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ABSTRACT:	� Natural rubber (NR), besides being an abundant renewable resource for the elastomer industry, can be a 
potential resource for the design of innovative biobased polymer networks. The present work is based on 
“telechelic” liquid natural rubber oligomers obtained by controlled chemical degradation of NR. The chain 
ends of such oligomers can then be functionalized (with acrylate functions in the present case) and reacted 
with multifunctional crosslinkers in order to form networks. What’s more, the initial solubility of such 
thermosetting system in an ionic liquid (IL) can be used for the formulation of ionogels. Such solid networks 
typically containing 80% of IL were produced, resulting in high ionic conductivity performances. The oligomer 
chain length was shown to affect IL fragility due to confinement and specific interactions of ions with the host 
polymer network.
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1  INTRODUCTION

Natural rubber (NR) is an abundant renewable 
resource for the elastomer industry, and can be a 
potential carbon-neutral resource if one succeeds 
in recycling vulcanized rubber in an economically 
viable manner. Besides the traditional usage of NR 
in tire manufacturing, there has been other research 
dedicated to the direct use of natural rubber as a raw 
biomass resource for the design of novel biobased 
polymeric materials [1–6]. Such materials are based 
on “telechelic” liquid natural rubber, defined as a low 
molecular weight NR of approximately 103–104 g/mol, 
and bearing terminal groups capable of being used 
in further chain extension and crosslinking [7]. These 
novel biobased polymers are mostly hydroxy-telech-
elic NR-based polyurethanes (PUs) with final aspects 
such as elastomers [5–6], foams [8], interpenetrating 
polymer network (IPN) [4] and block copolymers [2]. 
Besides, it is noteworthy that the same chemistries 
have been applied to vulcanized rubber of waste tire 

to obtain hydroxyl-telechelic oligomers [9] used for 
the formulation of PU foams [10]. 

More recently, acrylate-telechelic natural rub-
ber (AcTNR) oligomers have been synthetized and 
reacted with multifunctional acrylate crosslinkers 
such as trimethylolpropane triacrylate (TMPTA) in 
order to obtain thermoset networks with a glass tran-
sition temperature close to –60 °C [11]. In the present 
work we investigate the use of the thermosetting sys-
tem AcTNR/TMPTA in combination with an ionic liq-
uid (IL) for the elaboration of ionogels. This emerging 
family of solid ionic liquid-based biphasic materials 
[12] has attracted much attention due to their remark-
able solid-state ionic conductivity properties: the con-
finement of ILs inside porous polymer network was 
shown to provide solid membranes endowed with the 
conductive properties, sometimes enhanced, of the 
pristine ILs [13, 14]. 

2  EXPERIMENTAL

2.1  Materials

1-Ethyl-3-methylimidazolium acetate IL (EMIm  
Ac, 98%, Solvionic), trimethylolpropanetri acrylate 
(TMPTA, Aldrich), methyl ethyl ketone peroxide 
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(MEKP, Aldrich), Cobalt octoate (trade name: COB 6, 
SF Composites) were used without further purifica-
tion. Acrylate-telechelic natural rubber (AcTNR) oli-
gomers (Mn = 1300 g/mol, 1900 g/mol, 2400 g/mol) 
were synthesized by using procedures previously 
described in detail [11]. Briefly stated, oligomers of 
natural rubber were first obtained by controlled deg-
radation with periodic acid (H5IO6) in THF. In a sec-
ond step, hydroxy-telechelic natural rubber (HTNR) 
oligomers were obtained by hydrolysis. Finally, 
acrylate-telechelic natural rubber (AcTNR) oligomers 
were obtained by reaction of HTNR with acryloylchlo-
ride. The structure of the AcTNR oligomers is shown 
in Figure 1. The controlled acidic degradation condi-
tions used allowed the production of three grades of 
(AcTNR) of different average degrees of polymeriza-
tion (m = 16, m = 25 and m = 32, corresponding respec-
tively to average molecular weight Mn = 1300 g/mol, 
1900 g/mol and 2400 g/mol). 

