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Abstract

In the light of factories of the future, we present a reliable framework for real-

time safe physical human-robot collaboration using static hand gestures. To

ensure productive and safe interaction between robot and human coworkers, it

is imperative that the robot extracts the essential information about the human

coworker. We address this by designing a framework for safe and intuitive robot

programming based on hand gesture recognition. First, the OpenPose library

is integrated with Microsoft Kinect V2, to obtain a 3D estimation of the hu-

man skeleton. With the help of 10 volunteers, we record an image dataset of

alpha-numeric static hand gestures, taken from the American Sign Language.

We name our dataset as OpenSign and release it to the community for bench-

marking. The Inception-v3 convolutional neural network is adapted to train

the hand gesture detector. To augment the data for training a hand gesture

detector, we use OpenPose to localize the hands in the dataset images and

segment the backgrounds of hand images using the Kinect depth map. Then,

the backgrounds are substituted with random patterns and indoor architecture

templates. Fine-tuning of Inception V3 is performed in three phases, to achieve

validation accuracy of 99.1% and test accuracy of 98.9%. An asynchronous
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integration of image acquisition and hand gesture detection is performed to en-

sure real-time detection of hand gestures. Finally, the proposed framework is

integrated in our physical human-robot interaction library OpenPHRI. Using

OpenPHRI, we validate the performance of the proposed framework through a

complete teaching by demonstration experiment with a robotic manipulator.

Keywords: Physical Human-Robot Interaction, Hand-Gesture Detection,

Convolutional Neural Networks, Skeleton Extraction, Real-time Vision,

Transfer Learning, OpenPHRI

1. Introduction

The advent of the Industry 4.0, which is a modern trend of automation and

data exchange in the manufacturing industry, has proposed the concept of smart

factories of the future [1]. This evolving industry demands a more effective and

involved collaboration between humans and robots, where each partner can5

constructively utilize the strengths of the others to increase productivity and

work quality [2].

Safety of the human coworkers and an efficacious interaction between hu-

mans and robots are key factors of success in such an industrial setting. To

ensure safety, the ability of the robot to detect an external force, differenti-10

ate between intended and accidental forces and to adapt to the rapidity of the

human coworker is essential [3]. Nevertheless, the sense of vision is also imper-

ative for modern collaborative robots to monitor the behavior and actions of

their human coworkers for communicating or preventing accidents [4].

Generally, robots are designed and programmed to perform specialized tasks.15

Hence, it is difficult for an unskilled worker to reprogram the robot for a new

task [5]. The traditional robot teaching methods are tedious, non-intuitive and

time consuming. Instead, speech and gestures are natural and intuitive ways to

communicate/interact with the robot [6]. In this paper, we propose a real-time

robust and background independent hand gesture detection module using the20

concept of transfer learning in convolutional neural networks [7]. We integrate
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the proposed hand gesture detection module with our physical human-robot

interaction library OpenPHRI [8] for robot control. This ensures on one hand

safety of the human coworker through fast communication and real time depth

estimation, and on the other hand an intuitive means for robot programming25

and reprogramming, through hand gestures.

Background and related work are described in Sect. II. We summarize our

contributions in Sect. III, while Skeleton extraction and hand localization are

detailed in Sect. IV We describe our convolutional neural network for hand

gesture detection in Sec. V, while the robotic framework and example industrial30

application of the proposed framework are presented in Sect. VI. We conclude

in section VII.

2. Background and related work

The authors of [1] present an emerging concept of cyber-physical struc-

ture which will employ extensive automation and self-organization of machines35

and component parts in complex manufacturing scenarios, using different sen-

sor modalities. The primary role of human workers in such a setting will

be to dictate a production strategy and to supervise its implementation by

the corresponding self-organizing production processes. A detailed review of

human-robot collaborative assembly in cyber-physical production is presented40

in [9]. The authors propose a structured classification and solution framework

of human-robot collaboration. Typical requirements for symbiotic human-robot

collaboration are summarized and a case study of a super-charger assembly of

the car engine is presented to validate the proposed framework. This case study

explores the feasibility of transforming conventional industrial robotic cells into45

collaborative environments.

Although some researchers claim to prefer the use of data gloves or wearable

sensors to allow free movement of the user or to deal with the occlusions or

varying light conditions [10], these sensors are expensive, non-intuitive and limit

the dexterity of the person in his/her routine tasks. Many works in the past50
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have proposed image-based human-robot interaction schemes with the help of

gestures. A task oriented intuitive programming procedure is presented in [11] to

demonstrate human-like behavior of a dual-arm robot. The authors decompose

complex activities in simpler tasks that are performed through task-oriented

programming where the focus is given to ”what to be done, rather than how to55

do it”. Moreover, through the development of intuitive human interfaces, high

level commands are transferred to a sequence of robot motion and actions. For

human-robot interaction, they use Microsoft Kinect V1 [12] to extract human

skeletal coordinates for gesture detection, and the built-in microphone array of

Kinect V1 to detect the oral commands. Whole body gestures (extended arms)60

are used to achieve robot motion in a dashboard assembly case. Although the

idea of task decomposition and controlling the robot through human gestures is

beneficial but the considered gestures, similar to that in [13], are non-intuitive

and tiring.

