the set of FA+ associated with a revision operator satisfying the AGM

postulates has a lattice structure. Let f1, f2 be two FA. Let us denote f1 ⊔ f2 (resp.

f1 ⊓ f2) the mapping that assigns to each knowledge base T ⊆ Sen the binary

relation �T=�1
T ∪ �2

T (resp. �T=�1
T ∩ �2

T ) where fi(T ) =�i
T for i = 1, 2.
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Proposition 4. If f1 and f2 are FA+ for a same revision operator ◦, then so are

f1 ⊔ f2 and f1 ⊓ f2.

Proof. It is sufficient to show that �1
T ∪ �2

T and �1
T ∩ �2

T satisfy Conditions (1)

and (2) of Definition 4 plus all the conditions of Theorem 1.

Let us first show that they are FA. Let T ⊆ Sen. Let M,M′ ∈Mod(T ). By defini-

tion of FA, then we have either M6�i
TM

′ and M′ 6�i
TM or M �i

T M′ and M′ �i
T

M for i = 1, 2. We then have four cases to consider, but for f1 ⊓ f2(T ) =�T

(resp. f1 ⊔ f2(T ) =�T ), we always end up at either M6�TM
′ and M′ 6�TM

or M �T M′ and M′ �T M. Likewise, for every M ∈ Mod(T ) and every

M′ ∈ Mod \Mod(T ), we have that M ≺i
T M′ for i = 1, 2. Therefore, it is obvi-

ous to conclude that M ≺T M′.

Now, by the first supplementary condition for �1
T and �2

T in Theorem 1, we have

for every T ′ ⊆ Sen that Min(Mod(T ′)\Triv,�1
T ) =Min(Mod(T ′)\Triv,�2

T )
=Mod(T ◦T ′) \Triv. Hence, we can write that Min(Mod(T ′) \Triv,�1

T ∪ �2
T

) = Min(Mod(T ′) \ Triv,�1
T ∩ �2

T ) = Min(Mod(T ′) \ Triv,�i
T ) for i = 1, 2.

The three supplementary conditions are then straightforward, and this allows us to

directly conclude that f1 ⊔ f2 and f1 ⊓ f2 are FA+.

Given a revision operator ◦, let us denote (FA+(◦),≤) the poset of FA+ associated

with ◦ where ≤ is the partial order defined by:

f≤g ⇐⇒ ∀T ⊆ Sen, f(T ) ⊆ g(T )

(the fact that this relation actually defines a partial order is straightforward). It is

easy to show that given f, g ∈ FA+(◦), f ⊔ g (respectively f ⊓ g) is the least upper

bound (respectively greatest lower bound) of {f, g}. Hence, (FA+(◦),≤) is a lattice.

This lattice is further complete. Indeed, given a subset S ⊆ FA+(◦), its least upper

bound is the mapping ⊔S : T 7→
⋃

f∈S f(T ), and its greatest lower bound is the

mapping ⊓S : T 7→
⋂

f∈S f(T ). By extending the proof of Proposition 4, it is easy

to show that ⊔S and ⊓S are FA+.

3.3 Relaxation and AGM postulates

Relaxations have been introduced in [14,15] in the framework of description log-

ics with the aim of defining dissimilarity between concepts. Here, we propose to

generalize this notion in the framework of satisfaction systems.

Definition 5 (Relaxation). A relaxation is a mapping ρ : Sen→ Sen satisfying:

Extensivity ∀ϕ ∈ Sen,Mod(ϕ) ⊆Mod(ρ(ϕ)).
Exhaustivity ∃k ∈ N,Mod(ρk(ϕ)) =Mod, where ρ0 is the identity mapping, and

for all k > 0, ρk(ϕ) = ρ(ρk−1(ϕ)).
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Let us observe that relaxations exist if and only if the underlying satisfaction system

(Sen,Mod, |=) has tautologies (i.e. formulas ϕ ∈ Sen such that Mod(ϕ) =Mod).

Indeed, when the satisfaction system has tautologies, we can define the trivial re-

laxation ρ : ϕ 7→ ψ where ψ is any tautology. Conversely, all relaxations imply

that the underlying satisfaction system has tautologies to satisfy the exhaustivity

condition.

The interest of relaxations is that they give rise to revision operators which have

demonstrated their usefulness in practice (see Sections 3.4 and 4).

Notation 2. Let T ⊆ Sen be a knowledge base. Let K = {kϕ ∈ N | ϕ ∈ T}, and

K′ = {k′ϕ ∈ N | ϕ ∈ T}. Let us note:

• ρK(T ) = {ρkϕ(ϕ) | kϕ ∈ K, ϕ ∈ T},

•
∑

K =
∑

kϕ∈K kϕ,

• K ≤ K′ when for every ϕ ∈ T , kϕ ≤ k′ϕ,

• K < K′ if K ≤ K′ and ∃ϕ ∈ T , kϕ < k′ϕ.

In this notation, kϕ is a number associated with each formula ϕ of the knowledge

base, which represents intuitively by which amount ϕ is relaxed.

Definition 6 (Revision order). Let us define ⊑ the binary relation over P(Sen) as

follows:

T ′ ⊑ T ′′ if ∃T ′′′ ⊆ Sen,Mod(T ′′′) =Mod(T ′′) and T ′ ⊆ T ′′′.

Intuitively, this means that T ′ is included in T ′′ up to an equivalent knowledge base.

The binary relation ⊑ will allow us to define a coherence criterion in the definition

of revision operators (see Condition 3 in Definition 7 just below).

Definition 7 (Revision based on relaxation). Let ρ be a relaxation. A revision op-

erator over ρ is a mapping ◦ : P(Sen)× P(Sen) → P(Sen) satisfying for every

T, T ′ ⊆ Sen:

T ◦ T ′ =











ρK(T ) ∪ T ′ if T ′ is consistent

T ′ otherwise

for some K = {kϕ ∈ N | ϕ ∈ T} such that:

(1) if T ′ is consistent, then T ◦ T ′ is consistent;

(2) for every K′ such that ρK
′

(T ) ∪ T ′ is consistent,
∑

K ≤
∑

K′ (minimality on

the number of applications of the relaxation);

(3) for every T ′′ ⊑ T ′, if T ◦ T ′′ = ρK
′

(T ) ∪ T ′′, then K′ ≤ K.

