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The gravitational wave event GW170817 together with its electromagnetic counterparts constrains the
speed of gravity to be extremely close to that of light. We first show, on the example of an exact
Schwarzschild—de Sitter solution of a specific beyond-Horndeski theory, that imposing the strict
equality of these speeds in the asymptotic homogeneous Universe suffices to guarantee so even in the
vicinity of the black hole, where large curvature and scalar-field gradients are present. We also find that
the solution is stable in a range of the model parameters. We finally show that an infinite class of
beyond-Horndeski models satisfying the equality of gravity and light speeds still provides an elegant
self-tuning: the very large bare cosmological constant entering the Lagrangian is almost perfectly
counterbalanced by the energy-momentum tensor of the scalar field, yielding a tiny observable effective

cosmological constant.

DOI: 10.1103/PhysRevLett.120.241101

The simultaneous detection of the gravitational wave
event GW170817 and its electromagnetic counterparts
[1,2] constrains the speeds of light and gravity to differ
by no more than a few parts in 103, References [3,4] (see
also [5]) have characterized which Horndeski theories
[6-12] and their generalizations [13-25] satisfy exactly
Coray = Clight 1N @ homogeneous universe. The aim of the
present Letter is twofold. First, we check that this speed
equality remains satisfied even in a very inhomogeneous
situation, namely, in the vicinity of a black hole, where
gradients are large and where the separation of spin-2 and
spin-0 degrees of freedom is difficult. This will be done for
an exact Schwarzschild—de Sitter solution of a specific
model [26] (see also [27,28]). We also report that this
solution is ghost free and has no gradient instability for
some ranges of the parameters defining the theory. We will
refer to such solutions as being “stable” throughout this
Letter. We then show that self-tuning cosmological models
[29-37] still exist while taking into account the cgpy =
Clighe constraint. In such models, the energy-momentum
tensor of the scalar field almost perfectly counterbalances
the very large bare cosmological constant assumed to be
present in the Lagrangian, so that the observable accel-
erated expansion of the Universe is consistent with a tiny
effective cosmological constant.

In the present Letter, we focus on the subclass of shift-
symmetric beyond-Horndeski theories, i.e., which do not
involve any undifferentiated scalar field ¢. (In the
following, we use the sign conventions of Ref. [38]
and, notably, the mostly plus signature.) Their Lagrangian
reads

0031-9007/18/120(24)/241101(5)
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L = Gy(¢?) + G3(¢3)Tp + G4(¢3)R
~26,(2) [(sz - Wﬂ

+ F4(go/zl)eﬂbpa‘gaﬂyo'(pﬂ(pagoyﬁgDpy
+ ['matter [l//, g;w]’ (1)

where €“7° denotes the fully antisymmetric Levi-Civita
tensor, ¢, =0, and ¢, =V, V,p are the first and
second covariant derivatives of the scalar field, G,, G,
G4, and F, are functions of the standard scalar kinetic
term @7 = ¢“¢,p, [We do not denote ¢ as X, because
this letter will be used for a dimensionless variant in
Eq. (18) below.] G is the derivative of G, with respect to
its argument (go%), and y denotes globally all matter
fields (including gauge bosons) assumed to be minimally
coupled to the metric g,,. In order to ensure ¢yray = Ciights
no quintic beyond-Horndeski term is allowed in this
shift-symmetric subclass, and the function F, must be
related to G4 by [3,4,39]

Fulg?) = —2G¢(‘”) )

This condition (2) ensures that the speeds of gravitational
and electromagnetic waves coincide at least in a homo-
geneous cosmological background. However, the waves
of the GW170817 event did pass nearby massive bodies
during their 40 Mpc journey, and if their speeds slightly
differed in such inhomogeneous situations, this would
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a priori suffice to increase the delay between their
detections. It is thus important to check that these speeds
remain equal even in inhomogeneous backgrounds.
Actually, Ref. [4] claims that condition (2) also suffices
around arbitrary backgrounds, and we will confirm so
below for a specific exact solution—see Eq. (13). But
this Ref. [4] uses the results of [40], which needed to
neglect scalar-graviton mixing terms in order to extract
the spin-2 excitations. Generically, the separation of the
spin-2 and spin-0 degrees of freedom is background
dependent and highly nontrivial. The same argument
applies to the Arnowitt-Deser-Misner (ADM) decompo-
sition of the Lagrangian (1) under condition (2). In the
unitary gauge, one recovers the same decomposition as in
general relativity [3,41]. However, this does not neces-
sarily mean that the helicity-2 perturbations propagate at
Coray = Clight» because the Lagrangian contains mixing

terms proportional to hijD[N j» in usual ADM notation;
the shift N; cannot be eliminated as in general relativity,
because the gauge is already fixed. It remains thus
important to check whether this speed equality is also
satisfied in very curved backgrounds, with large scalar-
field gradients, for instance, in the neighborhood of a
black hole horizon. This is what we do now for the
particular case of an exact Schwarzschild—de Sitter
solution of the model