In [14] authors presents methods for obtaining human worker posture in a65

human-robot collaboration task of abrasive blasting. They compare the perfor-

mance of three depth cameras namely Microsoft Kinect V1, Microsoft Kinect V2

[15] and Intel RealSense R200 [16]. Kinect V1 uses a structured light approach

to estimate the depth map, Kinect V2 is a time-of-flight sensor while RealSense

R200 has a stereoscopic infra-red setting to produce depth. In the blasting pro-70

cess, the abrasives are suspended in the air or fill the surrounding environment,

and significantly decrease the scene visibility. The use of image-based methods

to extract human worker pose is challenging in such environments. The exper-

imental observations suggest that Kinect V1 performs best in the real blasting

environment, although no concrete reason could explain this. They also present75

a novel camera rig with an array of four Kinect V1 to cover 180◦ horizontal field

of view.

In [17], the authors present an online robot teaching method that fuses

speech and gesture information using text. Kinect V2 localizes hands position

in the scene while an inertial measurement unit (IMU) measures its orientation.80

The gesture and speech data are first converted into a description text, then a
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text understanding method converts the text to robot commands. The proposed

method is validated by performing a peg-into-hole experiment, placing wire-cut

shapes, and an irregular trajectory following task.

To ensure safe interaction, [18] proposes a virtual reality training system for85

human-robot collaboration. A virtual game simulation is developed for real-time

collaboration between industrial robotic manipulators and humans. A realistic

virtual human body, with a simple first person shooter view is included, to

intuitively simulate the user’s vision. A head mount display and Kinect V1 track

the human head and skeleton pose respectively. Several interaction tasks are90

accomplished including selection of objects, manipulation, navigation and robot

control. This technique is useful to establish the acceptability of a collaborative

robot among humans in a shared workspace as well as to tackle mental safety

issues.

In [5] the authors present a strategy to use speech and a Wii controller to95

program a Motoman HP6 industrial robot. This helps workers with no knowl-

edge of typical programming languages, in teaching different activities to the

robot in an intuitive way. A neural network is trained to recognize hand gestures

using features extracted from the accelerometer output of the Wii-controller. In

[19], the authors train artificial neural networks to classify 25 static and 10 dy-100

namic gestures to control an industrial 5 degrees-of-freedom robotic arm. A

data glove, CyberGlove II, and a magnetic tracker, Polhemus Liberty, are used

to extract a total of 26 degrees-of-freedom.

The authors of [3] present a study for measuring trust of human coworkers in

fence-less human-robot collaboration in industrial robotic applications. To en-105

sure safety of the human coworkers, it is essential to equip the robot with vision

sensors to understand its environment and to adapt to the worker’s behavior.

They also discuss the use of RGB-D cameras to detect pointing gestures and

proximity monitoring for safety using the depth information. In [20] authors use

human gestures to navigate a wheeled robot through pointing gestures directed110

on the floor. The interaction scheme also includes detection of facial gestures

which often fails, as stated by the authors, because the untrained users make
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those gestures subtly.

In [21], the authors propose object recognition through 3D gestures using

Kinect V1. They exploit the depth information from Kinect V1 to subtract115

background of the objects. This strategy often fails if predefined environmental

assumptions are not met. Moreover, a histogram matching algorithm is used to

recognize the objects placed on a white color table, and such techniques have

recently been outperformed by modern deep learning ones like convolutional

neural networks [22]. The authors of [23] propose a human-robot interaction120

system for the navigation of a mobile robot using Kinect V1. The point cloud

acquired from Kinect V1 is fit on a skeleton topology with multiple nodes to

extract the pose of human operator. This technique is not reliable to obtain

the skeletal pose unless the human body non-linear anatomical constraints are

modeled in the design of the skeleton topology.125

3. Our Contributions

This paper is an extension of our previous work proposed in [24] which

presented a tool handover task between robot and human coworker through

static hand gestures. A convolutional neural network, inspired mainly by LeNet

[25] was developed, to classify four hand gestures. The aim of the previous work130

was also to build a robust hand gesture detection system. However, the dataset

was small, and the hand images were recorded only by one individual. This could

not guarantee correct detection of hand gestures made by other individuals and

with backgrounds having rich textures.

