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Abstract:  9 

This study focus on the minimum duration of training data required for PV generation forecast. 10 

In order to investigate this issue, the study is implemented on 2 PV installations: the first one 11 

in Guadeloupe represented for tropical climate, the second in Lille represented for temperate 12 

climate; using 3 different forecast models: the Scaled Persistence Model, the Artificial Neural 13 

Network and the Multivariate Polynomial Model. The usual statistical forecasting error 14 

indicators: NMBE, NMAE and NRMSE are computed in order to compare the accuracy of 15 

forecasts. 16 

The results show that with the temperate climate such as Lille, a longer training duration is 17 

needed. However, once the model is trained, the performance is better. 18 

Keywords: PV forecasting models, neural network, multivariate model, forecasting errors, training 19 

duration. 20 

1. Introduction 21 



With the support of environment policies and the increase of the fossil fuel price, renewable 22 

energy sources have been growing strongly in the last few years. The electric power produced 23 

by these intermittent sources shows strong variations (sudden and with large amplitude), which 24 

must be always compensated on the grid by others dispatchable sources (Ernst et al., 2009), 25 

(Do et al., 2010), (Do et al., 2011). 26 

These large variations can put a pressure on the balance of supply/demand of the power system, 27 

especially in non-interconnected systems, such as island areas. In the case of French islands for 28 

which Island Energy System is the electrical system manager, in order to ensure the stability of 29 

the power system, a ministerial decree of 2008 set the penetration rate at 30%, beyond which 30 

the system operator is permitted to disconnect intermittent energy (CRE, 2009). Note that this 31 

rate of 30% was achieved for a few hours in 2012 in Reunion and in Guadeloupe, resulting in 32 

the disconnection of certain facilities of PV production. 33 

The forecast of these fluctuation sources across the concerned islands should allow a better 34 

control of the availability of renewable energy production, and thereby reduce the pressure on 35 

the balance of supply/demand. Moreover associated with power storage unit (batteries or STEP, 36 

for example) will help providing various services to the power system, from ancillary services 37 

(adjusting voltage, frequency) to smoothing peak hours. The forecast of fluctuation sources will 38 

contribute to the optimization of the design and the use of these storage units. 39 

Generally, the PV production forecast is classified into 2 categories: the day ahead (DA) 40 

forecast and the hour ahead (HA) forecast, depend on the domain of application (IEA, 2013). 41 

- The day ahead (DA) forecast is usually based on the numerical weather prediction models. 42 

They are dynamical equations that predict the evolution of the atmosphere up to several 43 

days ahead from initial conditions. From the forecast of weather condition, the output power 44 



of PV can be estimated (Beyer HG et al., 2009), (Lorenz E et al., 2008), (Traunmüller W 45 

&  Steinmaurer G., 2010). 46 

- The hour ahead (HA) forecast is usually based on stochastic learning techniques. The 47 

underlying assumption of these techniques is that future value of PV production can be 48 

predicted by training the algorithms with historical data (Fernandez-Jimenez et al., 2012), 49 

(Pedro & Coimbra, 2012), (Mandal et al., 2012). 50 

To generate a prediction of the PV production using stochastic learning techniques, it is 51 

necessary to have historical data. These data are used for the learning phase of forecast models 52 

of PV production at the studied site (IEA, 2013). 53 

In the literature, several studies have been conducted on the methodology for the forecast of PV 54 

generation (Shi et al., 2012), (Krömer et al., 7–11 July 2012), (Lorenz et al., 2012). The authors 55 

generally use two historical years: one year for training the model and another year for the test 56 

phase. In the literature, the analysis of the minimum duration for the phases of test and training 57 

data is little documented. 58 

The proposed study will determine the minimum of historical experimental data necessary to 59 

achieve a high accuracy forecast, which can be quantified by a set of several statistical error 60 

indicators. There are some works in other areas that focus on this problem (Fine & Turmon, 61 

1994), (Thirumalainambi, 2003), (Cui et al., 2004) but a study on the prediction of PV 62 

generation, to our knowledge, is not yet performed. 63 

There are two major factors that affect the time required for the collection of historical data, 64 

they are the climatic conditions at the PV site and the statistical model used for the forecast. 65 

The climatic conditions at the PV site affects the level and the type of data fluctuation. The 66 

more fluctuate the data is, the more they are difficult to predict, i.e.: the error on the forecast is 67 

higher. Therefore, the duration of the data collection is supposed to be longer. In this study, we 68 



investigate the influence of climatic conditions on the historical data necessary for a forecast of 69 