It is important to note that given a relaxation ρ, several revision operators can be

defined. Without Condition 3 of Definition 7, we could accept revision operators

◦ that do not satisfy Postulates (G5) and (G6). Hence, Condition 3 allows us to

exclude such operators. To illustrate this, let us consider in FOL the satisfaction
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system R = (Sen,Mod, |=) over the signature (S, F, P ) where S = {s}, F = ∅
and P = {=: s× s}. Let us consider T, T ′ ⊆ Sen such that:

T =



























∃x.∃y.(¬x = y) ∧ ∀z(z = x ∨ z = y)

∃x.∃y.∃z.(¬x = y ∧ ¬y = z ∧ ¬x = z)∧

∀w(w = x ∨ w = y ∨ w = z)



























T ′ =



























∀x.x = x

∀x.∀y.x = y ⇒ y = x

∀x.∀y.∀z.x = y ∧ y = z ⇒ x = z



























Obviously, T ′ is consistent. As T does not contain the axioms for equality, it is also

consistent. Indeed, the model M with the carrier Ms = {0, 1, 2} and the binary

relation =M⊆Ms ×Ms defined by =M= {(0, 0), (1, 1), (2, 0)} satisfies T .

But T ∪T ′ is not consistent. The reason is that when the meaning of = is the equal-

ity, the first axiom of T can only be satisfied by models with two values while the

second axiom is satisfied by models with three values. A way to retrieve the consis-

tency is to remove one of the two axioms. This can be modeled by the relaxation ρ
that maps each formula to a tautology 3 . But in this case, we have then two options

depending on whether we remove and change the first or the second axiom by a

tautology, which give rise to two revision operators ◦1 and ◦2. In any cases, the first

two conditions of Definition 7 are satisfied by both ◦1 and ◦2.
Now, let us take T ′′ = {∃x.∃y.¬x = y} which is satisfied, when added to the ax-

ioms in T ′, by any model with at least two elements. Hence, (T ◦1 T
′) ∪ T ′′ and

(T ◦2 T
′)∪T ′′ are consistent. Without the third condition, nothing would prevent to

define T ◦1 (T
′ ∪ T ′′) (respectively T ◦2 (T

′ ∪ T ′′)) by removing and change in T
the second (respectively the first) axiom by a tautology which would be a counter-

example to Postulates (G5) and (G6). Actually, as shown by the result below, this

third condition of Definition 7 entails Postulates (G5) and (G6), and then, by Propo-

sition 3, entails Postulate (G4).

However in some situations Condition 3 may be considered as too strong, forc-

ing to relax more than what would be needed to satisfy only Condition 2. This

could be typically the case when Condition 2 could be obtained in two different

ways, for instance for K′ = {0, 1, 0, 0...} or for K′′ = {1, 0, 0, 0...}. Then taking

Cn(T ′) = Cn(T ′′), and revising T ◦ T ′ using K′ and T ◦ T ′′ using K′′ would

not meet Condition 3. To satisfy it, relaxation should be done for instance with

K = {1, 1, 0, 0...}. Therefore in concrete applications, we will have to find a com-

promise between Condition 3 and (G4)-(G6) at the price of potential larger relax-

ations on the one hand, and less relaxation but potentially the loss of (G4)-(G6) on

3 We will see in Section 3.4 a less trivial but more interesting relaxation in FOL that

consists in changing universal quantifiers into existential ones.
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the other hand.

Notation 3. In the context of Definition 7, let T, T ′ ⊆ Sen be two knowledge bases.

If T ◦ T ′ = ρK(T ) ∪ T ′ with K = {kϕ ∈ N | ϕ ∈ T}, then let us note KT ′

T = K.

Theorem 3. Any revision operator ◦ based on a relaxation (Definition 7) satisfies

the AGM Postulates.

Proof. ◦ obviously satisfies Postulates (G1), (G2) and (G3). To prove (G5)-(G6),

let us suppose T, T ′, T ′′ ⊆ Sen such that (T ◦ T ′) ∪ T ′′ is consistent (the case

where (T ◦ T ′)∪ T ′′ is inconsistent is obvious). This means that ρK
T ′

T (T )∪ T ′ ∪ T ′′

is consistent. Now, obviously we have that T ′ ⊑ T ′ ∪ T ′′. Hence, by the second

and the third conditions of Definition 7, we necessarily have that T ◦ (T ′ ∪ T ′′) =

ρK
T ′

T (T ) ∪ T ′ ∪ T ′′, and then Mod((T ◦ T ′) ∪ T ′′) =Mod(T ◦ (T ′ ∪ T ′′)).

In the previous section, we showed that several FA+ can be associated with a given

revision operator ◦ satisfying the AGM postulates. Here, we define a particular

one, which is more specific to revision operators based on relaxation. Let ρ be a

relaxation. Let fρ be the mapping that associates to every T ⊆ Sen the binary

relation �T defined as follows:

Given T ′ ⊆ Sen, let us start by defining �T ′

T ⊆Mod(T ′)×Mod(T ′) as :

M �T ′

T M′ ⇐⇒

∀K′′≥ KT ′

T ,M
′ ∈Mod(ρK

′′

(T )) ⇒ ∃K′≥ KT ′

T ,











K′ < K′′ and

M ∈Mod(ρK
′

(T ))

Let us then set �T=
⋃

T ′ �T ′

T (i.e. M �T M′ ⇔ ∃T ′,M �T ′

T M′). Let us note

that �T⊆Mod ×Mod because �∅
T⊆�T .

Intuitively, it means that T has to be relaxed more to be satisfied by M′ than to be

satisfied by M.

Theorem 4. For any revision operator ◦ based on a relaxation ρ as defined in

Definition 7, the mapping fρ is a FA+.

Proof. Let T ⊆ Sen. Let us first show that fρ(T ) = �T is faithful.

• Obviously, we have for every M,M′ ∈ Mod(T ) and every T ′ ⊆ Sen that both

M6�T ′

T M′ and M′ 6�T ′

T M. Hence the same relations hold for �T .

• Let M ∈ Mod(T ) and let M′ ∈ Mod \ Mod(T ). Obviously, we have that

M �∅
T M′. Let T ′ ⊆ Sen such that M,M′ ∈ Mod(T ′) (the case where for all

T ′ ⊆ SenM or M′ is not inMod(T ′) implies that M and M′ are incomparable

by �T ′

T , and then we directly have that M′ 6�TM). Here two cases have to be

considered:
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(1) M ∈ Triv. As M′ 6∈Mod(T ), then M′ 6∈Triv. Hence, there does not exist

K′ < K such that M′ ∈ Mod(ρK
′

(T )). Otherwise, ρK
′

(T ) ∪ T ′ would be

consistent, which would contradict the hypothesis that T ◦ T ′ = ρK(T ) ∪ T ′.

(2) M6∈Triv. We have that M ∈ Mod(T ∪ T ′) but M′ 6∈Mod(T ∪ T ′), and then

M′ 6�T ′

T M By definition of ◦.