We extend our work by training a hand gesture detector on ten gestures135

instead of four as in [24]. Moreover, the backgrounds are now replaced with

random pattern/indoor-architecture images to make the detection robust and

background invariant. We propose an intuitive interaction setting where a hu-

man coworker can instruct commands to the robot via gestures. The contribu-

tions in this paper are summarized as follows:140

• Development of a real-time hand gesture detection framework that lo-
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calizes hands through asynchronous integration of OpenPose 2D skeleton

detector and classify hand-gestures at frame-rate of approximately 20fps.

• Training a background-invariant hand-gesture detection system through

transfer learning from Inception V3 convolutional neural network.145

• On-line release of hand gestures database of Kinect V2 recordings for

benchmarking and comparison.

• Integration of the developed hand gesture detection module with our safe

physical human robot interaction framework, namely OpenPHRI.

• Validation of the proposed framework for robot teaching and control of150

Kuka LWR 4+ arm with the detected hand-gestures.

The overall pipeline of the proposed framework is illustrated in Fig. 1. The

dotted lines in the figure represents the asynchronous integration between the

modules to ensure real-time execution of the system. Each module is described

in the following sections in detail.155

4. Skeleton Extraction and Hand Localization

For safe physical Human-Robot Interaction, it is essential for the robot to

understand its environment, particularly the human coworker. In this research,

we opted for Microsoft Kinect V2 as the main sensor to capture the visual

information of the human coworker. Kinect V2 is a time-of-flight sensor and160

provides a larger field-of-view and higher resolution RGB and depth images

than its predecessor Kinect V1. This allows the robot to extract functional

information from the scene, like human(s) presence or object/obstacle detection,

including depth perception.

4.1. Skeleton Extraction Module165

In our work we utilize OpenPose [26, 27], to extract skeletal joint coordinates,

as in [28, 29]. This library returns 2D skeletal coordinates (xi, yi, ci), for i =
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1, ..., 18, from a RGB image, using confidence maps and parts affinity fields in

a multi-person scene; xi and yi are the abscissas and ordinates respectively of

18 COCO body parts [30], while ci represent their confidence measure.170

Skeleton Extraction ModuleImage Acquisition and Hand Localization Module

Convolutional Neural Network for Hand Gesture Detection Robotic Framework

Frames 
Acquisition from 

Kinect V2 

Check If Skeletal 
Coordinates With Depth 

Received

TrueCheck Frame 
Request From Skeleton 

Extractor 

Send Serialized 
Color and Depth 

Frames to Skeleton 
Extractor

Display Color Image

Estimate the Size 
and Orientation of 

Bounding Box

Draw the Bounding 
Box, Skeleton 

Coordinates and Crop 
the Hand Image

False

True

False

Start Start
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Image Acquisition and 

Gesture Detection 
Module

Request 
Acknowledged
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Unserialize the 
Received Color and 

Depth Frames

True

Run the Color 
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OpenPose

Send the Serialized 
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Acquisition and Gesture 

Detection Module
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and Depth
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Trained Model

Get the cropped 
Hand Image OpenPHRI

Figure 1: The overall pipeline of our framework for pHRI using hand gestures

OpenPose works on the principle of “convolutional pose machines” described

in [27]. OpenPose is a robust skeleton extractor and is not trained on pre-defined

body poses. It extracts each joint independently from the overall body pose.
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It is therefore preferred over libraries like OpenNI and Microsoft SDK as they

are often not accurate in skeleton extraction, they require initialization pose175

and constraint the user to face the sensor. For real-time skeleton extraction,

this method requires a multi-GPU hardware with the output frame-rate mainly

dependent on the number of persons appearing in the scene. The average frame

rate that is achievable using two Nvidia GeForce GTX 1080 on full-HD Kinect

V2 RGB image is approximately 14 fps. Since we currently employ only one180

GPU in our framework, we obtain 6 fps with 1 person in the scene.

4.2. Image Acquisition and Hand Localization Module

The strategy to localize human body and its sub-parts (i.e., hands or face)

depends mainly on the output of the sensor of choice. In [31] the authors use skin

color for hand segmentation using a conventional RGB camera, as in [32]. In [33],185

human body localization is performed using laser sensors, and its sub-parts are

obtained through Kinect with the OpenNI library as in [34]. In [23], the authors

localize the human body, inspired by [35], by merging clusters of the point cloud

obtained from the Kinect V1 after voxel filtering and ground plane removal.

Lately, infrared based sensors e.g., Leap Motion, are developed to track fingers190

of a hand in the near proximity (within 25 to 600 millimeters) of the sensor.

