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Abstract

The advection-diffusion equation yε
t − εyε

xx + Myε
x = 0, (x, t) ∈ (0, 1)× (0, T ) is null controllable for any

strictly positive values of the diffusion coefficient ε and of the controllability time T . We discuss here the

behavior of the cost of control when the coefficient ε goes to zero, according to the values of T . It is actually

known that this cost is uniformly bounded with respect to ε if T is greater than a minimal time TM , with

TM in the interval [1, 2
√

3]/M for M > 0 and in the interval [2
√

2, 2(1 +
√

3)]/|M | for M < 0. The exact

value of TM is however unknown.

We investigate in this work the determination of the minimal time TM employing two distincts but

complementary approaches. In a first one, we numerically estimate the cost of controllability, reformulated

as the solution of a generalized eigenvalue problem for the underlying control operator, with respect to the

parameter T and ε. This allows notably to exhibit the structure of initial data leading to large costs of

control. At the practical level, this evaluation requires the non trivial and challenging approximation of null

controls for the advection-diffusion equation. In the second approach, we perform an asymptotic analysis,

with respect to the parameter ε, of the optimality system associated to the control of minimal L2-norm.

The matched asymptotic expansion method is used to describe the multiple boundary layers.

Key words: Numerical approximation, space-time variational formulation, Asymptotic analysis, Boundary

layers, Null controllability.

1 Introduction

Let L > 0, T > 0 and QT := (0, L)× (0, T ). This work is concerned with the scalar advection-diffusion equation
yεt − εyεxx +Myεx = 0, (x, t) ∈ QT ,
yε(0, t) = vε(t), yε(L, t) = 0, t ∈ (0, T ),

yε(x, 0) = yε0(x), x ∈ (0, L).

(1)

The parameter ε > 0 is the diffusion coefficient while the real M is the transport coefficient; vε = vε(t) is the

control function in L2(0, T ), yε0 ∈ H−1(0, L) is the initial data and yε = yε(x, t) is the associated state.

For any yε0 ∈ H−1(0, L) and vε ∈ L2(0, T ), there exists exactly one solution yε to (1), with the regularity

yε ∈ L2(QT ) ∩ C([0, T ];H−1(0, L)) (see [18, Prop. 2.2]). Accordingly, for any final time T > 0, the associated
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1 INTRODUCTION 2

null controllability problem at time T > 0 is the following: for each yε0 ∈ H−1(0, L), find v ∈ L2(0, T ) such that

the corresponding solution to (1) satisfies

yε(·, T ) = 0 in H−1(0, L). (2)

For any T > 0, M ∈ R and ε > 0, the null controllability for the parabolic type equation (1) holds true (see

[20, 27]). We therefore introduce the non-empty set of null controls

C(yε0, T, ε,M) := {(y, v) : v ∈ L2(0, T ); y solves (1) and satisfies (2)}.

We are mainly concerned with the asymptotic behavior of null controls for (1) when the coefficient ε becomes

small. System (1) can be seen as a simple example of complex models where the diffusion coefficient is very

small compared to the others. We have notably in mind the Stokes system where ε stands for the viscosity

coefficient. One may also think of a parabolic regularization of a system of conservation laws. Precisely, we are

interested with the control of minimal L2-norm and define for any ε > 0 the cost of control as follows:

Definition 1.1 For all ε > 0, T > 0,M ∈ R, we define

K(ε, T,M) := sup
‖yε0‖L2(0,L)=1

{
min

u∈C(yε0 ,T,ε,M)
‖u‖L2(0,T )

}
. (3)

For the sake of simplicity, we consider the supremum over initial conditions in L2(0, L). A similar definition

holds true with the space H−1(0, L). The cost of control K(ε, T,M) is the norm of the (linear) operator

yε0 → vεHUM where vεHUM is the control of minimal L2-norm.

Definition 1.2 Let

TM := inf

{
T > 0 : ∃C > 0 s.t. ∀ε > 0,K(ε, T,M) < C

}
, (4)

so that (1) is uniformly controllable with respect to ε if and only if T ≥ TM .

For ε = 0, the system (1) degenerates into a transport equation and is uniformly controllable as soon as T

is large enough, according to the speed |M | of transport, precisely as soon as T ≥ L/|M |.

Definition 1.3 For all L > 0 and M ∈ R?, we denote

T ? :=
L

|M |
. (5)

Obviously, if T ≥ T ?, the zero function is a null control - and so the control of minimal L2-norm - for the

transport equation. Accordingly, K(0, T,M) = 0 for any T ≥ T ?.
On the other hand, the behavior of K(ε, T,M) as ε→ 0 is more involved and has been the subject of several

recent works. We may expect that the cost K(ε, T,M) goes to zero as ε→ 0 as soon as T ≥ T ? and therefore

that TM = T ?. But, at least for M < 0, this is false since, as shown in [29], the cost K(ε, T,M) blows up

exponentially as ε→ 0+ for any T < 2(1+
√

3)T ?. This is a priori a surprising and non expected result. There is

actually a kind of balance between the term −εyεxx which favors the diffusion (and so the null controllability) for

ε large and the term Myεx which enhances the complete transport of the solution out of the domain (0, L) for ε

small. Precisely, for any t larger than T ?, the L2-norm ‖yε(·, t)‖L2(0,L) is of the order e−
1
ε (t−T?)2 , exponentially

small but non zero. This is the effect of the transport term. On the other hand, the cost of null control for the

heat equation with initial condition of magnitude one and diffusion ε is exponentially large, of the order e
L
εT .

The time TM is therefore related to the minimal time beyond which the transport of the solution is enough to

compensate the cost of control to zero of the remainder.

One may tackle this problem and the determination of the minimal uniform controllability time TM using

at least two distincts approaches. A first one, discussed in [33], consists in approximating numerically the cost

K(ε, T,M) for various values of ε and T > 0, the ratio L/M being fixed. This can be done by reformulating the

cost as the solution of a generalized eigenvalue problem for the control operator associated to (1). This latter

problem requires the approximation of the control of minimal L2-norm, a delicate issue for small values of ε.
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A second approach, discussed in [1], consists in performing, in the spirit of [28], an asymptotic analysis of

the optimality system associated to the control of minimal L2-norm. In spite of the apparent simplicity of the

system (1), such analysis is not straightforward because, as ε goes to zero, the direct and adjoint solutions

exhibit boundary layers in the transition parabolic to hyperbolic. For example, for M > 0, the solution yε

exhibits a first boundary layer of size O(ε) at x = L and a second boundary layer of size O(
√
ε) along the

characteristic {(x, t) ∈ QT , Lx−Mt = 0}. A third singular behavior due to the initial condition yε0 occurs for

yε in the neighborhood of the points (x0, t0) = (0, 0) and (x1, t1) = (L, 0).

We review in this paper existing results as well as well recent contributions based on the two previous

mentioned approaches. In Section 2, we preliminary recall some important facts about the system (1) and

some corresponding existing controllability results. In particular, we enhance the fact that, for this system, the

difference between null and approximate controllability becomes very important as ε goes to zero. Then, in

Section 3, we introduce and discuss, mainly formally, a method allowing to approximate numerically the cost

K for relatively large values of ε. Then, in Section 4, we investigate in a rigorous way the asymptotic analysis

of the problem with respect to ε. We conclude in Section 6 with some perspectives.

Along the text, we shall use the following notations:

Lεy := yt − εyxx +Myx, L?εϕ := −ϕt − εϕxx −Mϕx.

2 Asymptotic properties and overview of controllability results

We overview in this section some qualitative results related to the system (1) as well as controllability results.

We start with two remarks.

Remark 1 If M = 0, (1) is simply the heat equation, uniformly controllable with respect to T > 0 and yε0 ∈
H−1(0, L). By making the change of variable t̃ = εt, we easily obtain the equality K(ε, T, 0) = ε−1/2K(1, εT, 0)

for all ε > 0 and T > 0. Moreover, the cost of control for the heat equation in arbitrarily small time has been

studied in various places (see [31] and the references therein) and is as follows: K(1, T, 0) ∼T→0+ e
κL
T for some

κ ∈ (1/2, 3/4). Gathering these two estimates, we deduce that

K(ε, T, 0) ∼ε→0+ ε−1/2e
κL2

εT , κ ∈ (1/2, 3/4) (6)

and conclude that, for M = 0, the cost of control defined by (3) blows up exponentially with respect to the

diffusion coefficient. We may write T0 = +∞. The open question in the case M = 0 is the value of the

exponential rate κ known to be in the range (1/2, 3/4).

In view of (6), we assume in the sequel that M 6= 0, for which the situation is different as it also depends

on the value of the controllability time T . It is also useful to recall the following fact, which can be obtained

by standard duality arguments.

Remark 2 The controllability cost is related to the observability constant Cobs(ε, T,M) which appears in the

observability inequality for (8)

‖ϕε(·, 0)‖L2(0,L) ≤ Cobs(ε, T,M)‖εϕεx(0, ·)‖L2(0,T ), ∀ϕεT ∈ H1
0 (0, L) ∩H2(0, L),

defined by

Cobs(ε, T,M) := sup
ϕεT∈H1

0 (0,L)

‖ϕε(·, 0)‖L2(0,L)

‖εϕεx(0, ·)‖L2(0,T )
, (7)

where ϕε solves the adjoint system 
ϕεt + εϕεxx +Mϕεx = 0, (x, t) ∈ QT ,
ϕε(0, t) = ϕε(L, t) = 0, t ∈ (0, T ),

ϕε(x, T ) = ϕεT (x), x ∈ (0, L).

(8)

Precisely, we get that K(ε, T,M) = Cobs(ε, T,M) (see [14], Remark 2.98). The observability inequality is

the main tool to prove the null controllability of (1).
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The first result we recall is due to J-.M. Coron and S. Guerrero and concerns the asymptotic behavior of

the direct solution yε, with respect to ε, for vε given in L2(0, T ).

Theorem 2.1 (Coron-Guerrero [15]) Let T > 0, M ∈ R?, y0 ∈ L2(0, L), independent of ε. Let (vε)(ε) be

a sequence of functions in L2(0, T ) such that for some v ∈ L2(0, T ), vε ⇀ v in L2(0, T ), as ε→ 0+. For ε > 0,

let us denote by yε ∈ C([0, T ];H−1(0, L)) the weak solution of
yεt − εyεxx +Myεx = 0, (x, t) ∈ QT ,
yε(0, t) = vε(t), yε(L, t) = 0, t ∈ (0, T ),

yε(x, 0) = y0(x), x ∈ (0, L).

(9)

Then, yε ⇀ y in L2(QT ) as ε→ 0+ where y ∈ C([0, T ];L2(0, L)) is the weak solution of
yt +Myx = 0, (x, t) ∈ QT ,
y(0, t) = v(t), if M > 0 t ∈ (0, T ),

y(L, t) = 0, if M < 0 t ∈ (0, T ),

y(x, 0) = y0(x), x ∈ (0, L).

(10)

The fact that the limit weak solution solves the transport equation is quite expected: it is however crucial to

note that this theorem assumes that the initial condition does not depend on the parameter ε. As a consequence

of this result, if T < T ?, one may exhibit initial data yε0 for which the corresponding control cost is not bounded

with respect to ε :

Corollary 2.1 If T < T ?, limε→0K(ε, T,M) =∞. Consequently, TM ≥ T ?.

Proof. Assume thatK(ε, T,M) 6→ +∞. There exists (εn)(n∈N) positive tending to 0 such that (K(εn, T,M))(n∈N)

is bounded. Let vεn the optimal control driving y0 to 0 at time T and yεn the corresponding solution. Let

T0 ∈ (T, T ?). We extend yεn and vεn by 0 on (T, T0). From the inequality

‖vεn‖L2(0,T0) = ‖vεn‖L2(0,T ) ≤ K(εn, T,M)‖yε0‖L2(0,L),

we deduce that (vεn)(n∈N) is bounded in L2(0, T0), so we extract a subsequence (vεn)(n∈N) such that vεn ⇀ v

in L2(0, T0). We deduce that yεn ⇀ y in L2(QT0
), solution of the transport equation. Necessarily, y ≡ 0 on

(0, L)× (T, T0) which is a contradiction if the support of y0 is such that supp(yε0) ∩ (0, L− T |M |) 6= 0 (M > 0)

or supp(yε0) ∩ (L− T |M |, L) 6= 0 (M < 0). 2

Corollary 2.1 thus provides a lower bound for TM . On the other hand, since the limit system (10) is uniformly

null controllable (with null controls) if and only if T is greater than T ?, we expect that TM = T ? and moreover

that limε→0K(ε, T,M) = 0 as soon as T ≥ T ?. As we will see, this is not so simple since the cost of control

may be achieved by an initial data dependent on ε, a situation not covered by Theorem 2.1. The following

result makes precise the behavior of the cost K(ε, T,M). We also mention [22] for a multi-dimensional case.

Theorem 2.2 (Coron-Guerrero [15]) If M > 0 and T < T ?, then there exist constants c, C > 0 such that

K(ε, T,M) ≥ Cec/ε for all ε > 0. Similarly, if M < 0 and T < 2T ?, then there exist constants c, C > 0 such

that K(ε, T,M) ≥ Cec/ε, c, C > 0 for all ε > 0.

Therefore, if T < T ?, the control cost blows up exponentially as ε goes to zero (as for the heat equation, see

Remark 1). The theorem also clearly states that the case M < 0 is much more singular and that TM ≥ 2T ?:

heuristically, when M is negative, as ε → 0, the solution yε is mainly transported from the right to the left

parallel to the first characteristic, and therefore somehow acts “against” the control, active at the left extremity

x = 0. For the same reason, for M > 0, the transport term Myx “helps” the control. These lower bounds are

obtained by considering the following condition (the first mode associated to the advection-diffusion operator)

yε0(x) = Kεe
Mx
2ε sin

(
πx

L

)
, x ∈ (0, L) (11)
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with Kε = O(ε−3/2e−
M
2ε ) such that ‖yε0‖L2(0,L) = 1 and by estimating the corresponding L2-norm of the control

of minimal L2-norm: precisely, it is obtained, for M > 0, that

K(ε, T,M) ≥ C1
ε−3/2T−1/2L2M1/2

1 + L3M3ε−3
exp

(
M

2ε
(L− TM)− π2εT

L2

)
while for M < 0,

K(ε, T,M) ≥ C1
ε−3/2T−1/2L2M1/2

1 + L3|M |3ε−3
exp

(
|M |
2ε

(2L− T |M |)− π2εT

L2

)
.

The initial condition (11) depends on ε, so that the result for M < 0 does not contradict Theorem 2.1. However,

the bounds T ? and 2T ? obtained with such initial condition are quite unexpected. Take for instance M > 0 so

that the initial condition yε0 given by (11) gets concentrated and supported in the neighborhood of the point

x = L (see Figure 1) as ε→ 0 with limε→0 ‖yε0‖L∞(0,L−δ) = 0 for any δ > 0. Moreover, this initial condition is

transported from the left to the right (again assuming ε small) so that at any time t > 0 (not necessarily larger

than T ?) the L2-norm of the free solution ‖yε(·, t)‖L2(0,L) is exponentially small (see Lemma 2.1 below) with

respect to ε. However, according to the bound, if T is lower than T ?, the corresponding control cost blows up

exponentially with respect to ε. The situation is even worst for M < 0 (now yε0 is concentrated at the point

x = 0) since the property remains true for any t ∈ (0, 2T ?) ! Very likely, the worst initial condition (leading to

the largest L2-norm for the HUM control vε) is not the one given by (11).

Figure 1: yε0(x) for x ∈ (0, L) = (0, 1) - ε = 5× 10−2, ε = 10−2, ε = 5× 10−3.

Before recalling known upper bounds for TM , let us consider the behavior of the free solution (i.e. vε ≡ 0)

with respect to ε.

Lemma 2.1 Let α ∈ (0, 1). The free solution (i.e. vε = 0) satisfies

‖yε(·, t)‖L2(0,L) ≤ ‖yε0‖L2(0,L)e
− LMα2

4ε(1−α) , ∀t ≥ T ?

(1− α)
.

Proof. A proof is given in [15] by extending the system to x ∈ R and then by using explicit integral repre-

sentation of the extended solution. We provide here a simpler one that will be useful in the sequel. We assume

M > 0, the case M < 0 is similar. We check that zε(x, t) = e
−Mαx

2ε yε(x, t) solves
zεt − εzεxx +M(1− α)zεx −

M2

4ε
(α2 − 2α)zε = 0, (x, t) ∈ QT ,

zε(0, t) = zε(L, t) = 0, t ∈ (0, T ),

zε(x, 0) = e
−Mαx

2ε yε0(x), x ∈ (0, L).
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Multiplying the main equation by zε and integrating over (0, L) then leads to

d

dt
‖zε(·, t)‖2L2(0,L) + 2ε‖zεx(·, t)‖2L2(0,L) =

M2

2ε
(α2 − 2α)‖zε(·, t)‖2L2(0,L),

and then to the estimate ‖zε(·, t)‖L2(0,L) ≤ ‖zε(·, 0)‖L2(0,L)e
M2

4ε (α2−2α)t, equivalently, to

‖e−Mαx2ε yε(·, t)‖L2(0,L) ≤ ‖e−
Mαx
2ε yε(·, 0)‖L2(0,L)e

M2

4ε (α2−2α)t.

Consequently,

‖yε(·, t)‖L2(0,L) = ‖eMαx2ε e−
Mαx
2ε yε(·, t)‖L2(0,L) ≤ ‖e

Mαx
2ε ‖L∞(0,L)‖e−

Mαx
2ε yε(·, t)‖L2(0,L)

≤ ‖eMαx2ε ‖L∞(0,L)‖e−
Mαx
2ε yε(·, 0)‖L2(0,L)e

M2

4ε (α2−2α)t

≤ ‖e−Mαx2ε yε(·, 0)‖L2(0,L)e
MαL
2ε +M2

4ε (α2−2α)t

≤ ‖yε(·, 0)‖L2(0,L)e
Mα
2ε (L−Mt+Mαt

2 )

using that (recall that α > 0) ‖eMαx2ε ‖L∞(0,L) = e
MαL
2ε and ‖e−Mαx2ε ‖L∞(0,L) = 1. Let now t ≥ L

M(1−α) >
L
M so

that L−Mt+ Mαt
2 ≤ − Lα

2(1−α) and Mα
2ε (L−Mt+ Mαt

2 ) ≤ − LMα2

4(1−α) . The result follows. 2

This result shows that the norm ‖yε(·, t)‖L2(0,L) of the free solution is exponentially small as soon as t > T ?

and exhibits how large is the gap between exact controllability and approximate controllability, for any small

enough and fixed ε. Take again M < 0 and T ∈ (T ?, 2T ?). According to the previous lemma, for any δ > 0,

there exists ε0 > 0 such that for all ε < ε0, ‖yε(·, T )‖L2(0,L) ≤ δ. The cost of approximate control, says

Kδ(ε, T,M) defined in the same way than K(ε, T,M) except that (2) is replaced by ‖yε(·, T )‖H−1(0,L) ≤ δ is

equal to zero, for any δ > 0, as soon as ε is small enough: limε→0Kδ(ε, T,M) = 0 for any δ > 0. On the other

hand, according to Theorem 2.2, the cost of exact null controllability blows up exponentially. The price to reach

the target 0 from any state in the ball B(0, δ) = {y ∈ H−1(0, L), ‖y‖H−1(0,L) ≤ δ} is arbitrarily large: this is

due to the fact that the coefficient of diffusion term −εyεxx, so essential for the controllability property, vanishes.

Remark that this kind of balance between transport and diffusion can be seen on the spectrum of the operator

A : H1
0 (0, L)→ H−1(0, L) defined by A(z) = −εzxx +Mzx given by {ε(kπ)2 +M2/(4ε)}k∈N associated to the

eigenfunctions {eMx2ε sin(kπx/L)}k∈N.

On the other hand, if the controllability time T > 0 is large enough, then the cost K(ε, T,M) is bounded

uniformly with respect to ε, both for M > 0 and M < 0. The following result provides upper bounds for TM .

Theorem 2.3 (Coron-Guerrero [15]) Let ε > 0. If M > 0 and T ≥ 4.3T ?, then there exists constants

c, C > 0 such that K(ε, T,M) ≤ Ce−c/ε. If M < 0 and T ≥ 57.2T ?, then there exists constants c, C > 0 such

that K(ε, T,M) ≤ Ce−c/ε.

Consequently, we may summarize the previous results as follows.

Theorem 2.4 (Coron-Guerrero [15]) Let TM be the minimal time for which the control of minimal L2-

norm is uniformly bounded with respect to ε > 0 and yε0 ∈ L2(0, L). Then,

TM ∈ [1, 4.3]T ? if M > 0, [2, 57.2]T ? if M < 0.

These bounds have then been improved by O. Glass, P. Lissy and more recently by S. Darde, S. Ervedoza

in the positive case M > 0. Existing results are as follows :

Theorem 2.5 (Glass [21])

TM ∈ [1, 4.2]T ? if M > 0, [2, 6.1]T ? if M < 0.
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Theorem 2.6 (Lissy [30])

TM ∈ [1, 2
√

3]T ? if M > 0, [2
√

2, 2(1 +
√

3)]T ? if M < 0.

We mention that 2
√

3 ≈ 3.46.

Theorem 2.7 (Darde-Ervedoza [16])

TM ∈ [1,K]T ? if M > 0, K ≈ 3.34

As far as we know, the determination of TM , both for M > 0 and M < 0, remains an open and nontrivial

problem. In the next section, we investigate numerically this issue.

3 Numerical estimation of the cost of control

As explained in detail in [33], we may, at least formally, approximate numerically the cost K(ε, T,M) with

respect to the parameters ε, T and M . We may remark right now that in view of the behavior of the uncontrolled

solution given by Lemma 2.1 for T > T ?, such numerical approximation will be a priori duable only for not too

small values of ε and T close to T ?.

