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The gravitational wave event GW170817 together with its electromagnetic counterparts constrains the
speed of gravity to be extremely close to that of light. We first show, on the example of an exact
Schwarzschild–de Sitter solution of a specific beyond-Horndeski theory, that imposing the strict
equality of these speeds in the asymptotic homogeneous Universe suffices to guarantee so even in the
vicinity of the black hole, where large curvature and scalar-field gradients are present. We also find that
the solution is stable in a range of the model parameters. We finally show that an infinite class of
beyond-Horndeski models satisfying the equality of gravity and light speeds still provides an elegant
self-tuning: the very large bare cosmological constant entering the Lagrangian is almost perfectly
counterbalanced by the energy-momentum tensor of the scalar field, yielding a tiny observable effective
cosmological constant.

DOI: 10.1103/PhysRevLett.120.241101

The simultaneous detection of the gravitational wave
event GW170817 and its electromagnetic counterparts
[1,2] constrains the speeds of light and gravity to differ
by no more than a few parts in 1015. References [3,4] (see
also [5]) have characterized which Horndeski theories
[6–12] and their generalizations [13–25] satisfy exactly
cgrav ¼ clight in a homogeneous universe. The aim of the
present Letter is twofold. First, we check that this speed
equality remains satisfied even in a very inhomogeneous
situation, namely, in the vicinity of a black hole, where
gradients are large and where the separation of spin-2 and
spin-0 degrees of freedom is difficult. This will be done for
an exact Schwarzschild–de Sitter solution of a specific
model [26] (see also [27,28]). We also report that this
solution is ghost free and has no gradient instability for
some ranges of the parameters defining the theory. We will
refer to such solutions as being “stable” throughout this
Letter. We then show that self-tuning cosmological models
[29–37] still exist while taking into account the cgrav ¼
clight constraint. In such models, the energy-momentum
tensor of the scalar field almost perfectly counterbalances
the very large bare cosmological constant assumed to be
present in the Lagrangian, so that the observable accel-
erated expansion of the Universe is consistent with a tiny
effective cosmological constant.
In the present Letter, we focus on the subclass of shift-

symmetric beyond-Horndeski theories, i.e., which do not
involve any undifferentiated scalar field φ. (In the
following, we use the sign conventions of Ref. [38]
and, notably, the mostly plus signature.) Their Lagrangian
reads

L ¼ G2ðφ2
λÞ þ G3ðφ2

λÞ□φþ G4ðφ2
λÞR

− 2G0
4ðφ2

λÞ
�
ð□φÞ2 − φμνφ

μν

�

þ F4ðφ2
λÞεμνρσεαβγσφμφαφνβφργ

þ Lmatter½ψ ; gμν�; ð1Þ

where εμνρσ denotes the fully antisymmetric Levi-Civita
tensor, φμ ≡ ∂μφ and φμν ≡∇μ∇νφ are the first and
second covariant derivatives of the scalar field, G2, G3,
G4, and F4 are functions of the standard scalar kinetic
term φ2

λ ¼ gμνφμφν [We do not denote φ2
λ as X, because

this letter will be used for a dimensionless variant in
Eq. (18) below.] G0

4 is the derivative of G4 with respect to
its argument (φ2

λ), and ψ denotes globally all matter
fields (including gauge bosons) assumed to be minimally
coupled to the metric gμν. In order to ensure cgrav ¼ clight,
no quintic beyond-Horndeski term is allowed in this
shift-symmetric subclass, and the function F4 must be
related to G4 by [3,4,39]