However this range is too close for our application. In [36], authors adapt a state-

of-the-art object detection deep learning technique namely YOLOv2, adapted to

localize hands and head/face of a person in a scene. The authors have utilized

OpenPose to first extract hands and face images from recorded videos with195

human activity, and then used these images to train YOLOv2 to detect hands

and the face of the person in the scene in real-time. The face is detected to

differentiate left hand from the right one. This is an efficient method to detect

hands in the scene in real-time but requires a separate training/adaptation of

YOLOv2 for hands and faces.200

In our research, since we obtain the skeletal joint coordinates from OpenPose,

we do not need to train a separate hand detector to localize hands. To estimate

the hands position, we fit a line between the elbow joint and the wrist joint
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Figure 2: Localization of hand through OpenPose is illustrated. The bounding box is titled

with an angle that the forearm makes with horizontal while the size of bounding box is

determined by the mean depth value of the wrist joint. The mean depth value is computed

by averaging the depth pixel values of a 6 × 6 matrix centered at the wrist joint.

returned by OpenPose and extend this line to one-third of its original length

(which is an empirical value) in the direction of hand to approximately reach205

the center of hand. A bounding box is then centered at this approximated hand

center at the angle which the forearm makes with the horizontal. This makes

the hand image acquisition rotation invariant. The size of the bounding box is

determined by the mean depth value of a 6 × 6 matrix centered at the wrist

joint obtained through Kinect V2 depth map as shown in Fig. 2. The hand210

images are thus cropped with reference to the tilted bounding box, re-scaled

to size 224×224 pixels and rotated again such that the cropped image becomes

vertical.

4.3. Asynchronous Integration of the Modules

In our previous work [24], we integrated OpenPose with gesture recognition215

sequentially to obtain an overall temporal resolution of approximately 4 fps.
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In this work, to ensure real-time performance, an inter-process distributed sys-

tem is designed through the nanomsg socket library1. The said inter-process

distributed system works using a ”request-reply” communication pattern, also

known as scalability protocol, to ensure that no frames are lost during com-220

munication. Figure 1 illustrates this asynchronous communication between the

proposed framework modules via dotted lines. The image acquisition and hand

localization module retrieves the image stream from Kinect V2 and checks if a

frame request has arrived from the skeleton extraction module. When a frame

request is received, the current RGB and depth image are first serialized through225

flatbuffers2 and then passed to the skeleton extraction module. The skeleton ex-

traction module unserializes the received frames with flatbuffers and then pass

the RGB image through the forward-pass of OpenPose which returns a vector

of 2D skeleton coordinates (xi, yi, ci). The calculated mean depth values, as

described in the previous section, are concatenated with the 2D skeleton coor-230

dinates and this 3D vector (xi, yi, di) is then sent to the image acquisition and

hand localization module. The integration of Kinect V2 depth map with the 2D

skeleton coordinates from OpenPose however do not represent the actual 3D co-

ordinates of the joints and represent the surface depth value of the joints. There

is a possibility that a joint is occluded in the scene by an object or the body itself.235

To prevent false detection of depth hence preventing potential accident, we use

the confidence measure for each joint returned by OpenPose. The depth value

of each joint is only updated if ci > 0.5 (this is an empirical value), otherwise

the previous depth value is kept. The image acquisition and hand localization

module expects to receive coordinates from skeleton extraction module in each240

execution cycle. Once the coordinates are received, the hand is segmented and

cropped image (as described in Section 4.2) runs through the forward-pass of

trained convolutional neural network for hand gesture detection. The detected

hand gesture label is sent to the robot controller running OpenPHRI to pilot the

1https://nanomsg.org
2https://google.github.io/flatbuffers.
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experiment. The overall frame rate of our gesture detection pipeline is approx-245

imately 20 fps while the skeleton is extracted and the hand location is updated

at around 5 fps. This improves the feasibility of pHRI experiments as compared

to that in [24].

5. Convolutional Neural Network for Hand Gestures Detection

In recent years, the idea of deep learning has made a concrete impact on250

computer vision research and has been reported to even surpass human-level

performance in image classification [37]. Hence, we chose to exploit convolu-

tional neural network to recognize static hand gestures. Lately in [32], the

author proposes a color-independent (using preprocessed binary hand images)

hand gesture detector that relies on a convolutional neural network (CNN), in-255

spired by LeNet [25]. The classification accuracy of such system depends largely

on the preprocessing steps of image segmentation performed with color or inten-

sity thresholding, while CNNs are inherently able to learn color features robustly