3.1 Reformulation of the controllability cost K(ε, T,M)

We reformulate the cost of control K as the solution of a generalized eigenvalue problem involving the control

operator (named as the HUM operator by J.-L. Lions for wave type equations). From (3), we write

K2(ε, T,M) = sup
yε0∈L2(0,L)

(vε, vε)L2(0,T )

(yε0, y
ε
0)L2(0,L)

where vε = v(yε0) is the null control of minimal L2(0, T )-norm for (1) with initial data yε0. Let us recall that

any null control v for (1) satisfies the following characterization

(v, εϕx(0, ·))L2(0,T ) + (yε0, ϕ(·, 0))L2(0,L) = 0, (12)

for any ϕ solution of the adjoint problem (8) with initial state ϕT ∈ H1
0 (0, L). In particular, the control of

minimal L2-norm is given by vε = εϕ̂εx(0, ·) in (0, T ) where ϕ̂ε solves (8) associated to the initial ϕ̂εT , solution

of the extremal

sup
ϕεT∈H1

0 (0,L)

J?(ϕεT ) :=
1

2

∫ T

0

(εϕεx(0, ·))2dt+ (yε0, ϕ
ε(·, 0))L2(0,L). (13)

Taking ϕε = ϕ̂ε associated to ϕ̂εT in (12), we therefore have

(vε, vε)L2(0,T ) = (vε, εϕ̂εx(0, t))L2(0,T ) = −(yε0, ϕ̂
ε(·, 0))L2(0,L). (14)

Consequently, if we denote by Aε : L2(0, L)→ L2(0, L) the operator defined by Aεyε0 := −ϕ̂(·, 0), we finally

may write

K2(ε, T,M) = sup
yε0∈L2(0,L)

(Aεyε0, yε0)L2(0,L)

(yε0, y
ε
0)L2(0,L)

(15)

and conclude that K2(ε, T,M) is solution of the following generalized eigenvalue problem :

sup

{
λ ∈ R : ∃ yε0 ∈ L2(0, L), yε0 6= 0, s.t. Aεyε0 = λyε0 in L2(0, L)

}
. (16)
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Remark 3 We may reformulate as well the previous extremal problem over H1
0 (0, L) (seen as the dual space

of H−1(0, L) 3 y(·, T )) in term of a generalized eigenvalue problem; we proceed as follows.

We introduce the operators Aε and Bε given by

Aε : H1
0 (0, L) → L2(0, L)

ϕT 7→ ϕ(·, 0)
and

Bε : H1
0 (0, L) → L2(0, T )

ϕT 7→ εϕx(0, ·),

where ϕ solves (8). The adjoint operators A?ε and B?ε of Aε and Bε are given by :

A?ε : L2(0, L) → H−1(0, L)

y0 7→ y(T ; y0, 0)
and

B?ε : L2(0, L) → H−1(0, L)

v 7→ y(T ; 0, v),

where y(t; y0, v) is the solution to (1) at time t for the initial data y0 and the control v. With these notations,

we may rewrite Cobs given by (7) as follows

C2
obs(ε, T,M) = sup

ϕT∈H1
0 (0,L)

(AεϕT , AεϕT )L2(0,L)

(BεϕT , BεϕT )L2(0,T )

= sup
ϕT∈H1

0 (0,L)

((−∆−1)A?εAεϕT , ϕT )H1
0 (0,L)

((−∆−1)B?εBεϕT , ϕT )H1
0 (0,L)

leading to an eigenvalue problem over H1
0 (0, L). Remark that the operator B?εBε from H1

0 (0, L) to H−1(0, L)

associates to the initial state ϕT of (8) the final state y(·, T ) of (1) with y0 = 0 and v = εϕx(0, ·). v is therefore

the control of minimal L2(0, T )-norm which drives the state y from 0 to the trajectory y(·, T ). B?εBε is the

so-called HUM operator.

Remark 4 Actually, the supremum of ϕT ∈ H1
0 (0, L) in (7) can be taken over ϕ(·, 0) ∈ L2(0, L) (or even over

ϕ !) leading immediately to

C2
obs(ε, T,M) = sup

ϕ(·,0)∈L2(0,L)

(ϕ(·, 0), ϕ(·, 0))L2(0,L)

(A−1
ε ϕ(·, 0), ϕ(·, 0))L2(0,L)

,

in full agreement with (15) and the equality K(ε, T,M) = Cobs(ε, T,M).

In order to solve the eigenvalue problem (16) and get the largest eigenvalue of the operator Aε, we may

formally employ the power iterate method (see [11]), which reads as follows : given y0
0 ∈ L2(0, L) such that

‖y0
0‖L2(0,L) = 1, compute iteratively the sequence

yk+1
0 =

Aεyk0
‖Aεyk0‖L2(0,L)

, k ≥ 0.

In a finite dimensional situation, the real sequence {‖Aεyk0‖L2(0,L)}(k>0) then converges to the eigenvalue with

largest modulus of the operator Aε, so that
√
‖Aεyk0‖L2(0,L) → K(ε, T,M) as k → ∞. The L2-sequence

{yk0}(k≥0) then converges toward the corresponding eigenvector. The first step requires to compute the image

of the control operator Aε: this is done by determining the control of minimal L2-norm associated to the initial

condition yk0 .

3.2 Approximation of the control of minimal L2-norm

The numerical approximation of null controls for parabolic equations is a not an easy task and has been first

discussed in [8], and then in several works: we refer to the review [37]. Duality theory reduces the problem

to the resolution of the unconstrained extremal problem (13). In view of the regularization character of the

parabolic operator, the extremal problem (13) is ill-posed as the supremum is not reached in H1
0 (0, L) but in

a space, say H, defined as the completion of H1
0 (0, L) for the norm ‖ϕT ‖H := ‖εϕx(0, ·)‖L2(0,T ), much larger
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than H1
0 (0, L) and difficult to approximate. We refer to the review paper [37]. The usual “remedy” consists to

enforce the regularity H1
0 and replace (13) by

min
ϕεT∈H1

0 (0,L)
J?β(ϕεT ) :=

1

2
‖εϕεx(0, ·))‖2L2(0,T ) + (yε0, ϕ

ε(·, 0))L2(0,L) +
β

2
‖ϕεT ‖2H1

0 (0,L), (17)

for any β > 0 small. The resulting approximate control vεβ = εϕεβ,x(0, ·) leads to a state yεβ solution of (1)

satisfying the property

‖yεβ(·, T )‖H−1(0,L) ≤ C
√
β‖yε0‖L2(0,L) (18)

(for a constant C > 0 independent of β). This penalty method is discussed in [8] for the boundary controllability

of the heat equation (for the distributed case, we refer to [5, 19, 26]). As in [8], problem (17) may be solved using

a gradient iterative method: in view of the ill-posedness of (13), such method requires an increasing number of

iterates to reach convergence as β goes to zero.

Moreover, in the context of the transport equation (1), it is necessary to chose β in relation with the

diffusion coefficient ε and the controllability time T . Indeed, if T > T ?, then according to Lemma 2.1, β should

be exponentially small with respect to ε, otherwise the minimization of J?β leads to ϕεT ≡ 0 and then to a null

control, which is not the optimal one we expect for negative values of M (in view of Theorem 2.4))! In practice,

this means that as soon as T > T ? and ε is small enough, β is numerically equal to zero. Consequently, if ε

is small (as it should be !), the only case for which the Tychonoff term in J?β may be of some help is the case

T = T ?, since the corresponding L2(0, L)-norm of the free state at time T = T ? is of the order ε.

Moreover, the occurence of boundary layers (discussed at length in the next section) both for the direct and

adjoint solution yε and ϕε makes the minimization of J?β even more difficult as it requires local refinement of

the geometry discretization.

Theorefore, as ε tends to 0, the transport term Myεx makes the (numerical) approximation of the null control

for (1) a challenging task. Consequently, instead of minimizing the functional J? (or J?β), we adapt [35] (devoted

to the inner situation for M = 0 and ε = 1) and solve directly the corresponding optimality conditions. This

leads to a space-time mixed variational formulation (following the terminology used in [35]).

3.2.1 Mixed variational formulation

We introduce the linear space Φ0 := {ϕ ∈ C2(QT ), ϕ = 0 on ΣT }. For any η > 0, we define the bilinear form

(ϕ,ϕ)Φ0 :=

∫ T

0

εϕx(0, t) εϕx(0, t) dt+ β
(
ϕ(·, T ), ϕ(·, T )

)
H1

0 (0,L)
+ η

∫∫
QT

L?εϕL
?
εϕdx dt, ∀ϕ,ϕ ∈ Φ0.

From the unique continuation property for the transport equation, this bilinear form defines for any β ≥ 0 a

scalar product. Let Φβ be the completion of Φ0 for this scalar product. We denote the norm over Φβ by ‖ · ‖Φβ
such that

‖ϕ‖2Φβ := ‖εϕx(0, ·)‖2L2(0,T ) + β‖ϕ(·, T )‖2H1
0 (0,L) + η‖L?εϕ‖2L2(QT ), ∀ϕ ∈ Φβ . (19)

Finally, we define the close subset Wβ of Φβ by Wβ = {ϕ ∈ Φβ : L?εϕ = 0 in L2(QT )} endowed with the same

norm than Φβ . Then, for any r ≥ 0, we define the following extremal problem :

min
ϕ∈Wβ

Ĵ?β(ϕ) :=
1

2
‖εϕx(0, ·)‖2L2(0,T ) +

β

2
‖ϕ(·, T )‖2H1

0 (0,L) + (yε0, ϕ(·, 0))L2(0,L) +
r

2
‖L?εϕ‖2L2(QT ). (20)

Standard energy estimates for (1) imply that, for any ϕ ∈ Wβ , ϕ(·, 0) ∈ L2(0, L) so that the functional Ĵ?β is

well-defined over Wβ . Moreover, since for any ϕ ∈ Wβ , ϕ(·, T ) belongs to H1
0 (0, L), problem (20) is equivalent

to the extremal problem (17). The main variable is now ϕ submitted to the constraint equality (in L2(QT ))

L?εϕ = 0, which is addressed through a Lagrange multiplier, leading to a saddle-point problem.

We consider the following mixed formulation : find (ϕβ , λβ) ∈ Φβ × L2(QT ) solution of{
aβ,r(ϕβ , ϕ) + b(ϕ, λβ) = l(ϕ), ∀ϕ ∈ Φβ ,

b(ϕβ , λ) = 0, ∀λ ∈ L2(QT ),
(21)
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where

aβ,r : Φβ × Φβ → R, aβ,r(ϕ,ϕ) := (εϕx(0, ·), εϕx(0, ·))L2(0,T ) + β(ϕ(·, T ), ϕ(·, T ))H1
0 (0,L),

+ r(L?εϕ,L
?
εϕ)L2(QT ),

b : Φβ × L2(QT )→ R, b(ϕ, λ) := (L?εϕ, λ)L2(QT )

l : Φβ → R, l(ϕ) := −(yε0, ϕ(·, 0))L2(0,L).

Theorem 3.1 Assume that β > 0 and r ≥ 0.

1. The mixed formulation (21) is well-posed.

2. The unique solution (ϕβ , λβ) ∈ Φβ×L2(QT ) is the unique saddle-point of the Lagrangian Lβ,r : Φβ × L2(QT )→ R
defined by

Lβ,r(ϕ, λ) :=
1

2
aβ,r(ϕ,ϕ) + b(ϕ, λ)− l(ϕ). (22)

3. The optimal function ϕβ is the minimizer of Ĵ?β over Wβ while λβ ∈ L2(QT ) is the state of (1) in the

weak sense.

Proof- The proof is very closed to the proof given in [35], Section 2.1.1. The bilinear form aβ,r is continuous,

symmetric and positive over Φβ × Φβ . The bilinear form b is continuous over Φβ × L2(QT ). Furthermore, for

any β > 0, the continuity of the linear form l over Φβ is deduced from the energy estimate:

‖ϕ(·, 0)‖2L2(0,L) ≤ C
∫∫
QT

|L?εϕ|2dx dt+ ‖ϕ(·, T )‖2L2(0,L), ∀ϕ ∈ Φβ ,

for some C > 0 so that ‖ϕ(·, 0)‖2L2(0,L) ≤ max(Cη−1, β−1)‖ϕ‖2Φβ . Therefore, the well-posedness of the mixed

formulation is a consequence of the following properties (see [7]):

• aβ,r is coercive on N (b), where N (b) denotes the kernel of b :

N (b) := {ϕ ∈ Φβ : b(ϕ, λ) = 0 for every λ ∈ L2(QT )}.

• b satisfies the usual “inf-sup” condition over Φβ × L2(QT ): there exists δ > 0 such that

inf
λ∈L2(QT )

sup
ϕ∈Φβ

b(ϕ, λ)

‖ϕ‖Φβ‖λ‖L2(QT )
≥ δ. (23)

The first point follows from the definition. Concerning the inf-sup condition, for any fixed λ0 ∈ L2(QT ), we

define the (unique) element ϕ0 such that L?ϕ0 = λ0, ϕ = 0 on ΣT and ϕ0(·, T ) = 0 in L2(0, L). The function ϕ0

is therefore solution of the backward transport equation with source term λ0 ∈ L2(QT ), null Dirichlet boundary

condition and zero initial state. Moreover, since λ0 ∈ L2(QT ), the following estimate proved in the Appendix

A of [15] (more precisely, we refer to the inequality (94))

ε‖ϕ0
x(0, ·)‖L2(0,T ) ≤ CL,T,M‖λ0‖L2(QT ),

for a constant CL,T,M > 0 independent of ε, implies that ϕ0 ∈ Φβ . In particular, we have b(ϕ0, λ0) = ‖λ0‖2L2(QT )

and

sup
ϕ∈Φβ

b(ϕ, λ0)

‖ϕ‖Φβ‖λ0‖L2(QT )
≥ b(ϕ0, λ0)

‖ϕ0‖Φβ‖λ0‖L2(QT )
=

‖λ0‖2L2(QT )(
‖εϕ0

x(0, ·)‖2L2(0,T ) + η‖λ0‖2L2(QT )

) 1
2 ‖λ0‖L2(QT )

.
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Combining the above two inequalities, we obtain

sup
ϕ0∈Φβ

b(ϕ0, λ0)

‖ϕ0‖Φβ‖λ0‖L2(QT )
≥ 1√

C2
L,T,M + η

(24)

and, hence, (23) holds with δ =
(
C2
L,T,M + η

)−1/2
.

The second point is due to the symmetry and to the positivity of the bilinear form aβ,r. Concerning the

third point, the equality b(ϕβ , λ) = 0 for all λ ∈ L2(QT ) implies that L?ϕβ = 0 as an L2(QT ) function, so that

if (ϕβ , λβ) ∈ Φβ × L2(QT ) solves the mixed formulation, then ϕβ ∈Wβ and Lβ(ϕβ , λβ) = Ĵ?β(ϕβ). Finally, the

first equation of the mixed formulation (taking r = 0) reads as follows:∫ T

0

ε(ϕβ)x(0, t) εϕx(0, t)dt+ β
(
ϕβ(·, T ), ϕ(·, T )

)
H1

0 (0,L)
−
∫∫
QT

L?εϕλβ dx dt = l(ϕ), ∀ϕ ∈ Φβ ,

or equivalently, since the control is given by vβ := ε(ϕβ)x(0, ·),∫ T

0

vβ εϕx(0, t) dt+ β(ϕβ(·, T ), ϕ(·, T ))H1
0 (0,L) −

∫∫
QT

L?εϕλβ dx dt = l(ϕ), ∀ϕ ∈ Φβ .

But this means that λβ ∈ L2(QT ) is a solution of (1) in the transposition sense. Since y0 ∈ L2(0, L) and

vβ ∈ L2(0, T ), λβ coincides with the unique weak solution to (1) such that −∆−1λβ(·, T ) + βϕβ(·, T ) = 0. 2

3.2.2 Minimization with respect to the multiplier

The augmented mixed formulation (21) allows to solve simultaneously the dual variable ϕβ , argument of the

conjugate functional (20), and the Lagrange multiplier λβ , qualified as the primal variable of the problem.

Assuming that the augmentation parameter r is strictly positive, we derive the corresponding extremal

problem involving only that variable λβ . For any r > 0, let the linear operator Aβ,r from L2(QT ) into L2(QT )

be defined by Aβ,rλ := L?ϕ where ϕ = ϕ(λ) ∈ Φβ is the unique solution to

aβ,r(ϕ,ϕ) = b(ϕ, λ), ∀ϕ ∈ Φβ . (25)

For any r > 0, the form aβ,r defines a norm equivalent to the norm on Φβ (see (19)), so that (25) is well-posed.

The following crucial lemma holds true.

Lemma 3.1 For any r > 0, the operator Aβ,r is a strongly elliptic, symmetric isomorphism from L2(QT ) into

L2(QT ).

It allows to get the following proposition which permits to replace the minimization of Jβ over Wβ to the

minimization of the functional J??β,r over L2(QT ), which is a space much easier to approximate than Wβ .

Proposition 3.1 For any r > 0, let ϕ0 ∈ Φβ be the unique solution of

aβ,r(ϕ
0, ϕ) = l(ϕ), ∀ϕ ∈ Φβ ,

and let J??β,r : L2(QT )→ L2(QT ) be the functional defined by

J??β,r(λ) :=
1

2
(Aβ,rλ, λ)L2(QT ) − b(ϕ0, λ).

The following equality holds :

sup
λ∈L2(QT )

inf
ϕ∈Φβ

Lβ,r(ϕ, λ) = − inf
λ∈L2(QT )

J??β,r(λ) + Lβ,r(ϕ0, 0).

We refer to [35], section 2.1 for the proof in the case M = 0.

Remark 5 By introducing appropriate weights functions (vanishing at the time t = T ) leading to optimal

L2-weighted controls vanishing at time T , we may consider the case β = 0. We refer to [35], section 2.3.
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3.2.3 Numerical approximation

We now turn to the discretization of the mixed formulation (21) assuming r > 0. We follow [35] for which we

refer for the details. Let then Φβ,h and Mβ,h be two finite dimensional spaces parametrized by the variable h

such that, for any β > 0,

Φβ,h ⊂ Φβ , Mβ,h ⊂ L2(QT ), ∀h > 0.

Then, we can introduce the following approximated problems : find (ϕh, λh) ∈ Φβ,h ×Mβ,h solution of{
aβ,r(ϕh, ϕh) + b(ϕh, λh) = l(ϕh), ∀ϕh ∈ Φβ,h

b(ϕh, λh) = 0, ∀λh ∈Mβ,h.
(26)

The well-posedness of this mixed formulation is a consequence of two properties : the first one is the coercivity

of the form aβ,r on the subset Nh(b) = {ϕh ∈ Φβ,h : b(ϕh, λh) = 0 ∀λh ∈Mβ,h}. Actually, from the relation

aβ,r(ϕ,ϕ) ≥ Cr,η‖ϕ‖2Φβ , ∀ϕ ∈ Φβ ,

where Cr,η = min{1, r/η}, the form aβ,r is coercive on the full space Φβ , and so a fortiori on Nh(b) ⊂ Φβ,h ⊂ Φβ .

The second property is a discrete inf-sup condition :

δβ,r,h := inf
λh∈Mβ,h

sup
ϕh∈Φβ,h

b(ϕh, λh)

‖ϕh‖Φβ,h‖λh‖Mβ,h

> 0 ∀h > 0. (27)

Let us assume that this property holds. Consequently, for any fixed h > 0, there exists a unique couple (ϕh, λh)

solution of (26). The property (27) is in general difficult to prove and strongly depends on the choice made for

the approximated spaces Mβ,h and Φβ,h. We shall analyze numerically this property in the next section.

Remark 6 For r = 0, the discrete formulation (26) is not well-posed over Φβ,h×Mβ,h because the form aβ,r=0

is not coercive over the discrete kernel of b: the equality b(λh, ϕh) = 0 for all λh ∈ Mβ,h does not imply that

L?ϕh vanishes. The term r‖L?εϕh‖2L2(QT ) is a numerical stabilization term: for any h > 0, it ensures the

uniform coercivity of the form aβ,r and vanishes at the limit in h. We also emphasize that this term is not a

regularization term as it does not add any regularity to the solution ϕh.

The finite dimensional and conformal space Φβ,h must be chosen such that L?ϕh belongs to L2(QT ) for any

ϕh ∈ Φβ,h. This is guaranteed as soon as ϕh possesses second-order derivatives in L2(QT ). Any conformal ap-

proximation based on standard triangulation of QT achieves this sufficient property as soon as it is generated by

spaces of functions continuously differentiable with respect to the variable x and spaces of continuous functions

with respect to the variable t.

We introduce a triangulation Th such that QT = ∪K∈ThK and we assume that {Th}h>0 is a regular family.

Then, we introduce the space Φβ,h as follows :

Φβ,h = {ϕh ∈ C1(QT ) : ϕh|K ∈ P(K) ∀K ∈ Th, ϕh = 0 on ΣT } (28)

where P(K) denotes an appropriate space of polynomial functions in x and t. In this work, we consider for

P(K) the so-called Bogner-Fox-Schmit (BFS for short) C1-element defined for rectangles (see [12]). In the one

dimensional setting (in space), P(K) = (P3,x⊗P3,t)(K) where Pr,ξ is the space of polynomial functions of order

r in the variable ξ.

We also define the finite dimensional space

Mβ,h = {λh ∈ C0(QT ) : λh|K ∈ Q(K) ∀K ∈ Th},

where Q(K) denotes the space of affine functions both in x and t on the element K. In the one dimensional

setting in space, K is a rectangle and we simply have Q(K) = (P1,x ⊗ P1,t)(K).