2.2  Synthesis of Ionogels

Two series of ionogels containing 80% wt of EMIm Ac 
were produced. This IL content was chosen in order to 
obtain a “salt-in-polymer” solid electrolyte, which is 
a key concept of ionogels. It allowed obtaining a high 
IL/polymer ratio, without leading to a “polymer-in-
salt” structure. The first series was obtained varying 
the TMPTA/AcTNR mass ratio (from 40/60 to 80/20) 
using the AcTNR with m = 32, and a second series 
varying the size of the AcTNR oligomer at a fixed 
TMPTA/AcTNR molar ratio of 8.1 (leading to 3 differ-
ent TMPTA/AcTNR mass ratios of 65/35 for m = 16, 
56/44 for m = 25, and 50/50 for m = 32).

In all cases, the procedure was the following: the 
TMPTA/AcTNR thermosetting system and cobalt 
octoate (0.2% wt) were vigorously mixed in 1-ethyl-
3-methylimidazolium acetate (EMIm Ac) by using a 
vortex at a speed of 2500 rpm for 5 minutes at room 
temperature. The resulting solutions containing 80% 
wt of EMIm Ac and 20% wt of thermosetting sys-
tem were translucent at room temperature (and fully 
transparent above 50 oC), indicating the solubility of 
AcTNR and TMPTA in the IL. The MEKP solution was 
added to the reaction mixture containing 80% wt of 
EMIm Ac and vigorously stirred for 30 seconds. The 
mole ratio of (double bond)/(MEKP) was kept at 30. 
The resultant mixture was then poured into a silicon 

mold. The curing reaction was kept at 80 °C in a closed 
oven purged with nitrogen gas for 5 hours. 

This processing strategy allows confining the IL in 
the host polyacrylate network in a single step. It is also 
expected to be more efficient than a two-step process 
in which the network is polymerized first, before sub-
sequent IL impregnation. This would make it difficult 
to obtain such a high final content of IL confined in 
a porous network at the nanometer scale (see below). 

The resulting solid ionogel samples were stored 
under dry atmosphere. The ionogels’ composition is 
noted as follows: [host network]/IL wt%. Since the 
host networks arise from TMPTA/AcTNR mixture, 
the notation is [TMPTA/AcTNR wt% ratio]/IL wt%, 
the IL wt% being respective to the total mass of iono-
gel. Thus, here all ionogels correspond to [TMPTA/
AcTNR]/80.

2.3  Mechanical Properties 

A dynamic mechanical analyzer (DMA, Q500, TA 
Instruments) was used for all mechanical tests:

-- Uniaxial tensile tests were conducted on rect-
angular samples (length ≈ 15 mm, width ≈ 
7 mm, thickness ≈ 1 mm) using film tension 
clamps supported by cyanoacrylate adhesive 
to facilitate gripping during testing. All tensile 
tests were conducted in controlled force mode 
with a preload of 0.01 N and a force ramp rate 
of 0.05 N/min. All the tests were replicated 
three times.

-- Compression tests were performed on cylindri-
cal samples (diameter 11 ≈ mm, thickness ≈ 2 
mm) compressed using a parallel plate measur-
ing system at room temperature. All tests were 
conducted in controlled force mode with a pre-
load of 0.01 N and a force ramp rate of 1 N/min 
until reaching the limit force (18 N) of DMA.

-- Finally, dynamic compression analysis was 
carried out on the same cylindrical samples to 
determine the storage moduli of ionogels in the 
linear viscoelastic region. Specimens were tested 
using a parallel plate measuring system at room 
temperature. All dynamic tests were conducted 
in an  amplitude sweep (from 2 μm to 100 μm) 
with a preload of 0.01 N and a frequency of 1 Hz.