as presented in [37]. In our research we aim to develop a robust hand gesture

detector that should not require any preprocessing hence, hand tuning of pa-260

rameters during detection phase. We take a step forward in not only using the

color images for CNN training, but substituting the background of the training

images with randomly chosen pattern/indoor-architecture images. This adds

in the complexity of the learning problem but ensures a background invariant

robust detector.265

In our previous work [24], we designed the CNN architecture for hand im-

ages with relatively plain backgrounds, while the number of gestures were set

to 4 and the gestures were recorded by a single person. In this research, 10

static hand gestures are recorded by 10 volunteers of age 22 to 35 (8 males and

two females) and the backgrounds of the hand images are substituted as will270

be explained in Section 5.2. These features combine to make the recognition

problem more complex as compared to the one presented in [24], where only 1

volunteer and 4 gestures had been considered. Therefore we opted for transfer
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learning for gesture recognition, exploiting state-of-the-art CNNs pre-trained on

large image data from the ImageNet Large Scale Visual Recognition Challenge275

(ILSVRC) [38]. In particular, Inception-v3 [39] which is state-of-the-art in im-

age classification for 1000 classes, is adapted for our background-independent

hand-gesture recognition task. Inception-v3 is available in Keras [40] python

library with pre-trained weights.

Figure 3: Samples of the gestures considered for training. The labels represent the letters

and the numbers taken from American Sign Language. The last gesture is one of the several

None gestures included in the training set.

Figure. 3 shows samples of the static gestures we train our framework on.280

The gestures include 9 letters/numbers in total taken from American Sign Lan-

guage [41] and a None gesture that is not one of the 9 selected gestures. The

letters/numbers are chosen such that they resemble with each other (like F, 7

and W; A, L and Y) so as to challenge the training and ensuring robustness of

the CNN.285

5.1. Preparation of Dataset/Dataset recordings

To create a dataset for gesture recognition and off-line development, RGB

and depth image streams from Kinect V2 are saved in the local workstation.

The frames are saved with an approximate frame rate of 20 fps. Each gesture

is recorded by each volunteer for around 12 seconds with their both hands (see290

Fig. 4), thrice at distances of 5, 3 and 1.5 meters away from the sensor.
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Figure 4: A volunteer recording ’7’ gesture in the laboratory

The depth information near Kinect V2 is rich and accurate, thus the images

recorded at the distance of 1.5 meters are used for the fine-tuning of Inception-

V3 as will be discussed in Section 5.3. However, since the network is trained

only on RGB images, the hand gestures can also be recognized at other dis-295

tances. We are releasing our dataset OpenSign3 online that contains RGB and

depth (registered) frames of volunteers recording 10 gestures. The RGB images

are saved in png format while the float data of the depth images are saved in

bin files. The total number of images used from our data-set is 20950, and we

divide them with a ratio of 3:1:1 giving 12570 train images and the number of300

cross validation and test images equal to 4190 each. Train images go through

extensive preprocessing as will be explained in Section 5.2, while only selec-

tive preprocessing operations are applied to cross-validation images to keep the

them near to those obtained during recognition phase of the robotic interaction

experiments.305

5.2. Background substitution and Preprocessing of the Hand Images

Background substitution is performed so the network is trained to detect

hand gestures independently from the background. We used nearly 1100 images

3http://bit.do/OpenSign
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of random pattern and indoor architectures which are freely available on the

internet4. The background substitution process is illustrated in Fig. 5.310

Mask Inverted Mask

* *

+

Figure 5: The process of background substitution.

A binary mask for background substitution is created using the depth in-

formation from Kinect V2. All the pixels that lie at distance within ±18 %

(empirical value) of the mean depth value computed at the wrist joint (ob-

tained through OpenPose) are set to 1, while the rest are zeroed. This binary

mask is broadcasted into three channels and then multiplied by the cropped315

RGB hand image to get a background subtracted hand. An inverted mask is

also created by simply applying a “NOT” operation on the mask originally com-

puted. The background pattern images are cropped to multiple 224×224 sized

images (as it is the set size of hand images) which are subsequently multiplied by

the inverted hand mask. The hand image with subtracted background and the320

pattern images multiplied with the inverted binary mask are then added in the

final step of background substitution. Figure 6 shows the samples of gestures

with original and substituted backgrounds.

As discussed in Section 5.1, the training images go through several prepro-

4https://pixabay.com/
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cessing steps. Image processing operations of histogram equalization and intro-325

duction of Gaussian and salt and pepper noise are applied on 30% of training

images each while the remaining 10% are left unprocessed.

Figure 6: Samples of hand gesture images with original (labeled images) and substituted

backgrounds (below originals).

Figure 7 shows random samples of original and processed images after the

addition of Gaussian noise and histogram equalization. For robust gesture de-

tection, we also use the real-time data augmentation feature of Keras library.330

Keras real-time data augmentation is designed to be iterated by the model fitting

process, creating augmented image data in defined batch size during training.
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This reduces the memory overhead of the computer but adds additional time

cost during model training.

(a) Samples of training images after histogram equalization

(b) Samples of training images after the introduction of Gaussian noise

(c) Samples of training images after the introduction of salt and pepper noise.