The resulting approximation is conformal: for any h > 0, Φβ,h ⊂ Φβ and Mβ,h ⊂ L2(QT ).
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Let nh = dim Φβ,h,mh = dimMβ,h and let the real matrices Aβ,r,h ∈ Rnh,nh , Bh ∈ Rmh,nh , Jh ∈ Rmh,mh
and Lh ∈ Rnh be defined by

aβ,r(ϕh, ϕh) =< Aβ,r,h{ϕh}, {ϕh} >Rnh ,Rnh ∀ϕh, ϕh ∈ Φβ,h,

b(ϕh, λh) =< Bh{ϕh}, {λh} >Rmh ,Rmh ∀ϕh ∈ Φβ,hλh ∈Mβ,h,∫∫
QT

λhλh dx dt =< Jh{λh}, {λh} >Rmh ,Rmh ∀λh, λh ∈Mβ,h,

l(ϕh) =< Lh, {ϕh} > ∀ϕh ∈ Φβ,h,

where {ϕh} ∈ Rnh denotes the vector associated to ϕh and < ·, · >Rnh ,Rnh the usual scalar product over Rnh .

With these notations, Problem (26) reads as follows : find {ϕh} ∈ Rnh and {λh} ∈ Rmh such that(
Aβ,r,h BTh
Bh 0

)
Rnh+mh,nh+mh

(
{ϕh}
{λh}

)
Rnh+mh

=

(
Lh
0

)
Rnh+mh

.

3.2.4 The discrete inf-sup test

Before to discuss some numerical experiments, we numerically test the discrete inf-sup condition (27). Taking

η = r > 0 so that aβ,r(ϕ,ϕ) = (ϕ,ϕ)Φβ exactly for all ϕ,ϕ ∈ Φβ , it is readily seen (see for instance [10]) that

the discrete inf-sup constant satisfies

δβ,r,h = inf

{√
δ : BhA

−1
β,r,hB

T
h {λh} = δ Jh{λh}, ∀ {λh} ∈ Rmh \ {0}

}
. (29)

The matrix BhA
−1
β,r,hB

T
h enjoys the same properties than the matrix Aβ,r,h: it is symmetric and positive definite

so that the scalar δβ,r,h defined in term of the (generalized) eigenvalue problem (29) is strictly positive. This

eigenvalue problem is solved using the power iterate algorithm (assuming that the lowest eigenvalue is simple):

for any {v0
h} ∈ Rnh such that ‖{v0

h}‖2 = 1, compute for any n ≥ 0, {ϕnh} ∈ Rnh , {λnh} ∈ Rmh and {vn+1
h } ∈ Rmh

iteratively as follows : {
Aβ,r,h{ϕnh}+BTh {λnh} = 0

Bh{ϕnh} = −Jh{vnh}
, {vn+1

h } =
{λnh}
‖{λnh}‖2

.

The scalar δβ,r,h defined by (29) is then given by δβ,r,h = limn→∞(‖{λnh}‖2)−1/2.

We now reports some numerical values of δβ,r,h with respect to h for the C1-finite element introduced in

Section 3.2.3. We use the value T = 1 and β = 10−16. Tables 1, 2 and 3 provides the value of δβ,r,h with

respect to h and r for M = 1 for ε = 10−1, 10−2 and ε = 10−3, respectively. For a fixed value of the parameter

ε, we observe as in [35], that the inf sup constant increases as r → 0 and behaves like δβ,r,h ≈ r−1/2, and more

importantly, is bounded by below uniformly with respect to h. This key property is preserved as the parameter

ε decreases.

r 10. 1. 0.1 h h2

h = 1/80 0.315 0.919 1.909 2.359 2.535

h = 1/160 0.313 0.923 1.94 2.468 2.599

h = 1/320 0.313 0.927 1.969 2.548 2.658

Table 1: δβ,r,h w.r.t. h and r; ε = 10−1 - β = 10−16 - M = 1.

The case M = −1 is reported in Tables 4, 5 and 6. The same behavior is observed except that we note

larger values of the inf-sup constant.

Consequently, we may conclude that the finite approximation we have used ‘passes” the discrete inf-sup

test. Such property together with the uniform coercivity of the form aβ,r then imply the convergence of the

approximation sequence (ϕh, λh), unique solution of (26). As a matter of fact, the use of stabilization technics

(so as to enrich the coercivity of the saddle point problem) introduced and analyzed in a closed context in



3 NUMERICAL ESTIMATION OF THE COST OF CONTROL 14

r 10. 1. 0.1 h h2

h = 1/80 0.311 0.961 2.423 3.64 4.473

h = 1/160 0.316 0.967 2.492 4.06 4.692

h = 1/320 0.316 0.971 2.545 4.406 4.916

Table 2: δβ,r,h w.r.t. h and r; ε = 10−2 - β = 10−16 - M = 1.

r 10. 1. 0.1 h h2

h = 1/80 0.310 0.942 2.121 3.412 6.012

h = 1/160 0.310 0.987 2.435 4.012 5.944

h = 1/320 0.310 0.969 2.544 4.561 5.756

Table 3: δβ,r,h w.r.t. h and r; ε = 10−3 - β = 10−16 - M = 1.

[36, 32] is not necessary here. We emphasize that for β = 0 (or β → 0 as h → 0), the convergence of the

approximation vh is still an open issue. For β = 0, the convergence is guarantees if a vanishing weight in time

is introduced, see [19]. This however leads a priori to a different control and therefore a different definition of

the cost K(ε, T,M).

The choice of r affects the convergence of the sequences ϕh and λh with respect to h and may be very

important here, in view of the sensitivity of the boundary control problem with respect to ε. Recall from

Theorem 3.1, that for any r ≥ 0, the multiplier λ coincides with the controlled solution. At the finite dimensional

level of the mixed formulation (26) where r must be strictly positive, this property is lost for any h fixed: the

non zero augmentation term r‖L?εϕh‖L2(QT ) introduces a small perturbation and requires to take r > 0 small

(in order that the approximation λh be closed to the controlled solution y). In the sequel, the value r = h2 is

used.

r 10. 1. 0.1 h h2

h = 1/80 0.3161 0.997 2.663 4.358 5.069

h = 1/160 0.316 0.9805 2.673 4.69 5.139

h = 1/320 0.3162 0.9801 2.653 4.172 5.171

Table 4: δβ,r,h for ε = 10−1 - β = 10−16 - M = −1.

3.3 Numerical experiments

We discuss some experiments for both M = 1 and M = −1, respectively, and several values of ε. We consider

a fixed data, independent of the parameter ε: precisely, we take yε0(x) = sin(πx) for x ∈ (0, L) and L = 1.

We consider regular but non uniform rectangular meshes refined near the four edges of the space-time

domain QT . More precisely, we refine at the edge {x = L} × (0, T ) to capture the boundary layer of length

ε which appear for the variable λh when M is positive (see [1]), at the edge {x = 0} × (0, T ) to approximate

correctly the “control” function given by vεh := εϕεh,x, and finally at (0, L) × {0, T} to represent correctly the

initial condition and final condition. Precisely, let p : [0, L] → [0, L] the polynomial of degree 3 such that

p(0) = 0, p′(0) = η1, p
′(L) = η2 and p(L) = L for some fixed η1, η2 > 0. The [0, L] interval is therefore

discretized as follows : {
[0, L] = ∪Jj=0[yj , yj+1],

y0 = 0, yj − yj−1 = p(xj)− p(xxj−1
), j = 1, · · · , J + 1

(30)

where {xj}j=0,··· ,J+1 is the uniform discretization of [0, L] defined by xj = jh, j = 0, ·, J + 1, h = L/(J + 1).

Small values for η1, η2 lead to a refined discretization {yj}j=0,··· ,J+1 at x = 0 and x = L. The same procedure

is used for the time discretization of [0, T ]. In the sequel, we use η1 = η2 = 10−3.
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r 10. 1. 0.1 h h2

h = 1/80 0.316 0.997 3.109 7.562 13.936

h = 1/160 0.3161 0.9997 3.086 9.433 14.101

h = 1/320 0.316 0.9809 3.086 11.1008 14.140

Table 5: δβ,r,h for ε = 10−2 - β = 10−16 - M = −1.

r 10. 1. 0.1 h h2

h = 1/80 0.302 0.9129 2.887 8.16 39.09

h = 1/160 0.301 0.957 3.022 12.145 43.08

h = 1/320 0.301 0.981 3.084 16.61 44.29

Table 6: δβ,r,h for ε = 10−3 - β = 10−16 - M = −1.

Preliminary, Table 7 gives some values of the H−1-norm of the uncontrolled solution of (1) at time T

associated to y0(x) = sin(πx). We take L = |M | = 1. A time-marching approximation scheme is used

with a very fine discretization both in time and space. In agreement with Lemma 2.1, for T greater than

T ?, the norm ‖yε(·, T )‖H−1(0,L) decreases exponentially as ε goes to zero. For T = T ?, we observe that

‖yε(·, T )‖H−1(0,L) = O(ε).

We first discuss the case M = 1. As ε goes to 0+, a boundary layer of length ε appears for the approximation

λεh at x = L (we refer to the next section). The profile of the solution takes along the normal the form

(1− e
−M(1−x/L)

ε ) and is captured with a locally refined mesh. Tables 8, 9 and 10 reports some numerical norms

for ε = 10−1, 10−2 and 10−3 respectively. These results are obtained by minimizing the functional J??β,r over

Mβ,h defined in Proposition 3.1. The minimization of J??β,r of Mh is performed using the conjugate gradient

(CG for short in the sequel) algorithm: the stopping criterion is ‖gnh‖L2(QT ) ≤ 10−6‖g0
h‖L2(QT ) where gnh is the

residus at the iterate n. The algorithm is initialized with λ0
h = 0. We refer to [35] for the details.

We take β = 10−16 and r = h2 for the augmentation parameter leading to an appropriate approximation of

the controlled solution y by the function λh: in particular, the optimality condition λh(0, ·)− εϕh,x(0, ·) = 0 is

well respected in L2(0, T ). The convergence of
√
r‖L?εϕh‖L2(QT ) (close to ‖L?εϕh‖L2(H−1) and actually sufficient

to describe the solution of (1), see [13]) is also observed. As is usual, we observe a faster convergence for the

norm ‖λh‖L2(QT ) than for the norm ‖vh‖L2(0,T ). From ε = 10−1 to 10−3, we also clearly observe a deterioration

of the convergence order with respect to h.

For h = 1/320, Figure 2 depicts the function λh(·, t), approximation of the control v, for t ∈ (0, T ), T = 1

for ε = 10−1, ε = 10−2 and ε = 10−3 respectively. For large values of the diffusion coefficient ε, for instance ε =

10−1, the transport term has a weak influence: the control of minimal L2-norm is similar to the corresponding

control for the heat equation and oscillates near the controllability time. On the contrary, for ε small, typically

ε = 10−3, the solution - mainly driven by the transport term - is transported along a direction closed to

(1, 1/M) = (1, 1), so that at time T = 1/M , is mainly distributed in the neighborhood of x = 1. Consequently,

the control (of minimal L2-norm) acts mainly at the beginning of the time interval, so as to have an effect, at

time T , in the neighborhood of x = 1. We observe a regular oscillatory and decreasing behavior of the controls.

Let us now discuss the case M = −1 which exhibits boundary layers for yε at x = 0 and for ϕε at x = L.

Tables 11, 12 and 13 give some numerical values with respect to h for ε = 10−1, 10−2 and 10−3. Concerning the

behavior of the approximation with respect to h, similar remarks (than for M = 1) can be made: the notable

ε 10−1 10−2 10−3 10−4 10−5

T = 0.9T ? 2.20× 10−2 7.45× 10−4 2.76× 10−3 2.20× 10−3 2.15× 10−3

T = T ? 1.58× 10−2 2.67× 10−3 1.72× 10−4 9.76× 10−6 3.07× 10−7

T = 1.1T ? 1.12× 10−2 8.13× 10−4 1.15× 10−6 1.63× 10−19 8.62× 10−20

Table 7: Approximation ‖yεh(·, T )‖H−1(0,L) w.r.t. T and ε for y0(x) = sin(πx). M = L = 1.
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h 1/80 1/160 1/320 1/640√
r‖L?εϕεh‖L2(QT ) 7.76× 10−2 3.01× 10−2 1.12× 10−2 7.12× 10−3

‖εϕεx(0,·)−λεh(0,·)‖L2(0,T )

‖λh(0,·)‖L2(0,T )
1.06× 10−2 4.45× 10−3 1.97× 10−3 7.61× 10−4

‖vεh‖L2(0,T ) 0.324 0.357 0.3877 0.3912

‖λεh‖L2(QT ) 0.367 0.366 0.362 0.363

‖λεh(·, T )‖H−1(0,L) 4.47× 10−6 9.59× 10−7 2.03× 10−7 1.01× 10−7

] CG iterate 76 117 175 231

Table 8: Mixed formulation (21) - r = h2; ε = 10−1; β = 10−16 - M = L = 1.

h 1/80 1/160 1/320 1/640√
r‖L?εϕεh‖L2(QT ) 5.86× 10−1 2.43× 10−1 1.41× 10−1 9.12× 10−2

‖εϕεx(0,·)−λεh(0,·)‖L2(0,T )

‖λεh(0,·)‖L2(0,T )
2.5× 10−2 1.24× 10−2 6.04× 10−3 2.89× 10−3

‖vεh‖L2(0,T ) 1.391 2.392 2.929 3.316

‖λεh‖L2(QT ) 0.518 0.6001 0.789 0.832

‖λεh(·, T )‖H−1(0,L) 5.46× 10−6 3.56× 10−6 8.77× 10−7 6.12× 10−8

] CG iterate 53 93 155 181

Table 9: Mixed formulation (21) - r = h2; ε = 10−2; β = 10−16 - M = L = 1.

h 1/80 1/160 1/320 1/640√
r‖L?εϕεh‖L2(QT ) 1.75× 10−1 1.01× 10−1 8.51× 10−2 6.91× 10−2

‖εϕεx(0,·)−λεh(0,·)‖L2(0,T )

‖λεh(0,·)‖L2(0,T )
4.87× 10−2 2.43× 10−2 1.3× 10−4 7.19× 10−5

‖vεh‖L2(0,T ) 0.231 0.713 0.855 0.911

‖λεh‖L2(QT ) 0.498 0.5015 0.5210 0.5319

‖λεh(·, T )‖H−1(0,L) 1.17× 10−6 3.69× 10−7 1.20× 10−7 8.12× 10−8

] CG iterate 29 68 129 151

Table 10: Mixed formulation (21) - r = h2; ε = 10−3; β = 10−16 - M = L = 1.
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Figure 2: Approximation λεh(0, t) of the control w.r.t. t ∈ [0, T ] for ε = 10−1, 10−2 and 10−3; T = L = M = 1;

r = h2 - h = 1/320.
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h 1/80 1/160 1/320 1/640√
r‖L?εϕεh‖L2(QT ) 1.51 0.731 0.231 0.101

‖εϕεx(0,·)−λεh(0,·)‖L2(0,T )

‖λεh(0,·)‖L2(0,T )
9.19× 10−3 3.87× 10−3 1.61× 10−3 1.12× 10−3

‖vεh‖L2(0,T ) 28.16 39.26 49.96 52.03

‖λεh‖L2(QT ) 5.74 7.96 9.05 10.12

‖λεh(·, T )‖H−1(0,L) 8.35× 10−4 1.82× 10−4 3.97× 10−5 1.12× 10−5

] CG iterate 48 80 129 157

Table 11: Mixed formulation (21) - r = h2; ε = 10−1; β = 10−16 - M = −1.

h 1/80 1/160 1/320 1/640√
r‖L?εϕεh‖L2(QT ) 5.291 2.134 1.213 0.591

‖εϕεx(0,·)−λεh(0,·)‖L2(0,T )

‖λεh(0,·)‖L2(0,T )
5.27× 10−4 2.08× 10−2 8.05× 10−3 5.01× 10−3

‖vεh‖L2(0,T ) 250.54 457.78 666.902 712.121

‖λεh‖L2(QT ) 6.76 10.05 13.111 15.301

‖λεh(·, T )‖H−1(0,L) 1.54× 10−3 2.08× 10−3 1.71× 10−3 6.12× 10−4

] CG iterate 22 41 79 101

Table 12: Mixed formulation (21) - r = h2; ε = 10−2; β = 10−16 - M = −1.

difference is a lower rate of convergence, probably due to the singularity of the controls we obtain. Precisely,

for the same data as in the case M = 1, Figure 3 depicts the ”control” function λεh(0, t) for t ∈ (0, T ), T = 1 for

ε = 10−1, ε = 10−2 and ε = 10−3 respectively. The behavior of the control is quite different from the previous

case. For ε large, typically ε = 10−1, the control is again similar to the control we observe for the heat equation,

with an oscillatory behavior at the final time. We observe however that the corresponding norm is significantly

larger that for the case M = 1: this is due to the fact, that for M < 0, the transport term “pushes” the solution

toward x = 0 where the control acts: this reduces the effect of the control which therefore must be stronger.

For ε small, the solution is mainly transported along the direction (1, 1/M) = (1,−1) so that at time T , the

solution is mainly concentrated in the neighborhood of x = 0. For this reason, the control mainly acts at the

end of the time interval: any action of the control not concentrated at the end of the time interval would be

useless because pushed back to the edge x = 0 and will produce a larger L2-norm. As ε goes to zero, the control

is getting concentrated at the terminal time with an oscillatory behavior and large amplitudes. This fact may

explain why the behavior of the cost of control with respect to ε observed in [15, 21, 29] is singular for negatives

values of M . For M > 0, the transport term “helps” the control to act on the edge x = 1 while for M < 0, the

transport term is against the control and reduces its action. For this reason, the numerical approximation of

controls for M = −1 is definitively more involved and requires to take a very fine discretization.

We also observe, both for M = 1 and M = −1, that from ε = 10−2 to ε = 10−3, the L2-norm ‖vε‖L2(0,T )

decreases. Probably, as ε goes to zero, this norm goes to zero. This does not contradict Theorem 2.2 obtained

for the dependent of ε initial condition given by (11).

h 1/80 1/160 1/320 1/640√
r‖L?εϕεh‖L2(QT ) 7.12 2.14 1.31 0.59

‖εϕεx(0,·)−λεh(0,·)‖L2(0,T )

‖λεh(0,·)‖L2(0,T )
2.87× 10−1 7.76× 10−2 4.31× 10−2 2.12× 10−2

‖vεh‖L2(0,T ) 0.281× 10−1 2.35 18.98 21.23

‖λεh‖L2(QT ) 4.97× 10−1 5.01× 10−1 6.38× 10−1 7.23× 10−1

‖λεh(·, T )‖H−1(0,L) 2.03× 10−5 3.28× 10−5 6.01× 10−5 8.01× 10−5

] CG iterate 7 11 23 26

Table 13: Mixed formulation (21) - r = h2; ε = 10−3; β = 10−16 - M = −1.
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Figure 3: Approximation λεh(0, t) of the control w.r.t. t ∈ [0, T ] for ε = 10−1, 10−2 and 10−3; T = L = −M = 1;

r = h2 - h = 1/320.

3.4 Numerical approximation of the cost of control

We now turn to the numerical approximation of the cost of control K(ε, T,M) defined by (3) and address

numerically the resolution of the generalized eigenvalue problem (16). Let Vh be a conformal approximation of

the space L2(0, L) for all h > 0. At the discrete level, problem (16) leads to the following finite dimensional

eigenvalue problem:

sup

{
λ ∈ R : ∃ y0,h ∈ Vh, y0,h 6= 0, s.t. Aεy0,h = λy0,h in Vh

}
.

Aεy0,h in L2(0, L) is defined as −ϕh(·, 0) where ϕh ∈ Φβ,h solves the variational formulation (26). Consequently,

from the definition of Φβ,h in (28), the space Vh is the set of C1-functions and piecewise polynomial of order 3:

Vh =

{
y0,h ∈ C1([0, L]) : y0,h|K ∈ P3,x ∀K ∈ Th

}
,

where Th is the triangulation of [0, L] defined by (30). This kind of finite dimensional eigenvalue problems may

be solved using the power iterate method (see [11]): the algorithm is as follows: given y0
0,h ∈ L2(0, L) such that

‖y0
0,h‖L2(0,L) = 1, compute for all k ≥ 0,

yk+1
0,h =

Aεyk0,h
‖Aεyk0,h‖L2(0,L)

, k ≥ 0.

For any fixe h > 0, the real sequence {‖zk0,h‖L2(0,L)} then converges to the eigenvalue with largest modulus of

the operator Aε restricted to eigenvectors in Vh, so that
√
‖Aεyk0,h‖L2(0,1) → Kh(ε, T,M,L) as k → ∞. The

sequence {yk0,h}k>0 converges to the corresponding eigenvector. The first step requires to compute the image of

the control operator Aε: this is done by solving the mixed formulation (26) taking yk0,h as initial condition for

(1). The algorithm is stopped as soon as the sequence {Aεyk0,h}k≥0 satisfies∣∣∣∣‖Aεyk0,h‖L2(0,L) − ‖Aεyk−1
0,h ‖L2(0,L)

∣∣∣∣ ≤ 10−3‖Aεyk−1
0,h ‖L2(0,L), (31)

for some k > 0.

We now report the numerical values for L = 1 and M = ±1. We initialize the algorithm with

y0
0(x) =

e−
Mx
2ε sin(πx)

‖e−Mx2ε sin(πx)‖L2(0,L)

, x ∈ (0, L).
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Figure 4: Cost of control Kh(ε, T,M) w.r.t. ε ∈ [10−3, 10−1] for T = 0.95T ?, T = T ? and T = 1.05T ? ;

L = M = 1; r = h2 - h = 1/320.