L = (R = 2Apye) — 107 + PG 0,0, (3)

where G* denotes the Einstein tensor, { =JM§, > 0,
and Mp = (82G)™"/? is the reduced Planck mass.
(The G"@,p, term has been nicknamed “John” in the
“Fab-Four” model [29,30].) In terms of the notation of
Eq. (1), this corresponds to

G2([p%) = _2CAbare - ’W%, (4)

GulR) ==Lk, 5

and Gy =F, =0. Since this vanishing of F, is in
contradiction with Egs. (2) and (5), we can immediately
conclude that this model does not satisfy the ¢,y = Ciign
constraint, if matter (and thereby light) is assumed to be
minimally coupled to g, as in Eq. (I). However, as
already underlined in [3,4], it suffices to couple matter to
a different metric g,,, related to g,, by a disformal
transformation, to change the matter causal cone so that
Coray = Clighe 18 ensured, at least in a homogeneous
universe. In the present model, the disformal transforma-
tions given in [13,14,22,23] or the gravity speed derived
in [4,40] allow us to prove that this physical metric must
read (or be proportional to)

p
@%%- (6)

g}w = 9w —
One may also rewrite Lagrangian (3) in terms of this g,,,
and one finds that it becomes of the form (1), with rather
complicated functions G4($?) and F,(¢?) (involving
nested square roots), which now do satisfy the constraint
(2) in terms of the variable (aﬁ = 7" ¢,9,. This guaran-
tees that the speeds of light and gravity coincide at least
in the asymptotic homogeneous universe, far away from
any local massive body.

We can go beyond this result by studying the speed of
spin-2 perturbations around a spherical black hole. An
exact Schwarzschild—de Sitter solution has indeed been
found in [26] for model (3), assuming linear time depend-
ence of the scalar field [42]

ds? = —A(r)di* + % + P2 (de? + sin20dg?), (7)
A(r) =1 ZGrm - A,;ff 2, (8)

A ==4: (9)

R ()

where this last equality (11) forces its right-hand side to be
positive. Equation (9) defines the effective cosmological
constant A entering the line element (7), and one can note
that it may be as small as one wishes, independent of the
magnitude of Ay, (it does not even depend at all on Ay,
in the present model). This is a particularly simple example
of self-tuning. However, the observer, made of matter, is
now assumed to be coupled to the physical metric (6), and
this changes her perception of the Universe. A straightfor-
ward calculation shows that g, remains of the exact
Schwarzschild—de Sitter form, with a scalar field of the
form (10) in the relevant transformed coordinate system,
but the observable cosmological constant now reads

~ At + A
A _ eff bare Are. 12
ot <3Aeff - Abare ot ( )

At this stage, it thus seems that a very small A remains
possible, for instance, if A,y = —#/f is chosen to almost
compensate Ay,.. However, the field equations written in
the physical frame g,, actually always imply Actt ~ Apare
[43]. Moreover, we will see below that the stability of the

241101-2



PHYSICAL REVIEW LETTERS 120, 241101 (2018)

solution forces both A and the observable A to be of the
same order of magnitude as Ay,. (or even larger).
Therefore, in this simple model (3), the small observed
cosmological constant cannot be explained by the self-
tuning mechanism, and some other reason must be invoked,
like in standard general relativity. It remains that this model
is observationally consistent if the constant A, entering
(3) is small enough.

The odd-parity perturbations of solution (7)-(11) have
been analyzed in [44], and they define the effective metric,
say G,,, in which spin-2 perturbations propagate. We can
thus compare it with the metric g,,, Eq. (6), to which matter
(including photons) is assumed to be coupled, and we find

A ff ~
G = (e ) [ 13
g Aeff + Abare g ( )

Therefore, even close to the black hole, their causal cones
exactly coincide. In other words, the universal coupling of
matter to the disformal metric (6) suffices to ensure cgryy =
Clight €V€n in a very inhomogeneous configuration. Details
will be given in [43].

