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Abstract

We design an abstract setting for the approximation in Banach spaces of operators acting in duality.
A typical example are the gradient and divergence operators in Lebesgue–Sobolev spaces on a bounded
domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems,
which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified
convergence analysis that simultaneously covers

(i) all usual boundary conditions,

(ii) several approximation methods.

The considered approximations can be conforming (that is, the approximation functions can belong to the
energy space relative to the problem) or not, and include classical as well as recent numerical schemes.
Convergence results, a priori and a posteriori error estimates are given. We finally briefly show how the
abstract setting can also be applied to some models such as flows in fractured medium, elasticity equations
and diffusion equations on manifolds. A by-product of the analysis is a result on the equivalence between
general Poincaré inequalities and the surjectivity of the divergence operator in appropriate spaces.
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problem
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1 Introduction

We are interested in the approximation of linear and non-linear elliptic with various boundary conditions.
Numerical schemes for the approximation of nonlinear diffusion problems of Leray-Lions type on standard
meshes have already been proposed and studied in the past. Finite elements were proposed for the partic-
ular case of the p-Laplace problem [7, 28, 27, 6] as well as for quasi-linear problems and non-Newtonian
models in glaciology [23, 8]. More recently, non conforming numerical schemes defined on polytopal meshes
were introduced; discrete duality finite volume schemes were studied in [3, 4, 2, 1]. Other schemes which
have been shown to be part of the gradient discretisation method reviewed in the recent book [19], were
also studied for the Leray-Lions type problems, namely the SUSHI scheme [20], the mixed finite volume
scheme [18], the mimetic finite difference method [5]; the discontinuous Galerkin approximation was con-
sidered in [14, 21] and the hybrid high order scheme in [17]. In all these works, usually only one type
of boundary conditions is considered (most often homogeneous Dirichlet boundary conditions). These
schemes have been shown to be part of the GDM framework in [19, Part III]; the convergence analysis of
[19, Parts I and II] holds for each of them. However, the analysis performed therein is done for each type
of boundary conditions (Dirichlet, Neumann, Fourier). Our aim here is to provide a unified formulation
of the continuous and discrete problems that covers all boundary conditions; this formulation is based on
some abstract Banach spaces in which both the continuous and approximate problems are posed.
The present paper is organised as follows. The next section is devoted to an illustrative example, which
shows how to build the abstract spaces and operators in order to express a variety of problems with a variety
of boundary conditions. In Section 3, we provide the detailed framework concerning the function spaces,
and the core properties of the Gradient Discretisation Method. In Section 4, we apply this framework to
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the approximation of an abstract Leray-Lions problem, and we prove the convergence of the approximation
methods. Then we turn in Section 5 to the approximation of a linear elliptic problem, deduced from the
abstract Leray-Lions problem, with p = 2. Note that in this case the framework becomes Hilbertian.
Finally, in Section 6, we briefly review a series of applications of the unified discretisation setting.

2 An illustrative example

In this section, we take p ∈ (1,+∞) and define p′ ∈ (1,+∞) by 1/p+1/p′ = 1, and consider an archetypal
example of elliptic problems, that is the anisotropic p-Laplace problem, which reads:

−div(Λ|∇u|p−2
Λ ∇u) = r + divF in Ω, (2.1)

where

• Ω is an open bounded connected subset of Rd (d ∈ N
⋆) (2.2a)

with boundary ∂Ω,

• Λ is a measurable function from Ω to the set (2.2b)

of d× d symmetric matrices, and there exists λ, λ > 0

such that, for a.e. x ∈ Ω, Λ(x) has eigenvalues in [λ, λ],

for a.e. x ∈ Ω, ∀ξ ∈ R
d, |ξ|Λ(x) =

√
Λ(x)ξ · ξ

• r ∈ Lp′(Ω) and F ∈ Lp′(Ω)d. (2.2c)

This problem can be considered with a variety of boundary conditions (BCs), with an additional condition
on u in the case of Neumann boundary conditions. These conditions are summarised in Table 1, in which
n denotes the outer normal to ∂Ω.

homogeneous
Dirichlet

homogeneous
Neumann

non-homogeneous
Neumann

Fourier

on ∂Ω u = 0
(Λ|∇u|p−2

Λ
∇u+ F ) · n

= 0
(Λ|∇u|p−2

Λ
∇u+ F ) · n

= g

(Λ|∇u|p−2

Λ
∇u+ F ) · n

+b|u|p−2u = g

additional
conditions

∫
Ω
r(x)dx = 0

g ∈ Lp′

(∂Ω)∫
Ω
r(x)dx

+
∫
∂Ω

g(x)ds(x) = 0

g ∈ Lp′

(∂Ω)
b ∈ L∞(∂Ω)
0 < b ≤ b(x)

∫
Ω
u(x)dx = 0

∫
Ω
u(x)dx = 0

Tab. 1: Various boundary conditions for (2.1).

The analysis of approximations of (2.1) can then be carried out, for each of these boundary conditions;
a usual way is to first write a weak formulation of the problem and then design tools to approximate
this formulation. For non-homogeneous Neumann BCs and Fourier BCs, these tools must include the
approximation of the trace on the boundary. Let us now describe a unified formulation of (2.1) that
includes all considered boundary conditions, together with a generic approximation scheme based on this
unified formulation.

Introduce two Banach spaces L = Lp(Ω)d and L, a space WG ⊂ L (which is dense in L), an operator
G : WG → L, two mappings a : L× L → L′ and a : L → L′ and a right-hand-side f ∈ L′ as in Table 2.
Here and in the rest of the paper, γu is the trace on ∂Ω of any function u ∈W 1,p(Ω).
The weak formulation of Problem (2.1) with all considered BCs is then:

Find u ∈ WG such that, ∀v ∈ WG,

〈a(u,Gu),Gv〉L′,L + 〈a(u), v〉L′,L = 〈f, v〉L′,L − 〈F ,Gv〉L′,L.
(2.3)

Indeed:
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homogeneous
Dirichlet

homogeneous
Neumann

non-homogeneous
Neumann

Fourier

L = Lp(Ω) Lp(Ω) Lp(Ω)× Lp(∂Ω) Lp(Ω)× Lp(∂Ω)

WG = W
1,p
0

(Ω) W 1,p(Ω) {(u, γu) : u ∈ W 1,p(Ω)} {(u, γu) : u ∈ W 1,p(Ω)}
G : u 7→ ∇u u 7→ ∇u (u,w) 7→ ∇u (u,w) 7→ ∇u

a :
(u,v) 7→

Λ|v|p−2

Λ
v

(u,v) 7→

Λ|v|p−2

Λ
v

((u,w),v) 7→

Λ|v|p−2

Λ
v

((u,w),v) 7→

Λ|v|p−2

Λ
v

a : u 7→ 0
u 7→
|
∫
Ω
u|p−2(

∫
Ω
u)1Ω

(u,w) 7→
|
∫
Ω
u|p−2(

∫
Ω
u)(1Ω, 0)

(u,w) 7→
(0, b|w|p−2w)

f = r r (r, g) (r, g)

Tab. 2: Abstract operators for various boundary conditions.

• in the case of homogeneous Dirichlet boundary conditions, ‖∇·‖Lp(Ω)d is a norm on the space WG =

W 1,p
0 (Ω) (owing to Poincaré’s inequality) and there is no need for an additional condition: we can

then let a = 0.

• In the case of homogeneous Neumann conditions, multiplying (2.1) by v = 1Ω and integrating over
Ω shows that the condition

∫
Ω
r(x)dx = 0 is necessary for the existence of at least one solution; this

solution is defined up to an additive constant which is fixed by imposing, for example,
∫
Ω
u(x)dx = 0.

A classical technique to write a weak formulation that embeds this condition, and has the required
coercivity property, is to introduce an additional term 〈a(u), v〉L′,L in the left-hand side of this
formulation, where a(u) = |

∫
Ω
u|p−2(

∫
Ω
u)1Ω. Non-homogeneous Neumann BCs are handled in a

similar way.

• In the case of Fourier boundary conditions, the term 〈a(u, γu), (v, γv)〉L′,L =
∫
∂Ω
b|γu|p−2γu γvds

naturally appears when multiplying (2.1) by a test function v and formally integrating by parts.

Problem (2.3) can be re-formulated by introducing a space WD ⊂ L′ and the dual operator D :WD → L′

to G as per Table 3. In this table, we set W p′

div(Ω) = {ϕ ∈ Lp′(Ω)d : divϕ ∈ Lp′(Ω)}, W p′

div,0(Ω) = {ϕ ∈

W p′

div(Ω) : γnϕ = 0} and W p′

div,∂(Ω) = {ϕ ∈ W p′

div(Ω) : γnϕ ∈ Lp′(∂Ω)}, where γnϕ is the normal trace of
v on ∂Ω. The space WD and operator D are defined such that the following formula, which generalises
the Stokes formula to all types of boundary conditions, holds:

∀u ∈WG, ∀v ∈WD, 〈v,Gu〉L′,L + 〈Dv, u〉L′,L = 0. (2.4)

homogeneous
Dirichlet

homogeneous
Neumann

non-homogeneous
Neumann

Fourier

WD = W
p′

div
(Ω) W

p′

div,0(Ω) W
p′

div,∂(Ω) W
p′

div,∂(Ω)

D : v 7→ divv v 7→ divv v 7→ (divv,−γnv) v 7→ (divv,−γnv)

Tab. 3: Dual space and operators for various boundary conditions.