3.4.1 Cost of control in the case M = 1

The tables in the annexe section report on the approximations obtained of the cost of control Kh(ε, T,M) for

M = 1 with respect to T and ε. They corresponds to the discretization h = 1/320. As expected, for T strictly

lower than T ? = 1, here T = 0.95 and T = 0.99, we obtain that the cost Kh(ε, T,M) blows up as ε goes to zero.

This is in agreement with the fact, that for T < T ?, the system (1) is not uniformly controllable with respect

to the initial data yε0 and ε.

Figure 4-Left displays the approximations with respect to ε for T = 0.95T ?. On the other hand, for T larger

than T ? = 1, we observe that the numerical approximation of K(ε, T,M) is bounded with respect to ε. More

precisely, the cost is not monotonous with respect to ε as it reaches a maximal value for ε ≈ 1.75 × 10−3 for

T = T ? and ε ≈ 6× 10−3 for T = 1.05T ? (see Figure 4).

Figure 5-Left displays the approximation of the initial data yε0 ∈ L2(0, L) solution of the optimal problem

(15) for T = 1 and ε = 10−1, 10−2 and 10−3. As ε decreases, the optimal initial condition yε0 with ‖yε0‖L2(0,L) = 1

gets concentrated at x = 0. Again, this is in agreement with the intuition since such condition produces (in

the uncontrolled situation) larger values of ‖yε(·, T )‖H−1(Ω). It should be noted however that the solutions we

get are different from e−
Mx
2ε sin(πx)/‖e−Mx2ε sin(πx)‖L2(0,L). Moreover, they are apparently independent of the

controllability time T (at least for the values of T close to 1/M we have used). Remark also that the initial

data y0(x) = e
Mx
2ε sin(πx)/‖eMx2ε sin(πx)‖L2(0,L) highlighted in [15, 30] leads to a much lower numerical value of

‖vεh‖L2(0,L).

For each values of ε and T , the convergence of the power iterate algorithm is fast: the stopping criterion

(31) is reached in less than 5 iterates.

Remark 7 We also emphasize that the space-time variational approximation we use is very well-suited to the

mesh adaptivity. Figure 6 depicts the non uniform time-space mesh obtained after 5 adaptations starting from

a regular mesh, corresponding to ε = 10−3 and M = 1. A refinement appears at x = L, along the characteristic

Lx−Mt = 0, at the beginning of the time interval for x = 0 where the control is mainly active and oscillating

and also in the neighborhood of the corner (x, t) = (L, T ) where the adjoint solution is oscillating as well.

Remark 8 In order to avoid the use of C1-approximation in space, one may preliminary rewrite the adjoint

equation into a first order system

L?ε,1(ϕ, p) := ϕt + px +Mϕx = 0, L?ε,2(ϕ, p) := p− εϕx = 0, in QT ,

involving the flux p and for which a generalized observability inequality holds true as well. As discussed in [36]

and [34] for the case of the heat and wave equations respectively, this allows to use simply H1(QT ) approximation.

On the other hand, the corresponding discrete inf-sup constant is generally not uniformly bounded by below;
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Figure 5: The optimal initial condition yε0 in (0, L) for ε = 10−1 (full line), ε = 10−2 (dashed line) and ε = 10−3

(dashed-dotted line) and T = L = 1; r = h2 - h = 1/320. M = 1 (Left) and M = −1 (right).

Figure 6: L = M = 1; ε = 10−3; Non uniform adapted mesh over the space time domain QT .
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Figure 7: Approximation λεh(0, t) of the corresponding control w.r.t. t ∈ [0, T ] for ε = 10−3 and T = L = −M =

1; r = h2 - h = 1/320.

this requires the use of stabilized technics à la Barbosa-Hugues [3], leading here to the following stabilized-

augmentation formulation

sup
(λ1,λ2)∈Λ

inf
(ϕ,p)∈Φβ

Lr,α((ϕ, p), (λ1, λ2)) :=
1

2
‖p(0, ·)‖2L2(0,T ) + (yε0, ϕ(0, ·))L2(0,L)

+ < λ1, L
?
ε,1ϕ >L2(QT ) + < λ2, L

?
ε,2ϕ >L2(QT )

+
r1

2
‖L?ε,1(ϕ, p)‖2L2(QT ) +

r2

2
‖L?ε,2(ϕ, p)‖2L2(QT )

− α1

2
‖Lε,1(λ1, λ2)‖2L2(QT ) −

α2

2
‖Lε,2(λ1, λ2)‖2L2(QT )

with r1, r2 > 0 (augmentation parameters) and α1, α2 (stabilization terms). The annexe provides the implemen-

tation of the corresponding mixed formulation using P1-elements associated to the FreeFem++ package developed

at the University Paris 6 (see [23]), which is very well adapted to our space-time setting.

3.4.2 Cost of control in the case M = −1

Tables in the annexe section reports the approximation of the cost of control K(ε, T,M) for M = −1 and T = T ?

with respect to ε ∈ [10−3, 10−1]. With respect to the positive case, the notable difference is the amplitude of

the cost, as expected much larger, since the transport term now acts “against” the control. For instance, for

ε = 10−3, we obtain K(ε, T,M) ≈ 18.75 for M = 1 and Kh(ε, T,M) ≈ 1.07 × 104 for M = −1. Moreover,

the corresponding optimal initial condition y0 is supported as ε → 0 at the right extremity x = 1 (see figure

5-Right) leading to a corresponding control localized at t = T , with very large amplitude and oscillations, as

shown on Figure 7 for ε = 10−3. Such oscillations are difficult to capture numerically and are very sensitive

to the discretization used. On the other hand, we observe, as for M = 1, that the cost Kh(ε, T,M) does not

blow up as ε → 0, in contradiction with the theoretical results from [15, 30]. The discretization used is not

fine enough here to capture the highly oscillatory behavior of the control near the controllability time T (in

contrast to the positive case) and very likely leads to an uncorrect approximation of the controls. For T lower

than 1/|M |, as expected, we observe that the cost blows up, while for T strictly greater than 1/|M |, the cost

decreases to zero with ε.
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Figure 8: Cost of control K(ε, T,M) w.r.t. ε ∈ [10−3, 10−1] for T = L/M and L = −M = 1; r = h2 - h = 1/320.

3.5 Conclusion of the numerical study

For M > 0, the “worst” initial data we observe are concentrated at x = 0 leading to a control distributed

at the beginning of the time interval, and vanishing as t → T . In this case, controls v are smooth and easily

approximated. Vanishing exponentially weights as considered in [35] leading to strong convergent results (w.r.t.

h) are therefore not necessary here. Consequently, for M > 0, we are confident with the numerical approximation

obtained and may conjecture that the minimal time of uniform controllability w.r.t. ε is TM = T ?. The situation

is much more singular for M < 0 for which the transport term acts “against” the control. The optimal initial

data are concentrated as the right extremity leading to a highly singular controls at the end of the time interval.

Such controls, similar to the controls we observe for the heat equation (see [37]) are difficult to approximate.

The strong convergent approximation of controls w.r.t. h is still open in such situation. In both situations, we

also suspect, that at limit in ε, the worst initial condition is related to the function e−
Mx
2ε sin(πxL ), x ∈ (0, L).

We also emphasize that the numerical approach is restricted to large enough values of ε, since for small ε,

the numerical approximation can not distinguish, in view of the lemma 2.1, approximate and null controls. Let

us however comment possible perspectives to improve the resolution of this singular controllability problem.

a) A way to recover a strong convergent approximation with respect to h is to force the control to vanish

exponentially at time T of the form v(t) := ερ−2(t)ϕx(0, t), with ρ(t) := O(e1/(T−t)). Remark that this modifies

the cost of control as follows:

Kρ(ε, T,M) := sup
‖yε0‖L2(0,L)=1

{
min

u∈C(yε0 ,T,ε,M)
‖ρ u‖L2(0,T )

}
,

larger than K(ε, T,M) leading a priori to an upper bound TM,ρ of TM . Since ρ−1 vanishes only at time T , we

suspect that the minimal time of uniform controllability TM,ρ coincides with TM .

b) Even if the introduction of weights like ρ improves the numerical stability of the mixed formulation (26),

it seems quite impossible to consider values of T far from T ?: for instance, for T = 2
√

2T ? exhibited in [30] (see

Theorem 2.6), the norm ‖yε(·, T )‖H−1(0,L) in the uncontrolled situation, is for ε = 10−2, about 3.33 × 10−17.

Consequently, when the double precision is used, we achieve “numerically” zero. Resolution of (26) would then

lead to vε := 0 on (0, T ) ! A possible way to avoid such pathologies is to preliminary consider a change of

variables. We may write the solution yε as follows, for any α, γ ∈ R,

yε(x, t) = e
Mαx
2ε e−

γM2t
4ε zε(x, t), ∀(x, t) ∈ QT ,
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leading to

Lεy
ε := e

Mαx
2ε e−

γM2t
4ε

(
zεt − εzεxx +M(1− α)zεx −

M2

4ε
(γ + α2 − 2α)zε

)
.

Remark that yε(·, T ) = 0 if and only if zε(·, T ) = 0. Taking 1 − α small and M2

4ε (γ + α2 − 2α) ≥ 0 allows

to reduce the dissipation of the solution at time T as ε → 0 and therefore avoid the zero numeric effect. The

extreme case is for α = γ = 1 leading to the equation zεt − εzεxx = 0. Within this change of variable, the cost of

control is

K2(ε, T,M) = sup
zε0∈L2(0,L)

(Aεzε0, zε0)

(e
Mαx
ε zε0, z

ε
0)

where Aε is the control operator defined by Aε : zε0 → −wε(·, 0) ∈ L2(0, 1); here wε solves the adjoint problem
− wεt − εwεxx −M(1− α)wεx −

M2

4ε
(γ + α2 − 2α)wε = 0, (x, t) ∈ QT ,

wε(0, t) = w(L, t) = 0, t ∈ (0, T ),

wε(x, T ) = wεT (x), x ∈ (0, L),

with wεT ∈ H1
0 (0, L), the minimizer of the functional

J?(wεT ) :=
1

2

∫ T

0

ε2e
γM2t

2ε (wεx)2(0, t)dt+ (zε0, w
ε(·, 0))L2(0,L).

The corresponding control of minimal L2(0, T ; e−
γM2t

4ε )-norm for the variable zε is given by vε,zε := εe
γM2t

2ε wεx(1, ·).
The optimality conditions for J? lead to a mixed formulation similar to (21). The introduction of appropriate

parameters α and γ allows to avoid the effect of the transport term; on the other hand, the change of variables

make appear explicitly in the formulation some exponential functions which may lead to numerical overflow for

small values of ε.

c) Another numerical strategy, employed in [37], is to use a spectral expansion of the adjoint solution ϕε of

(8) (with L = 1 here):

ϕε(x, t) = e−
Mx
2ε

∑
k>0

αke
−λε,k(T−t) sin(kπx), λε,k := εk2π2 +

M2

4ε

with {αk}k>0 ∈ L(ε,M, T ) such that ϕ(x, 0) be in L2(0, 1), equivalently

L(ε,M, T ) :=

{
{αp}p>0 ∈ R,

∑
p,q>0

αpαqe
−(λε,k+λε,p)T 32ε3M(pπ)(qπ)(1− e−Mε (−1)p+q)

(a2
p,q − b2p,q)

<∞
}

with ap,q := 4(M2 + ε2((pπ)2 + (qπ)2)) and bp,q := 8ε2(pπ)(qπ). The characterization (14) of the control with

vε = εϕεx(0, ·) then rewrites as follows: find {αk}k≥1 ∈ L(ε,M, T ) such that

ε2
∑
k,p>0

αkαp(kπ)(pπ)
1− e−(λε,p+λε,k)T

λε,p + λε,k
+
∑
k>0

αke
−λε,kT

∑
p>0

βpMp,k = 0, ∀{αk}k>0 ∈ L(ε,M, T ), (32)

with yε0(x) :=
∑
p>0 β

ε
p sin(pπx) and Mp,q :=

∫ 1

0
e−

Mx
2ε sin(pπx) sin(qπx)dx. The use of symbolic computations

with large digit numbers may allow to solve (32) with robustness, as done in [37] (we also refer to [4]) in the

context of the heat equation (ε = 1 and M = 0). This remains however duable for not so small values of ε.

In the next section, we examine a more theoretical approach based on an asymptotic analysis with respect

to the parameter ε.
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Figure 9: Boundary layer zones for yε (left) and ϕε(right) in the case M > 0.

4 Asymptotic analysis with respect to ε

In the spirit of the book [28], one possibility to better understand the behavior of the cost K(ε, T,M) is to

perform an asymptotic analysis of the optimality system associated to the control of minimal L2-norm. It

couples the direct and adjoint solutions yε and ϕε as follows :

Lεy
ε = 0, L?εϕ

ε = 0, (x, t) ∈ QT ,
yε(x, 0) = yε0(x), x ∈ (0, L),

vε(t) = yε(0, t) = εϕεx(0, t), t ∈ (0, T ),

yε(L, t) = 0, . t ∈ (0, T ),

ϕε(0, t) = ϕε(L, t) = 0, t ∈ (0, T ),

− β(ε)ϕεxx(·, T ) + yε(·, T ) = 0, x ∈ (0, L).

(33)

The asymptotic analysis with respect to ε of such system is quite involved both for M > 0 and M < 0. Take

for instance M > 0. As ε goes to zero, the direct solution yε exhibits a boundary layer of size O(ε) at x = L and

a boundary layer of size O(
√
ε) along the characteristic {(x, t) ∈ QT , Lx −Mt = 0}. Therefore, two distincts

boundary layers, with different sizes, appear and intersect (see Figure 9-Left) ! Similarly, the adjoint solution ϕε

exhibits a boundary layer of size (O(ε)) at x = 0 and a boundary layer of size (O(
√
ε)) along the characteristic

{(x, t) ∈ QT , Lx−M(t− T )− 1 = 0} (Figure 9-Right). In particular, the control vε lives in a boundary layer

for the adjoint solution. Moreover, even if such boundary layers are not responsible of the unexpected behavior

of the cost K mentioned in the previous section, they must be considered in the asymptotic analysis.

Let us point out that the boundary layer at x = 0 and x = L (in blue on Figure 9-Left) are unavoidable (unless

yε0 = 0). On the other hand, the ones along the characteristics can be avoided assuming some compatibility

conditions at the point (x, t) = (0, 0) between the initial condition yε0 at x = 0 and the control vε at t = 0.

There is however no reason for the control of minimal L2-norm to satisfy such conditions ! Similarly, at the

point (x, t) = (L, T ), some properties must hold for the adjoint solution ϕε that are not a priori encoded in the

optimality system (33).

In the next subsection, we perform the asymptotic analysis of the direct problem in yε, assuming appropriate

compatibility conditions at the point (x, t) = (0, 0). This leads to quite involved but interesting developments,

independently of the controllability issue. We consider the case M > 0. In order to simplify notations, we also
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take L = 1 so that T ? = 1/M . We emphasize again that in view of the behavior of the free solution stated in

Lemma 2.1, such asymptotic analysis should be as fine as possible in order to distinguish null and approximate

controllability property. For this reason, the controllability time of interest for which we may capture some

phenomenon is T = T ?.

4.1 Matched asymptotic expansions and approximate solutions

In this section we apply the method of matched asymptotic expansions to construct approximate solutions

of problem (1). We refer to [24, 39, 40] for a general presentation of the method. Then we apply the same

procedure to construct asymptotic approximate solutions of the adjoint solution ϕε, see problem (33).

Let us consider the problem 
yεt − εyεxx +Myεx = 0, (x, t) ∈ QT ,
yε(0, t) = vε(t), t ∈ (0, T ),

yε(1, t) = 0, t ∈ (0, T ),

yε(x, 0) = y0(x), x ∈ (0, 1),

(34)

where y0 and vε are given functions. We assume that M > 0 and vε is in the form vε =

m∑
k=0

εkvk, the functions

v0, v1, · · · , vm being known. We construct an asymptotic approximation of the solution yε of (34) by using the

method of matched asymptotic expansions. We assume here that the initial condition yε(x, 0) is independent

of ε but the procedure is very similar for yε(·, 0) of the form yε(·, 0) =
∑m
k=0 ε

kyk0 . The case M < 0 can be

treated similarly.

In the sequel, c, c1, c2, · · · , will stand for generic constants that do not depend on ε. When the constants c,

c1, c2, · · · , depend in addition on some other parameter p we will write cp, c1(p), c2(p), · · ·
We also refer to [38] where a sensitivity analysis of an optimal control problem is performed an involving

advection-diffusion equation.

4.1.1 Formal asymptotic expansions

Let us consider two formal asymptotic expansions of yε:

– the outer expansion
m∑
k=0

εkyk(x, t), (x, t) ∈ QT ,

– the inner expansion
m∑
k=0

εkY k(z, t), z =
1− x
ε
∈ (0, ε−1), t ∈ (0, T ).

We will construct outer and inner expansions which will be valid in the so-called outer and inner regions,

respectively. Here the boundary layer (inner region) occurs near x = 1, it is of O(ε) size, and the outer region

is the subset of (0, 1) consisting of the points far from the boundary layer, it is of O(1) size. There is an

intermediate region between them, with size O(εγ), γ ∈ (0, 1). To construct an approximate solution we require

that inner and outer expansions coincide in the intermediate region, then some conditions must be satisfied

in that region by the inner and outer expansions. These conditions are the so-called matching asymptotic

conditions.

Putting

m∑
k=0

εkyk(x, t) into equation (34)1, the identification of the powers of ε yields

ε0 : y0
t +My0

x = 0,

εk : ykt +Mykx = yk−1
xx , for any 1 ≤ k ≤ m.
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Taking the initial and boundary conditions into account we define y0 and yk (1 ≤ k ≤ m) as functions satisfying

the transport equations, respectively, 
y0
t +My0

x = 0, (x, t) ∈ QT ,
y0(0, t) = v0(t), t ∈ (0, T ),

y0(x, 0) = y0(x), x ∈ (0, 1),

(35)

and 
ykt +Mykx = yk−1

xx , (x, t) ∈ QT ,
yk(0, t) = vk(t), t ∈ (0, T ),

yk(x, 0) = 0, x ∈ (0, 1).

(36)

The solution of (35) is given by

y0(x, t) =

y0(x−Mt), x > Mt,

v0
(
t− x

M

)
, x < Mt.

(37)

Using the method of characteristics we find that, for any 1 ≤ k ≤ m,

yk(x, t) =


∫ t

0

yk−1
xx (x+ (s− t)M, s)ds, x > Mt,

vk
(
t− x

M

)
+

∫ x/M

0

yk−1
xx (sM, t− x

M
+ s)ds, x < Mt.

(38)

Remark 9 Actually, above the first characteristic, we may express explicitly each function yk in term of the

vj, j = 0, · · · , k, which is very valuable in our controllability context. We verify that we have explicitly

y1(x, t) =

t y
(2)
0 (x−Mt), x > Mt,

v1
(
t− x

M

)
+

x

M3
(v0)(2)

(
t− x

M

)
, x < Mt,

(39)

and

y2(x, t) =



t2

2
y

(4)
0 (x−Mt), x > Mt,

v2
(
t− x

M

)
+

x

M3
(v1)(2)

(
t− x

M

)
− 2x

M5
(v0)(3)

(
t− x

M

)
+

x2

2M6
(v0)(4)

(
t− x

M

)
, x < Mt.

(40)

Here and in the sequel, f (i) denotes the derivative of order i of the real function f .

Now we turn back to the construction of the inner expansion. Putting

m∑
k=0

εkY k(z, t) into equation (34)1,

the identification of the powers of ε yields

ε−1 : Y 0
zz(z, t) +MY 0

z (z, t) = 0,

εk−1 : Y kzz(z, t) +MY kz (z, t) = Y k−1
t (z, t), for any 1 ≤ k ≤ m.

We impose that Y k(0, t) = 0 for any 0 ≤ k ≤ m. To get the asymptotic matching conditions we write that, for

any fixed t and large z,

Y 0(z, t) + εY 1(z, t) + ε2Y 2(z, t) + · · ·+ εmY m(z, t)

= y0(x, t) + εy1(x, t) + ε2y2(x, t) + · · ·+ εmym(x, t) +O(εm+1).
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Rewriting the right-hand side of the above equality in terms of z, t and using Taylor expansions we have

Y 0(z, t) + εY 1(z, t) + ε2Y 2(z, t) + · · ·+ εmY m(z, t)

= y0(1− εz, t) + εy1(1− εz, t) + ε2y2(1− εz, t) + · · ·+ εmym(1− εz, t) +O(εm+1)

= y0(1, t) + y0
x(1, t)(−εz) +

1

2
y0
xx(1, t)(εz)2 + · · ·+ 1

m!
(y0)

(m)

x (1, t)(−εz)m

+ ε

(
y1(1, t) + y1

x(1, t)(−εz) +
1

2
y1
xx(1, t)(εz)2 + · · ·+ 1

(m− 1)!
(y0)

(m−1)

x (1, t)(−εz)m−1

)
+ · · · · · ·+ εmym(1, t) +O(εm+1).

Therefore the matching conditions read

Y 0(z, t) ∼ Q0(z, t) := y0(1, t), as z → +∞,
Y 1(z, t) ∼ Q1(z, t) := y1(1, t)− y0

x(1, t)z, as z → +∞,

Y 2(z, t) ∼ Q2(z, t) := y2(1, t)− y1
x(1, t)z +

1

2
y0
xx(1, t)z2, as z → +∞,

· · ·

Y m(z, t) ∼ Qm(z, t) := ym(1, t)− ym−1
x (1, t)z +

1

2
ym−2
xx (1, t)z2 + · · ·+ 1

m!
(y0)

(m)

x (1, t)(−z)m,

as z → +∞.

