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ABSTRACT 
A potential function estimated from solar radiation 
measurement data is combined with a stochastic 
differential equation and used for simulating short 
sequences of solar radiation fluctuations. 
This potential function depends on observed 
meteorological conditions.  
This work is a first step in reconstructing a daily solar 
radiation signal. 
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1. Introduction 
Under tropical climate, solar radiation is a very 
fluctuating data, notably because of numerous clouds. 
Fast changes in the local meteorological conditions, as 
observed in tropical climate can provoke large variation 
of solar radiation. The amplitude of these variations can 
reach 700 W/m² and occur within a short time interval, 
from few seconds to few minutes according to the 
geographical location. These variations depend on the 
clouds size, speed and number. 
Therefore in power distribution grids with high density of 
PV, rapid fluctuations of the produced electrical power 
can appear, leading to unpredictable variations of node 
voltage and power in electric networks. In small grids as 
they exist on islands (such as in Guadeloupe, FWI) such 
fluctuations can cause instabilities. 
Hence management of the electrical network and of the 
alternative power sources requires a better identification 
of these small time scales variations. This stresses the 
need for power system operators to develop real time 
estimation tools for such disturbances in order to 
anticipate power shortages and power surges.  
 
Climatic variable, such as solar radiation, can be 
decomposed into two components, a deterministic one 
and a stochastic one. The deterministic component can be 
easily calculated, since it is derived from the earth 
revolution. The stochastic component comprises 
fluctuations about the deterministic component. This has 
led to the development of stochastic model. 

More generally nonlinear complex systems can be 
represented by Stochastical Differential Equations (SDE). 
Initially used for trajectory or path simulation they are 
now used in a very large area field: electrical circuit 
(Friedrich 2000,[1]), elephant seals (Brilinger 2010, [2]), 
social sciences (Cob, [5])… 
 
We have applied this powerful tool in the simulation of 
solar radiation measured in Guadeloupe (FWI).  
Our global solar radiations measurements were performed 
in Guadeloupe, an island in the West Indies which is 
located at 16°15 N latitude and 60° 30 W longitudes. In 
such a tropical zone, solar radiation is an important 
climatic data to be taken into account as the daily average 
for the solar load for a horizontal surface is around 5 
kWh/m². A constant sunshine combined with the thermal 
inertia of the ocean makes the air temperature variation 
quite weak, between 17°C and 33°C with an average of 
25°C to 26°C. Relative humidity ranges from 70% to 80% 
and the trade winds are relatively constant all along the 
year. 
Our measurements sampled at 1 Hz are performed since 
2005. The measurements made with two pyranometers 
from KIPP&ZONEN were recorded by a CAMPBELL 
SCIENTIFIC data logger. 
On Figure 1 below, is presented an example of 
measurement for one day. 
 
2. Stochastic Gradient system 
In this work we use of stochastic gradient systems in the 
modeling of solar radiation time series, estimating a 
potential function from experimental data sampled every 
second. 
A stochastic gradient system G (Brillinger et al. (2001); 
Cobb et Watson (1981)) is a solution of the following 
stochastic differential equation: 

 

dG(t) = -VV(G(t))dt + σ G(t)dB(t)              (1) 
 

The function V is called a potential function can be 
estimated from real data. Here G(t) is the global solar 
radiation at time t, B denotes a standard Brownian motion 
and σ a positive diffusion factor. 
 



The integration of this equation will allow generating 
sequences of solar radiation signals. We first need to 
estimate the potential function V. 

 
2.1 Estimation of the potential function  
In his paper “learning a potential from a trajectory”, 
Brillinger [3] presents a new estimation method to 
determine potential functions from experimental data. We 
apply this method to solar radiation signals.  
General forms may be considered for the potential. 
Suppose  
 

V(r) = φ(G)Tβ                      (2) 
 

where φ is an L by 1 vector of known functions and β an L 
by 1 unknown parameter. The gradient of V is the p by 1 
vector Vφ(G)Tβ. 
Equation (1) can be approximated by: 
 

yi+1 = -φ(Gi)
T
β   + σZi+1,  i = 1,…,n     (3) 

 

with yi+1=  

 
Stack the n values yi+1, i=1,…,n vertically to vector Yn. 
Stack the n matrices -Vφ(Gi)T to form the 

matrix Xn . Let xi denote the i-th row of Xn so Xn
TXn= 

Σxixi
T. Stack the n values σZi+1 to form εn.  