Problem (2.3) is then equivalent to

Find u ∈WG such that a(u,Gu) + F ∈WD and

−D
(
a(u,Gu) + F

)
+ a(u) = f in L′.

(2.5)

This equivalence is proved in Section 4 in the general abstract setting. Thanks to the above introduced
framework, approximations of Problem (2.3) can be designed by drawing inspiration from the Gradient
Discretisation Method (GDM), see [19]. Three discrete objects D = (XD,PD,GD), forming altogether a
gradient discretisation, are introduced: a finite dimensional vector space XD meant to contain the families
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of discrete unknowns, a linear mapping PD : XD → L that reconstructs an element in L from an element
of XD, and a “gradient” reconstruction GD : XD → L, which is a linear mapping that reconstructs an
element in L from an element of XD. The gradient scheme for the approximation of Problem (2.3) is then
obtained by replacing the continuous space and operators by the discrete ones:

Find u ∈ XD such that, ∀v ∈ XD ,

〈a(PDu,GDu),GDv〉L′,L + 〈a(PDu),PDv〉L′,L

= 〈f,PDv〉L′,L − 〈F ,GDv〉L′,L.

(2.6)

Note that PD denotes either a reconstructed function over Ω (Dirichlet or homogeneous Neumann condi-
tions), or a pair of reconstructed function on Ω and reconstructed trace on ∂Ω (non-homogeneous Neumann
and Fourier conditions, see Table 4).

homogeneous
Dirichlet

homogeneous
Neumann

non-homogeneous
Neumann

Fourier

PD : u 7→ ΠDu u 7→ ΠDu u 7→ (ΠDu,TDu) u 7→ (ΠDu,TDu)

Tab. 4: Function (ΠD) and trace (TD) reconstructions for various boundary conditions.

3 Continuous and discrete settings

The examples in Section 2 gave a flavour of a general setting we now describe.

3.1 Continuous spaces and operators

Let L and L be separable reflexive Banach spaces, with respective topological dual spaces L′ and L′. Let
WG ⊂ L be a dense subspace of L and let G :WG → L be a linear operator whose graph G = {(u,Gu), u ∈
WG} is closed in L×L. As a consequence, WG endowed with the graph norm ‖u‖WG,G = ‖u‖L +‖Gu‖

L
is

a Banach space continuously embedded in L. Since L×L is separable, WG is also separable for the norm
‖·‖WG,G (see [11, Ch. III]).

Define WD by:
WD = {v ∈ L′ : ∃w ∈ L′,∀u ∈ WG, 〈v,Gu〉L′,L + 〈w, u〉L′,L = 0}. (3.1)

The density of WG in L implies (and is actually equivalent to) the following property.

For all w ∈ L′, (∀u ∈ WG, 〈w, u〉L′,L = 0) ⇒ w = 0. (3.2)

Therefore, for any v ∈WD, the element w ∈ L′ whose existence is assumed in (3.1) is unique; this defines
a linear operator D :WD → L′, adjoint operator of −G in the sense of [24, p.167] or [11, p.43], such that
w = Dv, that is,

∀u ∈WG, ∀v ∈WD, 〈v,Gu〉L′,L + 〈Dv, u〉L′,L = 0. (3.3)

It easily follows from this that the graph of D is closed in L′ × L′, and therefore that, endowed with the
graph norm ‖v‖

WD
= ‖v‖

L′ + ‖Dv‖L′ , WD is a Banach space continuously embedded and dense in L′

(see [24, Theorem 5.29 p.168]).

Remark 3.1 (Reverse construction of the dual operators). Since the spaces L and L are reflexive, [24,
Theorem 5.29 p.168] also states that there holds

WG = {u ∈ L : ∃u ∈ L,∀v ∈WD, 〈v,u〉L′,L + 〈Dv, u〉L′,L = 0},

for any u ∈ WG , Gu is the element u ∈ L in the definition of WG.

It is therefore equivalent to begin with the construction of (WG,G) or that of (WD,D).
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Let V be a closed subspace of L′ and denote by |·|L,V the semi-norm on L defined by

∀u ∈ L, |u|L,V =





sup
µ∈V \{0}

|〈µ, u〉L′,L|

‖µ‖L′

if V 6= {0},

0 if V = {0}.

(3.4)

By construction, for all u ∈ L, |u|L,V ≤ supµ∈L′\{0}

|〈µ,u〉L′,L|

‖µ‖L′
= ‖u‖L. Defining, for u ∈ WG,

‖u‖WG
= |u|L,V + ‖Gu‖

L
, (3.5)

we therefore have
∀u ∈WG , ‖u‖WG

≤ ‖u‖WG,G . (3.6)

A necessary and sufficient condition on V for the norm ‖·‖WG,G and semi-norm ‖·‖WG
to be equivalent is

that L′ = Im(D) + V as stated in the following theorem, which is an extension of [11, Theorem 2.20] to
the case V 6= {0}.

Theorem 3.2 (Equivalence of the norms). Under the above assumptions of the present section, the norms
‖·‖WG,G and ‖·‖WG

are equivalent, that is

∀u ∈WG, ‖u‖WG,G ≤ CWG,V ‖u‖WG
(3.7)

if and only if
L′ = Im(D) + V. (3.8)

Proof. Let us assume that (3.7) holds.
Owing to [26] (see Remark 4.4), we can assume that (L, ‖·‖L) and (L, ‖·‖

L
) are smooth. Lemma 4.5 can

then be applied to define a by (4.3). Let a : L→ V ⊂ L′ be defined as in Lemma 4.7. Thanks to Lemma
4.11, for any f ∈ L′, there exists a solution u to (4.6) with F = 0. Setting v = −a(Gu), Lemma 4.10
shows that f = Dv + a(u) ∈ Im(D) + V .

Reciprocally, let us assume that (3.8) holds.
Since ‖·‖WG,G is a norm, proving its equivalence with ‖·‖WG

establishes that this latter semi-norm is also a
norm. Half of the equivalence has already been established in (3.6); to prove the other half, we just need
to show that

E =
{
u ∈ WG : ‖u‖WG

= 1
}

is bounded in L. Indeed, this establishes the existence of M ≥ 0 such that, for all u ∈ E, ‖u‖L ≤ M and
thus, since ‖Gu‖

L
≤ ‖u‖WG

= 1,

‖u‖WG,G ≤ 1 +M = (1 +M) ‖u‖WG
.

By homogeneity of the semi-norms, this concludes the proof that ‖·‖WG,G and ‖·‖WG
are equivalent onWG.

To prove that E is bounded, take f ∈ L′ and apply (3.8) to get vf ∈ WD and µf ∈ V such that
f = Dvf + µf . Then, for any u ∈ E, by definition of the semi-norm |·|L,V and since ‖Gu‖

L
≤ 1 and

|u|L,V ≤ 1,

|〈f, u〉L′,L| = |〈Dvf , u〉L′,L + 〈µf , u〉L′,L| = | − 〈vf ,Gu〉L′,L + 〈µf , u〉L′,L|

≤ ‖vf‖L′ ‖Gu‖L + ‖µf‖L′ |u|L,V ≤ ‖vf‖L′ + ‖µf‖L′ .

This shows that {〈f, u〉L′,L : u ∈ E} is bounded by some constant depending on f . Since this is valid for
any f ∈ L′, the Banach–Steinhaus theorem [11, Theorem 2.2] shows that E is bounded in L.

Remark 3.3 (Poincaré inequalities). In the particular context of Sobolev spaces, Theorem 3.2 proves that
there is equivalence between the so-called “mean” Poincaré–Wirtinger inequality and the surjectivity of the
divergence operator.
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Remark 3.4 (Examples of spaces V ). In the examples of Section 2, as well as in the example of continuum
mechanics (see Section 6.2), in the case of Neumann boundary conditions the dimension of the kernel of
G is finite (in the latter case, it is equal to 6 [15]). These examples are such that Im(G) is closed (or
equivalently Im(D) is closed, as proved in [11, Theorem 2.19]). Then Ker(G)⊥ = Im(D), and one can
construct V as a finite dimensional space complementary to Im(D) in L′, with the same dimension as
Ker(G), following the method given in [11, p.39] and [15].

In the case of Fourier boundary conditions, V = {0} × Lp′(∂Ω), and ‖u‖WG
= ‖∇u‖Lp(Ω)d + ‖γu‖Lp(∂Ω).

In the remainder of the paper, we shall assume that the norm ‖·‖WG,G and semi-norm ‖·‖WG
are actually

equivalent, i.e. that (3.7) holds.