Hence, in both cases we can conclude that M′ 6�TM.

Let us prove that Mod(T ◦ T ′) \ Triv = Min(Mod(T ′) \ Triv,�T ). This will

directly prove that Min(Mod(T ′) \ Triv,�T ) 6= ∅ when T ′ is consistent. Indeed,

by definition, we have that T ◦ T ′ is consistent when T ′ is consistent, and then

Min(Mod(T ′)\Triv,�T ) 6= ∅ ifMod(T ◦T ′)\Triv =Min(Mod(T ′)\Triv,�T

).
If T ′ is inconsistent, then so is T ◦ T ′ by definition. Hence, Mod(T ◦ T ′) \ Triv =
Min(Mod(T ′) \ Triv,�T ) = ∅.

Let us now suppose that T ′ is consistent.

• Let us show that Mod(T ◦ T ′) \ Triv ⊆ Min(Mod(T ′) \ Triv,�T ). Let M ∈
Mod(T ◦T ′)\Triv. Let M′ ∈Mod(T ′)\Triv. Two cases have to be considered:

(1) M′ ∈Mod(T ◦T ′). Obviously, we have both M6�T ′

T M′ and M′ 6�T ′

T M. Let us

show that this is also true for every T ′′ ⊆ Sen such that M,M′ ∈ Mod(T ′′).
Let us suppose that there exists T ′′ ⊆ Sen such that M′ �T ′′

T M. By hy-

pothesis, we then have that (T ◦ T ′) ∪ T ′′ is consistent. Therefore, by Condi-

tions 2 and 3 of Definition 7, we have that (T ◦ T ′) ∪ T ′′ = T ◦ (T ′ ∪ T ′′).

Hence, we also have that T ◦ (T ′ ∪ T ′′) = ρK
T ′

T (T ) ∪ T ′ ∪ T ′′. Consequently,

as T ′′ ⊑ T ′ ∪ T ′′, we have by Condition 3 of Definition 7 that KT ′′

T ≤ KT ′

T .

Therefore, as M′ �T ′′

T M, we can deduce that there exists K′′ < KT ′

T such that

M′ ∈Mod(ρK
′′

(T )). We then have that ρK
′′

(T )∪T ′ is consistent, and then by

Condition 2 of Definition 7,
∑

KT ′

T ≤
∑

K′′, which is a contradiction.

(2) M′ 6∈Mod(T ◦ T ′). By definition of �T ′

T , we have that M �T ′

T M′, and there-

fore M �T M′.

Finally, we can conclude that M ∈Min(Mod(T ′) \ Triv,�T ).
• Let us now show that Min(Mod(T ′) \ Triv,�T ) ⊆ Mod(T ◦ T ′) \ Triv. Let

M ∈Min(Mod(T ′) \ Triv,�T ). Let us suppose that M6∈Mod(T ◦ T ′) \ Triv.

As T ′ is consistent, then so is T◦T ′. Hence, there existsM′ ∈Mod(T◦T ′)\Triv.

As M ∈ Mod(T ′) \ Mod(T ◦ T ′), we have that M′ �T ′

T M, and then as

M ∈ Min(Mod(T ′) \ Triv,�T ) we also have that M �T M′. This means

that there exists T ′′ ⊆ Sen such that M,M′ ∈ Mod(T ′′) and M �T ′′

T M′. By

hypothesis, we then have that (T◦T ′)∪T ′′ is consistent. Therefore, by Conditions

2 and 3 of Definition 7, we have that (T ◦ T ′) ∪ T ′′ = T ◦ (T ′ ∪ T ′′). Hence, we

also have that T ◦ (T ′ ∪ T ′′) = ρK
T ′

T (T ) ∪ T ′ ∪ T ′′. Consequently, we have by

Condition 3 of Definition 7 that KT ′′

T ≤ KT ′

T . Hence, there exists K′′ ≥ KT ′′

T such

that K′′ < KT ′

T and M ∈Mod(ρK
′′

(T )). We can then deduce that ρK
′′

(T )∪T ′ is

consistent, and then by Condition 2 of Definition 7 we have that
∑

KT ′

T ≤
∑

K′′,

which is a contradiction.
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Finally, to prove the last point, we follow the same steps as in the proof of Theo-

rem 1.

3.4 Applications

In this section, we illustrate our general approach by defining revision operators

based on relaxations for the logics PL, HCL, and FOL. We further develop the case

of DLs in Section 4, by defining several concrete relaxation operators for different

fragments of the DL ALC.

3.4.1 Revision in PL

Here, drawing inspiration from Bloch & al.’s works in [7,8] on Morpho-Logics,

we define relaxations based on dilations from mathematical morphology [6]. It is

well established in PL that knowing a formula is equivalent to knowing the set of

its models. Hence, we can identify any propositional formula ϕ with the set of its

interpretations Mod(ϕ). To define relaxations in PL, we will apply set-theoretic

morphological operations. First, let us recall basic definitions of dilation in mathe-

matical morphology [6]. Let X and B be two subsets of Rn. The dilation of X by

the structuring element B, denoted by DB(X), is defined as follows:

DB(X) = {x ∈ R
n | Bx ∩X 6= ∅}

where Bx denotes the translation of B at x. More generally, dilations in any space

can be defined in a similar way by considering the structuring element as a binary

relationship between elements of this space.

In PL, this leads to the following dilation of a formula ϕ ∈ Sen:

Mod(DB(ϕ)) = {ν ∈Mod(Σ) | Bν ∩Mod(ϕ) 6= ∅}

where Bν contains all the models that satisfy some relationship with ν. The rela-

tionship standardly used is based on a discrete distance δ between models, and the

most commonly used is the Hamming distance dH where dH(ν, ν
′) for two proposi-

tional models over a same signature is the number of propositional symbols that are

instantiated differently in ν and ν ′. From any distance δ between models, a distance

from models to a formula is derived as follows: d(ν, ϕ) = minν′|=ϕδ(ν, ν
′). In this

case, we can rewrite the dilation of a formula as follows:

Mod(DB(ϕ)) = {ν ∈Mod(Σ) | d(ν, ϕ) ≤ 1}

This consists in using the distance ball of radius 1 as structuring element. To ensure

the exhaustivity condition to our relaxation, we need to add a condition on distances,

the betweenness property [14].
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Definition 8 (Betweenness property). Let δ be a discrete distance over a set S. δ
has the betweenness property if for all x, y ∈ S and all k ∈ {0, 1, . . . , δ(x, y)},

there exists z ∈ S such that δ(x, z) = k and δ(z, y) = δ(x, y)− k.