Figure 7: Image processing operations of histogram equalization, introduction of Gaussian

and salt and pepper noise are performed on the training images. First row in each sub-image

shows unprocessed image while the processed images are shown in the second rows.

The image processing operations that are applied on the training images335

using the Keras library include channel shift, zoom, shearing, rotation, axes

flip and position shift. Samples of processed training images with Keras being

passed to the CNN are shown in Fig. 8.
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Figure 8: Image processing operations applied to the training images include color-shift, zoom,

shear, rotation, axes flip and position shift processes.

5.3. Adapting Inception V3 to gesture recognition

In image classification problems, the input data i.e., an image, is formed340

by low-level edges, curves and color combinations irrespective of the type of

object that the image represents. It is therefore assumed that the early layers

in the pre-trained state-of-the-art networks have learned to efficiently extract

those features from the images thus they need to be preserved. Inception V3 is

trained to recognize 1000 classes of objects as explained in Section 5. To adapt345

Inception V3 to classify only 10 gestures, the last softmax activation layer of this

network with 1000 neurons should be replaced with a new layer of 10 neurons.

As implemented in Keras, the Inception V3 has 10 trainable inception blocks.

We perform training in three phases. In the first phase all the layers (hence

inception blocks) in the network are frozen with the exception of the new layer350

added and the CNN is trained for 10 epochs only. This fine-tune the weights

of the new layer exploiting the knowledge of all pre-trained inception blocks.

Then we unfreeze last two inception blocks and train the CNN for 10 epochs,

and then we train top four inception blocks so the network is fine-tuned properly
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on our dataset. This gradual unfreezing of inception blocks prevents damaging355

the pre-trained weights and thus avert over-fitting.
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Figure 9: Plot of validation accuracy (top) and validation loss (bottom)

The validation set is used to chose the best performing weights and then the

network is tested on the unseen test set to quantify/estimate the accuracy of the

selected weights. Figure 9 illustrates the training curve of validation accuracy

and loss of our dataset. Each epoch took approximately 130 seconds to pass and360

the network was able to achieve validation accuracy of 99.12% at 745th epoch

taking around 27 hours of training.

5.4. Quantification of the Trained CNN

To validate and quantify the results even further, the accuracy of the trained

CNN is tested with a test set of 4190 new images. The overall test accuracy of365

the trained CNN is found to be 98.9% on test set. The normalized confusion

matrix in Fig. 10 shows the accuracy of each gestures and misinterpretation of

one gesture against the others. It can be observed that despite 94.3% accuracy

of the None gesture, it was misinterpreted the most among all. The reason

for this lower accuracy is that the None gesture defines all gestures that do370
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not appear like the other 9 as well as all transitional gestures. It is difficult to

include all the transitional gesture possible to be classified as None gesture.

Figure 10: Normalized Confusion Matrix Quantified on Test-Set

Moreover, it can be observed from a close inspection of the test results that

the CNN is very accurate in identifying a gesture as None when a person is

holding an object in his hand. It is inferred that if the CNN is additionally375

trained on a gesture like ”an object in hand”, this gesture will be easily distin-

guished. Meanwhile, this misinterpretation can be dealt by adding a software

constraint of not invoking gesture detector until the arm is in the upper two

quadrants of the axes centered at the elbow joint of the person, as we did in
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[24]. But this requires the user to be instructed on such constraints.380

6. Example Industrial Application of The Proposed Framework

To demonstrate the effectiveness of the proposed approached, we set up

an industrial-like experiment where multiple operators can safely interact se-

quentially with the robot using both hand gestures and physical contact. The

experiment is decomposed into two phases: 1) a teaching by demonstration385

phase, where the user manually guides the robot to a set of waypoints and 2)

a replay phase, where the robot autonomously goes to every recorded waypoint

to perform a given task, here force control.

The BAZAR robot used for the experiments is composed of two Kuka LWR

4+ arms with two Shadow Dexterous Hands attached at the end-effectors. The390

arms are attached to a Neobotix MP700 omnidirectional mobile platform. In our

scenario, the mobile base is kept fixed and only the left arm, without the hand,

is used. The communication with the embedded arm controller is done using the

FRI library. The external force applied to the arm’s end-effector is estimated by

the embedded controller (based on joint torque sensing and on knowledge of the395

robot’s dynamic model) and retrieved using FRI. The control rate is set to 5ms.

Figure 11 shows the setup, consisting of the BAZAR robot with a Kinect V2

mounted on top of it. To control the robot and to remain safe during human-

robot collaboration, we have used the OpenPHRI [8] open-source control library.

This library allows to describe the task to perform using force and velocity400

inputs in both the joint and task spaces while enforcing safety constraints such

as velocity limitations, separation distance monitoring or emergency stops.