3.2 Gradient discretisations

Based on the previous definitions, we generalise the concept of gradient discretisation of [19] and the key
notions of coercivity, limit-conformity, consistency and compactness to the present abstract setting. These
properties enable us, in Section 4, to design converging approximation schemes for an abstract monotonous
problem.

3.2.1 Key definitions

Definition 3.5 (Gradient Discretisation). In the setting described in Section 3.1, a gradient discretisation
is defined by D = (XD,PD,GD), where:

1. The set of discrete unknowns XD is a finite dimensional vector space on R.

2. The “function” reconstruction PD : XD → L is a linear mapping that reconstructs, from an element
of XD, an element in L.

3. The “gradient” reconstruction GD : XD → L is a linear mapping that reconstructs, from an element
of XD, an element of L.

4. The mappings PD and GD are such that the following quantity is a norm on XD:

‖v‖D := |PDv|L,V + ‖GDv‖L .

Definition 3.6 (Coercivity). If D is a gradient discretisation in the sense of Definition 3.5, let CD be the
norm of PD:

CD = max
v∈XD\{0}

‖PDv‖L
‖v‖D

. (3.9)

A sequence (Dm)m∈N of gradient discretisations is coercive if there exists CP ∈ R+ such that CDm ≤ CP

for all m ∈ N.

Definition 3.7 (Limit-conformity). If D is a gradient discretisation in the sense of Definition 3.5, let
WD :WD → [0,+∞) be given by

∀ϕ ∈WD , WD(ϕ) = sup
u∈XD\{0}

|〈ϕ,GDu〉L′,L + 〈Dϕ,PDu〉L′,L|

‖u‖D
. (3.10)

A sequence (Dm)m∈N of gradient discretisations is limit-conforming if

∀ϕ ∈WD , lim
m→∞

WDm(ϕ) = 0. (3.11)

Once L, L, WD and D are chosen, the definition 3.7 of limit-conformity is constrained by the continuous
duality formula (3.3); as a consequence of Lemma 3.10 below, the definition of coercivity is also constrained
by this formula. These two notions therefore naturally follow from the continuous setting. On the contrary,
the following two definitions of consistency and compactness are disconnected from the duality formula.
Various choices for these notions are possible, we describe here one that is in particular adapted to the
monotonous problem in Section 4.
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Definition 3.8 (Consistency). If D is a gradient discretisation in the sense of Definition 3.5, let SD :
WG → [0,+∞) be given by

∀ϕ ∈ WG , SD(ϕ) = min
v∈XD

(
‖PDv − ϕ‖L + ‖GDv −Gϕ‖

L

)
. (3.12)

A sequence (Dm)m∈N of gradient discretisations is consistent if

∀ϕ ∈ WG , lim
m→∞

SDm(ϕ) = 0. (3.13)

Definition 3.9 (Compactness). A sequence (Dm)m∈N of gradient discretisations in the sense of Defi-
nition 3.5 is compact if, for any sequence um ∈ XDm such that (‖um‖Dm)m∈N is bounded, the sequence
(PDmum)m∈N is relatively compact in L.

3.2.2 Main properties

The following result uses the surjectivity of the divergence operator proved in Theorem 3.2.

Lemma 3.10 (Limit-conformity implies coercivity). If a sequence of gradient discretisations is limit-
conforming in the sense of Definition 3.7, then it is also coercive in the sense of Definition 3.6.

Proof. Consider a limit-conforming sequence (Dm)m∈N and set

E =

{
PDmv

‖v‖Dm

∈ L : m ∈ N , v ∈ XDm\{0}

}
.

Proving the coercivity of (Dm)m∈N consists in proving that E is bounded in L. Let f ∈ L′. By Theorem
3.2, there exists vf ∈ WD and µf ∈ V such that f = Dvf + µf . The definition of |·|L,V shows that

|〈µf , ·〉L′,L| ≤ ‖µf‖L′ |·|L,V . For z ∈ E, take m ∈ N and v ∈ XDm\{0} such that z =
PDm

v

‖v‖
Dm

and write

|〈f, z〉L′,L| ≤
1

‖v‖Dm

|〈Dvf ,PDmv〉L′,L|+
1

‖v‖Dm

|〈µf ,PDmv〉L′,L|

≤
1

‖v‖Dm

|〈Dvf ,PDmv〉L′,L + 〈vf ,GDmv〉L′,L|+
1

‖v‖Dm

|〈vf ,GDmv〉L′,L|

+
1

‖v‖Dm

‖µf‖L′ |PDmv|L,V

≤WDm(vf ) + ‖vf‖L′ + ‖µf‖L′ . (3.14)

In the last inequality we used |PDmv|L,V ≤ ‖v‖Dm
and ‖GDmv‖L ≤ ‖v‖Dm

. Since (Dm)m∈N is limit-
conforming, (WDm(vf ))m∈N converges to 0 and is therefore bounded. Estimate (3.14) thus shows that
{〈f, z〉L′,L : z ∈ E} is bounded by some constant depending on f . Since this is valid for any f ∈ L′, we
infer from the Banach–Steinhaus theorem [11, Theorem 2.2] that E is bounded in L.

Checking limit-conformity is made easier by the following result, which reduces the set of elements ϕ on
which the convergence in (3.11) has to be asserted.

Lemma 3.11 (Equivalent condition for limit-conformity). A sequence (Dm)m∈N of gradient discretisations
is limit-conforming in the sense of Definition 3.7 if and only if it is coercive in the sense of Definition 3.6
and there exists a dense subset W̃D of WD such that

∀ψ ∈ W̃D, lim
m→∞

WDm(ψ) = 0. (3.15)

Proof. If (Dm)m∈N is limit-conforming, then it is coercive by Lemma 3.10, and (3.15) is satisfied with

W̃D =WD, so that (3.11) is also satisfied.
Conversely, assume that (Dm)m∈N is coercive and that (3.15) holds. Let CP ∈ R+ be an upper bound

of (CDm)m∈N. To prove (3.11), let ϕ ∈ WD and ε > 0, and take ψ ∈ W̃D such that ‖ϕ−ψ‖
WD

≤ ε.
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By definition of the norm in WD, this means that ‖ϕ−ψ‖
L′ + ‖Dϕ−Dψ‖L′ ≤ ε. Hence, for any

u ∈ XDm\{0},

|〈ϕ−ψ,GDmu〉L′,L + 〈Dϕ−Dψ,PDmu〉L′,L|

‖u‖Dm

≤ ‖ϕ−ψ‖
L′

‖GDmu‖L
‖u‖Dm

+ ‖Dϕ−Dψ‖L′

‖PDmu‖L
‖u‖Dm

≤ max(1, CP )ε.

Introducing ψ and Dψ in the definition (3.10) of WDm(ϕ), we infer

WDm(ϕ) ≤ sup
u∈XDm

\{0}

|〈ψ,GDmu〉L′,L + 〈Dψ,PDmu〉L′,L|

‖u‖Dm

+max(1, CP )ε

=WDm(ψ) + max(1, CP )ε.

Invoking (3.15) we deduce that lim supm→∞WDm(ϕ) ≤ max(1, CP )ε, and the proof is concluded by letting
ε→ 0.

The next lemma is an essential tool to use compactness techniques in the convergence analysis of approx-
imation methods for non-linear problems.

Lemma 3.12 (Regularity of the limit). Let (Dm)m∈N be a limit-conforming sequence of gradient discreti-
sations, in the sense of Definition 3.7. For any m ∈ N, take um ∈ XDm and assume that (‖um‖Dm

)m∈N

is bounded. Then there exists u ∈ WG such that, along a subsequence as m→ ∞, (PDmum)m∈N converges
weakly in L to u, and (GDmum)m∈N converges weakly in L to Gu.

Proof. By definition of ‖·‖Dm
, (GDmum)m∈N is bounded in L. By Lemma 3.10, (Dm)m∈N is coercive

and therefore (PDmum)m∈N is bounded in L. The reflexivity of L and L thus gives a subsequence of
(Dm, um)m∈N, denoted in the same way, and elements u ∈ L and u ∈ L such that (PDmum)m∈N converges
weakly in L to u and (GDmum)m∈N converges weakly in L to u. Hence, the limit-conformity of (Dm)m∈N

and the boundedness of (‖um‖Dm
)m∈N give

∀ϕ ∈WD , 〈ϕ,u〉L′,L + 〈Dϕ, u〉L′,L = 0.

Following Remark 3.1, this relation simultaneously proves that u ∈ WG and that u = Gu.

Lemma 3.13 (Equivalent condition for the consistency). A sequence (Dm)m∈N of gradient discretisations

is consistent in the sense of Definition 3.8 if and only if there exists a dense subset W̃G of WG such that

∀ψ ∈ W̃G , lim
m→∞

SDm(ψ) = 0. (3.16)

Proof. Let us assume that (3.16) holds and let us prove (3.13) (the converse is straightforward, take

W̃G =WG). Observe first that, since WG is continuously embedded in L, there exists CWG
> 0 such that

∀ϕ ∈WG , ‖ϕ‖L ≤ CWG
‖ϕ‖WG

.