The Hamming distance trivially satisfies the betweenness property. The interest for

our purpose of this property is that it allows from any model to reach any other one,

and then ensuring the exhaustivity property of relaxation 4 .

Proposition 5. The dilation DB is a relaxation when it is applied to formulas ϕ ∈
Sen for a finite signature, and it is based on a distance between models that satisfies

the betweenness property.

Proof. It is extensive. Indeed, for every ϕ and for every model ν ∈ Mod(ϕ), we

have that d(ν, ϕ) = 0, and then ϕ |= DB(ϕ). Exhaustivity results from the fact that

the considered signature is a finite set and from the betweenness property.

3.4.2 Revision in HCL

Many works have focused on belief revision involving propositional Horn formulas

(cf. [12] to have an overview on these works). Here, we propose to extend relax-

ations that we have defined in the framework of PL to deal with the Horn fragment

of propositional theories. First, let us introduce some notions.

Definition 9 (Model intersection). Given a propositional signature Σ and two Σ-

models ν, ν ′ : Σ → {0, 1}, we note ν ∩ ν ′ : Σ → {0, 1} the Σ-model defined

by:

p 7→











1 if ν(p) = ν ′(p) = 1

0 otherwise

Given a set of Σ-models S, we note

cl∩(S) = S ∪ {ν ∩ ν ′ | ν, ν ′ ∈ S}

cl∩(S) is then the closure of S under intersection of positive atoms.

It is well-known that for any set S closed under intersection of positive atoms,

there exists a Horn sentence ϕ that defines S (i.e. Mod(ϕ) = S). Given a distance

δ between models, we then define a relaxation ρ as follows: for every Horn formula

ϕ, ρ(ϕ) is any Horn formula ϕ′ such that Mod(ϕ′) = cl∩(Mod(DB(ϕ)) (by the

previous property, we know that such a formula ϕ′ exists).

Proposition 6. With the same conditions as in Proposition 5, the mapping ρ is a

relaxation.

4 Hence, dilation of formulas could also be defined by using a distance ball of radius n as

structuring element [7].
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3.4.3 Revision in FOL

A trivial way to define a relaxation in FOL is to map any formula to a tautology.

A less trivial and more interesting relaxation is to change universal quantifiers to

existential ones. Indeed, given a formula ϕ of the form ∀x.ψ. If ϕ is not consistent

with a given theory T , ∃x.ψ may be consistent with T (if it cannot be consistent

for all values, it can be for some of them). In the following we suppose that given a

signature, every formula ϕ ∈ Sen is a disjunction of formulas in prenex form (i.e.

ϕ is of the form
∨

j Q
j
1x

j
1 . . . Q

j
nj
xjnj

.ψj where each Qj
i is in {∀, ∃}). Let us define

the relaxation ρ as follows, for a tautology τ :

• ρ(τ) = τ ;

• ρ(∃1x1 . . .∃nxn.ϕ) = τ ;

• Let ϕ = Q1x1 . . . Qnxn.ψ be a formula such that the set Eϕ = {i, 1 ≤ i ≤ n |
Qi = ∀} 6= ∅. Then, ρ(Q1x1 . . . Qnxn.ϕ) =

∨

i∈Eϕ
ϕi whereϕi = Q′

1x1 . . . Q
′
nxn.ψ

such that for every j 6= i, 1 ≤ j ≤ n, Q′
j = Qj and Q′

i = ∃;

• ρ(
∨

j Q
j
1x

j
1 . . . Q

j
nj
xjnj

.ψ) =
∨

j ρ(Q
j
1x

j
1 . . . Q

j
nj
xjnj

.ψ).

Proposition 7. ρ is a relaxation.

Proof. It is obviously extensive, and exhaustivity results from the fact that in a

finite number of steps, we always reach the tautology τ .

4 Relaxation of theories and associated revision operator in DL

Our idea to define revision operators is to relax the set of models of the old belief

until it becomes consistent with the new pieces of knowledge. This is illustrated

in Figure 1 where theories are represented as sets of their models. Intermediate

steps to define the revision operators are then the definition of formula and theory

relaxations. The whole scheme of our framework is provided in Figure 2.

T ′

T
ρK

1

(T )
ρK

2

(T )

Fig. 1. Relaxations of T until it becomes consistent with T ′.
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Concept

relaxation

ρ : C → C

Concept

retraction

κ : C → C

Formula relaxation

ρF : Sen → Sen

Theory re-

laxation

ρK

Revision

◦ : P(Sen) ×
P(Sen) → P(Sen)Def.

11,13

Not.

2

Def.

7

Th.

3

Fig. 2. From concept relaxation and retraction to revision operators in DL.

4.1 Concept relaxation

As already explained in Section 3.3, relaxation has been introduced in [14,15]. It

has been first defined over concepts, and then extended to formulas. In [14,15],

concept relaxation is defined as follows:

Definition 10 (Concept relaxation). Given a signature (NC , NR, I), we note C the

set of concepts over this signature. A concept relaxation ρ : C → C is a mapping

that satisfies, for all C in C:

(1) C ⊑ ρ(C)
(2) ∃k ∈ N,⊤ ⊑ ρk(C)

Note that the non-decreasingness property in the original definition of a concept

relaxation in [15] is removed here, since it is not needed in our construction.

A trivial concept relaxation is the operation ρ⊤ that maps every concept C to ⊤.

Other non-trivial concrete concept relaxations such as the one that changes univer-

sal quantifiers to existential ones as in FOL will be detailed next.

4.2 Formula relaxation and theory relaxation

A formula relaxation ρF in DL is defined as in Definition 5. From a formula relax-

ation, we can define a theory relaxation ρK as in Notation 2.

In the satisfaction system DL, let ρ be a relaxation for DL. Then from ρ we define a

revision operator as in Definition 7. According to Theorem 3, it satisfies the AGM

postulates.

As mentioned above, Condition 3 in Definition 7 may be considered as too strong

in many real world applications. This may be the case in particular in the context

of ontological engineering, where one may want to change only one axiom (or a

limited number of axioms) instead of the whole theory. We will come back to this

point when we will introduce a first example to illustrate relaxation operators in the

DL EL.

23



In the following, we introduce concrete relaxation operators suited to the syntax

of the logic ALC, as defined in Section 2.1, and its fragments EL and ELU . EL-

concept description constructors are existential restriction (∃), conjunction (⊓), ⊤
and ⊥, while ELU-concept constructors are those of EL enriched with disjunction

(⊔).

4.3 Abstract relaxation and retraction operators

We propose to define a formula relaxation in two ways (other definitions may also

exist). For sentences of the form C ⊑ D, the first proposed approach consists in

relaxing the set of models of D while the second one amounts to “retract” the set

of models of C.