(41)

We thus define Y 0 as a solution of
Y 0
zz(z, t) +MY 0

z (z, t) = 0, (z, t) ∈ (0,+∞)× (0, T ),

Y 0(0, t) = 0, t ∈ (0, T ),

lim
z→+∞

Y 0(z, t) = lim
x→1

y0(x, t), t ∈ (0, T ).

(42)

The last condition in (42) is the matching asymptotic condition. The general solution of (42)1, (42)2 is Y 0(z, t) =

C(t)
(
1− e−Mz

)
, where C(t) is an arbitrary constant. The matching condition allows to find C(t) = y0(1, t),

leading to

Y 0(z, t) = y0(1, t)
(
1− e−Mz

)
, (z, t) ∈ (0,+∞)× (0, T ). (43)

Next we determine the general solution of{
Y 1
zz(z, t) +MY 1

z (z, t) = y0
t (1, t)

(
1− e−Mz

)
, (z, t) ∈ (0,+∞)× (0, T ),

Y 1(0, t) = 0, t ∈ (0, T ).

We find

Y 1(z, t) =
(
C(t)− y0

x(1, t)z
)

+ e−Mz
(
−C(t)− y0

x(1, t)z
)
,

where C(t) is an arbitrary constant. We determine C(t) by using the matching asymptotic condition

lim
z→+∞

[Y 1(z, t)−Q1(z, t] = 0, t ∈ (0, T ),

which gives

Y 1(z, t) =
(
y1(1, t)− y0

x(1, t)z
)

+ e−Mz
(
−y1(1, t)− y0

x(1, t)z
)
. (44)

The function Y 2 is defined as a solution of
Y 2
zz(z, t) +MY 2

z (z, t) = Y 1
t (z, t), (z, t) ∈ (0,+∞)× (0, T ),

Y 2(0, t) = 0, t ∈ (0, T ),

lim
z→+∞

[Y 2(z, t)−Q2(z, t] = 0, t ∈ (0, T ).
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We obtain

Y 2(z, t) =

(
y2(1, t)− y1

x(1, t)z + y0
xx(1, t)

z2

2

)
+ e−Mz

(
−y2(1, t)− y1

x(1, t)z − y0
xx(1, t)

z2

2

)
. (45)

For 1 ≤ k ≤ m, the function Y k is defined iteratively as the solution of
Y kzz(z, t) +MY kz (z, t) = Y k−1

t (z, t), (z, t) ∈ (0,+∞)× (0, T ),

Y k(0, t) = 0, t ∈ (0, T ),

lim
z→+∞

[Y k(z, t)−Qk(z, t)] = 0, t ∈ (0, T ).

(46)

4.1.2 Second order approximation

Here we take m = 2. The outer expansion is

2∑
k=0

εkyk(x, t), where y0 and yk (k = 1, 2) are given by (37)

and (38), respectively, and the inner expansion is

2∑
k=0

εkY k(z, t), where Y 0, Y 1 and Y 2 are given by (43), (44)

and (45), respectively. We introduce a C∞ cut-off function X : R→ [0, 1] such that

X (s) =

{
1, s ≥ 2,

0, s ≤ 1,
(47)

and define, for γ ∈ (0, 1), the function Xε : [0, 1]→ [0, 1], plotted on Figure 10, by

Xε(x) = X
(

1− x
εγ

)
. (48)

1

0

0

Xε(x)

1− ε
γ

1− 2εγ x1

Figure 10: The function Xε.

Then we introduce the function wε2 by

wε2(x, t) = Xε(x)

2∑
k=0

εkyk(x, t) + (1−Xε(x))

2∑
k=0

εkY k
(

1− x
ε

, t

)
, (x, t) ∈ QT , (49)

defined to be the second order asymptotic approximation of the solution yε of (34). To justify all the computa-

tions we will perform we need some regularity assumptions on the data y0, v0, v1 and v2. We have the following

result.

Lemma 4.1 (i) Assume that y0 ∈ C5[0, 1], v0 ∈ C5[0, T ] and the following C5-matching conditions are satisfied

Mp(y0)(p)(0) + (−1)p+1(v0)(p)(0) = 0, 0 ≤ p ≤ 5. (50)
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Then the function y0 defined by (37) belongs to C5(QT ).

(ii) Additionally, assume that v1 ∈ C3[0, T ], v2 ∈ C1[0, T ] and the following C3 and C1-matching conditions

are satisfied, respectively, 
v1(0) = 0, (v1)(1)(0) = M−2(v0)(2)(0) = y

(2)
0 (0),

(v1)(2)(0) = 2M−2(v0)(3)(0) = −2My
(3)
0 (0),

(v1)(3)(0) = 3M−2(v0)(4)(0) = 3M2y
(4)
0 (0),

(51)

v2(0) = 0, (v2)(1)(0) = 0. (52)

Then the function y1 defined by (38) (with k = 1) belongs to C3(QT ), and the function y2 defined by (38) (with

k = 2) belongs to C1(QT ).

Proof. (i) According to the explicit form (37), it suffices to match the partial derivative of y0 on the charac-

teristic line {(x, t), x−Mt = 0}. Differentiating (37) p times (p ≤ 5) with respect to x we have

∂py0

∂xp
(x, t) =

y
(p)
0 (x−Mt) , x > Mt,

(−1)p

Mp
(v0)(p)

(
t− x

M

)
, x < Mt.

Matching the expressions of
∂py0

∂xp
upper and under the characteristic line {(x, t), x −Mt = 0} gives (50) and

ensures the continuity of
∂py0

∂xp
in QT . Differentiating (37) p times with respect to t we have

∂py0

∂tp
(x, t) =

(−1)pMpy
(p)
0 (x−Mt) , x > Mt,

(v0)(p)
(
t− x

M

)
, x < Mt,

then we see that the continuity of
∂py0

∂tp
holds under condition (50). Using equation (35) we easily verify that

the mixed partial derivatives, of order p ≤ 5, of y0 are continuous under condition (50).

(ii) Arguing as previously, using formula (39) and equation (36) (with k = 1) we find the matching condi-

tions (51). Then, using formula (40) and equation (36) (with k = 2) we find the matching conditions (52). �

Lemma 4.2 Let wε2 be the function defined by (49). Assume that the assumptions of Lemma 4.1 hold true.

Then there is a constant c independent of ε such that

‖Lε(wε2)‖C([0,T ];L2(0,1)) ≤ cε
5γ
2 . (53)

Proof. A straightforward calculation gives Lε(w
ε
2)(x, t) =

∑5
i=1 I

i
ε(x, t), with

I1
ε (x, t) = −ε3y2

xx(x, t)Xε(x),

I2
ε (x, t) = ε2(1−Xε(x))Y 2

t

(
1− x
ε

, t

)
,

I3
ε (x, t) = MX ′

(
1− x
εγ

)
ε−γ

(
2∑
k=0

εkY k
(

1− x
ε

, t

)
−

2∑
k=0

εkyk(x, t)

)
,

I4
ε (x, t) = X ′′

(
1− x
εγ

)
ε1−2γ

( 2∑
k=0

εkY k
(

1− x
ε

, t

)
−

2∑
k=0

εkyk(x, t)

)
,

I5
ε (x, t) = 2X ′

(
1− x
εγ

)
ε1−γ

(
ε−1

2∑
k=0

εkY kz

(
1− x
ε

, t

)
+

2∑
k=0

εkykx(x, t)

)
.
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Clearly,

‖I1
ε‖C([0,T ];L2(0,1)) ≤ ε3‖y2

xx‖C([0,T ];L2(0,1)) ≤ cε3,

and

‖I2
ε‖C([0,T ];L2(0,1)) ≤ ε2

∥∥∥∥(1−Xε(x))Y 2
t

(
1− x
ε

, t

)∥∥∥∥
C([0,T ];L2(0,1))

≤ ε2 max
t∈[0,T ]

(∫ 1

1−2εγ

∣∣∣∣Y 2
t

(
1− x
ε

, t

)∣∣∣∣2 dx
)1/2

.

Using a change of variable we have(∫ 1

1−2εγ

∣∣∣∣Y 2
t

(
1− x
ε

, t

)∣∣∣∣2 dx
)1/2

=

(
ε

∫ 2εγ

ε

0

|Y 2
t (z, t)|2 dz

)1/2

.

Thanks to the explicit form (45) we have, for 0 < ε ≤ ε0 small enough,

max
t∈[0,T ]

(
ε

∫ 2εγ

ε

0

|Y 2
t (z, t)|2 dz

)1/2

≤ c‖y0
xxt‖C([0,1]×[0,T ])

(
ε

∫ 2εγ

ε

0

z4 dz

)1/2

≤ cε−2ε
5γ
2 .

It results that

‖I2
ε‖C([0,T ];L2(0,1)) ≤ cε

5γ
2 .

Using Taylor expansions, for 1− x = εz → 0, we have

2∑
k=0

εkyk(x, t) =

2∑
k=0

εkyk(1− εz, t) =

2∑
k=0

εk

(
2−k∑
i=0

1

i!

∂iyk

∂xi
(1, t)(−εz)i

)
+ ε2O ((εz)) .

Since

Y k(z, t) = Qk(z, t) + e−MzP k(z, t), (z, t) ∈ (0,+∞)× (0, t),

with

P k(z, t) = −
k∑
i=0

∂iyk

∂xi
(1, t)zi, Qk(z, t) =

k∑
i=0

(−1)i
∂iyk

∂xi
(1, t)zi,

we have
2∑
k=0

εkY k(z, t)−
2∑
k=0

εkyk(1− εz, t) = ε2O ((εz)) + e−Mz
2∑
k=0

εkP k(z, t). (54)

Using the previous estimate we have

‖I3
ε‖C([0,T ];L2(0,1))

= Mε−γ

∥∥∥∥∥X ′
(

1− x
εγ

)( 2∑
k=0

εkY k
(

1− x
ε

, t

)
−

2∑
k=0

εkyk(1− εz, t)

)∥∥∥∥∥
C([0,T ];L2(0,1))

≤ cε2−γ

(∫ 1−εγ

1−2εγ
(1− x)2 dx

)1/2

≤ cε2+ γ
2 .

Similarly we have ‖I4
ε‖C([0,T ];L2(0,1)) ≤ cε3− γ2 . It results from (54) that

ε−1
2∑
k=0

εkY kz (z, t) +

2∑
k=0

εkykx(1− εz, t) =εO ((εz)) + ε−1e−Mz
2∑
k=0

εkP kz (z, t)

− ε−1Me−Mz
2∑
k=0

εkP k(z, t).
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Arguing as for I3
ε we find that

‖I5
ε‖C([0,T ];L2(0,1)) ≤ cε2+ γ

2 .

Collecting the previous estimates, we obtain (53). �

Let us now consider the initial layer corrector θε defined as the solution of
θεt − εθεxx +Mθεx = 0, (x, t) ∈ QT ,
θε(0, t) = θε(1, t) = 0, t ∈ (0, T ),

θε(x, 0) = θε0(x), x ∈ (0, 1),

(55)

with

θε0(x) =: y0(x)− wε2(x, 0) = (1−Xε(x))

(
y0(x)−

2∑
k=0

εkY k
(

1− x
ε

, 0

))
, x ∈ (0, 1). (56)

The following lemma gives an estimate of ‖θε(·, t)‖L2(0,1).

Lemma 4.3 Let θε be the solution of problem (55), (56). Assume γ ∈ (0, 1/2]. Then there exists a constant c

independent of ε such that

‖θε(·, t)‖L2(0,1) ≤ c
(
ε

1
2 + ε

7γ
2

)
e−

M2

2εγ t, ∀t ∈ [0, T ]. (57)

Proof. By repeating the arguments in the proof of Lemma 2.1 with α = ε1−γ , we obtain the estimate

‖θε(·, t)‖L2(0,1) ≤ c‖θε0‖L2(1−2εγ ,1)e
−M2

2εγ t, ∀t ∈ [0, T ]. (58)

Let us now give an estimate of ‖θε0‖L2(1−2εγ ,1). Using (43)–(45) it holds that θε0 = aε + bε, with

aε(x) = (1−Xε(x))

(
y0(x)− y0(1) + y

(1)
0 (1)(εz)− y(2)

0 (1)
(εz)2

2

)
,

bε(x) = (1−Xε(x)) e−Mz

(
y0(1) + y

(1)
0 (1)(εz) + y

(2)
0 (1)

(εz)2

2

)
,

(
z =

1− x
ε

)
.

Using Taylor’s expansion, for 1− x = εz → 0, we have

aε(x) = (1−Xε(x))
(1− x)3

6
y

(3)
0 (ζ), ζ ∈ (x, 1),

hence ‖aε‖L2(0,1) ≤ cε
7γ
2 . Since

‖bε‖2L2(0,1) ≤
∫ 1

1−2εγ
e−2Mz

(
y0(1) + y

(1)
0 (1)(εz) + y

(2)
0 (1)

(εz)2

2

)2

dx,

we have ‖bε‖L2(0,1) ≤ cε
1
2 . It results that ‖θε0‖L2(0,1) ≤ c

(
ε

7γ
2 + ε

1
2

)
which with (58) imply the estimate (57).

�

Let us now establish the following result.

Lemma 4.4 Let yε be the solution of problem (34), let wε2 be the function defined by (49) and let θε be the

solution of problem (55), (56). Assume that the assumptions of Lemma 4.1 hold true. Then there is a constant

c, independent of ε, such that

‖yε − wε2 − θε‖C([0,T ];L2(0,1)) ≤ cε
5γ
2 .
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Proof. Let us consider the function zε = yε − wε2 − θε. By construction, it satisfies
Lε(z

ε) = −Lε(wε2), (x, t) ∈ QT ,
zε(0, t) = zε(1, t) = 0, t ∈ (0, T ),

zε(x, 0) = 0, x ∈ (0, 1),

leading to the estimate ‖zε(·, t)‖2L2(0,1) ≤ ‖Lε(w
ε
2)‖2L2(QT )e

t, for all t ∈ (0, T ]. Lemma 4.2 then implies (??). �

Using Lemmas 4.3 and 4.4 we immediately obtain the following result.

Theorem 4.1 Let yε be the solution of problem (34) and let wε2 be the function defined by (49). Assume that

the assumptions of Lemma 4.1 hold true and γ ∈ (0, 1/2]. Then there exist two positive constants c and ε0, c

independent of ε, such that, for any 0 < ε < ε0,

‖yε(·, t)− wε2(·, t)‖L2(0,1) ≤ cε
5γ
2 + c

(
ε

1
2 + ε

7γ
2

)
e−

M2

2εγ t, ∀t ∈ [0, T ].

Remark 10 We may also define the so-called composite approximations and avoid the use of the cut-off function

Xε. For instance, at the first order, we define the approximation

w̃ε0(x, t) = y0(x, t)− y0(1, t)e−Mz, (x, t) ∈ QT

obtained by adding the inner and outer expansions y0 and Y 0 and then subtracting their common part, here

equal (in view of (41)) to y0(1, t). The difference zε0 := yε − w̃ε0 then solves
Lε(z

ε
0) = −Lε(w̃ε0) = εy0

xx(x, t) + y0
t (1, t)e−Mz, (x, t) ∈ QT ,

zε0(0, t) = y0(1, t)e−
M
ε , zε0(1, t) = 0, t ∈ (0, T ),

zε0(x, 0) = y0(1)e−Mz, x ∈ (0, 1),

from which we deduce, using an estimate of the normal derivative (see (24)) to take into account the vanishing

but nonzero Dirichlet condition at x = 0, that ‖yε − w̃ε0‖C([0,T ];L2(0,1)) = O(ε1/2).

Similarly, at the next order, we define

w̃ε1(x, t) = w̃ε0(x, t) + ε

(
y1(x, t)− e−Mz(y1(1, t) + y0

x(1, t)z)

)
, (x, t) ∈ QT ,

and compute that the difference zε1 := yε − w̃ε1 solves
Lε(z

ε
1) = ε2y1

xx(x, t) + εe−Mz
(
y1
t (1, t) + y0

xt(1, t)z
)
, (x, t) ∈ QT ,

zε1(0, t) =

(
y0(1, t) + y0

x(1, t) + εy1(1, t)

)
e−

M
ε , zε0(1, t) = 0, t ∈ (0, T ),

zε1(x, 0) = (y0(1) + y
(1)
0 (εz))e−Mz, x ∈ (0, 1),

for which we deduce, arguing as in the proof of Lemma 4.3 that ‖yε − w̃ε1‖C([0,T ];L2(0,1)) = O(ε3/2). We do

not go on further here with composite approximations and refer to [9] where it is employed in a similar context

and in [2] to describe the interaction of this boundary layer at x = 1 with the one occurring along the first

characteristic {(x, t) ∈ QT , x−Mt = 0}.

4.1.3 High order asymptotic approximation

Here we construct an asymptotic approximation of the solution yε of (34) at any order m. The outer expansion

is

m∑
k=0

εkyk(x, t), where the functions y0 and yk (1 ≤ k ≤ m) are given by (37) and (38), respectively. The inner

expansion is given by

m∑
k=0

εkY k(z, t), where the function Y 0 is given by (43), and the function Y k (1 ≤ k ≤ m)

is a solution of problem (46).

By induction over the parameter k, we obtain the following result (we refer to [1] for the proof)
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Lemma 4.5 For any 1 ≤ k ≤ m, the solution of problem (46) reads

Y k(z, t) = Qk(z, t) + e−MzP k(z, t), (z, t) ∈ (0,+∞)× (0, t), (59)

where

P k(z, t) = −
k∑
i=0

1

i!

∂iyk−i

∂xi
(1, t)zi, Qk(z, t) =

k∑
i=0

(−1)i

i!

∂iyk−i

∂xi
(1, t)zi.

We then introduce the function

wεm(x, t) = Xε(x)

m∑
k=0

εkyk(x, t) + (1−Xε(x))

m∑
k=0

εkY k
(

1− x
ε

, t

)
, (60)

defined to be an asymptotic approximation at order m of the solution yε of (34). Function Xε is defined on

(48). Again, in order to justify the computations, we make the following regularity assumptions.

Lemma 4.6 (i) Assume that y0 ∈ C2m+1[0, 1], v0 ∈ C2m+1[0, T ] and the following C2m+1-matching conditions

are satisfied

Mp(y0)(p)(0) + (−1)p+1(v0)(p)(0) = 0, 0 ≤ p ≤ 2m+ 1. (61)

Then the function y0 defined by (37) belongs to C2m+1(QT ).

(ii) Additionally, assume that vk ∈ C2(m−k)+1[0, T ], and the following C2(m−k)+1-matching conditions are

satisfied, respectively,

(vk)(p)(0) =
∑

i+j=p−1

(−1)iM i ∂
p+1yk−1

∂xi+2∂tj
(0, 0), 0 ≤ p ≤ 2(m− k) + 1. (62)

Then the function yk belongs to C2(m−k)+1(QT ).

Proof. (i) For the proof of (61) we refer to that of (50).

(ii) Using a change of variable we rewrite (38) in the form

yk(x, t) =


∫ t

0

yk−1
xx (x+M(s− t), s) ds, x > Mt,

vk
(
t− x

M

)
+

∫ t

t−x/M
yk−1
xx (x+M(s− t), s) ds, x < Mt.

(63)

For notational convenience we omit in the sequel the index k and denote yk−1
xx = f so that (63) reads

y(x, t) =


∫ t

0

f (x+ (s− t)M, s) ds, x > Mt,

v(t− x

M
) +

∫ t

t−x/M
f (x+M(s− t), s) ds, x < Mt.

Successive partial derivatives with respect to x lead to the formulae:

∂py

∂xp
(x, t) =

∫ t

0

∂pf

∂xp
(x+M(s− t), s) ds for x > Mt, (64)

and

∂py

∂xp
(x, t) =

(−1)p

Mp
v(p)

(
t− x

M

)
+

∫ t

t−x/M

∂pf

∂xp
(x+M(s− t), s) ds

+
∑

i+j=p−1

(−1)j

M j+1

∂p−1f

∂xi∂tj

(
0, t− x

M

)
for x < Mt. (65)
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These formulae can be easily justified by induction. Then it results from (64) and (65) that ∂py
∂xp is continuous

in QT if
(−1)p

Mp
v(p)(0) = −

∑
i+j=p−1

(−1)j

M j+1

∂p−1f

∂xi∂tj
(0, 0) ,

which is equivalent to (62). Similar calculations allow to establish the formulae

∂py

∂tp
(x, t) =(−1)pMp

∫ t

0

∂pf

∂xp
(x+M(s− t), s) ds

+
∑

i+j=p−1

(−1)iM i ∂
p−1f

∂xi∂tj
(x, t) for x > Mt, (66)

and

∂py

∂tp
(x, t) =v(p)

(
t− x

M

)
+ (−1)pMp

∫ t

t−x/M

∂pf

∂xp
(x+M(s− t), s) ds

+
∑

i+j=p−1

(−1)iM i

(
∂p−1f

∂xi∂tj
(x, t)− ∂p−1f

∂xi∂tj

(
t− x

M

))
for x < Mt. (67)

It results from (66) and (67) that ∂py
∂tp is continuous in QT if

v(p)(0) =
∑

i+j=p−1

(−1)iM i ∂
p−1f

∂xi∂tj
(0, 0) ,

that is the condition (62). Using equation (36) we easily verify that the mixed partial derivatives, of order

0 ≤ p ≤ 2(m− k) + 1, of yk are continuous under condition (62). �

Remark 11 Let m = 2. For k = 1 the conditions (62) read

v1(0) = 0, (v1)(1)(0) = y0
xx(0, 0) = y

(2)
0 (0) = M−2(v0)(2)(0),

(v1)(2)(0) = y0
xxt(0, 0)−My0

xxx = −2My
(3)
0 (0) = 2M−2(v0)(3)(0),

(v1)(3)(0) = M2y0
xxxx −My0

xxxt(0, 0) + y0
xxtt(0, 0) = 3M2y(4)(0) = 3M−2v(4)(0)

while for k = 2 we have

v2(0) = 0, (v2)(1)(0) = y1
xx(0, 0) = 0.