Let ϕ ∈ WG. Take ε > 0 and ψ ∈ W̃G such that ‖ϕ−ψ‖WG
≤ ε. For v ∈ XDm , the triangle inequality and

the definition (3.5) of the norm in WG yield

‖PDmv − ϕ‖L + ‖GDmv −Gϕ‖
L
≤ ‖PDmv − ψ‖L + ‖ψ − ϕ‖L

+ ‖GDmv −Gψ‖
L
+ ‖Gψ −Gϕ‖

L

≤ ‖PDmv − ψ‖L + ‖GDmv −Gψ‖
L

+ (CWG
+ 1) ‖ψ − ϕ‖WG

.

Taking the infimum over v ∈ XDm leads to SDm(ϕ) ≤ SDm(ψ) + (CWG
+ 1)ε. Assumption (3.16) then

shows that lim supm→∞ SDm(ϕ) ≤ (CWG
+ 1)ε, and letting ε → 0 concludes the proof that SDm(ϕ) → 0

as m→ ∞.
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Lemma 3.14 (Compactness implies coercivity). If a sequence of gradient discretisations is compact in
the sense of Definition 3.9, then it is coercive in the sense of Definition 3.6.

Proof. Assume that (Dm)m∈N is compact but not coercive. Then there exists a subsequence of (Dm)m∈N

(denoted in the same way) such that, for all m ∈ N, we can find vm ∈ XDm \ {0} satisfying

lim
m→∞

‖PDmvm‖L
‖vm‖Dm

= +∞.

Setting um = vm/ ‖vm‖Dm
, this gives limm→∞ ‖PDmum‖L = +∞. But ‖um‖Dm

= 1 for all m ∈ N and the
compactness of the sequence of gradient discretisations therefore implies that (PDmum)m∈N is relatively
compact in L, which is a contradiction.

The next two lemmas show that the compactness of (Dm)m∈N is strongly related to some compactness
property of WG.

Lemma 3.15 (Existence of a compact sequence of GDs implies compact embedding ofWG). Let us assume
the existence of a sequence of gradient discretisations which is consistent in the sense of Definition 3.8 and
compact in the sense of Definition 3.9. Then the embedding of WG in L is compact.

Proof. Let (Dm)m∈N be a consistent and compact sequence of gradient discretisations, and (um)m∈N be a
bounded sequence in WG. For m = 0, let N0 ∈ N be such that there exists uN0 ∈ XDN0

satisfying

∥∥∥PDN0
uN0 − u0

∥∥∥
L
+

∥∥∥GDN0
uN0 −Gu0

∥∥∥
L

≤ 1.

We then build the sequence a bounded sequence (uNm)m∈N by induction. For any m ≥ 1, let Nm > Nm−1

such that there exists uNm ∈ XDNm
satisfying

∥∥PDNm
uNm − um

∥∥
L
+

∥∥GDNm
uNm −Gum

∥∥
L
≤

1

m+ 1
.

Then the sequence (‖uNm‖DNm
)m∈N is bounded. Using the compactness hypothesis of (Dm)m∈N, there

exists a subsequence, denoted (DNϕ(m)
, uNϕ(m)

)m∈N and u ∈ L such that PDNϕ(m)
uNϕ(m)

converges to u

in L. We then have

∥∥u− uϕ(m)

∥∥
L
=

∥∥∥u− PDNϕ(m)
uNϕ(m)

+ PDNϕ(m)
uNϕ(m)

− uϕ(m)

∥∥∥
L

≤
1

ϕ(m) + 1
+

∥∥∥PDNϕ(m)
uNϕ(m)

− u
∥∥∥
L
,

which shows that the subsequence (uϕ(m))m∈N converges to u in L.

3.2.3 A generic example of gradient discretisation

A series of examples of non-conforming GDs for usual second order elliptic problems (which enter the
setting of this paper) may be found in [19]:

1. Non-conforming finite elements,

2. Discontinuous Galerkin methods,

3. Hybrid Mimetic and Mixed methods.

Definition 3.16 below gives a very simple example (the classical Galerkin approximation) of a conforming
GD which satisfies all the required properties.

Definition 3.16 (Galerkin gradient discretisation). Let (ui)i∈N be a dense sequence inWG (whose existence
is ensured by the separability of WG). For all m ∈ N, define a conforming Galerkin gradient discretisation
Dm = (XDm ,PDm ,GDm ), in the sense of Definition 3.5, in the following way:

1. XDm is the vector space spanned by (ui)i=0,...,m,
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2. for all u ∈ XDm , PDmu = u,

3. for all u ∈ XDm , GDmu = Gu.

Lemma 3.17 (Existence of a coercive, consistent and limit-conforming (and compact) sequence of GDs).
The sequence (Dm)m∈N defined by Definition 3.16 is coercive, limit-conforming and consistent in the sense
of the definitions 3.6, 3.7 and 3.8. If, moreover, the embedding of WG in L is compact, then (Dm)m∈N is
also compact in the sense of Definition 3.9.

Proof. By definition, for all v ∈ XDm , we have ‖v‖Dm
= ‖v‖WG

, which proves that ‖·‖Dm
is a norm

on XDm . The coercivity is then a consequence of Assumption (3.7). Relation (3.3) implies that WD

defined by (3.10) is identically null, which implies the limit-conformity property. The consistency is a
consequence of the assumption that (ui)i∈N is a dense sequence in WG. The compactness of the sequence
is a straightforward consequence of the compact embedding of WG in L.

4 Approximation of an abstract Leray-Lions problem

In this section, we generalise the problem presented in the introduction of this paper and provide a con-
vergence analysis based on the GDM. In the whole section, p ∈ (1,+∞) is given. Our general assumptions
are similar to the assumptions considered in [25]:

a : L×L→ L′ is such that a(·,v) is continuous for the strong
topology of L′, and a(v, ·) is continuous for the weak-⋆
topology of L′,

(4.1a)

a is monotonous in the sense:
∀v ∈ L, ∀v,w ∈ L, 〈a(v,v)− a(v,w),v −w〉L′,L ≥ 0,

(4.1b)

a is coercive in the sense that there exists α > 0 such that:
∀v ∈ L, ∀v ∈ L, α ‖v‖p

L
≤ 〈a(v,v),v〉L′,L,

(4.1c)

There exists a function α : R
+ × R

+ → R
+, non-decreasing

with respect to its arguments, such that:
∀v ∈ L, ∀v ∈ L, ‖a(v,v)‖

L′ ≤ α(‖v‖L , ‖v‖L),
(4.1d)

a : L→ V is continuous for the weak-⋆ topology of L′, (4.2a)

a is monotonous in the sense: ∀v, w ∈ L, 〈a(v)− a(w), v − w〉L′,L ≥ 0, (4.2b)

a is “V -coercive” in the sense that there exists α > 0 such that:
∀v ∈ L, α |v|pL,V ≤ 〈a(v), v〉L′,L,

(4.2c)

There exists a non-decreasing function α : R
+ → R

+

such that: ∀v ∈ L, ‖a(v)‖L′ ≤ α(‖v‖L).
(4.2d)

Remark 4.1. The existence of the non-decreasing functions α, α is equivalent to the boundedness of the
mappings a and a, in the sense of [25] (a bounded mapping transforms any bounded set into a bounded
set); this equivalence can be seen by setting, for instance, α(s, t) = sup{‖a(v,v)‖

L′ : (v,v) ∈ L × L with
‖v‖L ≤ s and ‖v‖

L
≤ t} and α(s) = sup{a(v) : v ∈ L with ‖v‖L ≤ s}.

Remark 4.2. The framework of Section 3.2 can be extended, assuming that there exists a Banach space
L̂ which is continuously embedded in L, such that the reconstruction operator PD has co-domain L̂. The

coercivity definition 3.6 is then modified, setting CD = maxv∈XD\{0}
‖PDv‖

L̂

‖v‖D
; the compactness definition

3.9 is modified by requesting that the relative compactness of (PDmum)m∈N holds in L̂ . In this extended

framework, replacing the space L by L̂ in Hypotheses (4.1), the convergence theorem 4.12 still holds. An
interesting application of this modified framework is the case where WG = W 1,p(Ω), L = Lp(Ω) and

L̂ = Lq(Ω) with q ∈ [p, pd
d−p

) for p < d and L̂ = Lq(Ω) with q ∈ [p,+∞) for p ≥ d; most of the numerical
methods included in the GDM framework satisfy these extended coercivity and compactness definitions, see
[19, Part III and Appendix B].
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The next two results ensure that for any separable reflexive smooth Banach spaces, there exist some
operators a and a with the required properties. Let us recall the definition of a smooth Banach space.

Definition 4.3 (Strictly convex and smooth Banach spaces).