From any concept relaxation ρ, we can define 1 relaxation on formulas We sup-

pose that any signature (NC , NR, I) always contains in NR a relation name r⊤ the

meaning of which is in any model O, rO⊤ = ∆O ×∆O.

Definition 11 (Formula relaxation based on concept relaxation). Let ρ a concept

relaxation as in Definition 10. A formula relaxation based on ρ, denoted rρF is

defined as follows, for any two complex concepts C and D, any individuals a, b,
and any role r:

rρF (C ⊑ D) ≡ C ⊑ ρ(D),
rρF (a : C) ≡ a : ρ(C),

rρF (〈a, b〉 : r)) ≡ 〈a, b〉 : r⊤.

Proposition 8. rρF is a formula relaxation, i.e. extensive and exhaustive.

Proof. It directly follows from the extensivity and exhaustivity of ρ.

Another strategy for defining a formula relaxation consists in retracting the concept

in the left hand side of a sentence of the form C ⊑ D. Before providing this

definition we need to formalize this notion of retraction, which could be seen as

an anti-relaxation.

Definition 12 (Concept retraction). A (concept) retraction is an operator κ : C →
C that satisfies the following two properties for all C in C:

(1) κ is anti-extensive, i.e. κ(C) ⊑ C, and

(2) κ is exhaustive, i.e. ∀D ∈ C, ∃k ∈ N such that κk(C) ⊑ D.

Definition 13 (Formula relaxation based on concept retraction). A formula relax-

ation based on a concept retraction κ, denoted cρF , is defined as follows, for any
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two complex concepts C and D, any individuals a, b, and any role r:

cρF (C ⊑ D) ≡ κ(C) ⊑ D,
cρF (a : C) ≡ a : ⊤,

cρF (〈a, b〉 : r)) ≡ 〈a, b〉 : r⊤.

A similar construction can be found in [28] for sentences of the form (a : C).

Proposition 9. cρF is a formula relaxation.

Proof. Extensivity and exhaustivity follow directly from the properties of κ.

For coming up with revision operators, it remains to define concrete relaxation

and retraction operators at the concept level, according to our general schema in

Figure 2. Some examples of retraction and relaxation operators are given below for

EL and ELU , respectively.

4.4 Relaxation and retraction in EL

EL-Concept Retractions. A trivial concept retraction is the operator κ⊥ that

maps every concept to ⊥. This operator is particularly interesting for debugging

ontologies expressed in EL [36]. Let us illustrate this operator through the follow-

ing example adapted from [28] to restrict the language to EL.

Example 2. Let T = {TWEETY ⊑ BIRD, BIRD ⊑ FLIES} and T ′ = {TWEETY ⊓
FLIES ⊑ ⊥}. Clearly T ∪ T ′ is inconsistent. The formula relaxation based on the

retraction κ⊥ amounts to apply κ⊥ to the concept TWEETY resulting in the follow-

ing new knowledge base {⊥ ⊑ BIRD, BIRD ⊑ FLIES} which is now consistent with

T ′. An alternative solution is to retract the concept BIRD in BIRD ⊑ FLIES which

results in the following knowledge base {TWEETY ⊑ BIRD,⊥ ⊑ FLIES} which

is also consistent with T ′. The sets of minimal sum K1 and K2 in Condition 2 of

Definition 7 are K1 = {1, 0}, (i.e. kϕ1
= 1, kϕ2

= 0, where ϕ1 = TWEETY ⊑
BIRD, ϕ2 = BIRD ⊑ FLIES) and K2 = {0, 1}. However, to ensure Condition 3 of

the same definition, we must relax one more time the axioms in T leading to the

following knowledge base {⊥ ⊑ BIRD,⊥ ⊑ FLIES}. The final revision then writes

T ◦ T ′ = {⊥ ⊑ BIRD,⊥ ⊑ FLIES, TWEETY ⊓ FLIES ⊑ ⊥}. This revision satisfies

the AGM postulates (G1-G6) but may appear too strong, and one may prefer one of

the following solutions: T ◦1T
′ = {⊥ ⊑ BIRD, BIRD ⊑ FLIES, TWEETY⊓FLIES ⊑

⊥} or T ◦2 T
′ = {TWEETY ⊑ BIRD,⊥ ⊑ FLIES, TWEETY ⊓ FLIES ⊑ ⊥} at the

price of loosing (G4)-(G6).

Although the results are rather intuitive, one should note that it is pretty hard to

figure out what each DL researcher would like to have as a result in such an exam-
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ple, and this enforces the interest of relying on an established theory such as AGM

or its extension. In our work we propose operators enjoying a bunch of properties

stemming from our adaptation of the AGM theory. Some of them can meet the re-

quirement of a knowledge engineer, and some other may not completely, depending

on the context, the ontology, etc.

EL-Concept Relaxations. Dually, a trivial relaxation is the operator ρ⊤ that maps

every concept to ⊤. Other non-trivial EL-concept description relaxations have been

introduced in [14]. We summarize here some of these operators.

EL concept descriptions can appropriately be represented as labeled trees, often

called EL description trees [3]. An EL description tree is a tree whose nodes are

labeled with sets of concept names and whose edges are labeled with role names.

An EL concept description

C ≡ P1 ⊓ · · · ⊓ Pn ⊓ ∃r1.C1 ⊓ · · · ⊓ ∃rm.Cm (2)

with Pi ∈ NC ∪ {⊤}, can be translated into a description tree by labeling the root

node v0 with {P1, . . . , Pn}, creating an rj successor, and then proceeding induc-

tively by expanding Cj for the rj-successor node for all j ∈ {1, . . . , m}.

An EL-concept description relaxation then amounts to apply simple tree operations.

Two relaxations can hence be defined [14]: (i) ρdepth that reduces the role depth

of each concept by 1, simply by pruning the description tree, and (ii) ρleaves that

removes all leaves from a description tree.

4.5 Relaxations in ELU

The relaxation defined above exploits the strong property that an EL concept de-

scription is isomorphic to a description tree. This is arguably not true for more

expressive DLs. Let us try to go one step further in expressivity and consider the

logic ELU . A relaxation operator as introduced in [14] requires a concept descrip-

tion to be in a special normal form, called normal form with grouping of existentials,

defined recursively as follows.

Definition 14 (Normal form with grouping of existential restrictions). We say that

an EL-concept D is written in normal form with grouping of existential restric-

tions if it is of the form

D =
l

A∈ND

A ⊓
l

r∈NR

Dr, (3)

where ND ⊆ NC is a set of concept names and the concepts Dr are of the form

Dr =
l

E∈CDr

∃r.E, (4)
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where no subsumption relation holds between two distinct conjuncts and CDr
is a

set of complex EL-concepts that are themselves in normal form with grouping of

existential restrictions.