The perturbative analysis of Ref. [44] was actually
performed to claim that the above Schwarzschild-de
Sitter solution is always unstable, but this claim is incorrect.
The argument was that the Hamiltonian of these perturba-
tions is unbounded by below, close enough to the black
hole horizon. However, although a bounded Hamiltonian
does guarantee the stability of the lowest-energy state, the
converse theorem does not exist. Indeed, a Hamiltonian is
not a scalar quantity, and it may take large negative values
in a very boosted frame even if it was bounded by below
initially. It gets mixed with other conserved quantities that
are not bounded by below, corresponding to the three
momentum of the system. A correct stability criterion may
thus be formulated as follows: if the Hamiltonian is
bounded by below in at least one coordinate system, then
the solution is stable. As we shall detail in [43], when
focusing on kinetic terms, it suffices that the causal cones of
all interacting degrees of freedom share a common interior
timelike [45] direction (which will become the time
coordinate of the “safe” frame in which the Hamiltonian
can be proven to be bounded by below) and also a common
exterior spacelike hypersurface, on which initial data may
be set to define the Cauchy problem (see [46—50] for related
discussions).

In the present solution (7)—(11) for model (3), we saw
that the graviton and matter causal cones coincide every-
where, because of the disformal metric (6) to which we
universally couple matter. There remains, however, to
check that both interiors are indeed timelike, otherwise
matter and gravitons would have opposite kinetic energies.
This means that the factor entering Eq. (13) must be
positive. Moreover, the scalar field ¢ itself has a different
causal cone, that we study in [43] by analyzing the £ = 0

even-parity perturbations. Therefore, stability can be
ensured only if the scalar causal cone shares a common
interior direction and a common exterior hypersurface with
that of g,, (and gravitons). We found that it is possible
provided the parameters of Lagrangian (3) satisfy the
following inequalities. We write them here in terms of
the ratio —/f, denoted as Ay in Eq. (9), and we assume
that the observed A = 3H? is positive (which implies that
Apare and Ay are positive too, when taking into account
these very inequalities),

1
cither >0, <0, and gAbare<—g<Abare, (14)

or <0, >0, and Abare<—%<3/\bm. (15)

It is straightforward to prove analytically that these con-
ditions suffice for the consistency of the causal cones in the
asymptotic de Sitter universe. Close to the black hole, the
analytic expressions are so long that we checked instead
specific examples in a numerical way, by following the
relative positions of the scalar and graviton (or matter)
causal cones while varying the distance r to the center of
the black hole. Our conclusion is that, for the above ranges
of the ratio —n/f, Eq. (14) or (15), the perturbation
Hamiltonian is bounded by below in a well-chosen frame,
at any spacetime point, and the stability criterion we
established is satisfied.

Note that, when setting Ay, = 0, the interval of stability
disappears, in agreement with the perturbation analysis of
[51] around a cosmological background. In other words, it
is the presence of vacuum energy that allows for a window
of stability for the black hole solution.

In terms of the observed /~\eﬁ~, Eq. (12), conditions (14)
and (15) imply
and Aba.re < [\eff’ (16)

either 7 >0, p <0,

. 3
or <0, >0, and Abare<Aeff<§Abare. (17)

As stressed below Eq. (12), this means that self-tuning is
impossible in this specific model, since the observed
cosmological constant must always be larger than the bare
one.

But there exists an infinite class of other beyond-
Horndeski models that do provide self-tuning, as shown
in Ref. [37], and we prove below that a subclass of them
also satisfies the g,y = Cjjgn cOnstraint. From now on, we
assume that matter is minimally coupled to g,,, as in
Lagrangian (1), and we no longer consider any disformal
transformation such as (6).

To avoid hiding several different scales in the functions
of go%, it is convenient to work with the dimensionless
quantity
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2
X in (18)
M being the only mass scale entering the Lagrangian of the
scalar field ¢, itself chosen dimensionless (beware not to
confuse M with the Planck mass Mp;). All the coefficients
entering dimensionless functions of X will also be assumed
to be of order O(1). Up to a total derivative, action (1) may
then be rewritten as

M2
L= —21" (R = 2Apyre) — M*Xf5(X) — 454(X) G 9,00,
f <X) Vpo p0
- jwz Hrog ﬂya(/)ﬂ(Pa(puﬁq)py + ‘Cmatters (19)

where we do not include the G; term because it must

anyway be passive for the self-tuning solutions derived in

[37] [see this reference for the explicit translation between

(1) and (19), as well as other notation used in the literature].