 
Then one has the regression model Yn = Xnβ + εn with the 
difference from ordinary regression that Xn is random. 
 

Supposing the matrix Xn
TXn to be non singular one can 

compute the ordinary least squares estimate  
b = (Xn

TXn)
-1Xn

TYn of β and then φ(G)Tb as an estimate of 
V(G). 
 
3. Application to solar radiation regimes 
Solar radiation is a very fluctuating data, especially under 
tropical climate. This is shown on figure 1. Within a same 
day we can encounter different regimes of solar radiation:  
regime of cloudy sky, regime of clear sky and a high 
frequency fluctuations regime.   

 
3.1 Estimation of a potential function for each solar 
radiation regime 
At this stage of the study we have arbitrarily selected a 
regime of solar radiation. For each identified regime we 
will apply the estimation algorithm to determine the 
potential function derived from the experimental data. 
Once the potential function is obtained we use equation 
(1) to simulate a time series of solar radiation signal for a 
given regime. 
 
We have identified three main regimes [6]: 

1. High frequency fluctuation regimes: 
These sequences of solar radiation are characterized by 
rapid fluctuations occurring within a few seconds (from 
10 to 60 seconds). These sequences correspond to 
meteorological conditions with “clouds train”.  
On figure 2 is shown an example of such sequence of 600 
s lengths (10 minutes). On this short time period we have 
about 8 clouds. 
 

2. Clear sky regimes: 
These sequences are characteristic of clear sky conditions,  
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Figure 1. Example of solar radiation signal (1 day) 



 

figure 2:  a) measured sequence of high fluctuations  b) simulated signal               c) comparison of pdf of both signals 

figure 3:  a) measured clear sky sequence   b) simulated signal               c) comparison of pdf of both signals 

figure 4:  a) measured clear sky sequence   b) simulated signal               c) comparison of pdf of both signals 
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there are no fluctuations due to clouds passage and the 
variation observed is only due to solar path during the 
day. 
On the example shown on figure 3 we have a 6000 s 
length signal (about 1h40 minutes) of clear sky. 
 

1. Cloudy sky regimes: 
The cloudy sky regime is due to “big” clouds passage s 
occurring on time from one minute to 10 or more minutes. 
This regime is characterized by low dynamic fluctuations 
On figure 4 is shown a sequence of 1800 s (30 minutes). 
 

 
 
4. Simulation results 
The simulation results are shown in figures 2, 3, 4 for the 
fluctuations regime, clear sky regime and cloudy sky 
regime respectively. 
 
For each sequence we have plotted the experimental 
sequence, the simulated signal and a comparison of the 
PDF of both signals. To complete this PDF comparison a 
Kolmogorov-Smirnov Test was completed. 
 
As shown on the figures, the K-S test shows that PDF are 
from the same continuous distribution. 
 High fluctuations regime : 
  p- value = 0.971 
  k = 0.0746 
 Clear sky regime : 
  p- value = 0.472 
  k = 0.400 
 Cloudy sky regime : 
  p- value = 0.939 
  k = 0.1174 
 
To achieve such a result the initial value of the simulated 
sequence of G was taken as equal to the initial value of 
the observed sequence. The diffusion coefficient σ in 
equation (1) was estimated so as to minimize the mean 
difference between the observed and the simulated 
sequence. 

5. Conclusion  
Our work is a first contribution in the stochastic modeling 
of solar radiation sequences sampled every second. We 
used a stochastic gradient system that is a stochastic 
differential equation based on a potential function 
estimated from measured data. The application of this 
method to solar radiation domain seems to be new. 
The obtained results indicate that this method is suitable 
for simulation in various regimes of solar radiation 
signals.  
Some improvements are still needed and we think that the 
method should provide some nice perspectives for further 
works dedicated to solar radiation prediction on short time 
scale. 
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