The purpose of Dr terms is simply to group existential restrictions that share the

same role name. For an ELU-concept C we say that C is in normal form if it is of

the form (C ≡ C1 ⊔ C2 ⊔ · · · ⊔ Ck) and each of the Ci is an EL-concept in normal

form with grouping of existential restrictions.

Definition 15 (Relaxation from normal form [14]). Given an ELU-concept descrip-

tion C we define an operator ρe recursively as follows.

• For C = ⊤ we define ρe(C) = ⊤,

• For C = Dr, where Dr is a group of existential restrictions as in Equation 4, we

need to distinguish two cases:

· if Dr ≡ ∃r.⊤ we define ρe(Dr) = ⊤, and

· ifDr 6≡ ∃r.⊤ then we define ρe(Dr) =
⊔

S⊆CDr

(

d
E/∈S ∃r.E ⊓ ∃r.ρe

(

d
F∈S F

))

.

Note that in the latter case ⊤ /∈ CDr
since Dr is in normal form.

• ForC = D as in Equation 3 we define ρe(D) =
⊔

G∈CD

(

ρe(G)⊓
d

H∈CD\{G}H

)

,

where CD = ND ∪ {Dr | r ∈ NR}.

• Finally forC = C1⊔C2⊔· · ·⊔Ck we set ρe(C) = ρe(C1)⊔ρe(C2)⊔· · ·⊔ρe(Ck).

Proposition 10. [14] ρe is a relaxation.

Let us illustrate this operator with an example.

Example 3. Suppose an agent believes that a person BOB is married to a female

judge: T = {BOB ⊑ MALE⊓∃.MARRIEDTO . (FEMALE ⊓ JUDGE)}. Suppose now

that due to some obscurantist law, it happens that females are not allowed to be

judges. This new belief is captured as T ′ = {JUDGE ⊓ FEMALE ⊑ ⊥}. By applying

ρe one can resolve the conflict between the two belief sets. To ease the reading, let

us rewrite the concepts as follows: A ≡ MALE, B ≡ FEMALE, C ≡ JUDGE, m ≡
MARRIEDTO, D ≡ ∃MARRIEDTO . (FEMALE ⊓ JUDGE). Hence, from Definition 15

we have ρe(A ⊓D) ≡ (ρe(A) ⊓D) ⊔ (A ⊓ ρe(D)), with ρe(A) ≡ ⊤ and

ρe(D) ≡∃m.ρe(B ⊓ C) ⊔ (∃m.B ⊓ ∃m.ρe(C)) ⊔ (∃m.ρe(B) ⊓ ∃m.C)

≡∃m.(B ⊔ C) ⊔ (∃m.B ⊓ ∃m.⊤) ⊔ (∃m.⊤ ⊓ ∃m.C)

≡∃m.B ⊔ ∃m.C ⊔ ∃m.(B ⊔ C) ≡ ∃m.B ⊔ ∃m.C

Then

ρe(A ⊓D) ≡ (ρe(A) ⊓D) ⊔ (A ⊓ ρe(D))

≡(⊤ ⊓D) ⊔ (A ⊓ (∃m.B ⊔ ∃m.C))

≡D ⊔ (A ⊓ (∃m.B ⊔ ∃m.C))

The new agent’s belief, up to a rewriting, becomes
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{BOB ⊑ ∃.MARRIEDTO . (FEMALE ⊓ JUDGE) ⊔
(MALE ⊓ (∃MARRIED.FEMALE ⊔ ∃MARRIED.JUDGE)) , JUDGE ⊓ FEMALE ⊑ ⊥}.

One can notice from this example that the relaxation ρe leads to a refined revision

operator. Indeed, the resulting relaxed axiom in T emphasizes all the minimal pos-

sible changes (through the disjunction operator) on BOB’s condition. This is due

to the fact that the relaxation operator ρe corresponds to dilating the set of models

of a ball defined from an edit distance on the concept description tree of size one.

For more details on the correspondence between this relaxation operator, the set of

models and tree edit distances, one can refer to [14].

Another possibility for defining a relaxation in ELU is obtained by exploiting the

disjunction constructor by augmenting a concept description with a set of excep-

tions.

Definition 16 (Relaxation from exceptions in ELU). Given a set of exceptions E =
{E1, · · · , En}, we define a relaxation of degree k of an ELU-concept description

C as follows: for a finite set Ek ⊆ E with |Ek| = k, C is relaxed by adding the sets

Eij ∈ Ek such that Eij ⊓ C ⊑ ⊥

ρkE(C) = C ⊔ Ei1 ⊔ · · · ⊔ Eik .

Proposition 11. ρkE is extensive.

Proof. Extensivity of this operator follows directly from the definition.

However, exhaustivity is not necessarily satisfied unless the exception set includes

the ⊤ concept or the disjunction of some or all of its elements entails the ⊤ concept.

If we consider again Example 2, a relaxation of the formula BIRD ⊑ FLIES using

the operator ρkE over the concept FLIES with the exception set E = {TWEETY}
results in the formula BIRD ⊑ FLIES ⊔ TWEETY. The new revised knowledge base,

if Condition 3 in Definition 7 is not considered, is then {TWEETY ⊑ BIRD, BIRD ⊑
FLIES ⊔ TWEETY, TWEETY ⊓ FLIES ⊑ ⊥} which is consistent. This is obviously a

more refined revision than the one obtained from the operator ρ⊥, but requires the

logic to be equipped with the disjunction connective and the definition of a set of

exceptions.

Another example involving this relaxation will be discussed in the ALC case (cf.

Example 4).
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4.6 Relaxation and retraction in ALC

We consider here operators suited to ALC language. Of course, all the operators

defined for EL and ELU remain valid.

ALC-Concept Retractions. A first possibility for defining retraction is to remove

iteratively from an ALC-concept description one or a set of its subconcepts. A

similar construction has been introduced in [28]. Interestingly enough, almost all

the operators defined in [20,28] are relaxations.

Definition 17 (Retraction from exceptions inALC). Given a set of exceptions E =
{E1, · · · , En} and let C be any ALC-concept description. We retract C by con-

straining it to the elements Ec
i such that Ei ⊑ C:

κnE(C) = C ⊓ Ec
1 ⊓ · · · ⊓ Ec

n.

Proposition 12. κnE is anti-extensive.

Proof. The proof follows from the definition.

As for its counterpart relaxation (ρkE ), exhaustivity of κnE is not necessarily satisfied

unless the exception set includes the ⊥ concept, or the conjunction of some or all

of its elements entails the ⊥ concept.