Thus we retrieve the matching conditions (51) and (52).

Let us now establish the following result.

Lemma 4.7 Let wεm be the function defined by (60). Assume that the assumptions of Lemma 4.6 hold true.

Then there is a constant cm independent of ε such that

‖Lε(wεm)‖C([0,T ];L2(0,1)) ≤ cmε
(2m+1)γ

2 . (68)

Proof. A straightforward calculation gives

Lε(w
ε
m)(x, t) =

5∑
i=1

J iε(x, t), (69)
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with

J1
ε (x, t) = −εm+1ymxx(x, t)Xε(x),

J2
ε (x, t) = εm(1−Xε(x))Y mt

(
1− x
ε

, t

)
,

J3
ε (x, t) = MX ′

(
1− x
εγ

)
ε−γ

(
m∑
k=0

εkY k
(

1− x
ε

, t

)
−

m∑
k=0

εkyk(x, t)

)
,

J4
ε (x, t) = X ′′

(
1− x
εγ

)
ε1−2γ

(
m∑
k=0

εkY k
(

1− x
ε

, t

)
−

m∑
k=0

εkyk(x, t)

)
,

J5
ε (x, t) = 2X ′

(
1− x
εγ

)
ε1−γ

(
ε−1

m∑
k=0

εkY kz

(
1− x
ε

, t

)
+

m∑
k=0

εkykx(x, t)

)
.

Clearly,

‖J1
ε ‖L∞(0,T ;L2(0,1)) ≤ εm+1‖ymxx‖C([0,T ];L2(0,1)) ≤ cmεm+1,

and

‖J2
ε ‖C([0,T ];L2(0,1)) ≤ εm

∥∥∥∥(1−Xε(x))Y mt

(
1− x
ε

, t

)∥∥∥∥
C([0,T ];L2(0,1))

≤ εm max
t∈[0,T ]

(∫ 1

1−2εγ

∣∣∣∣Y mt (
1− x
ε

, t

)∣∣∣∣2 dx
)1/2

≤ εm max
t∈[0,T ]

(
ε

∫ 2εγ

ε

0

|Y mt (z)|2 dz

)1/2

.

Thanks to the explicit form (59) we have, for 0 < ε ≤ ε0 small enough,

max
t∈[0,T ]

(
ε

∫ 2εγ

ε

0

|Y mt (z, t)|2 dz

)1/2

≤ cm
∥∥∥∥∂m+1y0

∂xm∂t

∥∥∥∥
C([0,1]×[0,T ])

(
ε

∫ 2εγ

ε

0

z2m dz

)1/2

≤ cmε−mε
2m+1

2 γ .

It results that ‖J2
ε ‖C([0,T ];L2(0,1)) ≤ cmε

2m+1
2 γ . Using Taylor expansions, for 1− x = εz → 0, we have

m∑
k=0

εkyk(x, t) =

m∑
k=0

εkyk(1− εz, t) =

m∑
k=0

εk

(
m−k∑
i=0

1

i!

∂iyk

∂xi
(1, t)(−εz)i

)
+ εmO ((εz)) .

According to (59) it results that

m∑
k=0

εkY k(z, t)−
m∑
k=0

εkyk(1− εz, t) = εmO ((εz)) + e−Mz
m∑
k=0

εkP k(z, t). (70)

Using the previous estimate we have

‖J3
ε ‖C([0,T ];L2(0,1)) = Mε−γ

∥∥∥∥∥X ′
(

1− x
εγ

)( m∑
k=0

εkY k (z, t)−
m∑
k=0

εkyk(1− εz, t)

)∥∥∥∥∥
C([0,T ];L2(0,1))

≤ cmεm−γ
(∫ 1−εγ

1−2εγ
(1− x)2 dx

)1/2

≤ cmεm+ γ
2 .

Similarly we have ‖J4
ε ‖C([0,T ];L2(0,1)) ≤ cmε(m+1)− γ2 . It results from (70) that

ε−1
m∑
k=0

εkY kz (z, t) +

m∑
k=0

εkykx(1− εz, t) =εm−1O ((εz)) + ε−1e−Mz
m∑
k=0

εkP kz (z, t)

− ε−1Me−Mz
m∑
k=0

εkP k(z, t).
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Arguing as for J3
ε we deduce that ‖J5

ε ‖C([0,T ];L2(0,1)) ≤ cmε
m+ γ

2 . Collecting the previous estimates leads

to (68). �

We now define the initial layer corrector θεm as the solution of
θεmt − εθ

ε
mxx +Mθεmx = 0, (x, t) ∈ QT ,

θεm(0, t) = θεm(1, t) = 0, t ∈ (0, T ),

θεm(x, 0) = θεm0(x), x ∈ (0, 1),

(71)

with

θεm0(x) =: y0(x)− wεm(x, 0) = (1−Xε(x))

(
y0(x)−

m∑
k=0

εkY k
(

1− x
ε

, 0

))
, x ∈ (0, 1). (72)

We have the analog of Lemma 4.3. We refer to [1] for the proof.

Lemma 4.8 Let θεm be the solution of problem (71), (72). Assume γ ∈ (0, 1/2]. Then there exists a constant

cm, independent of ε, such that

‖θεm(·, t)‖L2(0,1) ≤ cm
(
ε

1
2 + ε

(2m+3)γ
2

)
e−

M2

2εγ t, ∀t ∈ [0, T ].

Arguing as in Section 4.1.2 one can establish the analog of Lemma 4.4.

Lemma 4.9 Let yε be the solution of problem (34), let wεm be the function defined by (60) and thet θεm be the

solution of problem (71), (72). Assume that the assumptions of Lemma 4.1 hold true. Then there is a constant

cm, independent of ε, such that

‖yε − wεm − θεm‖C([0,T ];L2(0,1)) ≤ cmε
2m+1

2 γ .

Using Lemmas 4.8 and 4.9 we readily obtain the following result.

Theorem 4.2 Let yε be the solution of problem (34) and let wεm be the function defined by (60). Assume that

the assumptions of Lemma 4.6 hold true and γ ∈ (0, 1/2]. Then there exist two positive constants cm and ε0,

cm independent of ε, such that, for any 0 < ε < ε0,

‖yε(·, t)− wεm(·, t)‖L2(0,1) ≤ cmε
2m+1

2 γ + cm

(
ε

1
2 + ε

(2m+3)γ
2

)
e−

M2

2εγ t, ∀t ∈ [0, T ].

We have thus constructed a regular and strongly convergent approximation (as ε→ 0) wεm of yε, unique solution

of (34).

4.1.4 Passing to the limit as m→∞. Particular case

Our objective here is to show that, under some conditions on the initial condition y0 and the functions vk, we

can pass to the limit with respect to the parameter m and establish a convergence result of the sequence (wεm)m.

We make the following assumptions:

(i) The initial condition y0 belongs to C∞[0, 1] and there is b ∈ R such that

‖y(k)
0 ‖L2(0,1) ≤

⌊
k

2

⌋
! b

k
2 , ∀k ∈ N, (73)

where b.c denotes the integer part.

(ii) (vk)k≥0 is a sequence of polynomials of degree ≤ p− 1, p ≥ 1, uniformly bounded in Cp−1[0, T ].
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(iii) For any k ∈ N, for any m ∈ N, the functions vk and y0 satisfy the matching conditions of Lemma 4.6.

We establish the following result.

Theorem 4.3 Let, for any m ∈ N, yεm denote the solution of problem (34), and wεm the function defined by (60).

We assume that the assumptions (i)–(iii) hold true and γ ∈ (0, 1/2]. Then, there exist ε0 > 0 and a function

θ̃ε ∈ L2(0, T ;H1
0 (0, 1)) ∩ C([0, T ];L2(0, 1)) satisfying an exponential decay, such that, for any fixed 0 < ε < ε0,

we have

yεm − wεm − θ̃ε → 0 in C([0, T ];L2(0, 1)), as m→ +∞.

Consequently

lim
m→+∞

wεm(x, t) = Xε(x)

∞∑
k=0

εkyk(x, t) + (1−Xε(x))

∞∑
k=0

εkY k
(

1− x
ε

, t

)
+ θ̃ε(x, t)

= yε(x, t) + θ̃ε(x, t) a.e. in QT ,

where yε is the solution of problem (34) with (34)2 replaced by yε(0, t) =
∑∞
k=0 ε

kvk(t), t ∈ (0, T ). The function

θ̃ε satisfies

‖θ̃ε(·, t)‖L2(0,1) ≤ cε
1
2 e−

M2

2εγ t, ∀t ∈ [0, T ],

where c is a constant independent of ε.

The proof of this result requires the following lemma proved in [1].

Lemma 4.10 For x < Mt, the function ym given by (37), (38) may be written in the form

ym(x, t) = vm
(
t− x

M

)
+

m∑
j=1

j∑
i=1

Xi
j(x)(vm−j)(i+j)

(
t− x

M

)
, (74)

where, for any 1 ≤ i ≤ j ≤ m, Xi
j(x) is a polynomial of degree ≤ i.

Proof (of Theorem 4.3). Recall that (see (69)) Lε(w
ε
m)(x, t) =

∑5
i=1 J

i
ε(x, t). We define

fεm = fεm,1 + fεm,2 + fεm,3 in QT ,

with

fεm,1(x, t) = −MX ′
(

1− x
εγ

)
ε−γe−M

1−x
ε

m∑
k=0

εkP k
(

1− x
ε

, t

)
,

fm,2(x, t = −X ′′
(

1− x
εγ

)
ε1−2γe−M

1−x
ε

m∑
k=0

εkP k
(

1− x
ε

, t

)
,

fm,3(x, t) = −2X ′
(

1− x
εγ

)
ε−γe−M

1−x
ε

(
m∑
k=0

εkP kz

(
1− x
ε

, t

)
−M

m∑
k=0

εkP k(
1− x
ε

, t)

)
.

We also define

θ̃εm0(x) = (1−Xε(x))

(
y0(x)−

m∑
k=0

εkY k
(

1− x
ε

, 0

))
, x ∈ (0, 1).

Let θ̃εm be the solution of the problem
Lε(θ̃

ε
m) = fεm, (x, t) ∈ QT ,

θ̃εm(0, t) = θ̃εm(1, t) = 0, t ∈ (0, T ),

θ̃εm(x, 0) = θ̃εm0(x), x ∈ (0, 1),

(75)
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so that the function zεm =: yεm − wεm − θ̃εm satisfies
Lε(z

ε
m) = −Lε(wεm)− fεm, (x, t) ∈ QT ,

zεm(0, t) = zεm(1, t) = 0, t ∈ (0, T ),

zεm(x, 0) = 0, x ∈ (0, 1),

and then ∫ 1

0

|zεm(x, t)|2 dx ≤ dεmet, dεm :=

∫ T

0

∫ 1

0

∣∣Lε(wεm)(x, s) + fεm(x, s)
∣∣2 dxds. (76)

Let us verify that (dεm)m>0 tends to 0, as m→∞. We note that

Lε(w
ε
m) + fεm = J1

ε + J2
ε + (J3

ε + fεm,1) + (J4
ε + fεm,2) + (J5

ε + fεm,3).

• Estimate of ‖J1
ε ‖L2(QT ) - It is easily seen that

ymxx(x, t) =
tm

m!
y

(2m+2)
0 (x−Mt) for x > Mt.

We set Q−T = {(x, t) ∈ QT : x > Mt} and Q+
T = {(x, t) ∈ QT : x < Mt}. Using (73) k = 2(m+ 1) we have∫

Q−T

|ymxx(x, t)|2 dxdt =

∫ T

0

t2m

(m!)2

∫ 1−Mt

0

|y(2m+2)
0 (ξ)|2dξdt ≤ T 2m+1

(2m+ 1)(m!)2

∫ 1

0

|y(2m+2)
0 (ξ)|2dξ

≤ T 2m+1

(2m+ 1)(m!)2
((m+ 1)!)2 b2m+2 ≤ b(m+ 1)(Tb)2m+1 ≤ b(

√
2Tb)2m+1, (77)

where we used the inequality m+ 1 ≤ 2m. For x < Mt, it results from (74) that ym is a polynomial of degree

≤ p− 1 and, for large m (m > p),

ym(x, t) = vm
(
t− x

M

)
+

p−1∑
j=1

j∑
i=1

Xi
j(x)(vm−j)(i+j)

(
t− x

M

)
.

Since all the terms in the right-hand side of the previous inequality are uniformly bounded in the space

Cp−1(Q+
T ), we deduce that there is a constant c1(p) independent of m such that

max
x≤Mt

|ymxx(x, t)|2 ≤ c1(p),

then ∫
Q+
T

|ymxx(x, t)|2 dxdt ≤ c1(p)T. (78)

It results from (77) and (78) that

‖J1
ε ‖2L2(QT ) ≤ εb(

√
2Tbε)2m+1 + c1(p)Tε2m+2. (79)

• Estimate of ‖J2
ε ‖L2(QT ) - We have (see the proof of Lemma 4.7)

‖J2
ε ‖2L2(QT ) ≤ ε

2m+1

∫ T

0

∫ 2εγ

ε

0

|Y mt (z, t)|2 dzdt.

Thanks to Lemma 4.5 we have

Y m(z, t) = Qm(z, t) + e−MzPm(z, t), (z, t) ∈ (0,+∞)× (0, t),
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where

Pm(z, t) = −
m∑
i=0

1

i!

∂iym−i

∂xi
(1, t)zi, Qm(z, t) =

m∑
i=0

(−1)i

i!

∂iym−i

∂xi
(1, t)zi.

Then ∫ T

0

∫ 2εγ

ε

0

|Y mt (z, t)|2 dzdt ≤ 2

∫ T

0

∫ 2εγ

ε

0

(
|Qmt (z, t)|2 + |Pmt (z, t)|2

)
dzdt.

We have ∫ T

0

∫ 2εγ

ε

0

|Qmt (z, t)|2 dzdt ≤
∫ T

0

∫ 2εγ

ε

0

(
m∑
i=0

1

i!

∣∣∣∣∂i+1ym−i

∂xi∂t
(1, t)

∣∣∣∣ zi
)2

dzdt

≤ (m+ 1)

m∑
i=0

1

(i!)2

∫ T

0

∣∣∣∣∂i+1ym−i

∂xi∂t
(1, t)

∣∣∣∣2 dt∫ 2εγ

ε

0

z2i dz.

First, we easily verify that there is ε1 > 0 such that, for 0 < ε < ε1, we have

qi :=

∫ 2εγ

ε

0

z2i dz ≤ qm =

∫ 2εγ

ε

0

z2m dz =
22m+1

2m+ 1

ε(2m+1)γ

ε2m+1
, i = 0, . . . ,m.

Moreover, for 1 < Mt, writing ym−i(x, t) in the form (74), we deduce that there is a constant c2(p) independent

of m such that

max
x≤Mt

∣∣∣∣∂i+1ym−i

∂xi∂t
(1, t)

∣∣∣∣2 ≤ c2(p).

On the other hand, for 1 > Mt, we have

∂i+1ym−i

∂xi∂t
(1, t) = −M tm−i

(m− i)!
y

(2m−i+1)
0 (1−Mt) + gi

tm−i−1

(m− i− 1)!
y

(2m−i)
0 (1−Mt), 0 ≤ i ≤ m,

with gi = 1 if i < m and gm = 0. Consequently, for all 0 ≤ i ≤ m,∣∣∣∣∂i+1ym−i

∂xi∂t
(1, t)

∣∣∣∣2 ≤ 2
M2t2m−2i

((m− i)!)2
|y(2m−i+1)

0 (1−Mt)|2 + 2gi
t2m−2i−2

((m− i− 1)!)2
|y(2m−i)

0 (1−Mt)|2.

We set B−T = {(z, t) ∈ (0,+∞) × (0, T ) : 1 > Mt, 0 < z < 2εγ

ε } and B+
T = {(z, t) ∈ (0,+∞) × (0, T ) : 1 <

Mt, 0 < z < 2εγ

ε }. We have∫
B−T

|Qmt (z, t)|2 dzdt ≤ 2(m+ 1)M2
m∑
i=0

1

(i!)2

T 2m−2ib2m−i+1

((m− i)!)2

(⌊
m− i

2
+

1

2

⌋
!
)2

qi

+ 2(m+ 1)

m−1∑
i=0

1

(i!)2

T 2m−2i−2b2m−i

((m− i− 1)!)2

(⌊
m− i

2

⌋
!
)2

qi

≤ 2(m+ 1)M2T
2m
b
2m+1

qm

m∑
i=0

a2
mi + 2(m+ 1)T

2m−2
b
2m
qm

m−1∑
i=0

b2mi

≤ 2(m+ 1)qmT
2m−2

b
2m
(
M2b T

2
m∑
i=0

a2
mi +

m−1∑
i=0

b2mi

)

with T := max(1, T ) and b := max(1, b) and ami :=
bm− i

2 + 1
2c!

(m−i)! i! , bmi :=
bm− i

2c!
(m−1−i)! i! . Finally, we write

m∑
i=0

a2
mi ≤

( m∑
i=0

ami

)2

≤ (m+ 1)2
m∑
i=0

(
m!

i!(m− i)!

)2

= (m+ 1)2(2m)2,
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in view of the binomial formulae. Similarly,
∑m−1
i=0 b2mi ≤ m2(2m−1)2. It results that∫

B−T

|Qmt (z, t)|2 dzdt ≤ 2(m+ 1)
22m+1

2m+ 1

ε(2m+1)γ

ε2m+1
T

2m−2
b
2m
(
M2b T

2
(m+ 1)222m +m222(m−1)

)
and

ε2m+1

∫
B−T

|Qmt (z, t)|2 dzdt ≤ 2(m+ 1)
22m+1

2m+ 1
ε(2m+1)γT

2m−2
b
2m
(
M2b T

2
(m+ 1)222m +m222(m−1)

)
≤ 2(m+ 1)3

2m+ 1
(1 +M2b T

2
)(T b4εγ)2m+1

which tends to 0 as m→∞ if ε is small enough so that T b4εγ < 1. The estimation for
∫
B−T
|Pmt (z, t)|2 dzdt is

the same. On the other hand, a direct calculation shows that

‖J2
ε ‖2L2(B+

T )
≤ 4c2(p)eTε2(m−p)(2εγ)2p+1.

Consequently,

‖J2
ε ‖2L2(QT ) ≤

8(m+ 1)3

2m+ 1
(1 +M2b T

2
)(T b4εγ)2m+1 + 4c2(p)eTε2(m−p)(2εγ)2p+1. (80)

• Estimate of ‖J3
ε + fεm,1‖L2(QT ) - Using Taylor expansions, for 1− x = εz → 0, we have

m∑
k=0

εkyk(x, t) =

m∑
k=0

εkyk(1− εz, t) =

m∑
k=0

εk

(
m−k∑
i=0

1

i!

∂iyk

∂xi
(1, t)(−εz)i

)
+Rεm(z, t),

with

Rεm(z, t) = −
m∑
k=0

εk
∫ 1

1−εz

(1− εz − s)m−k

(m− k)!

∂m−k+1yk

∂xm−k+1
(s, t) ds.

Then we have
m∑
k=0

εkY k
(

1− x
ε

, t

)
−

m∑
k=0

εkyk(x, t) = −Rεm(z, t) + e−Mz
m∑
k=0

εkP k(z, t).

We deduce that

‖J3
ε + fεm,1‖2L2(QT ) = M2ε−2γ

∥∥∥∥∥X ′
(

1− x
εγ

)( m∑
k=0

εkQk (z, t)−
m∑
k=0

εkyk(1− εz, t)

)∥∥∥∥∥
2

L2(QT )

≤M2ε1−2γ

∫ T

0

∫ 2εγ

ε

εγ

ε

|Rεm(z, t)|2 dzdt.

We set B̃−T = {(z, t) ∈ (0,+∞) × (0, T ) : 1 > Mt, ε
γ

ε < z < 2εγ

ε } and B̃+
T = {(z, t) ∈ (0,+∞) × (0, T ) : 1 <

Mt, ε
γ

ε < z < 2εγ

ε }. We have, for 1 > Mt, 1− εz < s < 1,

∂m−k+1yk

∂xm−k+1
(s, t) =

tk

k!
y

(k+m+1)
0 (s−Mt).

Thanks to the continuous Sobolev embedding H1(0, 1) ↪→ C[0, 1] there is a constant c0 independent of m such

that

‖y(k+m+1)
0 ‖C[0,1] ≤ c0

(
‖y(k+m+1)

0 ‖L2(0,1) + ‖y(k+m+2)
0 ‖L2(0,1)

)
.



4 ASYMPTOTIC ANALYSIS WITH RESPECT TO ε 41

Using (73) we then have

‖y(k+m+1)
0 ‖C[0,1] ≤ c0

(⌊
k +m+ 1

2

⌋
! +

⌊
k +m+ 2

2

⌋
! b

1
2

)
b
k+m+1

2

≤ 2c0

√
b

⌊
k +m+ 2

2

⌋
! b

k+m+1
2 .

(81)

It results that, for 1 > Mt, 1− εz < s < 1,∣∣∣∣∂m−k+1yk

∂xm−k+1
(s, t)

∣∣∣∣ ≤ 2c0

√
b
tk

k!

