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Abstract6

7 This paper introduces a new approach for the forecasting of solar radiation series at a located station for short time scale. We built a 
8 multivariate model in using few stations (3 stations) separated with irregular distances from 26 km to 56 km. The proposed model 
9 is a spatio temporal vector autoregressive VAR model specifically designed for the analysis of spatio-temporal data which are rich 

10 in time dimension and sparse in spatial dimension. This model differs from classic linear models in using spatial and temporal 
11 parameters where the available predictors are the lagged values at each station. A spatial structure of stations is defined by the 
12 sequential introduction of predictors in the model. Moreover, initialization parameters and an iterative strategy in the process of 
13 our model will select the necessary stations for each forecasting day, removing the uninteresting predictors and also selecting the 
14 daily optimal p-order. We studied the performance of this model for different daily class of global solar radiation. The statistical 
15 errors as the normalized mean absolute error (nMAE), the normalized mean biased error (nMBE) and the normalized root mean 
16 squared error (nRMSE) are presented. We compare the results of our model to those found in literature for different time step and 
17 to simple and well known persistence model.

18 Keywords:
19 stations’ spatial order, intra-hour forecasting, spatio-temporal vector autoregressiv processs

1. Introduction20

Solar energy is available in abundance in tropical zone but presents many short-term fluctuations introduced mainly21

by clouds. Due to variations of the sun’s position each day and the apparent motion of the sun throughout the year,22

the total irradiation received at a particular site in both time and space can vary widely, as it has been shown in23

Gueymard et al [16] study based on high resolution radiation data sampled in the USA. The increasing of PV plants to24

meet demand will increase the variability and uncertainty that must be managed by system operators and planners of25

(photovoltaics) PV system (Mills et al [21]). One way to manage variability and uncertainty of monitoring networks26

is to predict values at locations using observed data at known locations.27

In the literature, we can find correlation-based forecasting studies aim to derive quantities such as cloud speeds28

and directions in a deterministic way. For very short-term modeling and forecasting of solar radiation, sky cameras29
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can be used. Chi Wai Wow et al [7] presented a method sub-kilometer cloud forecasting using a ground sky imager.30

They predicted solar irradiance at the University of California, San Diego from 30s to 5min ahead forecast. Chu et31

al [8], defined smart forecasting models which combine sky image processing with ANN (artificial Neural network)32

optimization schemes to predict 1min average direct normal irradiance for horizons 5 and 10 minutes and in Marquez33

et al [20] presented an image processing methodology using total sky imager to generate forecasting of 1 min average34

direct normal irradiance for horizons varying from 3 to 15 min. Other studies such as in Coimbra et al[9] paper35

predicted the local cloud movements thus deducing irradiation at the ground level by cloud motion analyses and36

artificial intelligence algorithms. Bosch et al [3]; Bosch et al [4], determined cloud directions and speeds in using37

correlation methods by sky cameras where ground network of irradiance sensors are with high spatial resolution .38

An alternative method for intra-hour forecastings is statistical models as described in Gordon [26] where forecast-39

ing tests are run using regressions in logs, Autoregressive Integrated Moving Average(ARIMA), transfer functions,40

neural networks, and hybrid models. These models are evaluated for data sets, at resolutions of 5, 15, 30, and 60 min,41

using the global horizontal component.42

Concerning the spatio-temporal processes, few researchers have used this methodology to model environmental43

processes. A variety of techniques integrating spatial and temporal parameters can be applied to generate forecastings,44

such as space-time kriging, spatio-temporal ARMA (STARMA) models and vector autoregressive (VAR) models.45

Epperson [12] has applied STARMA model in an ecological context and CA Glasbey [14] used the STARMA model46

to evaluate the variability of the solar energy potential . They investigated 10 minutes timescale forecasting at 1047

sites on a sequence of 31 days to a grid of 10km × 10km. For the space-time kriging method, M.Cellura et al [6]48

developed geostatistical techniques in order to obtain the wind speed maps for the region at 10 and 50 meters above49

the ground level. The remaining de-trended linear means have been computed by using an universal kriging (UK)50

estimator. Heping Liu et al [19] has investigated a method based on TK (Taylor Kriging) model modified for the51

forecasting of wind speed time series. Dazhi Yang et al [29] used time-forward kriging to forecast the hourly spatio-52

temporal solar irradiance data from 10 Singapore weather stations and Inoue et al. [18], applied spatio-temporal53

Kriging to obtain distributions of the solar radiation with spatial resolution of 500m and resolution time of 5 min. The54

researchers de Luna and Genton ; Gneiting [15]; Porcu et al (2008) [25]have used spatio-temporal VAR method to55

model environmental processes as wind velocity fields and atmospheric concentration of carbon monoxide.56