Consider again Example 2. We have κ1E(BIRD) = BIRD ⊓ TWEETY
c. The resulting

revised knowledge base, if Condition 3 in Definition 7 is not considered, is then

{TWEETY ⊑ BIRD, BIRD ⊓ TWEETY
c ⊑ FLIES, TWEETY ⊓ FLIES ⊑ ⊥} which is

consistent.

Another possibility, suggested in [20] and related to operators defined in proposi-

tional logic as introduced in [7], consists in applying the retraction at the atomic

level. This captures somehow Dalal’s idea of revision operators in propositional

logic [10].

Definition 18. Let C be an ALC-concept description of the formQ1r1 · · ·Qmrm.D,

where Qi is a quantifier and D is quantifier-free and in CNF form, i.e. D = E1 ⊓
E2 ⊓ · · ·En with Ei being disjunctions of possibly negated atomic concepts. Let us

define, as in the propositional case [7], κp(D) =
dn

j=1
(
⊔

i 6=j Ei). Then κDalal(C) =
Q1r1 · · ·Qmrm.κp(D).

Proposition 13. κnDalal is a retraction.

Proof. Exhaustivity and anti-extensivity follow from those of κp. Indeed the oper-

ator κp is exhaustive and anti-extensive, and if applied n times it reaches the ⊥
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concept (see [7] for properties of this operator).

This idea can be generalized to consider any retraction defined in ELU .

Definition 19. Let C be an ALC-concept description of the formQ1r1 · · ·Qmrm.D,

where Qi is a quantifier and D is a quantifier-free. Then we define κ∩(C) =
Q1r1 · · ·Qmrm.κ

n
E(D).

Proposition 14. κn∩ is anti-extensive.

Proof. The properties of this operator follows from the ones of κnE(D). Hence, anti-

extensivity is verified but not necessarily exhaustivity.

Another possible ALC-concept description retraction is obtained by substituting

the existential restriction by an universal one. This idea has been sketched in [20]

for defining dilation operators (then by transforming ∀ into ∃), i.e. special relaxation

operators enjoying additional properties [14]. We adapt it here to define retraction

in DL syntax.

Definition 20. Let C be an ALC-concept description of the form Q1r1 · · ·Qnrn.D,

where Qi is a quantifier, D is quantifier-free, then we define

κq(C) =
l

{Q′
1r1 · · ·Q

′
nrn.D | ∃j ≤ n s.t. Qj = ∃

and Q′
j = ∀, and for all i ≤ n s.t. i 6= j, Q′

i = Qi}

Proposition 15. κq is anti-extensive.

Proof. The proof relies on the following general result:

∀C, ∀r, ∀r.C ⊑ ∃r.C

Indeed, for each interpretation I, if rIi 6= ∅, we have

x ∈ (∀r.C)I ⇒ (∀y, (x, y) ∈ rI ⇒ y ∈ CI) ⇒ (∃y, (x, y) ∈ rIand y ∈ CI) ⇒ x ∈ (∃r.C)I .

Hence (∀r.C)I ⊆ (∃r.C)I for each I (if rIi = ∅ it is obvious), and ∀r.C ⊑ ∃r.C.

In a similar way, we can show, that for any C1, C2, r, and Q ∈ {∃, ∀}:

C1 ⊑ C2 ⇒ Qr.C1 ⊑ Qr.C2.

Now, let us consider any j such that Qj = ∃, and set C ′ = Qj+1rj+1...Qnrn.D.

We have from the first result Q′
jrj.C

′ ⊑ Qjrj .C
′. Applying the second result recur-

sively on each Qi for i < j, we then have

Q1r1...Qj−1rj−1Q
′
jrj .C

′ ⊑ Q1r1...Qj−1rj−1Qjrj.C
′.
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The same relation holds for the conjunction over any j such that Qj = ∃, from

which we conclude that ∀C, κq(C) ⊑ C, i.e. κq is anti-extensive.

Note that for κq exhaustivity can be obtained by further removing recursively the

remaining universal quantifiers and apply at the final step any retraction defined

above on the concept D.

ALC-Concept Relaxations. Let us now introduce some relaxation operators suited

to ALC language.

Definition 21. Let C be an ALC-concept description of the formQ1r1 · · ·Qmrm.D,

where Qi is a quantifier and D is quantifier-free and in DNF form, i.e. D =
E1 ⊔ E2 ⊔ · · ·En with Ei being a conjunction of possibly negated atomic con-

cepts. Define, as in the propositional case [7], ρp(D) =
⊔n

j=1(
d

i 6=j Ei), then

ρnDalal(C) = Q1r1 · · ·Qmrm.ρ
n
p (D).

As for retraction, this idea can be generalized to consider any relaxation defined in

ELU .

Definition 22. Let C be an ALC-concept description of the form Q1r1 · · ·Qnrn.D,

whereQi is a quantifier andD is quantifier-free, then we define ρn∪(C) = Q1r1 · · ·Qnrn.ρ
n
E(D).

Let us consider another example adapted from the literature to illustrate these oper-

ators [28].

Example 4. Let us consider the following knowledge bases: T = {BOB ⊑ ∀HASCHILD .RICH,BOB ⊑
∃HASCHILD .MARY,MARY ⊑ RICH} and T ′ = {BOB ⊑ HASCHILD .JOHN, JOHN ⊑
RICHc}. Relaxing the formula BOB ⊑ ∀HASCHILD .RICH by applying ρn∪ to the con-

cept on the right hand side results in the following formula BOB ⊑ ∀HASCHILD .(RICH⊔
JOHN) which resolves the conflict between the two knowledge bases.

A last possibility, dual to the retraction operator given in Definition 20, consists in

transforming universal quantifiers to existential ones.

Definition 23. Let C be an ALC-concept description of the form Q1r1 · · ·Qnrn.D,

where Qi is a quantifier and D is quantifier-free, then we define a relaxation as:

ρq(C) =
⊔

{Q′
1r1 · · ·Q

′
nrn.D | ∃j ≤ n s.t. Qj = ∀

and Q′
j = ∃, and for all i ≤ n s.t. i 6= j, Q′

i = Qi}

If we consider again Example 4, relaxing the formula BOB ⊑ ∀HASCHILD .RICH

by applying ρq to the concept on the right hand side results in the following formula
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BOB ⊑ ∃HASCHILD .RICH, which resolves the conflict between the two knowledge

bases.

Proposition 16. The operators ρDalal, ρq are extensive and exhaustive. The opera-

tors ρ∪ is extensive but not exhaustive.