F4ðφ2
λÞ ¼ −

2G0
4ðφ2

λÞ
φ2
λ

: ð2Þ

This condition (2) ensures that the speeds of gravitational
and electromagnetic waves coincide at least in a homo-
geneous cosmological background. However, the waves
of the GW170817 event did pass nearby massive bodies
during their 40 Mpc journey, and if their speeds slightly
differed in such inhomogeneous situations, this would
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a priori suffice to increase the delay between their
detections. It is thus important to check that these speeds
remain equal even in inhomogeneous backgrounds.
Actually, Ref. [4] claims that condition (2) also suffices
around arbitrary backgrounds, and we will confirm so
below for a specific exact solution—see Eq. (13). But
this Ref. [4] uses the results of [40], which needed to
neglect scalar-graviton mixing terms in order to extract
the spin-2 excitations. Generically, the separation of the
spin-2 and spin-0 degrees of freedom is background
dependent and highly nontrivial. The same argument
applies to the Arnowitt-Deser-Misner (ADM) decompo-
sition of the Lagrangian (1) under condition (2). In the
unitary gauge, one recovers the same decomposition as in
general relativity [3,41]. However, this does not neces-
sarily mean that the helicity-2 perturbations propagate at
cgrav ¼ clight, because the Lagrangian contains mixing

terms proportional to _hijDiNj, in usual ADM notation;
the shift Ni cannot be eliminated as in general relativity,
because the gauge is already fixed. It remains thus
important to check whether this speed equality is also
satisfied in very curved backgrounds, with large scalar-
field gradients, for instance, in the neighborhood of a
black hole horizon. This is what we do now for the
particular case of an exact Schwarzschild–de Sitter
solution of the model

L ¼ ζðR − 2ΛbareÞ − ηφ2
λ þ βGμνφμφν; ð3Þ

where Gμν denotes the Einstein tensor, ζ ¼ 1
2
M2

Pl > 0,
and MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass.
(The Gμνφμφν term has been nicknamed “John” in the
“Fab-Four” model [29,30].) In terms of the notation of
Eq. (1), this corresponds to

G2ðφ2
λÞ ¼ −2ζΛbare − ηφ2

λ ; ð4Þ

G4ðφ2
λÞ ¼ ζ −

β

2
φ2
λ ; ð5Þ

and G3 ¼ F4 ¼ 0. Since this vanishing of F4 is in
contradiction with Eqs. (2) and (5), we can immediately
conclude that this model does not satisfy the cgrav ¼ clight
constraint, if matter (and thereby light) is assumed to be
minimally coupled to gμν as in Eq. (1). However, as
already underlined in [3,4], it suffices to couple matter to
a different metric g̃μν, related to gμν by a disformal
transformation, to change the matter causal cone so that
cgrav ¼ clight is ensured, at least in a homogeneous
universe. In the present model, the disformal transforma-
tions given in [13,14,22,23] or the gravity speed derived
in [4,40] allow us to prove that this physical metric must
read (or be proportional to)

g̃μν ¼ gμν −
β

ζ þ β
2
φ2
λ

φμφν: ð6Þ

One may also rewrite Lagrangian (3) in terms of this g̃μν,
and one finds that it becomes of the form (1), with rather
complicated functions G̃4ðφ̃2

λÞ and F̃4ðφ̃2
λÞ (involving

nested square roots), which now do satisfy the constraint
(2) in terms of the variable φ̃2

λ ≡ g̃μνφμφν. This guaran-
tees that the speeds of light and gravity coincide at least
in the asymptotic homogeneous universe, far away from
any local massive body.
We can go beyond this result by studying the speed of

spin-2 perturbations around a spherical black hole. An
exact Schwarzschild–de Sitter solution has indeed been
found in [26] for model (3), assuming linear time depend-
ence of the scalar field [42]

ds2 ¼ −AðrÞdt2 þ dr2

AðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ; ð7Þ

AðrÞ ¼ 1 −
2Gm
r

−
Λeff

3
r2; ð8Þ

Λeff ¼ −
η

β
; ð9Þ

φ ¼ q

�
t −

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AðrÞp
AðrÞ dr

�
; ð10Þ

q2 ¼ ηþ βΛbare

ηβ
ζ; ð11Þ

where this last equality (11) forces its right-hand side to be
positive. Equation (9) defines the effective cosmological
constantΛeff entering the line element (7), and one can note
that it may be as small as one wishes, independent of the
magnitude of Λbare (it does not even depend at all on Λbare,
in the present model). This is a particularly simple example
of self-tuning. However, the observer, made of matter, is
now assumed to be coupled to the physical metric (6), and
this changes her perception of the Universe. A straightfor-
ward calculation shows that g̃μν remains of the exact
Schwarzschild–de Sitter form, with a scalar field of the
form (10) in the relevant transformed coordinate system,
but the observable cosmological constant now reads