1. A Banach space (B, ‖·‖B) is said to be strictly convex if ‖·‖B is a strictly convex mapping from B
to R,

2. A Banach space (B, ‖·‖B) is said to be smooth if, for any x ∈ B with ‖x‖B = 1, there exists one and
only one f ∈ B′ such that f(x) = ‖f‖B′ = 1,

3. If (B, ‖·‖B) is smooth (resp. strictly convex), then (B′, ‖·‖B′ ) is strictly convex (resp. smooth).

Remark 4.4 (Equivalent strictly convex and smooth norms). Lindenstrauss proved in [26] that any re-
flexive Banach space has an equivalent strictly convex norm and an equivalent smooth norm.

Lemma 4.5 (Existence of a). Assume that L is smooth and define the duality mapping T : L → L′

associated with the gauge µ(s) = sp−1. We recall that this mapping is defined by: for any v ∈ L, T (v) is
the unique element in L′ such that

∀v ∈ L, 〈T (v),v〉L′,L = ‖v‖
L
µ(‖v‖

L
) and ‖T (v)‖

L′ = µ(‖v‖
L
). (4.3)

Then a, defined for all (v,v) ∈ L×L by a(v,v) = T (v), satisfies Assumptions (4.1).

Proof. From [9, 12, 13], the mapping T exists and is continuous for the weak-⋆ topology of L′ (its uniqueness
is a consequence of the fact that the norm of L′ is strictly convex).
The boundedness mentioned in (4.1d) is obvious (with α(s, t) = tp−1), as well as the coercivity (4.1c)
(with α = 1). It remains to check the monotonicity of T , which in turn implies (4.1b). By developing the
duality product and using the definition of T ,

〈T (v)− T (w),v −w〉L′,L = ‖v‖p
L
+ ‖w‖p

L
− 〈T (v),w〉L′,L − 〈T (w),v〉L′,L.

Therefore

〈T (v)− T (w),v −w〉L′,L ≥ ‖v‖p
L
+ ‖w‖p

L
− ‖v‖p−1

L
‖w‖

L
− ‖w‖p−1

L
‖v‖

L

= (‖v‖p−1
L

− ‖w‖p−1
L

)(‖v‖
L
− ‖w‖

L
) ≥ 0,

since the function s 7→ sp−1 is increasing on R
+.

Remark 4.6. In the case L = Lp(Ω)d, the operator T defined by (4.3) is v 7→ T (v) = |v|p−2v.

Lemma 4.7 (Existence of a). Assume that L is smooth. Define ã : L→ L′ by

u 7→ ã(u) := argmax{〈µ, u〉L′,L;µ ∈ V such that ‖µ‖L′ = 1}.

Then for any u ∈ L, one has 〈ã(u), u〉L′,L = |u|L,V and the mapping a : L → L′ defined by a(u) :=

|〈ã(u), u〉L′,L|
p−1ã(u) satisfies Hypotheses (4.2).

Proof. The relation 〈ã(u), u〉L′,L = |u|L,V is an immediate consequence of the definitions of ã and |·|L,V .
The proof that a satisfies the required properties is similar to that of Lemma 4.5.

Remark 4.8. If V = span(µ1, . . . , µr), a possible choice of a that satisfies (4.2) is given by

a(u) =
r∑

i=1

|〈µi, u〉L′,L|
p−2〈µi, u〉L′,L µi.

In the case r = 1, this operator a is the one defined in Lemma 4.7.
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For any b ∈ (WG)
′ (the space of linear continuous forms for the norm ‖·‖WG,G), the abstract Leray-Lions

problem reads in its weak form

Find u ∈ WG such that ∀v ∈ WG, 〈a(u,Gu),Gv〉L′,L + 〈a(u), v〉L′,L = 〈b, v〉(WG)′,WG
. (4.4)

The following lemma will enable us to write an equivalent form for this problem.

Lemma 4.9. If b ∈ (WG)
′ then there exists (f,F ) ∈ L′ ×L′ such that

∀v ∈ WG, 〈b, v〉(WG)′,WG
= 〈f, v〉L′,L − 〈F ,Gv〉L′,L.

Proof. Let I : WG → L × L be the embedding I(v) = (v,Gv). Define b̃ : Im(I) → R by b̃(I(v)) =

〈b, v〉(WG)′,WG
. Then b̃ is linear and |̃b(I(v))| ≤ ‖b‖(WG)′ ‖v‖WG,G = ‖b‖(WG)′ (‖v‖L + ‖Gv‖

L
). The Hahn-

Banach extension theorem then enables us to extend b̃ as a continuous linear form on L × L. Any such
form can be represented as b̃(v,v) = 〈f, v〉L′,L − 〈F ,v〉L′,L for some (f,F ) ∈ L′ × L′, and the proof is

complete by choice of b̃ on Im(I).

Using (f,F ) provided by the preceding lemma, without loss of generality the problem (4.4) can be re-
written as

Find u ∈ WG such that, ∀v ∈ WG,

〈a(u,Gu),Gv〉L′,L + 〈a(u), v〉L′,L = 〈f, v〉L′,L − 〈F ,Gv〉L′,L.
(4.5)

As proved in Lemma 4.10 below, an equivalent form of Problem (4.5) reads:

Find u ∈WG such that a(u,Gu) + F ∈WD and

−D
(
a(u,Gu) + F

)
+ a(u) = f.

(4.6)

Lemma 4.10. Problems (4.6) and (4.5) are equivalent.

Proof. Let u ∈WG be a solution to Problem (4.6). The equation in this formulation is a relation between
elements of L′. Applying this equation to a generic v ∈ WG and using (3.3) shows that u is a solution to
Problem (4.5).
Reciprocally, take u ∈ WG a solution to Problem (4.5). Then the equation in (4.5) shows that, for all
v ∈WG,

〈a(u,Gu) + F ,Gv〉L′,L + 〈a(u)− f, v〉L′,L = 0.

By definition (3.1) of WD, this shows that a(u,Gu) + F ∈ WD and that D(a(u,Gu) + F ) = a(u) − f ,
which is exactly (4.6).

Lemma 4.11 (Existence of a solution to (4.5)). Under Assumptions (4.1)–(4.2), there exists at least one
solution to Problem (4.5).

Proof. The fact that in the framework of this section, there exists at least one solution to Problem (4.5),
is a by-product of the convergence theorem 4.12 below and of the existence result given in Lemma 3.17.
But it is also a consequence of [25, Théorème 1], in which the Banach space denoted by V corresponds to
WG here, and in which the operators denoted by A(u) and A(u, v) are defined as follows.

• If we assume that a only depends on its second argument, we define A : WG →W ′
G, by:

∀u,w ∈ WG, 〈A(u), w〉WG,W ′

G
= 〈a(Gu),Gw〉L′,L + 〈a(u), w〉L′,L.

Then, owing to the monotony and boundedness hypotheses on a and a, [25, Hypothèse I] is satisfied.

• In the case where a may also depend on its first argument, if we moreover assume that the embedding
of WG in L is compact, we define A : WG ×WG →W ′

G, by:

∀u, v, w ∈WG, 〈A(u, v), w〉WG,W ′

G
= 〈a(u,Gv),Gw〉L′,L + 〈a(v), w〉L′,L.

Then, owing to Assumptions (4.1)–(4.2), [25, Hypothèse II] is satisfied.
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This justifies the fact that we call Problem (4.5) an abstract Leray-Lions problem.

Given a gradient discretisation D, the gradient scheme (GS) for Problem (4.5) is: find u ∈ XD such that

∀v ∈ XD, 〈a(PDu,GDu),GDv〉L′,L + 〈a(PDu),PDv〉L′,L

= 〈f,PDv〉L′,L − 〈F ,GDv〉L′,L. (4.7)

Theorem 4.12 (Convergence of the GS, abstract Leray–Lions problems). Under Assumptions (4.1)–(4.2),
take a sequence (Dm)m∈N of GDs in the sense of Definition 3.5, which is consistent and limit-conforming
in the sense of Definitions 3.8 and 3.7.
Then, for any m ∈ N, there exists at least one um ∈ XDm solution to the gradient scheme (4.7). Moreover:

• If we assume that a only depends on its second argument, then there exists u solution of (4.5) such
that, up to a subsequence, PDmum converges weakly in L to u and GDmum converges weakly in L
to Gu as m→ ∞.

• In the case where a may also depend on its first argument, if we moreover assume that the sequence
(Dm)m∈N of GDs is compact in the sense of Definition 3.9 (this assumption implies that the embed-
ding of WG in L is compact, see Lemma 3.15), then there exists u solution of (4.5) such that, up to
a subsequence, PDmum converges strongly in L to u and GDmum converges weakly in L to Gu as
m→ ∞.

In the case where the solution u of (4.5) is unique, then the above convergence results hold for the whole
sequence.

Proof. Step 1: existence of a solution to the scheme.