The goal of this paper is to build a multivariate forecasting with three stations. Despite of the scarcity of infor-57

mation we will define a spatio-temporal model and we will see how much forecasting skill we can attain. Kriging58

method is efficient for available rich data in the time and spatial dimension to perform a spatio-temporal prediction59

but not for a reduced number of measurement sites. The VAR method proposed by de Luna and Genton ([11])is the60

suitable model, indeed this model is fitted with rich experimental data in the time but sparse in the spatial dimension.61

The spatio-temporal VAR model proposed does not make spatial stationarity assumptions and consists of a vector au-62

toregressive (VAR) specification (Huang and Hsu [17], de Luna and Genton [11]) that is to say VAR model treats each63

spatial location separately in the process. Thus, this paper investigates on a spatio-temporal short-term forecasting,64

based on spatio temporal VAR model methodology described in de Luna and Genton [11]. Our model uses spatial65

and temporal parameters where the predictors are the lagged values at each station. Moreover, the spatial structure of66

stations can be defined.67

We performed our analyze in using one year (2012), 10 min averaged global solar radiation data collected at68

3 meteorological stations (La Désirade, Petit-canal, Fouillole) across Guadeloupe island (French West Indies). In69

section 2, we present the experimental set-up of solar radiation measurements. In Section 3, we quantify the existing70

interactions of global solar radiation between stations. In section 4, the theoretical and statistical methodology is71

described. In section 5, we define our spatio temporal VAR model applied to global solar radiation. Moreover, we72

present tests allowing to choose an optimal VAR model. Section 6 highlights the performance of the VAR model in73

analyzing statistical errors of prediction for different classes of daily solar radiation. We also compare in this section74

the performance of our VAR model to the persistence model and to other methods of forecasting found in literature.75

This assessment is made for different time step: 5min, 10 min and 15 minutes. Finally we conclude in section 7.76

This forecasting model of the global solar radiation at short time scale for different locations using spatio-temporal77

parameters, will be useful to ensure the performance of electric power PV system what satisfies reliability standards78

in a least cost manner.79
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2. Solar global radiation measurements80

2.1. Experimental set up of solar global radiation measurements81

The global solar radiation is measured at 1 Hz on each site with a Kipp Zonen pyranometer (type SP Lite) whose82

response time is less than a second.We have used for this study an averaged database at 10 minutes of the solar flux83

measured for a period starting in January 2012 and ending in December 2012. The measurements are collected at84

three sites (Figure 1): along the cliffs of Petit-Canal Gros Cap (16◦38N, 61◦49W); Fouillole (16◦26N, 61◦24W),85

campus of the French West Indies University; on the East coast of La Désirade (16◦31N, 61◦55W). The distances86

between sites in meters are summarized in Table.1. Sensor accuracy given by the manufacturer is 3%. The data are87

measured and recorded by a Campbell Scientific CR1000 type stand-alone data. On the site of Petit-Canal, data are88

stored on a memory card compact flash (industrial type) with a capacity of 1 GB and a battery set powers the unit.89

This device has a check-on two months battery autonomy. In addition, a phone line is used to control and steer the90

chain of measurements from the University. We noticed four periods of the year with a relative constancy of the91

average global solar radiation. These four periods are the following: from February to April which corresponds to92

a dry season, an intermediate season May to July, rainy season from August to November and an other intermediate93

season from December to January. Our measurements show that the daily solar radiation lasts at most 12 hours (in94

March and April) and at least 10 hours (from October to December). For La Désirade, Petit-canal and Fouillole95

sites we have 100% data in 2012 (without holes measures). As we are interested in the variations of the global solar96

radiation, we are only concerned with the global solar radiation signals from 7 am to 5 pm. We perform VAR model97

using one year (2012), for 10 min global solar radiation data collected at 3 meteorological stations (La Désirade,98

Petit-canal, Fouillole) across Guadeloupe island. According to the needs of the manager of electrical network, we99

focus forecasting of global solar radiation at 10 min ahead.

Petit-canal

Fouillole

La Désirade

Figure 1. Guadeloupe archipelago and geographical location of our three measurement sites: Petit-canal, Fouillole Campus, La Désirade.

100

From To Distance(meter)
Petit-canal Fouillole 26272 m
Petit-canal La Désirade 41818 m
Fouillole La Désirade 55819 m

Table 1. Distance between sites in meters

2.2. Approach101

Temporal and spatial behaviors of solar irradiance are related through complex atmospheric mechanisms. The102

measurement stations are presumably subject to different microclimates (different islands or leeward, windward sides103
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of islands). According to the classification of C. Brévignon [5], the site of Petit-Canal is located in the climatic104

conditions of windward coast, where the wind blows constantly. In this zone, the formation of cloud is mainly due to105

the advection of marine air masses. La Désirade is in the same meteorological regime but it is an insular dependence106

separated from continental Guadeloupe by the Caribbean sea. Fouillole station is subject to insular continental regime.107