Λ̃eff ¼
�
Λeff þ Λbare

3Λeff − Λbare

�
Λeff : ð12Þ

At this stage, it thus seems that a very small Λ̃eff remains
possible, for instance, if Λeff ¼ −η=β is chosen to almost
compensate Λbare. However, the field equations written in
the physical frame g̃μν actually always imply Λ̃eff ∼ Λbare

[43]. Moreover, we will see below that the stability of the
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solution forces bothΛeff and the observable Λ̃eff to be of the
same order of magnitude as Λbare (or even larger).
Therefore, in this simple model (3), the small observed
cosmological constant cannot be explained by the self-
tuning mechanism, and some other reason must be invoked,
like in standard general relativity. It remains that this model
is observationally consistent if the constant Λbare entering
(3) is small enough.
The odd-parity perturbations of solution (7)–(11) have

been analyzed in [44], and they define the effective metric,
say Gμν, in which spin-2 perturbations propagate. We can
thus compare it with the metric g̃μν, Eq. (6), to which matter
(including photons) is assumed to be coupled, and we find

Gμν ¼
�

Λeff

Λeff þ Λbare

�
g̃μν: ð13Þ

Therefore, even close to the black hole, their causal cones
exactly coincide. In other words, the universal coupling of
matter to the disformal metric (6) suffices to ensure cgrav ¼
clight even in a very inhomogeneous configuration. Details
will be given in [43].
The perturbative analysis of Ref. [44] was actually

performed to claim that the above Schwarzschild-de
Sitter solution is always unstable, but this claim is incorrect.
The argument was that the Hamiltonian of these perturba-
tions is unbounded by below, close enough to the black
hole horizon. However, although a bounded Hamiltonian
does guarantee the stability of the lowest-energy state, the
converse theorem does not exist. Indeed, a Hamiltonian is
not a scalar quantity, and it may take large negative values
in a very boosted frame even if it was bounded by below
initially. It gets mixed with other conserved quantities that
are not bounded by below, corresponding to the three
momentum of the system. A correct stability criterion may
thus be formulated as follows: if the Hamiltonian is
bounded by below in at least one coordinate system, then
the solution is stable. As we shall detail in [43], when
focusing on kinetic terms, it suffices that the causal cones of
all interacting degrees of freedom share a common interior
timelike [45] direction (which will become the time
coordinate of the “safe” frame in which the Hamiltonian
can be proven to be bounded by below) and also a common
exterior spacelike hypersurface, on which initial data may
be set to define the Cauchy problem (see [46–50] for related
discussions).
In the present solution (7)–(11) for model (3), we saw

that the graviton and matter causal cones coincide every-
where, because of the disformal metric (6) to which we
universally couple matter. There remains, however, to
check that both interiors are indeed timelike, otherwise
matter and gravitons would have opposite kinetic energies.
This means that the factor entering Eq. (13) must be
positive. Moreover, the scalar field φ itself has a different
causal cone, that we study in [43] by analyzing the l ¼ 0

even-parity perturbations. Therefore, stability can be
ensured only if the scalar causal cone shares a common
interior direction and a common exterior hypersurface with
that of g̃μν (and gravitons). We found that it is possible
provided the parameters of Lagrangian (3) satisfy the
following inequalities. We write them here in terms of
the ratio −η=β, denoted as Λeff in Eq. (9), and we assume
that the observed Λ̃eff ¼ 3H̃2 is positive (which implies that
Λbare and Λeff are positive too, when taking into account
these very inequalities),