To orchestrate the experiment, we have designed a finite state machine

(FSM), depicted in Figure 12. The transitions between the states are either

automatic (no text), depending on sensory information (arrow with text) or405

triggered by gestures (hand sign with text).
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Kinect V2

BAZAR Dual Arm 
Mobile Robot

Workspace

Human 
Operator

Figure 11: Safe Physical Human Robot Interaction Setup

A video of the experiment is available online5 and snapshots are given in

Figure 13. The experiment goes as follow. First, the robot goes to a predefined

initial joint configuration before initializing the Teach phase. Once this initial-

ization is performed, the robot is ready to be manually guided and taught the410

waypoints where the tasks have to be performed during the Replay phase. Each

time a Record gesture (L letter sign) is detected, the current end-effector pose

is recorded. When a Replay gesture (A letter sign) comes in, the Teach phase

is ended and the Replay phase is initialized. Then, the robot goes to the first

recorded waypoint while limiting its velocity thus ensuring safety of the human415

worker (separation distance monitoring in the FSM) according to the distance

of the closest detected body part. This distance is obtained by mapping the

depth value given by the Kinect V2 at the 2D joint coordinates obtained from

OpenPose as explained in Section 4.3. If the closest body part is occluded by

5http://bit.do/rcim2018phri
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the robotic arm, the depth value (that will then correspond to the depth value420

of the robot itself) is discarded while the next closest body part visible in the

scene is considered a reference for depth.

Teach 
initialization

 - Joint space trajectory
+ Vel. limit (0.25 m/s)
+ External force

Manual guidanceRecord waypoint

Teach 
end

- Vel. limit (0.25 m/s)
- External force

Replay 
initialization

+ Virtual stiffness
+ Soft stop
+ Acc. limit (0.15 m/s²)

Go to waypoint
 - Force control
+ Emergency stop
+ Separation distance 
    monitoring

Task performed at

waypoint ? 

Execute task
+ Force control
 - Emergency stop
 - Separation distance 
    monitoring

More tasks to

perform ?

Replay 
end

- Virtual stiffness
- Soft stop
- Acc. limit

End

Go to initial 
joint

configuration
+ Joint space trajectory

Start

Record Replay

Reteach Repeat

End

Configuration reached

Waypoint reached

Force applied for 2 seconds

Figure 12: The FSM used for the experiment. A plus sign indicates an addition to the

controller (a new constraint or new input) while a minus indicates a removal.

This distance estimation of body parts is not possible with the default out-

put of OpenPose but a feature designed through the integration of Kinect V2

depth map. This amplifies the productivity of OpenPose skeleton extraction425

while assuring a safe interaction of a human coworker with the robot. While in

autonomous motion, the robot can be stopped at any time (Soft Stop constraint

in the FSM) using a Stop gesture (number 5 sign). Making this gesture will

slow down the robot until a full stop is reached. This is useful if an operator

must enter the robot workspace without fearing any injury. The Resume ges-430

ture (Y letter sign) can be made to resume normal operation. When the robot
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reaches the waypoint, it switches to the task execution. In this scenario the task

is to apply a 30N force for 2s along the vertical axis.

Figure 13: Screenshots from the robotic experiment by operators Op1 and Op2 (a) Op1

manually guiding the robot to a waypoint in the workspace. (b) Op1 records the way-points

using Record gesture. (c) Op1 replay the taught waypoints by Replay gesture. (d) Op2

stands far from the robot so it moves with full speed. (e) Op2 stops the robot by applying

external force (or accidental touch). (f) Op2 stands near the robot, so it moves slowly ensuring

operator’s safety. (g) Op2 gives Reteach command to the robot. (h) Op2 sets the new

waypoints manually. (i) Op2 gives Record command. (j) Op2 stops the robot by Stop gesture.

(k) Op2 resumes the robot operation by Resume gesture. (l) Op1 ends the robot operation

by giving End command.

Once the task has been executed, the robot goes back to its waypoint and

moves to the next ones to repeat the same operations. If the task has been435

performed at all the waypoints, the Replay phase ends and the next action is

determined by the operator. A Reteach gesture (number 7 sign) will move the

FSM to the Teach phase while a Repeat gesture (F letter sign) will repeat all
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the tasks at the recorded waypoints. If no other operation is needed, an End

gesture (number 2 sign) will end the experiment.440

Experimental results are show in Fig. 14. The time axis has been limited to

the 132-185s range for better readability. The top graph displays the result of

the hand gesture detection where each vertical dashed line corresponds to the

detection of a gesture. To filter out false positives, a gesture is considered valid

if it appears in five consecutive frames.445
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Figure 14: Experimental results. From top to bottom: hand gesture detection (dashed lines

correspond to detection instants and plain line to the activation signals), control point trans-

lational velocity, external force at the end-effector, distance between the camera and the

closest human body part and velocity scaling factor computed by OpenPHRI to slow down

the motion.