2.4  Ionic Conductivity

The ionic conductivities were determined by complex 
impedance spectroscopy (CIS) using a BioLogic VMP2 
multichannel potentiostat by varying the temperature 
from −20 °C to 90 °C. The frequency range used for 

O

O O
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Figure 1  Structure of the acrylate-telechelic natural rubber 
(AcTNR) oligomers.
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impedance measurements was 184 kHz −20 mHz and 
the amplitude used was 7 mV. Before any measure-
ment, they were dried for 18 hours under vacuum 
(4 mbar) at 50 °C.

2.5  FTIR

Fourier transform infrared spectroscopy (FTIR) was 
performed on a Bruker Vertex 70 spectrometer in the 
attenuated total reflection mode (ATR). The ATR acces-
sory used was a diamond Harnick 7 reflections device 
(ConcentratIRTM). The spectra resulted from averages 
of 100 scans at 4 cm–1 resolution, between 600 and 6000 
cm–1. Herein we show only the 1000–1800 cm–1 range.

3  RESULTS AND DISCUSSION

The mechanical properties of the ionogels are illus-
trated in Figure 2, Figure 3 and Table 1. Figure 2a,b 
shows the tensile and compressive stress-strain curves 
obtained for the first series of ionogels (varying 
TMPTA/AcTNR mass ratio). The curves obtained for 
the second series of ionogels (of varying oligomer size) 

are not shown for the sake of clarity, but the same trend 
was observed. When the network density increases 
(due to higher TMPTA/AcTNR mass ratio, or lower 
oligomer size), a stiffening of the material is observed.

The dynamic compression test curves at 1 Hz are 
also not shown here. Only the linear domain storage 
modulus values are reported in Table 1, along with the 
Young’s modulus and elongation at break estimated 
from tensile tests. The elongation at break was typi-
cally around 10% for all samples except for the lowest 
TMPTA/AcTNR mass ratio. The Young’s modulus and 
storage modulus values (ranging from 30 to 273 kPa 
for tensile tests, and from 45 to 157 kPa for dynamic 
compression tests) show a more important sensitivity 
to network structure. 

Both can be used to evaluate the apparent mesh size 
[15] since the modulus E is related to the crosslink den-
sity ν (mole.m–3):

	 E
RTv= 3
2 � (1)

where R is the gas constant 8,32 J.mol–1.K–1.
Therefore, the apparent mesh size l can be roughly 

evaluated as follows:

	 l
v

RT
Ea a

= =1 3
2

3 3
* N * N � (2)

where Na is the Avogradro constant (6.02*1023).
The calculated values of l reported in Table 1 range 

from 2.8/3.4 to 5.9/5.4 nm depending on the modulus 
used. Such values confirm that the ionic liquid is con-
fined in the network at the nanometer scale. The differ-
ences between the values obtained from the Young’s 

Figure 2  Tensile (a) and compression (b) test curves of 
ionogels containing 80% wt of EMIm Ac obtained for various 
TMPTA/AcTNR mass ratios using the AcTNR with m =  32.
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Figure 3  Behavior in compression tests. The ionic liquid is 
expelled from the network for compression strain above 40%.
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and storage moduli allow estimating the overall 
uncertainty. We should also point out that due to the 
radical curing reaction, a distribution of mesh sizes 
is probably present in each sample. Nevertheless, we 
rationalize the tendencies, not absolute values. For the 
m = 32 series, the mesh size decreases while increas-
ing the amount of TMPTA crosslinker and reducing 
the amount of AcTNR. Consistently, for the TMPTA/
AcTNR mole ratio of 8.1 series, the mesh size decreases 
when oligomer size decreases from 32 to 16. 

During compression tests (Figure 2b), due to the 
very high deformability of the networks (up to 70% in 
some cases), it was observed that the ionic liquid can 
be expelled from the network at high strain. Figure 3 
shows examples of test curves for two ionogels. It can 
be observed that the ionic liquid starts to flow out of 
the materials only when a 40% compressive strain is 
reached. At the end of the test, a porous sponge-like 
material is observed.