either η>0; β<0; and
1

3
Λbare<−

η

β
<Λbare; ð14Þ

or η<0; β>0; and Λbare<−
η

β
<3Λbare: ð15Þ

It is straightforward to prove analytically that these con-
ditions suffice for the consistency of the causal cones in the
asymptotic de Sitter universe. Close to the black hole, the
analytic expressions are so long that we checked instead
specific examples in a numerical way, by following the
relative positions of the scalar and graviton (or matter)
causal cones while varying the distance r to the center of
the black hole. Our conclusion is that, for the above ranges
of the ratio −η=β, Eq. (14) or (15), the perturbation
Hamiltonian is bounded by below in a well-chosen frame,
at any spacetime point, and the stability criterion we
established is satisfied.
Note that, when setting Λbare ¼ 0, the interval of stability

disappears, in agreement with the perturbation analysis of
[51] around a cosmological background. In other words, it
is the presence of vacuum energy that allows for a window
of stability for the black hole solution.
In terms of the observed Λ̃eff , Eq. (12), conditions (14)

and (15) imply

either η > 0; β < 0; and Λbare < Λ̃eff ; ð16Þ

or η<0; β>0; and Λbare< Λ̃eff <
3

2
Λbare: ð17Þ

As stressed below Eq. (12), this means that self-tuning is
impossible in this specific model, since the observed
cosmological constant must always be larger than the bare
one.
But there exists an infinite class of other beyond-

Horndeski models that do provide self-tuning, as shown
in Ref. [37], and we prove below that a subclass of them
also satisfies the cgrav ¼ clight constraint. From now on, we
assume that matter is minimally coupled to gμν, as in
Lagrangian (1), and we no longer consider any disformal
transformation such as (6).
To avoid hiding several different scales in the functions

of φ2
λ , it is convenient to work with the dimensionless

quantity
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X ≡ −φ2
λ

M2
; ð18Þ

M being the only mass scale entering the Lagrangian of the
scalar field φ, itself chosen dimensionless (beware not to
confuse M with the Planck mass MPl). All the coefficients
entering dimensionless functions of X will also be assumed
to be of order Oð1Þ. Up to a total derivative, action (1) may
then be rewritten as

L ¼ M2
Pl

2
ðR − 2ΛbareÞ −M4Xf2ðXÞ − 4s4ðXÞGμνφμφν

−
f4ðXÞ
M2

εμνρσεαβγσφμφαφνβφργ þ Lmatter; ð19Þ

where we do not include the G3 term because it must
anyway be passive for the self-tuning solutions derived in
[37] [see this reference for the explicit translation between
(1) and (19), as well as other notation used in the literature].
(The above model (3) corresponds, for instance, to constant
values ζ ¼ 1

2
M2

Pl, f2 ¼ −η=M2, s4 ¼ − 1
4
β, and f4 ¼ 0.)

The cgrav ¼ clight constraint (2) becomes then

f4ðXÞ ¼ −
4s4ðXÞ

X
; ð20Þ

while f2ðXÞ and s4ðXÞ are arbitrary. For monomials, this
means that we need

f2 ¼ k2Xα; s4 ¼ κ4Xγ; f4 ¼ −4κ4Xγ−1: ð21Þ

where k2, κ4, α, and γ are dimensionless constants of order
Oð1Þ. Note that negative exponents α and γ are perfectly
allowed and consistent in this cosmological context, where
the background solution corresponds to a strictly positive
value of X. Perturbations are thus well defined around such
a background.
Particular self-tuning models respecting cgrav ¼ clight are

thus easily obtained from (21). However, it should be
stressed that it is not enough to find a theory with
Λeff ≪ Λbare, since Newton’s constant also generically gets
renormalized, giving ðM2

PlΛÞeff ∼ ðM2
PlΛÞbare [37]. But,

luckily, a subclass of models (21) is such that MPl remains
unrenormalized, and it is thus possible to get M2