In this area, wind is lower than the wind blowing off the coast. Cloud formation is mainly due to the convection of108

air masses. The Désirade site is the most easterly one. The prevailing trade-winds, have a strong East component,109

consequently, Désirade site is a particular interest for a spatio-temporal analysis. It is situated on the first land where110

the air mass, after a long period over the ocean, meets the relief of the land (Petit-canal and Fouillole stations), which111

leads to formation of clouds. Consequently, a dynamic relation between sites can be observed. In Boland (2015)112

[2], forecasting of solar radiation series at these three sites in Guadeloupe has been performed by CARDS tools.113

In this paper, the model proposed is based on VAR methodology. The proposed model is specifically designed for114

the analysis of spatio-temporal data which are rich in the time dimension and sparse in spatial dimension. We will115

develop the forecasting of solar radiation by a multivariate method in using spatio-temporal parameters with three116

stations. Strategy and algorithms allowing to optimize temporal and spatial parameters in the process of model will117

be described in section 4.2, section 5.2 and section 5.3. Preliminarily, we quantified the correlation existing between118

stations.119

3. Correlations between sites120

The crosscorrelation as function of time lags provide measures of the similarity of two stationary time series.121

3.1. Detrended time series122

Detrended time series must be used in the calculation of correlations between a pair of stations since detrending123

captures the underlying true correlation between two time series (Yang et al 2014 [29],Perez et al (2012) [24]) . We124

note that there are different methods to achieve stationarity such as local polynomial regression fitting to detrend the125

solar irradiance time series by first determining an additive diurnal cycle (Yang et al[29]),the differencing technique,126

used frequently in ARIMA forecasts or the clear sky index often used as a strategy to detrend solar global radiation.127

Trend removal via the clear sky index cannot remove the trend completely and therefore does not make the series128

perfectly stationary. Thus we applied the transformation of the clear sky index series to new time series where the129

new values are the differences between consecutive values. Consequently, detrended time series are obtained by clear130

sky index and a differencing technique as already used in Perez et al(2012) [23]:131

∆Kc = Kc(t) − Kc(t − 1) (1)

The calculation of the deterministic component is based on Kasten model [13] to account for the clear sky index.132

This technique offers three advantages:133

(1) normalizing variability to unity134

(2) removing the effect of daily solar trend135

(3) avoiding to falsify correlation136

An example of signal ∆Kc for a day (figure 2) shows the detrended time series.137

3.2. Lag correlation between a pair of station138

We studied simple correlation of ∆Kc time series at 10 min time scales between our stations. We found very low139

correlation with distances of stations pairs from 20 km to 60 km (Table.1). Indead, Perez et al [23] showed there is no140

simple correlation for distances between stations of 4 km and 10 km for fluctuations time scales of 5 min and 15 min.141

We can estimate the correlation between pairs of stations by crosscorrrelation function. For this statistical analysis,142

we repeat the daily maximum crosscorrelation experiment between each pair of stations for the entire year. The143

coefficients of station pair correlation resulting from 366 days are summarized in Table.2. A maximum correlation (in144

absolute value) 0.64 is observed and the absolute mean value is between 0.34 and 0.36. These values are representative145
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Figure 2. Sample high-variability day showing 10min global iarradiance, GHIextra extraterrestrial theoretical global irradiance , GHIclear theoretical
irradiance receipted by sensor and ∆Kcsignal.

of correlations at a medium level. With only three pairs of sites it is impossible to give a valid conclusion, nevertheless146

we can observe that the correlation in our case doesn’t depend on distance between stations every day. The closest147

pair of station according to the distance metric doesn’t show the highest average of coefficient (Table.2). Indeed, we148

can note in Table.2, that the highest absolute mean of correlation can be observed for the pair of stations Petit-canal/La149

Désirade. This result can indicate that wind direction is prevailing on distance parameter. A test of different spatial150

structures to optimize forecastings will be performed in section 5. We also quantify the daily temporal lag between151

two stations using the maximum crosscorrelation of two ∆Kc time series. The distribution of results of time lag for the152

whole pairs of stations is shown by histogram in Figure 3. This indicates the highest occurrence for time lag between153

[-1h; 1h] with an average equals to 25 min. These results can describe that whatever happens at one station may cause154

a similar event at an other station about 1 hour later on that day. The results of intercorrelation between stations pairs155

are in agreement with those of Boland (2015) [2].