Let D be a GD in the sense of Definition 3.5. We endow the finite dimensional space XD with an inner
product 〈 , 〉 and we denote by | · | its related norm. Define F : XD → XD as the function such that, if
u ∈ XD, F (u) is the unique element in XD which satisfies

∀v ∈ XD , 〈F (u), v〉 = 〈a(PDu,GDu),GDv〉L′,L + 〈a(PDu),PDv〉L′,L.

Likewise, we denote by w ∈ XD the unique element such that

∀v ∈ XD , 〈w, v〉 = 〈f,PDv〉L′,L − 〈F ,GDv〉L′,L.

The assumptions on a and a show that F is continuous and that, for all u ∈ XD, 〈F (u), u〉 ≥ α ‖GDu‖
p
L
+

α |PDu|
p
L,V ≥ 21−p min(α, α) ‖u‖pD. By equivalence of the norms on the finite dimensional space XD, this

shows that 〈F (u), u〉 ≥ C1|u|
p with C1 not depending on u. Hence lim|u|→∞

〈F (u),u〉
|u|

= +∞ and F is

surjective (see [25] or [16, Theorem 3.3, page 19]). Therefore there exists u ∈ XD such that F (u) = w,
which means that u is a solution to (4.7).

Step 2: convergence to a solution of the continuous problem.

As in the statement of the theorem, assume that um is a solution to (4.7) with D = Dm. Letting v = um

in (4.7) with D = Dm and using (3.9), (4.1c) and (4.2c), we get

21−p min(α, α) ‖um‖pDm
≤ α ‖GDmum‖p

L
+ α |PDmum|pL,V

≤ (CDm‖f‖L′ + ‖F ‖
L′) ‖um‖Dm

.

Thanks to the coercivity of the sequence of GDs, this provides an estimate on GDmum in L and on
PDmum in L. Lemma 3.12 then gives u ∈ WG such that, up to a subsequence, PDmum → u weakly in L
and GDmum → Gu weakly in L. In the case where a may depend on its first argument, by compactness
of the sequence of GDs, we can also assume that the convergence of PDmum to u is strong in L.
By Hypothesis (4.1d), the sequence (a(PDmum,GDmum))m∈N of elements of L′ remains bounded in L′ and
converges therefore, up to a subsequence, to some A weakly in L′, as m → ∞. Similarly, by Hypothesis
(4.2d), the sequence a(PDmum) of elements of L′ remains bounded in L′ and converges therefore, up to a
subsequence, to some A weakly in L′, as m→ ∞.
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Let us now show that u is solution to (4.5), using the well-known Minty trick [29]. For a given ϕ ∈ WG

and for any gradient discretisation D in the sequence (Dm)m∈N, we introduce

IDϕ ∈ argmin
v∈XD

(‖PDv − ϕ‖L + ‖GDv −Gϕ‖L)

as a test function in (4.7). By the consistency of (Dm)m∈N, PDmIDmϕ→ ϕ in L and GDmIDmϕ → Gϕ in
L, as m→ ∞. Hence, letting m→ ∞ in the gradient scheme,

〈A,Gϕ〉L′,L + 〈A,ϕ〉L′,L = 〈f, ϕ〉L′,L − 〈F ,Gϕ〉L′,L, ∀ϕ ∈WG. (4.8)

On the other hand, we may take um as a test function in (4.7) and let m → ∞. Using (4.8) with ϕ = u,
this leads to

lim
m→∞

(
〈a(PDmum,GDmum),GDmum〉L′,L + 〈a(PDmum),PDmum〉L′,L

)

= 〈f, u〉L′,L − 〈F ,Gu〉L′,L = 〈A,Gu〉L′,L + 〈a(u), u〉L′,L. (4.9)

Hypotheses (4.1b) and (4.2b) give, for any v ∈ WG,

〈a(PDmum,GDmum)− a(PDmum,Gv),GDmum −Gv〉L′,L

+ 〈a(PDmum)− a(v),PDmum − v〉L′,L ≥ 0. (4.10)

Developing this, using (4.9) to identify the limit of the sole term

〈a(PDmum,GDmum),GDmum〉L′,L + 〈a(PDmum),PDmum〉L′,L

involving a product of two weak convergences and using the (strong) continuity of a with respect to its
first argument (the second argument is Gv), we may let m→ ∞ to get

〈A− a(u,Gv),Gu−Gv〉L′,L + 〈A− a(v), u− v〉L′,L ≥ 0.

Set v = u+ sv in the preceding inequality, where v ∈WG and s > 0. Dividing by s, we get

〈A− a(u,Gu+ sGv),Gv〉L′,L + 〈A− a(u+ sv), v〉L′,L ≥ 0.

Letting s → 0 and using the continuity of a(u, ·) for the weak topology of L′ and the continuity of a for
the weak topology of L′ leads to

〈A− a(u,Gu),Gv〉L′,L + 〈A− a(u), v〉L′,L ≥ 0, ∀v ∈ WG.

Changing v into −v shows that 〈A,Gv〉L′,L + 〈A, v〉L′,L = 〈a(u,Gu),Gv〉L′,L + 〈a(u), v〉L′,L. Using this
relation in (4.8) with ϕ = v, this concludes the proof that u is a solution of (4.5).

5 Approximation of a linear elliptic problem

We consider here a particular case of Problem (4.5) or(4.6). We take p = 2 and assume that there exist
α > 0 and α > 0 such that

a : L→ L′ is linear continuous with norm bounded by α, (5.1a)

a is α-coercive: ∀v ∈ L, ∀v ∈ L, α ‖v‖2
L
≤ 〈a(v),v〉L′,L. (5.1b)

a : L→ L′ is linear and continuous with norm bounded by α , (5.1c)

a is α-coercive: ∀v ∈ L, α |v|2L,V ≤ 〈a(v), v〉L′,L. (5.1d)

Then L is a Hilbert space when endowed with the scalar product

(v,w) 7→
1

2

(
〈a(v),w〉L′,L + 〈a(w),v〉L′,L

)
.
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Hypotheses (5.1) imply

∀u ∈ WG, α ‖u‖2WG
≤ 〈a(Gu),Gu〉L′,L + 〈a(u), u〉L′,L ≤ α ‖u‖2WG

, (5.2)

which shows that WG is a Hilbert space when endowed with the scalar product

(u, v) 7→ 〈u, v〉WG
:=

1

2

(
〈a(Gu),Gv〉L′,L + 〈a(Gv),Gu〉L′,L

+ 〈a(u), v〉L′,L + 〈a(v), u〉L′,L

)
.

(5.3)

For any (f,F ) ∈ L′ ×L′, the abstract linear elliptic problem reads:

Find u ∈ WG such that, ∀v ∈ WG,

〈a(Gu),Gv〉L′,L + 〈a(u), v〉L′,L = 〈f, v〉L′,L − 〈F ,Gv〉L′,L

(5.4)

or, by Lemma 4.10:
Find u ∈WG such that a(Gu) + F ∈WD and

−D
(
a(Gu) + F

)
+ a(u) = f.

(5.5)

Theorem 5.1 (Existence and uniqueness of a solution to (5.4)). Under Hypothesis (5.1), there exists one
and only one solution to Problem (5.4).

Proof. This is an immediate consequence of Lax-Milgram theorem, on the Hilbert space WG endowed with
the inner product defined by (5.3)

Table 5 presents the links between this abstract linear elliptic setting and the standard elliptic PDE, for
all BCs proposed in the introduction of this paper.

B.C.
homogeneous
Dirichlet

homogeneous
Neumann

non-homogeneous
Neumann

Fourier

L L2(Ω) L2(Ω) L2(Ω)× L2(∂Ω) L2(Ω)× L2(∂Ω)

L L2(Ω)d L2(Ω)d L2(Ω)d L2(Ω)d

a : v 7→ Λv v 7→ Λv v 7→ Λv v 7→ Λv

a : u 7→ 0 u 7→ (
∫
Ω
u)1Ω (u,w) 7→ (

∫
Ω
u)(1Ω, 0) (u,w) 7→ (0, bw)

Tab. 5: Link between the abstract linear elliptic problem and the usual elliptic PDE −div(Λ∇u) =
f + div(F), for various various boundary conditions.

Given a gradient discretisation D in the sense of Definition 3.5, we consider the following scheme for the
approximation of Problem (5.4): find u ∈ XD such that

∀v ∈ XD, 〈a(GDu),GDv〉L′,L + 〈a(PDu),PDv〉L′,L

= 〈f,PDv〉L′,L − 〈F ,GDv〉L′,L.
(5.6)

For a given basis (ξ(i))i=1,...,N of XD, the scheme (5.6) is equivalent to solving the linear square system
AU = B, where

u =

N∑

j=1

Ujξ
(j),

Aij = 〈a(GDξ
(j)),GDξ

(i)〉L′,L + 〈a(PDξ
(j)),PDξ

(i)〉L′,L, (5.7)

Bi = 〈f,PDξ
(i)〉L′,L − 〈F ,GDξ

(i)〉L′,L.
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5.1 A priori error estimate

The following theorem gives an error estimate for the gradient scheme (5.6).