(The above model (3) corresponds, for instance, to constant

values § =M}, fo =—n/M?, sy =—1p, and f, =0.)
The ¢gray = Cligne cOnstraint (2) becomes then

4s4(X)
X b

fa(X) = (20)
while f,(X) and s4(X) are arbitrary. For monomials, this
means that we need

fr = kX7, 54 = K X7, fa = —dra X771, (21)
where k», k4, a, and y are dimensionless constants of order
O(1). Note that negative exponents a and y are perfectly
allowed and consistent in this cosmological context, where
the background solution corresponds to a strictly positive
value of X. Perturbations are thus well defined around such
a background.

Particular self-tuning models respecting cgpay = Ciign; are
thus easily obtained from (21). However, it should be
stressed that it is not enough to find a theory with
Aetr K Apgre, Since Newton’s constant also generically gets
renormalized, giving (M3A) 4 ~ (M3A)y,. [37]. But,
luckily, a subclass of models (21) is such that Mp; remains
unrenormalized, and it is thus possible to get M}%IAeff <
M1231Abare by choosing an appropriate value of M. This
subclass corresponds to the exponent y = —%; ie., §4 =
k4X /% and f, = —8k,X /2. In terms of the G, notation of
Eq. (1), this reads

_(ﬂ% a+1
Gy (7)) = =M} Apyre — ko M* (—> . (22)

1
Gy(p?) = EM%’I — 24 M3 (—3) 712, (23)

while F, is given by Eq. (2). One then finds that the
Schwarzschild—de Sitter equations of Ref. [37] can be
solved provided @ # —1 and a # —%, and they imply

()" (MP) 2 o (M) Apre) /2. (24)

The proportionality factor depends on the O(1)-
dimensionless constants k,, x4, and @, and is thus itself
of order O(1). Therefore, if @ # —2, it suffices to choose M
appropriately to get H equal to the observed value, what-
ever the large Ay, entering the action. Note that all these
models (with a & {-2,—1,—1} and y = —3) do admit
exact Schwarzschild—de Sitter solutions such that Mlz,lAeff
is consistent with its small observed value, and they also
satisfy Cgray = Ciigne at least in the asymptotic homogeneous
universe.

As underlined at the very end of [37], if the bare
cosmological constant happens to take the huge value
Apare ~ M3, then the particular case a = _45_1 needs a rather
natural value of the scale M ~ 100 MeV, similar to usual
elementary particle masses.

Another interesting particular case is o = —%, for in-
stance, f, = s, = —X/? and f, = 4X~>/? (choosing here
ky = k4 = —1 to simplify, the signs being imposed by the
field equations). This corresponds to

G2((p/21) = _M1231Abare + MS(_(/’%)_I/Z’ (25)

1
Galw}) = 5 M + 2M3 (—g3)7"2, (26)
Fy(@7) = 2M3 (—p3) /2. (27)

Then the exact version of Eq. (24) implies that one must

choose M = 2+v/3H: i.e., the very small observed Hubble
expansion rate H must actually be put by hand in the action
via the scale M. But this drawback comes with the great
bonus that this observed H now depends only on M and no
longer on the bare vacuum energy density M Ay
Therefore, even if Ay, happens to change because of a
phase transition during the cosmological evolution of the
Universe, the effective Ay = (M/2)? = 3H? remains
constant and small.

The important conclusion is that elegant self-tuning
cosmological models are still allowed, even when taking
into account the experimental constraint g,y = Cjigh- NOte
that, for these models, we did not prove that the speed
equality remains valid in the vicinity of massive bodies.
However, our result above for the simple model (3) and the
argument of Refs. [3,4,41] show that it may remain true, at
least for Schwarzschild-de Sitter black hole solutions. The
stability of these self-tuning models should also be ana-
lyzed, as we did above for model (3). Aside of this, it would
be of great interest to study a more realistic cosmological
evolution for these self-tuning models, as in [36], where
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certain branches of solutions were shown to screen matter
as well as the cosmological constant.
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