The ionic conductivity properties are illustrated in 
Figure 4 and Figure 5. All conductivities of ionogels 
fall in the same range, i.e., only 6 to 8 times lower than 
the bulk ionic liquid, while being solid. It is worth 
pointing out that reported conductivities refer to the 
whole ionogel, which is made of 20 wt% of host net-
work and 80 wt% of IL.

The conductivity follows the typical non-Arrhenius 
behavior and is well described by the Vogel-Tammann-
Fulcher (VTF) equation:

	 s s= −
−















0

0

0

exp
DT

T T � (3)

where σ0 is the theoretical conductivity at infinite tem-
perature, T0 is the ideal glass transition temperature 
and D is the fragility index. 

The values obtained for these parameters are sum-
marized in Table 2. D is inversely proportional to the 
fragility of the liquid [16] and is related to the temper-
ature dependence of the dynamics of the liquid that 
affect ion transport.

Considering first the second series of ionogels, it 
appears that conductivities are higher for smaller 
initial oligomer size (m values), consistently with  
increased fragility (lower D values) and a decreased 
average mesh size (5.3 to 4.2 nm). 

Now, for the first series of ionogels synthesized 
with m = 32, with a range of compositions leading 
to mesh sizes between 5.5 and 3.1 nm, although 
the mesh size decreased when a relative amount of 
crosslinker TMPTA increases, all conductivities and 
fragilities fall in the same range. Within this first 
series, fragility decreases (D value increases) when 
mesh size decreases. The highest D value and lowest 
conductivity is obtained for ionogel [80/20]/80. It 
thus seems to appear, from a comparison of tenden-
cies of the first and second series, that a too impor-
tant TMPTA crosslinker content slightly quenches 
the conductivity. It is difficult to reach more precise 
conclusions since the conductivities are quite close 
to each other, and also since the crosslinker shows 
a chemical feature different from the spacer, thus 
modifying the chemical features of the host network. 
We also have to point out that Table 2 reports two 
sets of VTF parameters obtained for two sets of syn-
thesis for ionogel [50/50]/80, showing the overall 
uncertainty.

The results of FTIR spectroscopy allow investigat-
ing the interaction of EMIm Ac with the confining net-
work (Figure 6). We consider here some specific bands 
for the second series of ionogels (Figure 6b,c and d). 
Note that similar trends were observed for the first 
series of ionogels:

Table 1  Mechanical properties and estimated mesh sizes of the ionogels containing 80% wt of EMIm Ac.

Network’s formulation Tensile behavior Compression 
behavior

Estimated mesh size

Oligomer 
size m

TMPTA/
AcTNR 
(wt/wt)

Young’s 
modulus 
(± 5 kPa)

Elongation at 
break  
(± 1%)

Storage modulus 
(1Hz)  
(± 5 kPa)

From tensile Young’s 
modulus (nm)

From Compression 
Storage modulus 
(nm)

32

40/60 30 23 45 5.9 5.2

50/50 45 11 50 5.2 5.0

60/40 71 9 54 4.4 4.9

70/30 117 10 93 3.8 4.0

80/20 273 7 157 2.8 3.4

32 50/50 36 10 50 5.6 5.0

25 56/44 67 9 60 4.5 4.7

16 65/35 86 9 80 4.2 4.3
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Figure 4  Ionic conductivities for first (a) and second (b) series of ionogels, compared to the bulk ionic liquid.
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-- The spectrum of unconfined EMImAc (black line, 
Figure 6b) shows two bands at 1560 cm–1 and 1574 
cm–1 which correspond to the OCO– asymmetric 
stretching of acetate anions non-interacting and 
interacting, respectively,with the imidazolium 
cation [17]. These anions’ bands are only slightly 
modified upon confinement. Although, for the 
largest spacer (m = 32), the band’s shape is almost 
the same as for the unconfined IL.