Theorem 5.2 (Error estimate, abstract linear elliptic problem). Under Assumptions (5.1), let u ∈ WG be
the solution to Problem (5.4) and let D be a GD in the sense of Definition 3.5. Then there exists one and
only one uD ∈ XD solution to the GS (5.6). This solution satisfies the following inequalities:

‖Gu−GDuD‖L ≤
1

α

(
WD(a(Gu) + F ) + (α(1 + CD) + α)SD(u)

)
, (5.8)

‖u− PDuD‖L ≤
1

α

(
CDWD(a(Gu) + F ) + (CD(1 +CD)α+ α)SD(u)

)
, (5.9)

where CD, SD and WD are respectively the norm of the reconstruction operator PD, the consistency measure
and the conformity defect, defined by (3.9), (3.12) and (3.10).
Moreover, we also have the reverse inequalities

WD(a(Gu) + F ) ≤ α‖Gu−GDuD‖L, (5.10)

SD(u) ≤ ‖u−PDuD‖L + ‖Gu−GDuD‖L, (5.11)

which shows the existence of C2 > 0 and C3 > 0, only depending on α and α, such that

C2

1 +CD

(
SD(u) +WD(a(Gu) + F )

)
≤ ‖u− PDuD‖L + ‖Gu−GDuD‖L

≤ C3(1 + CD)2
(
SD(u) +WD(a(Gu) + F )

)
. (5.12)

Proof. Let us first prove that, if (5.8)–(5.9) holds for any solution uD ∈ XD to Scheme (5.6), then the
solution to this scheme exists and is unique. To this purpose, we prove that if (5.8) holds then the matrix
A of the linear system (5.7) is non-singular, i.e. that if AU = 0 then U = 0. Thus, we consider the
particular case where f = 0 and F = 0 which gives a zero right-hand side. In this case the solution u of
(5.4) is equal to zero. Then from (5.8)–(5.9), any solution to the scheme satisfies ‖uD‖D = 0. Since ‖·‖D
is a norm on XD this leads to uD = 0. Therefore (5.7) (as well as (5.6)) has a unique solution for any
right-hand side f and F .
Let us now prove that any solution uD ∈ XD to Scheme (5.6) satisfies (5.8) and (5.9). Let ϕ = a(Gu)+F ;
then ϕ belongs to WD and can thus be considered in the definition (3.10) of WD. This gives, for any
v ∈ XD,

|〈a(Gu) + F ,GDv〉L′,L + 〈D(a(Gu) + F ),PDv〉L′,L| ≤ ‖v‖D WD(a(Gu) + F ).

Since −f + a(u) = D(a(Gu) + F ), this yields

|〈a(Gu) + F ,GDv〉L′,L + 〈−f + a(u),PDv〉L′,L| ≤ ‖v‖D WD(a(Gu) + F ). (5.13)

Using the gradient scheme (5.6) to replace the terms involving f and F in the left-hand side, we infer

|〈a(Gu−GDuD),GDv〉L′,L + 〈a(u− PDuD),PDv〉L′,L| ≤ ‖v‖D WD(a(Gu) + F ). (5.14)

Define IDu = argmin w∈XD
(‖PDw − u‖L + ‖GDw −Gu‖L) and notice that, by definition (3.12) of SD,

‖PDIDu− u‖L + ‖GDIDu−Gu‖
L
= SD(u). (5.15)

Recalling the definition of ‖·‖D in Definition 3.5, introducing Gu and Pu and using (5.14) gives

〈a(GDIDu−GDuD),GDv〉L′,L + 〈a(PDIDu− PDuD),PDv〉L′,L

≤ ‖v‖D WD(a(Gu) + F )

+ |〈a(GDIDu−Gu),GDv〉L′,L + 〈a(PDIDu− u),PDv〉L′,L|

≤ ‖v‖D
[
WD(a(Gu) + F ) + α(‖GDIDu−Gu‖

L
+ CD ‖PDIDu− u‖L)

]

≤ ‖v‖D [WD(a(Gu) + F ) + α(1 + CD)SD(u)] .



5 Approximation of a linear elliptic problem 17

Choose v = IDu− uD and apply Hypothesis (5.1):

α ‖IDu− uD‖D ≤WD(a(Gu) + F ) + α(1 + CD)SD(u). (5.16)

Estimate (5.8) follows by using the triangle inequality:

‖Gu−GDuD‖L ≤ ‖Gu−GDIDu‖L + ‖GD(IDu− uD)‖
L

≤ ‖Gu−GDIDu‖L + ‖IDu− uD‖D

≤ SD(u) +
1

α
(WD(a(Gu) + F ) + α(1 + CD)SD(u)) . (5.17)

Using (3.9) and (5.16), we get

α ‖PDIDu−PDuD‖L ≤ CD(WD(a(Gu) + F ) + α(1 + CD)SD(u)), (5.18)

which yields (5.9) by invoking, as in (5.17), the triangle inequality and the estimate ‖u−PDIDu‖L ≤ SD(u).

Let us now turn to the proof of (5.10). The gradient scheme (5.6) gives, for any v ∈ XD \ {0},

〈f − a(u),PDv〉L′,L − 〈a(Gu) + F ,GDv〉L′,L

= 〈a(GDu−Gu),GDv〉L′,L + 〈a(PDu− u),PDv〉L′,L

and thus

|〈f − a(u),PDv〉L′,L − 〈a(Gu) + F ,GDv〉L′,L|

‖v‖D

≤ α(‖GDu−Gu‖
L
+ CD ‖PDu− u‖L).

Taking the supremum over v on the left hand side yields (5.10) since (5.5) holds. Inequality (5.11) is an
immediate consequence of the definition of SD(u).

Remark 5.3 (On the compactness assumption). Note that, in the linear case, the compactness of the
sequence of GDs is not required to obtain the convergence. This compactness assumption is in general only
needed for some non-linear problems.

Remark 5.4 (Consistency and limit-conformity are necessary conditions). We state here a kind of recipro-
cal property to the convergence property. Let us assume that, under Hypothesis (5.1), a sequence (Dm)m∈N

of GDs is such that, for all f ∈ L and F ∈ L and for all m ∈ N, there exists um ∈ XDm which is solution
to the gradient scheme (5.6) and such that PDmum (resp. GDmum) converges in L to the solution u of
(5.4) (resp. in L to Gu). Then (Dm)m∈N is consistent and limit-conforming in the sense of Definitions
3.8 and 3.7.
Indeed, for ϕ ∈ WG, let us consider f = a(ϕ) and F = −a(Gϕ) in (5.4). Since in this case u = ϕ, the
assumption that PDmum (resp. GDmum) converges in L to the solution ϕ of (5.4) (resp. converges in L to
Gϕ) and inequality (5.11) prove that SDm(ϕ) tends to 0 as m→ ∞, and therefore the sequence (Dm)m∈N

is consistent.
For ϕ ∈WD, let us set f = Dϕ and F = −ϕ in (5.4). In this case, the solution u is equal to 0, since the
right-hand side of (5.4) vanishes for any v ∈WG. Then inequality (5.10) implies

WDm(ϕ) ≤ α‖GDmum‖L → 0 as m→ 0,

hence concluding that the sequence (Dm)m∈N is limit-conforming.
Note that, if we now assume that GDmum converges only weakly in L to Gu, the same conclusion holds.
Indeed, the other hypotheses on (Dm)m∈N are sufficient to prove that GDmum actually converges strongly
in L to Gu. Indeed,

lim
m→∞

(〈f,PDmum〉L′,L − 〈F ,GDmum〉L′,L) = 〈f, u〉L′,L − 〈F ,Gu〉L′,L.
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Then we take v = u in (5.4) and v = um in (5.6), this leads to

lim
m→∞

(〈a(GDmum),GDmum〉L′,L + 〈a(PDmum),PDmum〉L′,L)

= 〈f, u〉L′,L − 〈F ,Gu〉L′,L = 〈a(Gu),Gu〉L′,L + 〈a(u), u〉L′,L.

In addition to the assumed weak convergence property of GDmum, this proves

lim
m→∞

〈a(GDmum −Gu),GDmum −Gu〉L′,L = 0,

and the convergence of GDmum to Gu in L follows from the coercivity of a assumed in (5.1).

5.2 A posteriori error estimate

In this section, not included in the published version of this article, we establish an a posteriori error
estimate for the approximation (5.6) of Problem (5.4).
Letting uD ∈ XD be the solution to (5.6), define

ŴD = sup
v∈WG\{0}

|〈a(GDuD) + F ,Gv〉L′,L + 〈a(PDuD)− f, v〉L′,L|

‖v‖WG

, (5.19)

and
ŜD = min

v∈WG

(
‖PDuD − v‖L + ‖GDuD −Gv‖

L

)
. (5.20)

Note that the quantities ŴD and ŜD only depend on the discrete solution uD and on the data of the
problem, not on the solution u of the continuous problem. We also remark that ŜD = 0 in the conforming
case. The following theorem states an error estimate for (5.6), purely in terms of ŴD and ŜD.