Min absolute value Max absolute value Mean absolute value Standard deviation
Petit-canal/Fouillole 0.19 0.64 0.35 0.08

Petit-canal/La Désirade 0.21 0.57 0.36 0.07
Fouillole /La Désirade 0.19 0.59 0.34 0.06

Table 2. Intercorrelation coefficients between pair of sites

156

4. Spatio-temporal Vector Autoregressive VAR model for spatially sparse data157

4.1. Forecasting model158

We assessed forecastings of the global solar radiation on an individual site in using two processes: the first is159

based on linear regression of the past time series of this site (AR(1) model) and the second is based on a multiple160

linear regression deducted from the linear combination of the past time series of the located site and the past time161

series of other stations. Then, we assessed the results of residuals. We noted that forecastings are better with a linear162

combination of past time series from all stations than an auto-regression process.163
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Figure 3. The distribution of the daily time lag obtained by cross correlation function for the whole of pairs of stations.

Consequently, the use of the past temporal series of global solar radiation measured on three stations brings an164

additional information and improves the predictability of the located global solar radiation. Although the correlation165

between sites presents a medium level, these results showed the interest to develop a multivariate model for our context166

of study such as the one proposed in this research which will provide consequently an improvement of forecasting at167

individual station. Moreover, initialization parameters and an iterative strategy in the process of our model will select168

the necessary stations in the linear combination for each forecasting day, removing the useless variables. The devel-169

oped model here, differs from the traditional linear model and is based on a spatio-temporal VAR model methodology170

which is validated and described in de Luna and Genton (2005)[11]. This model uses spatial and temporal parameters171

and can be performed for rich data in time dimension but sparse in spatial dimension such as the example showed in172

de Luna and Genton (2005) ([11]) with four monitoring stations for hourly observations of atmospheric concentration173

of carbon monoxide. The generality of the VAR method is implied by treating each spatial location separately in the174

modeling process and consists of a vector autoregressive (VAR) specification, thereby avoiding restrictive and often175

difficult to verify spatial-stationarity assumptions [11]. Indeed, spatial stationarity assumption are arbitrary, it is not176

possible to assess their validity for few sites. Moreover, wind speed and direction can be expected to influence air177

pollutant concentrations in a nonstationary and anisotropic away for the example given in [11].178

Consider spatio-temporal data Z(si, t) concerning observations of some stochastic process indexed in R2×R. Each179

observation is made at located station si, i = 1, ...,N and time t = 1, ...,T . The considered predictive VAR (vector180

autoregressive) model (see De Luna and Gneton, 2005) is181

Zt − β =

p∑
i=1

Ri(Zt−i − β) + εt (2)

where p is the order corresponding to the time lag; Zt = (Z(s1, t),Z(s2, t), ...,Z(sN , t))′ are the spatio-temporal data,182

εt = (εt(s1), ..., εt(sN))′ is a white noise with E(εt) = 0, E(εtεu) = 0 for u , t, E(εtε
′
t) =
∑
ε, β = (β(s1), ..., β(sN))′183

is the spatial trend, Ri is a N × N unknown parameter matrices. The N rows of these matrices correspond to the N184

locations at which time series are observed.185

Estimation of the parameters in equation (2) can be obtained with maximum likelihood (if distributional assump-186

tions are made), with least squares or with moments estimators (Yule-Walker type), for more details see Lütkepohl187

(Chap.3), Penã et al. ( Chap.14)[22] and De Luna and Genton [11]. Deterministic trend is often removed by differ-188

encing with the difference operator of order d with d = 1:189

∇Z(si, t) = Zt(si, t) − Zt(si, t − 1) (3)

and the spatial trend is estimated as190

β(si) = E(∇Z(si, t) − ∇Z(si, t − 1)) (4)

β(si) is supposed to be depending only on si.191
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The stationary spatial-temporal data are obtained:192

Z̃(si, t) = ∇Z(si, t) − β(si) (5)

4.2. Selection of predictors193

This model is performed either by displaying sample partial correlation functions, or by minimizing an information
criterion. The deletion of uninteresting predictors at each time lag improves on efficiency by avoiding the estimation
of zero coefficients [11]. Suppose that we want to predict the value of the process for a station s j at time t; Z(s j, t). To
this aim consider predictors in the following order :

Z(s j, t − 1),Z(s(1), t − 1),Z(s(2), t − 1), ...,Z(s(N − 1), t − 1),Z(s j, t − 2),

Z(s(1), t − 2), ...,Z(s(N − 1), t − 2), ...

where s(1), ..., s(N − 1) is an ordering of the N − 1 stations, for instance, in ascending order with respect to their
distance (using a given metric) to s j. Let us look at partial autocorrelations by renaming the previous sequence as

X1 = Z(s j, t − 1), X2 = Z(s(1), t − 1), ..., XN = Z(s(N − 1), t − 1);

XN+1 = Z(s j, t − 2); XN+2 = Z(s(1), t − 2), ..., X2N = Z(s(N − 1), t − 2), ...