⌊
k +m+ 2

2

⌋
! b

k+m+1
2 .

Therefore, for (z, t) ∈ B̃−T we have

|Rεm(z, t)| ≤
m∑
k=0

εk
∫ 1

1−εz

(s− 1 + εz)m−k

(m− k)!

∣∣∣∣∂m−k+1yk

∂xm−k+1
(s, t)

∣∣∣∣ ds
≤ 2c0

√
b

m∑
k=0

εk
tk

k!

⌊
k +m+ 2

2

⌋
! b

k+m+1
2

∫ 1

1−εz

(s− 1 + εz)m−k

(m− k)!
ds

= 2c0

√
b

m∑
k=0

εk
tk

k!

⌊
k +m+ 2

2

⌋
! b

k+m+1
2

(εz)m+1−k

(m+ 1− k)!

= 2c0

√
b

m∑
k=0

εktkãmkb
k+m+1

2 (εz)m+1−k,

with

ãmk :=
1

k!(m+ 1− k)!

⌊
k +m+ 2

2

⌋
! ≤ (m+ 1)!

k!(m+ 1− k)!
.

It then follows∫
B̃−T

|Rεm(z, t)|2 dzdt ≤ 4c20b

∫ T

0

∫ 2εγ

ε

εγ

ε

(
m∑
k=0

εktkãmkb
k+m+1

2 (εz)m+1−k

)2

dzdt

≤ 4c20b(m+ 1)ε2m+2

∫ T

0

∫ 2εγ

ε

εγ

ε

m∑
k=0

t2kã2
mkb

k+m+1z2m+2−2k dzdt

≤ 4c20b(m+ 1)ε2m+2

∫ T

0

∫ 2εγ

ε

εγ

ε

m∑
k=0

t2kã2
mkb

k+m+1z2m+2 dzdt

≤ 2c20b
(2εγ)2m+3

ε

m∑
k=0

ã2
mk

2k + 1
T 2k+1bk+m+1

≤ 2c20b
(2εγ)2m+3

ε
(b T )2m+1

m∑
k=0

ã2
mk

≤ 2c20b
(2εγ)2m+3

ε
(b T )2m+122(m+1)

≤ 16c20bε
2γ−1(4εγb T )2m+1.

We deduce that ‖J3
ε + fεm,1‖2L2(B̃−T )

≤ 16M2c20b(4ε
γb T )2m+1. We also have, for (z, t) ∈ B̃+

T ,

|Rεm(z, t)| ≤
m∑
k=0

εk
∫ 1

1−εz

(s− 1 + εz)m−k

(m− k)!

∣∣∣∣∂m−k+1yk

∂xm−k+1
(s, t)

∣∣∣∣ ds
≤ c3(p)

m∑
k=m−p+1

εk
∫ 1

1−εz

(s− 1 + εz)m−k

(m− k)!
ds

= c3(p)εm+1
m∑

k=m−p+1

εk
zm+1−k

(m+ 1− k)!
,
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where c3(p) is a constant independent of m. Then∫
B̃+
T

|Rεm(z, t)|2 dzdt ≤ pT c3(p)2ε2m+2

∫ 2εγ

ε

εγ

ε

m∑
k=m−p+1

z2m+2−2k

((m+ 1− k)!)2
dz

≤ pT c3(p)2ε2m+2

∫ 2εγ

ε

εγ

ε

m∑
k=m−p+1

z2p

((m+ 1− k)!)2
dz

≤ pT c3(p)2ε2(m−p)+1 (2εγ)2p+1

2p+ 1

m∑
k=m−p+1

1

((m+ 1− k)!)2

≤ c4(p)T (2εγ)2p+1ε2(m−p)+1,

where c4(p) is a constant independent of m. We conclude that

‖J3
ε + fεm,1‖2L2(QT ) ≤ 16M2c20b(4ε

γb T )2m+1 + c4(p)M2Tε2(1−γ)(2εγ)2p+1ε2(m−p). (82)

Estimates for ‖J4
ε + fεm,2‖L2(QT ) and ‖J5

ε + fεm,3‖L2(QT ) are very similar and are not detailed.

It results from the estimates (79), (80), (82), that we can choose ε0 > 0 such that, for any fixed 0 < ε < ε0,

(dεm)m>0 (see 76)) tends to 0, as m→∞. Thanks to (76), (zεm)m>0 tends to 0 as well, as m→∞.

• Estimate for (θ̃εm)m, solution of (75) - We have θ̃εm0 = aεm + bεm with

aεm(x) = (1−Xε(x))

(
y0(x)−

m∑
i=0

(−1)i

i!
y

(i)
0 (1)(εz)i

)
,

bεm(x) = (1−Xε(x)) e−Mz
m∑
i=0

1

i!
y

(i)
0 (1)(εz)i,

(
z =

1− x
ε

)
.

Using Taylor’s expansion, for 1− x = εz → 0, we have

aεm(x) = (1−Xε(x))
(1− x)m+1

(m+ 1)!
y

(m+1)
0 (ζ1), ζ1 ∈ (x, 1),

hence

|aεm(x)| ≤ (2εγ)m+1

(m+ 1)!
‖y(m+1)

0 ‖C[0,1], x ∈ (1− 2εγ , 1).

Using (81) with k = 0, we obtain for all x ∈ (1− 2εγ , 1) that

|aεm(x)| ≤ 2c0

√
b
(2
√
bεγ)m+1

(m+ 1)!

⌊
m+ 2

2

⌋
! ≤ 2c0

√
b(2
√
bεγ)m+1.

We conclude that (aεm) converges uniformly in [0, 1] to 0. Moreover, the series
∑∞
i=0

y
(i)
0 (1)
i! (1− x)i is uniformly

convergent since in [1− 2εγ , 1]

m∑
i=0

∣∣∣∣∣y(i)
0 (1)

i!
(1− x)i

∣∣∣∣∣ ≤
∞∑
i=0

(2εγ)i

i!
‖y(i)

0 ‖C[0,1] ≤ 2c0

√
b

∞∑
i=0

(2
√
bεγ)i

i!

⌊
i+ 1

2

⌋
! ≤ 2c0

√
b

1− 2
√
bεγ

.

Here we have used again the inequality ‖y(i)
0 ‖C[0,1] ≤ c0

(
‖y(i)

0 ‖L20,1) + ‖y(i+1)
0 ‖L20,1)

)
and (73). Then (θ̃εm0)m

converges uniformly in [0, 1] to θ̃ε0 given by

θ̃ε0(x) = (1−Xε(x)) e−M
1−x
ε

∞∑
i=0

y
(i)
0 (1)

i!
(1− x)i, x ∈ (0, 1).
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Moreover, θ̃ε0 satisfies an exponential decay property:

|θ̃ε0(x)| ≤ 2c0
√
b

1− 2
√
bεγ

(1−Xε(x))e−M
1−x
ε , ∀x ∈ (0, 1). (83)

Consider now the function fεm,1. We have

m∑
k=0

εk
∣∣∣∣P k (1− x

ε
, t

)∣∣∣∣ ≤ m∑
k=0

εk

(
k∑
i=0

∣∣∣∣∂iyk−i∂xi
(1, t)

∣∣∣∣ zii!
)
, (x, t) ∈ QT , z =

1− x
ε

,

then, for 1− 2εγ < x < 1− εγ , and 1 > Mt, we have

m∑
k=0

εk
∣∣∣∣P k (1− x

ε
, t

)∣∣∣∣ ≤ m∑
k=0

εk

(
k∑
i=0

T k−i|y(2k−i)
0 (1−Mt)|
(k − i)!

zi

i!

)
.

Using the continuous Sobolev embedding and (73) we obtain again

‖y(2k−i)
0 ‖C[0,1] ≤ 2c0

√
b

⌊
2k − i+ 1

2

⌋
! b

2k−i
2 .

Then

m∑
k=0

εk
∣∣∣∣P k (1− x

ε
, t

)∣∣∣∣ ≤ 2c0

√
b

m∑
k=0

εk

(
k∑
i=0

T k−i
⌊

2k−i+1
2

⌋
! b

2k−i
2

(k − i)! i!
zi

)

≤ 2c0

√
b

m∑
k=0

(T bε)k
(2εγ)k

εk

k∑
i=0

aki,

using that zi ≤ (2εγ)k

εk
, for all 0 ≤ i ≤ k and aki :=

bk− i
2 + 1

2c!
(k−i)! i! . Writing that

∑k
i=0 aki ≤ 2k, we finally obtain

m∑
k=0

εk
∣∣∣∣P k (1− x

ε
, t

)∣∣∣∣ ≤ 2c0

√
b

m∑
k=0

(4T bεγ)k ≤ 2c0

√
b

1− (4T bεγ)m+1

1− 4T bεγ
,

assuming ε small enough so that 1− 4T bεγ > 0. On the other hand, for 1− 2εγ ≤ x ≤ 1− εγ and 1 < Mt, we

write

m∑
k=0

εk
∣∣∣∣P k (1− x

ε
, t

)∣∣∣∣ ≤ m∑
k=0

εk

(
p∑
i=0

∣∣∣∣∂iyk−i∂xi
(1, t)

∣∣∣∣ zii!
)

≤ c5(p)

(
m∑
k=0

εk

)(
p∑
i=0

zi

i!

)

≤ c5(p)e

1− ε
(2εγ)p

εp
,

where c5(p) is a constant independent of m. Then, for 0 < εγ < 1/(4T b), the series
∑∞
k=0 ε

kP k
(

1−x
ε , t

)
is

uniformly convergent in QT . This implies that (fεm,1)m converges uniformly in QT to a function fε1 given by

fε1 (x, t) = −MX ′
(

1− x
εγ

)
ε−γe−M

1−x
ε

∞∑
k=0

εkP k
(

1− x
ε

, t

)
, (x, t) ∈ QT .

Moreover, fε1 has an exponential decay property:

|fε1 (x, t)| ≤M
∣∣∣∣X ′(1− x

εγ

)∣∣∣∣
(

2c0
√
b

1− 4T bεγ
+
c5(p)e

1− ε
(2εγ)p

εp

)
× ε−γe−2M εγ

ε ,
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for (x, t) ∈ QT . Clearly, (fεm,2)m converges uniformly in QT to a function fε2 satisfying a similar property of

exponential decay. Similar arguments allow to show that (fεm,3)m converges uniformly in QT to a function fε3
satisfying a property of exponential decay. Note also that the functions fε1 , fε2 and fε3 have supports contained

in [1− 2εγ , 1− εγ ]× [0, T ]. Thus (fεm)m converges uniformly in QT to a function fε = fε1 + fε2 + fε3 satisfying

a property of exponential decay.

Let θ̃ε be the solution of the problem
Lε(θ̃

ε) = fε, (x, t) ∈ QT ),

θ̃ε(0, t) = θ̃ε(1, t) = 0, t ∈ (0, T ),

θ̃ε(x, 0) = θ̃ε0(x), x ∈ (0, 1).

(84)

To show the exponential decay of θ̃ε we proceed as in the proof of Lemma 4.3. We use notably, from the

exponential decay of fε, that there is a constant c0 such that

|fε(x, t)| ≤ c0ε−γe−M
εγ

ε in QT .

Then from (75) and (84) we deduce that

‖θ̃εm(·, t)− θ̃ε(·, t)‖2L2(0,1) ≤
(
‖fεm − fε‖2L2(QT ) + ‖θ̃εm0 − θ̃ε0‖L2(0,1)

)
et, ∀t ∈ (0, T ),

which implies that (θ̃εm)m converges in C([0, T ];L2(0, 1)) to θ̃ε. This completes the proof of the theorem. �

Remark 12 Polynomials satisfy assumption (i) of Theorem 4.3. In fact, the functions satisfying assumption (i)

can be identified as the analytic functions of the Gevrey class of order 1/2 on [0, 1], denoted G1/2[0, 1] (see [25]).

Recall that a function f ∈ C∞[0, 1] is said to belong to G1/2[0, 1] if there exist two positive constants a and b̃

such

‖f (k)‖C([0,1]) ≤ a(k!)
1
2 b̃k, ∀k ∈ N.

Using the Stirling formula, one can verify that every function f ∈ G1/2[0, 1] satisfies assumption (i). Conversely,

using the continuous Sobolev embedding H1(0, 1) ↪→ C[0, 1] and the Stirling formula, one can verify that every

function satisfying assumption (i) belongs to G1/2[0, 1].

4.1.5 Asymptotic approximation of the adjoint solution ϕε

Let us consider the adjoint problem
− ϕεt − εϕεxx −Mϕεx = 0, (x, t) ∈ QT ,
ϕε(0, t) = ϕε(1, t) = 0, t ∈ (0, T ),

ϕε(x, T ) = ϕεT (x), x ∈ (0, 1),

(85)

where ϕεT is a function of the form ϕεT =

m∑
k=0

εkϕkT , the functions ϕ0
T , ϕ1

T , · · · , ϕmT being given. We assume

M > 0, the case M < 0 can be treated similarly. We construct an asymptotic approximation of the solution ϕε

of (85) by using the matched asymptotic expansion method.

To get the outer expansion

m∑
k=0

εkϕk(x, t) of ϕε we repeat again the procedure performed for the direct

solution yε. From equation (85) we have

ε0 : ϕ0
t +Mϕ0

x = 0,

εk : ϕkt +Mϕkx = −ϕk−1
xx , 1 ≤ k ≤ m.
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Taking the initial and boundary conditions into account we define ϕ0 and ϕk (1 ≤ k ≤ m) as functions satisfying

the transport equations, respectively, 
ϕ0
t +Mϕ0

x = 0, (x, t) ∈ QT ,
ϕ0(1, t) = 0, t ∈ (0, T ),

ϕ0(x, T ) = ϕ0
T (x), x ∈ (0, 1),

(86)

and 
ϕkt +Mϕkx = −ϕk−1

xx , (x, t) ∈ QT ,
ϕk(1, t) = 0, t ∈ (0, T ),

ϕk(x, T ) = ϕkT (x), x ∈ (0, 1).

The solution of (86) is given by

ϕ0(x, t) =

{
0, x > 1 +M(t− T ),

ϕ0
T

(
x+M(T − t)

)
, x < 1 +M(t− T ).

(87)

Using the method of characteristics we find that, for any 1 ≤ k ≤ m,

ϕk(x, t) =


∫ t+(1−x)/M

t

ϕk−1
xx

(
x+M(s− t), s

)
ds, x > 1 +M(t− T ),

ϕkT
(
x+M(T − t)

)
+

∫ T

t

ϕk−1
xx

(
x+M(s− t), s

)
ds, x < 1 +M(t− T ).

The inner expansion is given by

m∑
k=0

εkΦk(z, t), z =
x

ε
∈ (0, ε−1), t ∈ (0, T ),

with functions Φ0 and Φk (1 ≤ k ≤ m) satisfying the equations, respectively,

Φ0
zz(z, t) +MΦ0

z(z, t) = 0,

Φkzz(z, t) +MΦkz(z, t) = −Φkt (z, t).

We define Φ0 as a solution of
Φ0
zz(z, t) +MΦ0

z(z, t) = 0, (z, t) ∈ (0,+∞)× (0, T ),

Φ0(0, t) = 0, t ∈ (0, T ),

lim
z→+∞

Φ0(z, t) = lim
x→0

ϕ0(x, t), t ∈ (0, T ).

(88)

The solution of (88) reads

Φ0(z, t) = ϕ0(0, t)
(
1− e−Mz

)
, (z, t) ∈ (0,+∞)× (0, T ). (89)

For 1 ≤ k ≤ m, the function Φk is defined iteratively as a solution of
Φkzz(z, t) +MΦkz(z, t) = −Φk−1

t (z, t), (z, t) ∈ (0,+∞)× (0, T ),

Φk(0, t) = 0, t ∈ (0, T ),

lim
z→+∞

[Φk(z, t)− Sk(z, t)] = 0, t ∈ (0, T ),

(90)

where

Sk(z, t) =

k∑
i=0

1

i!

∂iϕk−i

∂xi
(0, t)zi.
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Arguing as in Lemma 4.5 one can verify that the solution of problem (90) reads

Φk(z, t) = Sk(z, t) + e−MzRk(z, t), (z, t) ∈ (0,+∞)× (0, t),

where

Rk(z, t) =

k∑
i=0

(−1)i+1

i!

∂iϕk−i

∂xi
(0, t)zi.

Let X : R→ [0, 1] denote a C∞ cut-off function satisfying (47). We define, for γ ∈ (0, 1), the function

Xε(x) = X
( x
εγ

)
,

then introduce the function

ψεm(x, t) = Xε(x)

m∑
k=0

εkϕk(x, t) + (1−Xε(x))

m∑
k=0

εkΦk
(x
ε
, t
)
, (91)

defined to be an asymptotic approximation at order m of the solution ϕε of (85). To justify all the computations

we will perform we need some regularity assumptions on the data ϕ0 and ϕk, 1 ≤ k ≤ m. We have the following

result.

Lemma 4.11 Assume that, for any 0 ≤ k ≤ m, ϕkT ∈ C2(m−k)+1[0, T ], and the following C2(m−k)+1-matching

conditions are satisfied, respectively,

(ϕkT )(p)(1) = 0, 0 ≤ p ≤ 2(m− k) + 1. (92)

Then the function ϕk belongs to C2(m−k)+1(QT ).

A straightforward calculation gives L?ε(ψ
ε
m)(x, t) =

∑5
i=1E

i
ε(x, t), with

E1
ε (x, t) = −εm+1ϕmxx(x, t)Xε(x),

E2
ε (x, t) = −εm(1−Xε(x))Φmt

(x
ε
, t
)
,

E3
ε (x, t) = MX ′

( x
εγ

)
ε−γ

(
m∑
k=0

εkΦk
(x
ε
, t
)
−

m∑
k=0

εkϕk(x, t)

)
,

E4
ε (x, t) = X ′′

( x
εγ

)
ε1−2γ

(
m∑
k=0

εkΦk
(x
ε
, t
)
−

m∑
k=0

εkϕk(x, t)

)
,

E5
ε (x, t) = 2X ′

( x
εγ

)
ε1−γ

(
ε−1

m∑
k=0

εkΦkz

(x
ε
, t
)
−

m∑
k=0

εkϕkx(x, t)

)
.

We have the analogue of Lemma 4.7.

Lemma 4.12 Assume that the assumptions of Lemma 4.11 hold true. Let ψεm be the function defined by (91).

Then there is a constant cm independent of ε such that

‖L?ε(ψεm)‖C([0,T ];L2(0,1)) ≤ cmε
(2m+1)γ

2 .

Using Lemma 4.12 we can argue as in the proof of Theorem 4.1 to establish the following result.

Theorem 4.4 Let ϕε be the solution of problem (85) and let ψεm be the function defined by (91). Assume that

the assumptions of Lemma 4.11 hold true and γ ∈ (0, 1/2]. Then there is a constant cm independent of ε such

that

‖ϕε(·, t)− ψεm(·, t)‖L2(0,1) ≤ cmε
2m+1

2 γ + cm

(
ε

1
2 + ε

(2m+3)γ
2

)
e−

M2

2εγ (T−t), ∀t ∈ [0, T ].
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5 Applications to controllability property

We may use the previous asymptotic analysis to state ε-approximate controllability results.

Proposition 5.1 Let m ∈ N, T > 1
M and a ∈]0, T − 1

M [. Assume that the assumptions on the initial condition

y0 and functions vk, 0 ≤ k ≤ m of Lemma 4.6 hold true. Assume moreover that

vk(t) = 0, 0 ≤ k ≤ m, ∀t ∈ [a, T ]. (92)

Then, the solution yε of problem (34) satisfies the following property

‖yε(·, T )‖L2(0,1) ≤ cmε
(2m+1)γ

2 , ∀γ ∈ (0, 1)

for some constant cm > 0 independent of ε.

In other words, the function vε ∈ C([0, T ]) defined by vε :=
∑m
k=0 ε

kvk is an approximate null control for (1):

for any η > 0, there exists ε0, such that for any ε ∈ (0, ε0), ‖yε(·, T )‖L2(0,1) ≤ η.

Proof. We first check by induction that the function yk, 0 ≤ k ≤ m given by (37) and (38) vanishes at time

T . From (37) and the assumption (92), y0(x, t) = 0 on the set

Sa := {(x, t) ∈ (0, 1)× (0, T ), tM − x ≥ aM}

which contains the set ST−1/M and the set {0, 1}×{T}. Assume now that yk−1(x, t) = 0 on Sa, for some k ≥ 1.

(63) implies that, for all (x, t) ∈ Sa

yk(x, t) = vk
(
t− x

M

)
+

∫ t

t−x/M
yk−1
xx (x+M(s− t), s) ds.

From (92), the first term vanishes because t− x
M ≥ a for all (x, t) ∈ Sa. Moreover, for (x, t) ∈ Sa, the segment

[x + M(s − t), s] for s ∈ [t − x/M, t] ⊂ [a, T ] belongs to Sa. Consequently, the second term vanishes as well

and yk(x, t) = 0, 0 ≤ k ≤ m for all (x, t) ∈ Sa. In particular yk(x, T ) = 0, 0 ≤ k ≤ m for all x ∈ [0, 1].

Then, the relation (59) implies that the function Y k satisfies for all 0 ≤ k ≤ m, Y k(z, T ) = 0 for all z ∈ [0,∞).