Theorem 5.5 (A posteriori error estimate, abstract linear elliptic problem). Under Assumptions (5.1),
let u ∈ WG be the solution to Problem (5.4) and let D be a GD in the sense of Definition 3.5. Then the
solution uD ∈ XD to the GS (5.6) satisfies the following inequalities:

α(‖u− PDuD‖L + ‖Gu−GDuD‖L) ≤ CWG,V ŴD + (CWG,V α+ α)ŜD, (5.21)

where CWG,V is defined in (3.7). Moreover, the following reverse inequalities also hold:

ŴD ≤ α(‖u− PDuD‖L + ‖Gu−GDuD‖L), (5.22)

ŜD ≤ ‖u− PDuD‖L + ‖Gu−GDuD‖L. (5.23)

As a consequence, there exists C4 > 0, depending only on α, α and CWG,V , such that

1

C4

[
ŜD + ŴD

]
≤ ‖u− PDuD‖L + ‖Gu−GDuD‖L ≤ C4

[
ŜD + ŴD

]
. (5.24)

Proof. Using (5.4), we observe that, for a given v ∈ WG,

|〈a(GDuD)− a(Gu),Gv〉L′,L + 〈a(PDuD)− a(u), v〉L′,L|

= |〈a(GDuD) + F ,Gv〉L′,L + 〈a(PDuD)− f, v〉L′,L| ≤ ŴD‖v‖WG
.

We now let û ∈ WG be such that û = argmin w∈WG
(‖PDuD − w‖L + ‖GDuD − Gw‖L). Introducing

±a(Gû) and ±a(û), using the previous inequality, and recalling (5.1a) and (5.1c), we write

|〈a(Gû)− a(Gu),Gv〉L′,L + 〈a(û)− a(u), v〉L′,L| ≤ (ŴD + αŜD) ‖v‖WG
. (5.25)

Setting v = û− u in this equation, Hypotheses (5) yield α‖û− u‖WG
≤ (ŴD + αŜD). This proves (5.21),

thanks to the triangle inequality and to (3.7).
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We now write, using (5.6),

〈a(GDuD) + F ,Gv〉L′,L + 〈a(PDuD)− f, v〉L′,L

= 〈a(Gu) + F ,Gv〉L′,L + 〈a(u)− f, v〉L′,L + 〈a(GDuD)− a(Gu),Gv〉L′,L + 〈a(PDuD)− a(u), v〉L′,L

= 〈a(GDuD)− a(Gu),Gv〉L′,L + 〈a(PDuD)− a(u), v〉L′,L

≤ α(‖u− PDuD‖L + ‖Gu−GDuD‖L) ‖v‖WG
,

which implies (5.22). Inequality (5.23) is an immediate consequence of the definition (5.20) of ŜD.

6 Other applications of the unified discretisation setting

We briefly present here other PDE models that can be analysed using the unified setting presented in this
paper.

6.1 A hybrid-dimensional problem

We consider a simplified model for a Darcy flow in a convex domain Ω ⊂ R
3, in which a fracture Γ splits

the domain Ω into two subdomains, Ω1 and Ω2. This fracture is defined by Γ = Ω∩P , where P is a plane.
We assume that n12 is the unit vector normal to Γ, oriented from Ω1 to Ω2. The model reads





−div(Λ∇u) = r in Ωi, i = 1, 2,
u = 0 on ∂Ω,

−divΓ(ΛΓ∇Γu) + (Λ∇u|Ω1
− Λ∇u|Ω2

) · n12 = rΓ on Γ,
(6.1)

where ∇Γ (resp. divΓ) is the 2D gradient (resp. divergence) along Γ, r ∈ L2(Ω), rΓ ∈ L2(Γ).
Defining the space

H = {v ∈ H1
0 (Ω) | γΓv ∈ H1(Γ)},

the weak formulation of Problem (6.1) is given by: find ū ∈ V such that

∀v ∈ H,

∫

Ω

Λ∇ū · ∇vdx+

∫

Γ

ΛΓ∇ΓγΓū · ∇ΓγΓvds =

∫

Ω

rvdx+

∫

Γ

rΓγΓvds. (6.2)

This weak formulation is then identical to (5.4) by letting:

• L = L2(Ω) × L2(Γ), L = L2(Ω)3 × L2(Γ)2,

• WG = {(v, γΓv), v ∈ H} and G(v, γΓv) = (∇v,∇ΓγΓv),

• V = {0}, a(v,w) = (Λv,ΛΓw), f = (r, rΓ), F = 0.

Then, in this very simple case of fracture, the abstract Gradient Discretisation Method defined here
applied to this problem is identical to that of [10]. It is expected that the general case of fractured domain
studied in [10] could enter into this framework as well; this however does not avoid the tricky proof of the
density results in [10]. Note that an interesting problem would be to check whether the abstract Gradient
Discretisation Method could be also applied to a similar hybrid-dimensional problem studied in [22], which
includes several types of parabolic degeneracies (this problem can modelize for example the interaction
between surface and ground water flows).

6.2 Linear elasticity in solid continuum mechanics

Consider now the following spaces:

• Ω ⊂ R
3,

• L = L2(Ω)3, so that L′ = L2(Ω)3 = L.

• L = L2(Ω)3×3, so that L′ = L2(Ω)3×3 = L.

• WD = Hdiv(Ω)
3, and V = {0}.
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• WG = H1
0 (Ω)

3.

The operators G : H1
0 (Ω)

3 → L2(Ω)3×3 and D : Hdiv(Ω)
3 → L2(Ω)3 are defined, for u ∈ H1

0 (Ω)
3 (the

“displacement field”) by

(Gu)i,j =
1

2
(∂iu

(j) + ∂ju
(i)),

and, for σ ∈ Hdiv(Ω)
3 (the “stress field”)

(Dσ)i =
3∑

j=1

∂jσ
(i,j).

Then, the construction in Section 5 handles the case of the linear elasticity theory in solid continuum
mechanics. Indeed, a strong formulation of the equilibrium of a solid under internal forces is Problem (5.5)
where the linear operator a expresses Hooke’s law, that is: a(Gu)i,j = λ

∑3
k=1(Gu)k,kδi,j + 2µ(Gu)i,j

with δi,j = 1 if i = j and 0 otherwise, the Lamé coefficients λ ≥ 0, µ > 0 are given. Equation(5.4) is the
so-called “virtual displacement” formulation, that is the weak formulation of (5.5).

6.3 Riemannian geometry

Let (M, g) be a compact orientable Riemannian manifold of dimension d without boundary, and corre-
sponding measure µg. We denote by TM = ∪x∈M ({x} × TxM) the tangent bundle to M , and define the
operators and spaces

• L = L2(M), so that L′ = L2(M) = L,

• L = L2(TM) := {v : v(x) ∈ TxM ,∀x ∈M and x 7→ gx(v(x),v(x))
1/2 ∈ L2(M)}; we have L′ = L,

• G : C1(M) → L2(TM) the standard gradient, that is Gu = ∇gu such that, for any smooth vector
field X and any x ∈ M , ∇gu(x) ∈ TxM and gx(X(x),∇gu(x)) = dux(X(x)), where dux is the
differential of u at x.

• WG is the closure in L2(M) of C1(M) for the norm

u 7→

(∫

M

|u(x)|2 dµg(x) +

∫

M

gx(∇gu(x),∇gu(x)) dµg(x)

)1/2

.

Then G is naturally extended, by density, to WG.

Then, following the construction in Section 3.1, D is the standard divergence divg on M and WD = {v ∈
L2(TM) : divgv ∈ L2(M)}. We can then take V = span{1} and see that (3.7) holds by the Poincaré–
Wirtinger inequality in WG (this inequality follows as in bounded open sets of Rd by using the compact
embedding WG →֒ L2(M)).
In the setting described by (5.1), Problem (5.5) contains as a particular case the Poisson equation −∆gu = f
on M (with selection of the unique solution having zero average on the manifold), obtained by letting
a(∇gu) = ∇gu and a(u) =

∫
M
u(x) dµg(x). In its generic form, (4.4) is an extension of the Leray–Lions

equations to M .
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méthodes de Minty-Browder. Bull. Soc. Math. France, 93:97–107, 1965.

[26] J. Lindenstrauss. On nonseparable reflexive banach spaces. Bull. Amer. Math. Soc., 72(6):967–970,
1966.

[27] W. B. Liu and J. W. Barrett. A further remark on the regularity of the solutions of the p-Laplacian
and its applications to their finite element approximation. Nonlinear Anal., 21(5):379–387, 1993.

[28] W. B. Liu and J. W. Barrett. A remark on the regularity of the solutions of the p-Laplacian and its
application to their finite element approximation. J. Math. Anal. Appl., 178(2):470–487, 1993.

[29] G. Minty. On a monotonicity method for the solution of non-linear equations in Banach spaces.
Proceedings of the National Academy of Sciences of the United States of America, 50(6):1038, 1963.