Let the partial correlation function (PCF) for station s j as ρZs j
(h) = Corr(Z(s j, t), Xh|X1, ..., Xh−1). Define h1 to be194

such as ρZs j
(h1) , 0 and ρZs j

(h) = 0 for h1 < h ≤ N. Similarly, a value hi can be defined for each time lag i, such195

ρZs j
(hi) , 0, ρZs j

(hi) = 0 for hi < h ≤ iN. The hi’s orders can be identified by looking at the sample partial correlation196

function ρ̂Zs j
(h) = ˆCorr(Z(s j, t) − P̂(Z(s j, t)|X1, ..., Xh−1), xh − P̂(Xh|X1, ..., Xh−1)) where P̂(Z(s j, t)|X1, ..., Xh−1) is the197

best linear predictor of Z(s j, t) given X1, ..., Xh−1.198

199

Algorithm200

Step 0: Choose one of the observed sites s j.201

Step 1: Identify h1 by looking at the sample ρ̂Zs j
(h), h = 1, ...,N202

Step 2: Identify h2 by looking at the sample ρ̂Zs j
(h), h = N + 1, ..., 2N when Xh1+1, ..., XN have been discarded as203

unhelpful in explaining Z(s j, t) in the previous step.204

Step 3: Identify h3 by looking at the sample PCF (partial correlation function) ρ̂Zs j
(h), h = 2N + 1, ..., 3N when205

Xh1+1, ..., XN and Xh2+1, ..., X2N have been discarded as unhelpful in explaining Z(s j, t) in the previous steps.206

Step 4: Step 3 is repeated in a similar manner for all necessary time lags in order to identify h4, h5, ...207

Step 5: Repeat the previous steps for all observed sites.208

An alternative to the use of the PCF is the use of an automatic model selection criterion in each step of the identification209

strategy which we developed in our model.210

5. The spatio-temporal VAR(p) model for global solar radiation211

5.1. Application of model212

We are interested in the forecasting of the daylight period of global solar radiation which corresponds to time213

series of global solar radiation between 7 am to 5 pm. The data are by 10 minutes step. We perform our analyse in214

using one year of data (2012), there are no missing values in this data set. Consequently, the data set (Z(si, t))t =215

1, ..., 60, s = 1, ..., 3 available has 600 minutes observations of global radiation where T = 60 by 10 minutes step,216

at N = 3 monitoring stations located in Guadeloupe (Désirade, Petit-Canal, Fouillole). Note that equation (2) is217

7
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appropriate once the temporal trends have been removed from the signal. As mentioned previously, for temporal218

detrending we use the parameter ∆Kc. Consequently, deterministic trend is removed by differencing clear sky index219

from the difference operator of order d with d = 1 and we take the logarithm of the observations, thereby stabilizing220

the variance:221

∇Z(si, t) = log(Kc(si, t)) − log(Kc(si, t − 1)) (6)

∇Z(si, t) = ∆(log(Kc)) (7)

and the spatial trend is estimated as222

β(si) = E(∇Z(si, t) − ∇Z(si, t − 1)) (8)

β(si) is supposed to be depending only on si. The stationary spatial-temporal data are obtained. We performed223

the Dickey-Fuller test to assess stationarity in our detrended series. The hypothesis test is based on searching for unit224

root in the time series autocorrelation model. In other words, if the observation at time t strongly depends on the225

observation at time t − 1 with coefficient larger than 1, the series are defined to be non-stationary. The result indicates226

evidence in favor of the null hypothesis which implies stationarity. Estimation of the parameters in equation (2) is227

obtained with least squares. For more details see Lütkepohl (Chap.3) and Penã et al. ( Chap.14)[22], De Luna and228

Genton [11].229

5.2. Selection of p-order of VAR(p) model230

We assessed forecastings at 10 min ahead for different p-orders of VAR(p) model in the same day. Then, we231

computed the statistical errors (RMSE) of forecasting for each p-order. These tests are assessed for a sequence of232

31 days. The lowest statistical errors show the selection of an optimal p-order varying from day to day. Obtained233

optimal p-orders for a sequence of 31 days is showed on Figure 4. Thus, we built an algorithm in the process of234

our model selecting optimal p-order for each day by information criterion AIC and BIC from the initialization points235

data of model. This algorithm brings a supplementary optimization of model with the strategy previously described236

in section 4.2. After execution of model process, we attempted to compute the daily occurrence of selected optimal237

p-order of model for each station (Figure 5). A global result can be given: the p-order equals to 1 corresponding to 10238

min lagged values at each station is the highest occurrence. Thus, globally, the optimal model is the spatio temporal239

VAR (1). This indicates that the historic of stations at 10 minutes lag time explains with high occurrence the data240

of an individual localized station at the moment t. According to the results of coecients crosscorrelations (section241