-- For the cation of the unconfined IL, two bands 
are displayed at 1375 and 1324 cm–1 (black line, 
Figure 6c), assigned to modes involving (H-C7-H 
methyl) groups of imidazolium [17, 18]. In the 

ionogels’ spectra (green, blue and red lines in 
Figure 6c), the vibrational frequencies of these 
two bands are again only slightly modified (the 
band at 1375 cm–1 shifts to 1379, 1380 and 1377 
cm–1, for m = 16, 25, 32 respectively), with again 
the lowest shift for the largest mesh size. 

-- The band at 1177 cm–1 for unconfined IL is also 
ascribed to the cation (Figure 6d). It involves  
N1C2H11 with  shifts to 1173 cm–1 for m = 16 and 
25, and to 1175 cm–1 for m = 32.

Overall, it appears that the shifts appear more 
clearly for the smallest mesh sizes, while for the largest 
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we observe an average stemming from IL at host net-
work neighborhood and bulk-like IL. Although these 
modifications are slight, the shift from 1177 to 1173 
cm–1 for the cation in ionogel m = 16 could be related 
to the largest decrease of D index for the same ionogel. 

4  CONCLUSIONS

Ionogels were synthesized by nanoscale confinement 
of the ionic liquid 1-ethyl-3-methylimidazolium ace-
tate (EMImAc) in a natural rubber-based polyacrylate 
matrix. The structure of this partially biobased confin-
ing network consisting of acrylate-telechelic natural 
rubber (AcTNR) oligomers crosslinked with trimeth-
ylolpropane triacrylate (TMPTA) can be tuned by 
adjusting the AcTNR/TMPTA ratio, or the AcTNR oli-
gomer size. This results in an average mesh sizes in the 
3–6 nm range according to the mechanical properties 
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Figure 5  Estimated values of parameter D as a function of TMPTA ratio (a, first series of ionogels) and oligomer size (b, second 
series of ionogels).

of the ionogels, which could be compressed up to 40% 
without breakage or leakage of the ionic liquid.

The ionic conductivity of the ionogels (containing 
80% of confined ionic liquid) is only 6 to 8 times lower 
than that of bulk ionic liquid, while being a solid mate-
rial. Modeling the temperature dependence of the con-
ductivity by the VTF equations shows that tuning the 
structure of the network leads to significant modifica-
tions of the ionic liquid’s fragility, affecting transport 
properties. Analysis by FTIR spectroscopy shows spe-
cific shifts from the bands of anions and cations. The 
largest shifts are observed for the smallest mesh sizes, 
while for the largest mesh size an average from IL at 
host network neighborhood and bulk-like IL appears. 
This first study on high loadings of ionic liquid con-
fined in natural rubber-based network opens up per-
spectives for new high added value applications of 
this natural polymer.
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Table 2  Estimated values of the VFT model parameters.

Ln σ0 D T0 /K Average mesh size 
(nm)

EMImAc −6.8 3.4 +/−0.1 188 +/−1 –

m = 32 [40/60]/80 −9.1 2.7 +/−0.2 193 +/−3 5.5

[50/50]/80 −8.3 3.2 +/−0.1 194 +/−1 5.1

[60/40]/80 −8.3 3.3 +/−0.1 191 +/−1 4.6

[70/30]/80 −8.5 3.2 +/−0.1 192 +/−1 3.9

[80/20]/80 −7.9 3.9 +/−0.2 186 +/−1 3.1

m = 32 [50/50]/80 −7.5 4.5 +/−0.5 179 +/−4 5.3

m = 25 [56/44]/80 −7.7 3.6 +/−0.1 190 +/−1 4.6

m = 16 [65/35]/80 −8.7 2.5 +/−0.2 200 +/−2 4.2

Figure 6  FTIR spectra of the second series of ionogels (a) and specific bands of the ionic liquid (b,c,d).
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