Considering the hand-gesture detection frame rate of 20Hz, this gives a

250ms delay between the making of the gesture and its detection. This delay
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should not impact human-robot interaction since the average human reaction

time usually lies within the 200-250ms range6. Once the same gesture has been

detected five times in a row, the corresponding signal is activated. False pos-450

itives can be observed, e.g. at t=139 s when the first record signal ends, but

thanks to the filtering systems no incorrect signal activation is made.

The two following graphs in Fig. 14 show the end-effector translational ve-

locity and force. It can be seen that through the Teach phase, i.e. until t=135

s, the velocity simply follows the force applied to the robot. Then, the Replay455

phase starts and the end-effector velocity is now the result of the motion made

to reach the waypoints and also by the force regulation applied at these loca-

tions. Between the two task executions (t=153 s and t=170s), one can observe

some force applied to the robot at t=162 s. A safety feature is programmed

to prevent accidents due to unexpected contact between the operator and the460

robot, leading to an emergency stop. In this situation, the robot stays still until

the contact disappear and then resumes its motion to the second waypoints.

The fourth graph displays the distance to the closest body part. The values

are the raw ones provided by the Kinect V2 and are unitless. As mentioned

previously, this distance is used to adapt the velocity limitation so that the robot465

can move quickly when nobody is around but slows down when an operator is

approaching. The velocity limit is at a minimum of 0.02m/s at a distance

of 300 and at a maximum of 0.3m/s at a distance of 600. The effect of this

limitation can be observed multiple times, including after the beginning of the

Replay phase where the distance suddenly drops below 300, enforcing a very470

slow motion of the robot.

The last graph shows the evolution of the scaling factor computed by Open-

PHRI. A value equals to one means that no velocity reduction has to be per-

formed to comply with the constraints (velocity and acceleration limits, sep-

aration distance monitoring and emergency or soft stop). When at least one475

constraint would not be respected considering the current inputs, the scaling

6http://humanbenchmark.com/tests/reactiontime
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factor decreases below one to make sure that all constraints are satisfied. When

the value reaches zero, the robot is at a complete stop. Using this technique

allows to easily slow down the robot only when it is necessary.

7. Conclusion480

In the perspective of smart factories – also known as factories of the future

– we have introduced a real-time human-robot interaction framework for robot

teaching using hand gestures. The framework relies on our novel rotation and

background invariant robust hand gesture detector. This detector adapts a

pre-trained state-of-the-art convolutional neural network, namely Inception V3,485

to the classification of 10 hand gestures. The CNN is trained on an image

dataset of 10 hand gestures, recorded with the help of 10 volunteers. The

dataset OpenSign, is open and available to the computer vision community for

benchmarking.

On each image, OpenPose and Kinect V2 are integrated to extract 3D data490

of the human skeleton. From these data, we can localize the image regions con-

taining the hands, and crop them from the rest of the image. This integration is

also essential to ensure the safety of the human coworker in human-robot inter-

action. We perform background substitution and image processing operations

(e.g., histogram equalization, introduction of salt and pepper noise etc.) on the495

cropped hand images to increase variance in the overall data before training the

CNN. This allows the network to learn robust hand features, so that no time-

consuming rigid image processing methods are required during the recognition

phase. The accuracy of the trained CNN is validated with a set of test images

and is found to be 98.9%. To reaffirm the quality of the hand gesture detec-500

tor and to validate it on a mock-up example industrial scenario, we perform a

robotic experiment. Safety and effectiveness of the experiment are guaranteed

by our physical human-robot interaction library, OpenPHRI. Besides, real-time

operation is established by asynchronous integration of the different modules

present in our framework. The experiment proves the efficiency of the proposed505
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framework, that ensures an intuitive means for robot programming. The robot

is also aware of its distance from the human worker thanks to the integration

of Kinect V2 and OpenPose. To guarantee the safety of the human coworker

when s/he is in the close vicinity, the robot slows down using the velocity scaling

feature of OpenPHRI.510

Despite the quantified accuracy and experimental results, the capabilities

of our system are limited by the depth range of the vision sensor. Moreover,

the system is trained and tested in indoor settings and may fail in bright light

due to the resulting contrast in RGB images. Backgrounds with intense texture

may also compromise detection. To handle this, distinct background images515

should be substituted in the hand images to train the proposed network. Nev-

ertheless, we believe that the preliminary results presented in this paper are

a very promising step towards the development of vision-based intuitive robot

programming. We encourage researchers interested in these topics to profit from

our open image dataset for benchmarking their algorithms, and to enrich the520

dataset with more images.
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