3.2) 25 minutes is the averaged time lag giving the strongest significant correlations. The crosscorrelation highlights242

the temporal dependencies, it aggregates the correlation between three sites. The spatial parameter doesn’t take into243

account, consequently the coefficient of crosscorrelation is just indicative. Moreover, the past data to t-10 min give244

more informations compared to observations to t-25 min in the process of model, this can be another reason. The245

optimal p-orders equal to or higher than 4 (40 minutes or more) have a very low occurrence.
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Figure 4. Daily optimal p-order spatio-temporal VAR model for example of 2 months data.
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Figure 5. Occurrence in number of days of optimal spatio temporal VAR p-order for each station

5.3. Selection of spatial order of VAR model247

The defined algorithm in section 4.2 may be used in our model as an alternative with the criterions AIC (Akaike248

information criterion, Akaike [1]) and BIC (Bayesian information criterion, Schwarz [? ]). The former being usually249

preferred for predictive purposes and gives best results in our case. We used this alternative in our process model. Our250

VAR model is implied by treating each spatial location separately in the modeling process.The fact that predictors can251

be entered in the model sequentially in the model building stage thanks to this algorithmic strategy, allowed to know252

how many of predictors or stations should be used for each daily forecasting, avoiding useless variables. Figure 6253

presents normalized RMSE for different linear combination will consist of past time series of one station, two stations254

or three stations. Figure 7 completes this analysis by a histogramm of frequency of the best linear combinations255

obtained on the whole of year. These figures show that the knowledge of the past temporal series of solar radiation256

measured on three or two stations brings an additional information and improves the predictibility of the localized257

solar radiation. Numerous researchers demonstrated the improvement of forecast quality by multivariate models258

techniques, in particular by including a spatial information. We can quote Glasbey and Allcroft ( 2008 ), Yang and al (259

2014 ), Bessa and al ( 2015 ). Moreover, these figures show the wealth of the model which can behave like a model AR260

(one station) or a model spatio-temporal VAR (several sations) accordint to selected stations in the modeling process261

Figure 6. Daily RMSE for for different linear combination will consist of past time series of one station, two stations or three stations (an example
of 75 days sequence.

By taking into account the spatio-temporal structure, it becomes possible to define an ordering with which to262

sequentially introduce the predictors in the model for z(s; t). We investigated the spatial ordering of the sites with263

a prediction performance analysis where two different ordering of the stations are examined. For this analysis, we264

compared the statistical errors of daily root mean square errors (nRMSE) for two spatial structures. The first spatial265
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Figure 7. Frequency in number of days of best linear combinations selected with the best RMSE obtained on the whole of 2012 year

structure motivated by physical knowledge, defines an ordering of the stations according to the prevailing wind di-266

rection. We took into account that the Trade wind has predominantly a direction from east to west over Guadeloupe267

island. Consequently, if we want to predict at a station, the linear combination will consist of past time series of the268

station then the past time series from easterly station, and third the last station. These orders of past time series are269

different if we consider an ascending order with respect to the distance between stations in using information from270

Table 1.271
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Figure 8. Normalized RMSE of two models including each a different spatial structure in the spatio-temporal process VAR model (order of
locations respecting the Trade wind in blue color and order of locations respecting ascending order distances in red color ) for 5 months for
example of Fouillole station

We found values are more or less equal between the two type of spatial orders of locations but for particular cases272

we have some better values for the order of locations respecting the prevailing wind direction, particularly for june,273

october, november and december periods which is in agreement with the cyclonic season particularly characterized274

by rainy period and higher wind speed.Figure 8 show an example for 160 days sequences. We found that the model275

whose spatial structure takes into account the predominant wind direction (wind order) has better or equal predictive276

performance at probability of 25% for Petit-canal station along the year, 17% for La Désirade station and 8% for277

Fouillole station, than the model ignoring this physical information (distance order). In section 6.2, it will be shown278

that for certain forecasts horizons the influence of predictors spatial order is more marked.279

Consequently, in order to optimize our forecasting model of global solar radiation time series, we use the spatial280

structure of stations (or order of predictors) according to the prevailing wind direction during the rainy season.281

6. Predictive performance of model282

6.1. Results for different daily global radiation classes283

To put in evidence the influence of the solar radiation variability on the forecast results we performed a forecast284

on a given class of days. This classification of daily global solar radiation is performed by an algorithm based on285

k-means method. The classes found have the same characteristics than those found in Soubdhan et al [27] who used286

10
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a mixture of Dirichlet distribution: clear sky to cloudy sky days. A representation of averaged signals of each class is287

shown (Figure 8) with an example of day global solar radiation curve for each class (Figure 9).

Figure 9. Average daily curve of four classes obtained by k-means method.

Figure 10. Example of days respectively being representative of class 1; class 2; class 3; and class 4.