Consequently, the function wεm defined by (60) satisfies wεm(·, T ) = 0 on [0, 1]. The result follows from the

inequality ‖yε(·, T )‖L2(0,1) ≤ ‖yε(·, T ) − wεm(·, T )‖L2(0,1) and Proposition 4.2. Figure 11-left illustrates this

result. �
This result should be compared with Lemma 2.1, which asserts that the uncontrolled solution is exponentially

small at any time t > T ?. A gain of Proposition 5.1 is to construct smooth solutions from t = 0, while the

uncontrolled solution yε belongs to C∞([0, 1]× [η, T ]) for all η > 0. yε belongs to C∞([0, 1]× [0, T ]) if in addition

the initial data satisfies regularity and compatibility assumptions (for the heat equation, yε0 ∈ Hk(0, 1), for all

k ∈ N and yε0 = (yε0)(2k) = 0 at x = 0, 1 for all k ∈ N, see Theorem 10.2 in [6]).

Remark 13 From a controllability viewpoint, the null function is a much better approximate null control than

the function
∑m
k=0 ε

kvk we construct in Proposition 5.1. The interest of such proposition (and of the results

presented in the previous section) lies on the asymptotic of the solution of a direct problem. Given any function

vε ∈ L2(0, T ), we may approximate numerically the corresponding solution yε and get an approximation, says

yεh, with h is a parameter discretization. The error ‖yε − yεh‖L2(QT ) will be of the order cεh
β, for some rate

β > 0 (see [17]). For ε small enough and m large enough, this error will be larger than ‖yε−wεm‖C([0,T ],L2(0,1)).

We emphasize that the function wεm is easily calculable because explicit for all (x, t) ∈ QT .

The limit case T = 1/M can be considered as well but requires explicit formula. The function wεm(·, T ) no

longer vanishes in this case. Let us consider for simplicity the case m = 0 for which

wε0(x, T ) = Xε(x)y0(x, T ) + (1−Xε(x))Y 0

(
1− x
ε

, T

)
, x ∈ (0, 1).
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x
0
0 1

T > 1
M

t = 1
M

t = T − 1
M

εγ

x
0
0 1

T = 1
M

t = Tεγ

Figure 11: Influence zone of the control vε (as ε→ 0) in QT delimited by the characteristic line Mt− x = 0 for

T ≥ L
M and T = L

M .

First, (43) leads to Y 0
(

1−x
ε , T

)
= y0(0)(1− e−

M(1−x)
ε ). Therefore,∥∥∥∥(1−Xε(x))Y 0

(
1− x
ε

, T

)∥∥∥∥2

L2(0,1)

= (y0(0))2

∫ 1

0

(1−Xε(x))
2

(1− e−Mz)2dx.

Writing that (1± e−Mz) ≤ 2 and that ‖ (1−Xε(x)) (1− x)p‖L2(0,1) = O(ε(2p+1)γ/2), p ≥ 0, we obtain that∥∥∥∥(1−Xε(x))Y 0

(
1− x
ε

, T

)∥∥∥∥
L2(0,1)

= |y0(0)| εγ/2.

Moreover, from (37), we obtain, for all x ∈ (0, 1), that

y0(x, T ) = v0(x), x :=
1− x
M

= T (1− x)

and we may easily define a function v0 such that the norm ‖Xε y0(·, T )‖L2(0,1) be equal to zero. Actually, since

the function Xε is supported in [0, 1− εγ ], it suffices to take a function v0 such that v0(x) = 0 for x ∈ [0, 1− εγ ],

i.e. supported in [0, εγT ] (see Figure 11-right). Consequently, such control v0 leads to

‖wε0(·, T )‖L2(0,1) ≤ |y0(0)| εγ/2.

It remains to evaluate the term ‖yε(·, T )−wε0(·, T )‖L2(0,1), equivalently the term ‖Lεwε0‖C([0,T ],L2(0,1)). In order

to satisfy the matching conditions of Lemma 4.1, we define v0 as follows

v0(t) =

1∑
p=0

(−1)p
(tM)p

p!
(y0(0))(p)X (t),

for any C1([0, a], [0, 1])-function X such that X (0) = 1, (X )k(0) = 0,X (a) = 0, (X )k(a) = 0, k = 0, 1 with

a ∈]0, εγT ]. The function v0 (and in particular the derivatives) depends on ε here and so the constant cm in

(68).
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Let us evaluate the first term J1
ε of Lεw

ε
0 (see (69)), restricted to Q+

T := {(x, t) ∈ QT , x −Mt ≤ 0}, in

function of the support [0, a] of v0: from J1
ε = −εy0

xx = − ε
M2 (v0)(2)(t− x/M), we have

‖J1
ε ‖2L2(Q+

T )
=
ε2

M4

∫ 1

0

∫ T

x
M

(
(v0)(2)(t− x/M)

)2

dt dx

=
ε2

M4

∫ 1

0

∫ T−x/M

0

(
(v0)(2)(t)

)2

dt dx =
ε2

M4

∫ 1

0

∫ max(T−x/M,a)

0

(
(v0)(2)(t)

)2

dt dx

≤ ε2

M4

∫ 1

0

∫ a

0

(
(v0)(2)(t)

)2

dt dx =
1

M4

(
ε‖(v0)(2)‖L2(0,a)

)2

.

(93)

Let us consider the polynomial of order 3 given by X (t) = 1−3(t/a)2 +2(t/a)3 so that X (0) = 1 and X ′(0) =

X (a) = X ′(a) = 0 for all a 6= 0. Moreover, to simplify even more the computation, let assume that y
(1)
0 (0) = 0

so that the control v0 is simply given by v0(t) = y0(0)X (t)1[0,a](t) leading to ‖(v0)(2)‖L2(0,a) = 12|y0(0)|
a3/2

and

then (from (93))

‖J1
ε ‖L2(Q+

T ) ≤
12ε

a3/2M2
|y0(0)|.

We are therefore looking for a ≤ Tεγ such that ε2/a3 → 0 as ε → 0. We take a = Tεγ
′
. This requires

γ′ ∈ [γ, 2/3] and then ‖J1
ε ‖L2(Q+

T ) ≤
12|y0(0)|
M2 ε1−3γ′/2 ≤ 12|y0(0)|

T 3/2M2 ε
1−3γ/2.

We can proceed in a similar way with the other terms in (69) and determine a rate τ = τ(γ) such that

‖Lε(wε0)‖L2(QT ) ≤ cετ and then ‖yε(·, T ) − wε0(·, T )‖L2(0,1) ≤ cετ . This allows to conclude that there exists a

control function v0 ∈ C1([0, T εγ ]) such that the solution of (34) with vε = v0 satisfies

‖yε(·, T )‖L2(0,1) ≤ |y0(0)|(cετ(γ) + εγ/2), (94)

with γ < 2/3 (instead of γ < 1 in Proposition 5.1). This stronger condition shows how the convergence is

affected in the limit case T = 1/M . Nevertheless, after tedious computations, we may extend this construction

of v0 to any order k and improve the rate in the estimate (94). This may allow to obtain a better estimate that in

the uncontrolled case discussed in Lemma 2.1. Remark that in the uncontrolled case, the norm ‖yε(·, T )‖L2(0,1)

is a priori not exponentially small for T = 1/M .

5.1 Conclusions of the asymptotic analysis

We have derived an asymptotic expansion at any order m of the solution yε of an advection-diffusion equation

with respect to the diffusion parameter ε. The matching asymptotic expansion method allows to describe the

boundary layer of the solution at the right extremity of the interval. As is usual, the asymptotic analysis requires

the initial and boundary conditions to be regular enough. This is not restrictive as yε solves a parabolic type

equation. In an essential way, we have also assumed compatibility equations between these conditions at the

point (x, t) = (0, 0) where the main characteristic of equation x−Mt = 0 starts. This allows to get rid off the

boundary layer for yε on this characteristic. This also allows to obtain a regular approximation wεm of yε so

that the norm ‖yε −wεm‖C([0,T ],L2(0,1)) is of size O(ε
2m+1

2 γ). As expected, the approximation wεm is the sum of

m+ 1 explicit solutions of transport equations plus an initial layer corrector, exponentially small, which retains

the parabolic character of the initial equation. The approximation wεm is useful to construct explicit and regular

approximate null controls for yε as soon as the controllability time satisfies T ≥ 1/M . Moreover, for a precise

class of initial conditions, this decomposition of the solution yε remains true, uniformly with respect to m. This

allows to reduce the null controllability of yε to the null controllability of the corrector, a priori easier since this

latter is exponentially small with respect to ε.

The knowledge of the minimal uniform controllability time TM remains unknown for an arbitrary initial

condition. One may use our asymptotic analysis in the optimality system (33) which characterizes the unique

control of minimal L2(0, T )-norm, T, ε and the initial condition y0 (assumed independent of ε) being fixed. Let

us focus on the optimality equation vε(t) = εϕεx(0, t) which links the forward and backward solutions. Using

the inner expansion for ϕε (see Section 4.1.5), this equality rewrites as follows

v0(t) + ε v1(t) + · · · = Φ0
z(0, t) + εΦ1

z(0, t) + · · · , ∀t ∈ (0, T ).
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At the zero order, we get therefore the equality v0(t) = Φ0
z(0, t) leading, using (87) and (89) simultaneously, to

v0(t) = Mϕ0(0, t) =

{
Mϕ0

T (M(T − t)), t ∈]T − 1/M, T ],

0, t ∈ [0, T − 1/M ].
(95)

The function ϕ0 defined in QT is given by (87). If T > 1/M , the last equality contradicts the matching conditions

(61), notably v0(0) = y0(0), unless that y0(0) = 0 ! If T = 1/M , we have v0(t) = Mϕ0
T (1 −Mt), t ∈ [0, 1/M ]

and in particular v0(0) = ϕ0
T (1). But again, this contradicts (92) unless v0(0) = 0 (and so y0(0) = 0).

If we do not assume y0(0) = 0, then (95) leads to incompatibility and our asymptotic analysis is not effective

to address the optimality system (33). To avoid this difficulty, we must relax the matching conditions (62) and

(92) and therefore take into account the second boundary layer occurring for yε and ϕε on the characteristic

lines {(x, t) ∈ QT , Lx −Mt = 0} and {(x, t) ∈ QT , Lx −M(t − T ) − 1 = 0} respectively. This is done in [2].

Briefly, this layer, of size O(
√
ε), leads to the introduction of a second inner expansion of the form

m∑
k=0

ε
k
2W k/2(w, t), w =

x−Mt√
ε
∈
(
−Mt√

ε
,

1−Mt√
ε

)
, t ∈ (0, T ).

Putting this expansion into equation (34)1, the identification of the powers of ε yields

W
k/2
t (w, t)−W k/2

ww (w, t) = 0, for any 0 ≤ k ≤ m,

so that at the first order, taking into account the matching conditions with the outer expansion, W 0 solves the

boundary value problem
W 0
t (w, t)−W 0

ww(w, t) = 0, (w, t) ∈ R× (0, T ),

lim
w→+∞

W 0(w, t) = lim
x→(Mt)+

y0(x, t) := y0((Mt)+, t) = y0(0), t ∈ (0, T ),

lim
w→−∞

W 0(w, t) = lim
x→(Mt)−

y0(x, t) := y0((Mt)−, t) = v0(0), t ∈ (0, T ),

and is given by

W 0(w, t) = erf

(
w

2
√
t

)
y0(0)− v0(0)

2
+
y0(0) + v0(0)

2
.

W 0 makes appear the jump y0(0)−v0(0) (which does not have to vanish anymore) of the solution yε at the first

order across the characteristics {(x, t) ∈ QT , x−Mt = 0}. Localized around such characteristics, W 0 enriches

the first order approximation wε0 given by (60) (see also w̃ε0 defined in Remark 10).

The next step will be to address the asymptotic analysis of the system 33. This requires to adapt this work

in order to treat initial conditions which depends on ε and controls which are only in L2(0, 1), as done in [9] for

a fourth order partial differential equation.

6 Concluding remarks

In spite of its apparent simplicity, the advection-diffusion equation yt − εyxx + Myx = 0 leads to challenging

open problems from an exact controllability viewpoint. The evaluation, either theoretical or numerical of the

corresponding cost of control as the diffusion coefficient ε goes to zero remains open. This is mainly due to the

fact that the uncontrolled solution is exponentially small with respect to ε as soon as the time t is strictly larger

than L/|M |. Consequently, the gap between exact and approximate controllability is huge as ε goes to zero.

For this reason, for small values of ε, any direct numerical approach can not capture the behavior of the cost

of control. Computations for intermediate values give however some hints on the structure of the worst initial

conditions. On the other hand, the asymptotic analysis with respect to ε allows to decompose the solution to

be controlled as the sum of a pure advection part plus an advection-diffusion component, exponentially small

with respect to ε. Provided some regularity conditions on the controls and on the initial data, this allows to

report the controllability issue on the small advection-diffusion component, leading, for M > 0 to TM = 1/M
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(for M > 0). These regularity conditions on the data, which are intrinsic to the asymptotic method used, are

however quite strong. Consequently, for an arbitrary initial condition yε0 ∈ L2(0, 1), the precise value of the

uniform minimal time TM , remains, as far as we know, an open question. The negative case M < 0 seems, on a

numerical viewpoint, out of reach, at its leads to very oscillating control near the controllability time. On the

other hand, from an asymptotic analysis viewpoint, it seems more accessible, since, roughly, the initial condition

and the support of the control live on the same side of the main characteristic line.

7 Annexe

7.1 Tables of cost of control Kh(ε, T,M)

ε T = 0.95 T = 0.99 T = 1. T = 1.05

10−3 237.877 30.4972 18.7555 2.2915

1.25× 10−3 190.574 29.7622 19.1953 2.8028

1.5× 10−3 159.813 29.0015 19.3883 3.2556

1.75× 10−3 138.166 28.2446 19.4234 3.6529

2× 10−3 122.044 27.4997 19.3540 4.0005

2.25× 10−3 109.519 26.7745 19.2093 4.3013

2.5× 10−3 99.476 26.0722 19.0163 4.5623

3× 10−3 84.250 24.7318 18.5275 4.9814

4× 10−3 64.648 22.3060 17.3600 5.5078

5× 10−3 52.289 20.1837 16.1269 5.7530

6× 10−3 43.650 18.3289 14.9392 5.8259

7× 10−3 37.213 16.6883 13.8166 5.7787

8× 10−3 32.198 15.2461 12.7839 5.6683

9× 10−3 28.210 13.9660 11.8380 5.5099

10−2 24.934 12.8331 10.9763 5.3276

1.25× 10−2 18.898 10.5015 9.1493 4.8282

1.5× 10−2 14.810 8.7281 7.7087 4.3378

1.75× 10−2 11.913 7.3526 6.5694 3.8897

2× 10−2 9.784 6.2780 5.6566 3.4943

2.25× 10−2 8.176 5.4196 4.9210 3.1506

2.5× 10−2 6.937 4.7293 4.3237 2.8534

3× 10−2 5.180 3.7047 3.4240 2.3744

4× 10−2 3.264 2.4895 2.3297 1.7350

5× 10−2 2.294 1.8261 1.7304 1.3416

6× 10−2 1.736 1.4209 1.3522 1.0848

7× 10−2 1.376 1.1510 1.1030 0.8978

8× 10−2 1.113 0.9596 0.9223 0.7612

9× 10−2 0.0952 0.8130 0.7865 0.6554

10−1 0.8175 0.7075 0.6808 0.5711

ε T = 1.

10−3 10718.0955

1.25× 10−3 13839.4039

1.5× 10−3 16903.9918

1.75× 10−3 19898.1360

2× 10−3 22812.2634

2.25× 10−3 25638.7601

2.5× 10−3 28375.3693

3× 10−3 33575.9482

4× 10−3 42871.1424

5× 10−3 50751.4443

6× 10−3 57316.7716

7× 10−3 62692.7273

8× 10−3 66997.3602

9× 10−3 70350.3966

10−2 72862.0738

1.25× 10−2 76089.8839

1.5× 10−2 75988.4041

1.75× 10−2 73579.1022

2× 10−2 69647.3042

2.25× 10−2 64735.7778

2.5× 10−2 59254.0430

3× 10−2 47994.1519

4× 10−2 27872.8642

5× 10−2 13312.4452

6× 10−2 5687.6960

7× 10−2 1864.7252

8× 10−2 648.7029

9× 10−2 264.5594

10−1 123.3069

Cost of control Kh(ε, T,M) with respect to T and ε for M = 1(Left) and M = −1 (Right); h = 1/320 - r = h2

- β = 10−16.

7.2 Free-Fem++ code

1 border bas(s=0,1){x=s; y=0; label=Ntop ;}; border droit(s=0,T){x=1;y=s;label=Nright ;}

2 border haut(s=1,0){x=s;y=T;label=Nhaut ;} border gauche(s=T,0){x=0;y=s;label=Ngauche ;}

3 mesh Th=buildmesh(bas (50)+droit (50)+haut (50)+gauche (50)) ;

4



REFERENCES 52

5 fespace Vh(Th ,P3); fespace Ph(Th ,P3);

6 real eps =1.e-3, M=1, r1=1.e-6, r2=1.e-6, alpha1 =5.e-2, alpha2 =5.e-2;

7

8 Vh phi ,p,phit ,pt; Ph l1,l2,l1t ,l2t; Vh y0 = sin(pi*x)*(1-y);

9

10 problem transport ([phi ,p,l1 ,l2],[phit ,pt,l1t ,l2t])=

11 // Initial conjugate cost

12 int1d(Th,Ngauche) (eps*eps*dx(phi)*dx(phit))+int1d(Th ,Nbas)(y0*phit)

13

14 // bilinear adjoint - direct solution terms

15 + int2d(Th)((dy(phi)+dx(p)+M*dx(phi))*l1t)

16 + int2d(Th)((dy(phit)+dx(pt)+M*dx(phit))*l1)

17 + int2d(Th)((p-eps*dx(phi))*l2t)

18 + int2d(Th)((pt -eps*dx(phit))*l2)

19

20 // Augmentation terms

21 + int2d(Th)(r1*(dy(phi)+dx(p)+M*dx(phi))* (dy(phit)+dx(pt)+M*dx(phit)))

22 + int2d(Th)(r2* (eps*dx(phi)-p) * (eps*dx(phit)-pt))

23

24 // stabilized terms

25 -int2d(Th)(alpha1 *(dy(l1)+M*dx(l1)-eps*dx(l2))*(dy(l1t)+M*dx(l1t)-eps*dx(l2t)))

26 - int2d(Th)(alpha2 *(dx(l1)-l2)*(dx(l1t)-l2t))

27

28 // boundary conditions for the adjoint and lagrange multiplier solutions

29 + on(Nbas ,l1=y0)+on(Ndroit ,Ngauche ,phi =0.)+on(Ndroit , Nhaut , l1=0.);
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in Mathematics, Vol. 323, Springer-Verlag, Berlin-New York, 1973.

[29] P. Lissy, A link between the cost of fast controls for the 1-d heat equation and the uniform controllability

of a 1-d transport-diffusion equation, Comptes Rendus Mathematique, 350 (2012), pp. 591–595.

[30] , Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations,

and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation, J.

Differential Equations, 259 (2015), pp. 5331–5352.

[31] L. Miller, The control transmutation method and the cost of fast controls, SIAM J. Control Optim., 45

(2006), pp. 762–772.

[32] A. Münch, Inverse problems for linear parabolic equations using mixed formulations - Part 2 : Numerical

analysis, In preparation, (2018).

[33] A. Münch, Numerical estimation of the cost of boundary controls for the equation yt − εyxx + Myx = 0

with respect to ε, To appear in the SEMA-SIMAI springer series - Preprint available at https://hal.archives-

ouvertes.fr/hal-01496856, (2018).

[34] A. Münch and S. Montaner, Approximation of controls for linear wave equations: a first order mixed

formulation, Preprint available at https://hal.archives-ouvertes.fr/UMR6620/hal-01792949v1, (2018).

[35] A. Münch and D. A. Souza, A mixed formulation for the direct approximation of L2-weighted controls

for the linear heat equation, Adv. Comput. Math., 42 (2016), pp. 85–125.

[36] A. Münch and D. A. Souza, Inverse problems for linear parabolic equations using mixed formulations—

Part 1: Theoretical analysis, J. Inverse Ill-Posed Probl., 25 (2017), pp. 445–468.

[37] A. Münch and E. Zuazua, Numerical approximation of null controls for the heat equation: ill-posedness

and remedies, Inverse Problems, 26 (2010), pp. 085018, 39.

[38] Y. Ou and P. Zhu, The vanishing viscosity method for the sensitivity analysis of an optimal control

problem of conservation laws in the presence of shocks, Nonlinear Anal. Real World Appl., 14 (2013),

pp. 1947–1974.

[39] J. Sanchez Hubert and E. Sánchez-Palencia, Vibration and coupling of continuous systems, Springer-

Verlag, Berlin, 1989. Asymptotic methods.

[40] M. Van Dyke, Perturbation methods in fluid mechanics, The Parabolic Press, Stanford, Calif., anno-

tated ed., 1975.

https://hal.archives-ouvertes.fr/hal-01496856
https://hal.archives-ouvertes.fr/hal-01496856
https://hal.archives-ouvertes.fr/UMR6620/hal-01792949v1

	Introduction
	Asymptotic properties and overview of controllability results
	Numerical estimation of the cost of control
	Reformulation of the controllability cost K(,T,M)
	Approximation of the control of minimal L2-norm
	Mixed variational formulation
	Minimization with respect to the multiplier
	Numerical approximation
	The discrete inf-sup test

	Numerical experiments 
	Numerical approximation of the cost of control
	Cost of control in the case M=1
	Cost of control in the case M=-1

	Conclusion of the numerical study

	Asymptotic analysis with respect to 
	Matched asymptotic expansions and approximate solutions
	Formal asymptotic expansions
	Second order approximation
	High order asymptotic approximation
	Passing to the limit as m . Particular case
	Asymptotic approximation of the adjoint solution 


	Applications to controllability property
	Conclusions of the asymptotic analysis

	Concluding remarks
	Annexe
	Tables of cost of control Kh(,T,M)
	Free-Fem++ code