PlΛeff ≪
M2

PlΛbare by choosing an appropriate value of M. This
subclass corresponds to the exponent γ ¼ − 3

2
; i.e., s4 ¼

κ4X−3=2 and f4 ¼ −8κ4X−5=2. In terms of theGi notation of
Eq. (1), this reads

G2ðφ2
λÞ ¼ −M2

PlΛbare − k2M4

�
−φ2

λ

M2

�
αþ1

; ð22Þ

G4ðφ2
λÞ ¼

1

2
M2

Pl − 2κ4M3ð−φ2
λÞ−1=2; ð23Þ

while F4 is given by Eq. (2). One then finds that the
Schwarzschild–de Sitter equations of Ref. [37] can be
solved provided α ≠ −1 and α ≠ − 1

2
, and they imply

ðH2Þαþ1ðM2Þαþ2 ∝ ðM2
PlΛbareÞαþ3=2: ð24Þ

The proportionality factor depends on the Oð1Þ-
dimensionless constants k2, κ4, and α, and is thus itself
of orderOð1Þ. Therefore, if α ≠ −2, it suffices to chooseM
appropriately to get H equal to the observed value, what-
ever the large Λbare entering the action. Note that all these
models (with α ∉ f−2;−1;− 1

2
g and γ ¼ − 3

2
) do admit

exact Schwarzschild–de Sitter solutions such that M2
PlΛeff

is consistent with its small observed value, and they also
satisfy cgrav ¼ clight at least in the asymptotic homogeneous
universe.
As underlined at the very end of [37], if the bare

cosmological constant happens to take the huge value
Λbare ∼M2

Pl, then the particular case α ¼ − 5
4
needs a rather

natural value of the scale M ∼ 100 MeV, similar to usual
elementary particle masses.
Another interesting particular case is α ¼ − 3

2
, for in-

stance, f2 ¼ s4 ¼ −X−3=2 and f4 ¼ 4X−5=2 (choosing here
k2 ¼ κ4 ¼ −1 to simplify, the signs being imposed by the
field equations). This corresponds to

G2ðφ2
λÞ ¼ −M2

PlΛbare þM5ð−φ2
λÞ−1=2; ð25Þ

G4ðφ2
λÞ ¼

1

2
M2

Pl þ 2M3ð−φ2
λÞ−1=2; ð26Þ

F4ðφ2
λÞ ¼ 2M3ð−φ2

λÞ−5=2: ð27Þ
Then the exact version of Eq. (24) implies that one must
choose M ¼ 2

ffiffiffi
3

p
H; i.e., the very small observed Hubble

expansion rateH must actually be put by hand in the action
via the scale M. But this drawback comes with the great
bonus that this observed H now depends only onM and no
longer on the bare vacuum energy density M2

PlΛbare.
Therefore, even if Λbare happens to change because of a
phase transition during the cosmological evolution of the
Universe, the effective Λeff ¼ ðM=2Þ2 ¼ 3H2 remains
constant and small.
The important conclusion is that elegant self-tuning

cosmological models are still allowed, even when taking
into account the experimental constraint cgrav ¼ clight. Note
that, for these models, we did not prove that the speed
equality remains valid in the vicinity of massive bodies.
However, our result above for the simple model (3) and the
argument of Refs. [3,4,41] show that it may remain true, at
least for Schwarzschild-de Sitter black hole solutions. The
stability of these self-tuning models should also be ana-
lyzed, as we did above for model (3). Aside of this, it would
be of great interest to study a more realistic cosmological
evolution for these self-tuning models, as in [36], where
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certain branches of solutions were shown to screen matter
as well as the cosmological constant.

We thank G. Bougas for collaboration and discussions in
the early stages of this project. We thank M. Crisostomi,
A. Fabbri, and K. Noui for many interesting discussions.
We acknowledge support from the French research pro-
grams “Programme national de cosmologie et galaxies” of
the CNRS/INSU and from the call “Défi InFIniti” 2017.
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