288

The results of normalized MAE (nMAE) are presented by histograms for each quarter and each class (Figure 11).289

The normalized MAE is described by equation (9).290

nMAE =

1
n
∑
| (G − Ĝ) |

max(G) − min(G)
× 100% (9)

where G measured values and Ĝ predicted values.291

Normalized MAE (nMAE) values are always inferior to 10% which shows a good performance of the model. The292

class which presents the lowest statistical errors is class 1. This class is representative of clear sky conditions of solar293

radiation days with very few clouds and thus a very slow dynamic, as shown in Figure 8. Class 3 presents the highest294

statistical errors. This class is representative of days with significant sunshine combined with a large number of small295

clouds with high speed of passages and thus with high dynamic levels. The medium errors results are obtained for296

class 2 which is representative of days with an important solar radiation with some clouds corresponding to a medium297

level dynamic as shown in Figure 9. The class 4 can present the highest statistical error for few months but also the298

lowest (from Table 3 to Table 5). This class is representative of completely cloudy sky days with big size clouds. In299

this case the solar radiation is mainly scattered by clouds and presents low values of global solar radiation. When300

the cloudy mass, scattering solar radiation, has a slow speed, the dynamic level is very slow which can explain the301

11
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Figure 11. Normalized mean absolute errors (nMAE) in percentage of forecastings of global solar radiation for all stations for each quarter
corresponding to a season

possibility of low values of statistical errors. According to the results, we can say that performance of model decreases302

when solar radiation signal presents high dynamic level. The model has difficulties to accurately predict values when303

variations are speed and brutal. However, the statistical errors values show a good performance of spatio-temporal304

model and globally doesnt exceed 10% whatever dynamic (fast or slow)of fluctuations of measured signals.305

6.2. Results for different horizons306

In this section we assessed our model for different forecasting horizons according the two spatial structures defined307

in section 5.3. The yearly normalized RMSE is described by equation(10).308

nRMS E =

√
1
n
∑

(G − Ĝ)2

max(G) − min(G)
× 100% (10)

La Désirade station
5 min 10 min 15 min 30 min 1H

distance order 10.79 13.13 11.51 13.24 15.15
East-west order 10.79 13.13 11.51 13.24 15.15

Petit-canal station
5 min 10 min 15 min 30 min 1H

distance order 10.52 11.12 10.53 11.60 16.63
East-west order 10.59 11.12 10.53 11.59 14.10

Fouillole station
5 min 10 min 15 min 30 min 1H

distance order 13.19 13.56 13.28 13.29 20.43
East-west order 12.68 13.56 13.28 13.28 15.97

Table 3. Yearly normalized root mean square errors (nRMSE) for different forecasting horizons according two spatial orders of predictors for each
station.

309

The results of performance predictive show values of yearly nRmse which don’t exceed 21% whatever horizons,310

which presents a good predictive performance of model. We will compare it with other methods in literature in section311

6.3.312
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This table highligths some spatio-temporal information about the dynamic system compound of our three stations.313

We can observe that spatial order of predictors has no strong influence on model performance for horizons lower than314

1H. This can be explained by the fact that, from 5 min to 15 min, the variability of signals are not explained most often315

by clouds moving from a station to another. The variation of solar radiation for this timescale is presumably subject to316

different microclimates. As we explained in section 5.3, for example of 10 min horizons, forecasting using East-west317

order of predictors improve the model until a daily frequency of 25% on the whole of year. Moreover, particularly at318

5min horizons, it is unlikely that solar radiation measured at a localized station can be explained by solar radiation319

measured at other stations in the past. The results allow to observe also that 15 min is the timescale threshold for that320

the stations ordered according a spatial structure respecting the predominant wind direction in the process of model321

improve performance predictive of solar radiation at a localized station. By observation of statistical errors results, at322

1h horizon, the influence of wind direction is well marked.323

An example of forecasting for 4 days sequence for each horizon is presented in Figure 12.324

Figure 12. Measured global solar radiation (blue) and predicted (red) signals for four days with different solar radiation variability and different
horizons respectively 5min, 10min, 15min, 30min, 1h.

6.3. Comparison with other methods of the literature325

If we use the literature we can compare the forecasting results of spatio-temporal VAR model with other models326

(Table.4). For 10 min horizon, Chu et al [8] in using 1min average predict direct normal irradiance found the best327

performance values 54.6W.m−2 for low DNI and 132W.m−2 for high DNI (direct normal irradiance) with a model328

combining sky image processing and ANN and Marquez et al [20] in using total sky imager found 283W.m−2 the best329

value of RMSE. For our model, one of the best values of RMSE for low dynamic global solar flux is 18W.m−2 and for330

high dynamic is 76W.m−2. In Glasbey paper [14] the performance of STARMA model at 10min time scale forecasting,331

is described by a comparison of averages of estimated parameters fitted STAR (1) and true values parameters. In Chi332