Proof. The properties of ρDalal and ρ∪ are directly derived from the definitions and

from properties of ρp detailed in [7] and ρE . The proof of ρq being extensive and

exhaustive can be found in [20].

5 Related work

Recently a first generalization of AGM revision has been proposed in the frame-

work of Tarskian logics considering minimality criteria on removed formulas [33]

following previous works of the same authors for contraction [34]. Representation

results that make a correspondence between a large family of logics containing non-

classical logics such as DL and HCL and AGM postulates for revision with such

minimality criteria have then been obtained. Here, the proposed generalization also

gives similar representation theorems (cf. Theorem 1) but for a different minimality

criterion. Indeed, we showed in Section 3.2 that revision operators satisfying Pos-

tulates (G1)-(G6) are precisely the ones that accomplish an update with minimal

change to the set of models of knowledge bases, generalizing to any institution the

approach developed in [22] for the logic PL and [29] for DL. However, our revi-

sion operator based on relaxation also has a minimality criterion on transformed

formulas. Indeed, a simple consequence of Definition 7 is the property

(Relevance) Let T, T ′ ⊆ Sen be two knowledge bases such that

T ◦ T ′ = ρK(T ) ∪ T ′. Then, for every ϕ ∈ T such that kϕ 6= 0, ρK
′

(T ) ∪ T ′ is

inconsistent for K′ = K \ {kϕ} ∪ {k′ϕ = 0}.

This property states that only formulas that contribute to inconsistencies with T ′

are allowed to be transformed. Our property (Relevance) is similar to the property

with the same name in [33,34], but for contraction operators, and that states that

only the formulas that somehow “contribute” to derive the formulas to abandon can

be removed.

Since the primary aim of this paper is to show that a more general framework,

encompassing different logics, can be useful, it is out of the scope of this paper

to provide an overview of all existing relaxation methods. However, some works

deserve to be mentioned, since they are based on ideas that show some similarity

with the relaxation notion proposed in our framework.
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The relaxation idea originates from the work on Morpho-Logics, initially intro-

duced in [7,8]. In this seminal work, revision operators (and explanatory relations)

were defined through dilation and erosion operators. These operators share some

similarities with relaxation and retraction as defined in this paper. Dilation is a sup-

preserving operator and erosion is inf-preserving, hence both are increasing. Some

particular dilations and erosions are exhaustive and extensive while relaxation and

retraction operators are defined to be exhaustive and extensive but not necessarily

sup- and inf-preserving. Dilation has been further exploited for merging first-order

theories in [20].

In [1], the notion of partial meet contraction is defined as the intersection of a non

empty family of maximal subsets of the theory than do not imply the proposition to

be eliminated. Revision is then defined from the Levi identity. The maximal subsets

can also be selected according to some choice function. The authors also define a

notion of partial meet revision, which can be seen as a special case of the relaxation

operator introduced in this paper. In [21], the author also discusses choice functions

and compares the postulates for partial meet revision to the AGM postulates. He

also highlights the distinction between belief sets (which can be very large) and

belief bases (which are not necessarily closed by Cn). More precisely, A is a belief

base of a belief setK iffK = Cn(A). A permissive belief revision is defined in [9],

based on the notion of weakening. The beliefs which are suppressed by classical

revision methods are replaced by weaker forms, which keep the resulting belief set

consistent. This notion of weakening is closed to the one of relaxation developed

in this paper. In the last decade, several works have studied revision operators in

description logics. While most of them concentrated on the adaptation of AGM the-

ory, few works have addressed the definition of concrete operators [24,27,28,26].

For instance, in [24], based on the seminal work in [5], revision in DL is studied by

defining strategies to manage inconsistencies and using the notion of knowledge in-

tegration (see also the work by Hansson). The authors propose a conjunctive maxi-

adjustment, for stratified knowledge bases and lexicographic entailment. In [27],

weakening operators, that are in fact relaxation operators, are defined. Our work

brings a principled formal flavor to these operators. In [26], revision of ontologies

in DL is based on the notion of forgetting, which is also a way to manage inconsis-

tencies. The authors propose a model based approach, inspired by Dalal’s revision

in PL, and based on a distance between terminologies and on the difference set

between two interpretation. The models of the revision T ◦ T ′ are then the interpre-

tations I for which there exists an interpretation I ′ such that the cardinality of the

difference set between I and I ′ is equal to the distance between T and T ′. In [23],

updating Aboxes in DL is discussed, and some operators are introduced. The ratio-

nality of these operators is not discussed, hence the interest of a formal theory such

as the AGM postulates. In [2] an original use of DL revision is introduced for the

orchestration of processes. A closely related field is inconsistency handling in on-

tologies (e.g. [35,36]), with the main difference that the rationality of inconsistency

repairing operators is not investigated, as suggested by the AGM theory.
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As said before, some of our DL-based relaxation operators are closely related to the

ones introduced in [28] for knowledge bases revision. Our relaxation-based revision

framework, being abstract enough (i.e. defined through easily satisfied properties),

encompasses these operators. Moreover, the revision operator defined in [28] con-

siders only inconsistencies due to Abox assertions. Our operators are general in the

sense that Abox assertions are handled as any formula of the language.

6 Conclusion

The contribution of this paper is threefold. First, we provided a generalization of

AGM postulates from a model-theoretic point of view, by defining this operator in

an abstract model theory known under the name of satisfaction systems, so as they

become applicable to a wide class of non-classical logics. In this framework, we

then generalized to any satisfaction systems the characterization of the AGM postu-

lates given by Katsuno and Mendelzon for propositional logic in terms of minimal

change with respect to an ordering among interpretations. This work generalizes

the previous ones in the area. It also suggests the theory behind satisfaction sys-

tems to be a principled framework for dealing with knowledge dynamics with the

growing interest on non-classical logics such as DL. We do hope that bridges can

thus be built, by working at the cross-road of different areas of theoretical computer

sciences.

Secondly, we proposed a general framework for defining revision operators based

on the notion of relaxation. We demonstrated that such a relaxation-based frame-

work for belief revision satisfies the AGM postulates. As a byproduct, we give a

principled formal flavor to several operators defined in the literature (e.g. weaken-

ing operators defined in DL).

Thirdly, we introduced a bunch of concrete relaxations within the scope of descrip-

tion logics, discussed their properties and illustrated them through simple examples.

It was out of the scope of this paper to discuss tools such as OWL. However, the

proposed approach could be applied to SROIQ and implemented in OWL, by aug-

menting a relaxation with operations on complex constructors.

Future works will concern the study of the complexity of the introduced operators,

the comparison of their induced ordering, and their generalization to more expres-

sive DL as well as other non-classical logics such as first-order Horn logics or

equational logics.
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