Wai Wow [7], the performance at 30s to 5 min horizon is described by mean and standard deviation of matching errors333

between the two cloud maps. We performed our model for 5min ahead and 15min ahead. The results for our model334

spatio temporal VAR, are computed with the average of yearly nMAE and nRMSE for all sites. We also computed335

the statistical errors of persistence model for our data set at 30 min ahead and 1h ahead. The results of predictive336

performance found in literature and of our model are presented in Table.4 at different horizons.337
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Forecast horizon Forecasting model in the literature Best statistical error(%)
5 minutes kriging model[29] nRmse :18.49
5 minutes shrinkage in VAR model [29] nRmse18.09
5 minutes Regression [26] nMAE:12.63
5 minutes ARIMA[26] nMAE:13.21
5 minutes Neural Network [26] nMAE:12.78

15 minutes Regression [26] nMAE:26.52
15 minutes ARIMA[26] nMAE:18.97
15 minutes Neural Network [26] nMAE:21.04
30 minutes Model At [10] 1-RMSE/RMSEp:5.68
30 minutes Model Ast2 [10] 1-RMSE/RMSEp:9.45
30 minutes CMF [10] 1-RMSE/RMSEp:8

Forecast horizon Forecasting spatio-temporal VAR model Best statistical error(%)
5 minutes spatio-temporal VAR model nRmse:8.46
5 minutes spatio-temporal VAR model nMAE:5.50

15 minutes spatio-temporal VAR model nMAE:11.33
30 minutes spatio-temporal VAR model 1-RMSE/RMSEp:4.52

1H spatio-temporal VAR model nRmse:15.07
1H spatio-temporal VAR model 1-RMSE/RMSEp:23.42

Table 4. Comparison of the forecast errors with different models of the literature

On the whole, we can note our model gives good results in comparison with other models in the literature (Table.4).338

RMSE or nRMSE values highly depend on the meteorological conditions. Forecast for a clear location would always339

be associated with lower RMSE. One way to overcome this, is to compare the metric error computed by the ratio340

of model RMSE and persistence model RMSE used by Dambreville et al (2014) [10] for At, Ast, Ast2 models.341

Dambreville et al (2014) [10] presents an original method to forecast the GHI at ground level using the HelioClim-342

3 maps which estimate the GHI from satellite images. The originality of this work comes from the integration of343

spatio-temporal information from satellite images without any cloud motion field vector calculation. The metric error344

computed by the ratio of model RMSE and persistence model RMSE allowed to have an accurate comparison between345

At, Ast, Ast2 models [10] and our model (Table 4). Moreover, as our results are derived from data in Guadeloupe,346

which has a highly time-variable tropical climate, we expect that the skill of our method will be even higher at other347

locations. In order to do a more valid comparison, in future work we will apply the different models to our data348

set. This table shows an excellent performance of our model for 1 H ahead with 23.42% of metric error and only a349

normalized RMSE equals to 15.07%.350

7. Conclusion351

In this paper, we investigated the use of a spatio-temporal VAR model for forecasting global solar radiation at352

10 min ahead with experimental data recorded at three locations. The originality of this work comes from a spatio-353

temporal VAR model performed for data rich in the time dimension and sparse in spatial dimension. The proposed354

model is specifically designed for the analysis of spatio-temporal data sets with the purpose of providing time-forward355

predictions at given spatial locations. The predictions are based on a minimum of assumptions since treating each spa-356

tial location separately in the modeling process, which allows performing model without spatial-stationary assump-357

tions in contrast with Tonellato [28] who used a spatial stationary isotropic exponential correlation function. This358

model is based on de Luna and Genton [11] methodology. Comparative studies on global solar radiation forecasting359

for several time lag and spatial structures are presented and discussed. Thus, an optimization of the model was first360

performed. A study of the spatial order (order of locations), motivated by physical knowledge respecting the wind361

direction allowed to improve the spatio-temporal VAR model performance for some periods in the year. Another362

parameter of the model such as the p-order was also selected optimizing the process model to give better results of363
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predictions. The most frequent optimal p-order was found to equal to 1 or spatio-temporal VAR (1) model. The in-364

fluence of the global solar radiation variability on the MAE and MBE was assessed. The model was tested on typical365

class of solar days having specific variability. Even if, the signals can present high dynamic levels, the statistical errors366

(MAE and MBE) of predictions are mainly inferior to 10%. A comparison with the simple persistence model and367

other models found in literature was made. Our model shows better results than krigring model or shrinkage VAR368

model particularly a good performance at 1H ahead comparated to other methods certainly due to spatio-temporal369

information. In future work, we will benchmark the proposed VAR model with other models, in applying literature370

models for our data in order to have a valid comparison.371

Our results allow estimation of the ancillary services required to operate distributed PV sites and will be able to372

decrease the variability and uncertainty that must be managed by system operators and planners of PV system. Thus,373

the integration of our forecasting model in the process of PV system offers an opportunity to provide guarantees to374

a solar energy network manager. The good performance of this model shows the importance to take into account375

spatio-temporal parameters rather than simple temporal models in our study case.376
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