PV production by comparing two sites of PV generation with very different climatic conditions: 70 

one in Lille, in northern France and the other one in Guadeloupe, in the Caribbean. 71 

The forecasting model also has a large influence on the duration required for the collection of 72 

historical data. There are simple forecasting models that requires a few data for the learning 73 

phase. The more complex the forecasting models is, the more historical data is needed but the 74 

result is often more accurate. 75 

In this study, we will compare some of the most popular statistical models in forecasting PV 76 

production: Artificial Neural Network (ANN) (Yona et al., 2007), (Fernandez-Jimenez et al., 77 

2012), (Mandal et al., 2012), Multivariate Polynomial Model (MPM) (Dazhi, 2012), (IEA, 78 

2008) and the Scaled Persistence Model (IEA, 2013). 79 

2. Input data and site description 80 

In this paper, we will use PV production at time (h) and two exogenous inputs: the cloud cover 81 

and the air temperature, also at time (h), to forecast the PV production at time (h+1). 82 

For each hour (h) considered as the beginning time of the forecasting, the input vectors are 83 

given by: 84 

 )();();()( hPhThNhx ma  (1) 

Where:  - N(h) is the cloud cover measured at time (h) 85 

  - Ta(h) is the ambiance temperature measured at time (h) 86 

- Pm(h) is the average output power produced by the PV system in the previous 87 

60 minutes respective to the h-hour 88 

a. Data measured in Guadeloupe, tropical climate 89 

The PV system installed in Guadeloupe (16°14'36.0"N 61°33'25.9"W) has 832 membrane PV 90 

modules of 136Wp each, which makes a total of 113kWc. 91 



The system consists of two inverters. The data logging of PV output power (in W) is integrated 92 

in these inverters (collected every 5 min). The two exogenous inputs: cloud cover (in octa) and 93 

air temperature (in °C) are measured every hour by the weather station at the airport nearby 94 

(Raizet Airport) by Meteo France. As during the night, the forecast is not necessary because the 95 

output power of PV is zeros, the study takes into account only the data between 7a.m and 17p.m 96 

every day. 97 

The average output power of PV in every hour is calculated from the measurement every 5 98 

minutes of the inverters: 99 
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The forecast models will be studied with a varying training period from one month to one year 100 

(365 days) and a testing period of 331 days. The output power of the PV system at time (h+1), 101 

Pm(h+1) will be predicted from three inputs: N(h), Ta(h) and Pm(h).  102 

 103 

Figure 1. Output power for training and testing in Guadeloupe 104 
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b. Data measured in Lille, temperate climate 105 

The installation of a 93kWc PV system in Lille (50°38'58.7"N 3°09'04.3"E) consists of 452 106 

panels. Among these panels, 376 modules have an inclination of 3° and the inclination of the 107 

rest is 60°. 108 

The system consists of 31 inverters. The data logging of PV output power (in W) is integrated 109 

in these inverters (collected every 10 min). The two exogenous inputs: cloud cover (in octa) 110 

and ambiance temperature (in °C) are measured every hour by the weather station at the airport 111 

nearby (Lesquin Airport) by Meteo France. As the sun rise is later in Lille, the study takes into 112 

account only the data between 10a.m and 17p.m every day to avoid the zero output power of 113 

PV during the night. 114 

 115 

Figure 2. Output power for training and testing in Lille 116 

The average output power of PV in every hour is calculated from the measurement every 10 117 

minutes of the inverters: 118 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

14
x 10

4 Output power of PV production in Lille

Time (hour)

P
V

 P
o
w

e
r 

(W
)

30 days 

60 days 

90 days 

180 days 

270 days 

365 days 

Training data 

Testing data 

308 days 







h

ht

m tPhP
min50

)(
6

1
)(  

(3) 

The forecast models will be studied with a varying training period from one month to one year 119 

(365 days) and a testing period of 308 days. The output power of the PV system at time (h+1), 120 

Pm(h+1) will be predicted from three inputs: N(h), Ta(h) and Pm(h). 121 

c. Evaluating the quality of forecast 122 

The precision of the forecast will be evaluated using the following statistical error indicators: 123 

- Normalized mean bias error (%) 124 
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- Normalized mean absolute error (%) 126 
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 127 

- Normalized root -mean-square error (%) 128 
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Where:  - Pm(h) is the average output power produced by the PV system at hour (h) 129 

  - )(
~

hPm is the predicted output power of the PV system at hour (h) 130 

  - M is the number of hours considered 131 

3. The forecasting models 132 

In this research, the forecasting models will take into account the data of PV production at time 133 

(h), Pm(h) and two exogenous inputs: the cloud cover N(h)  and the air temperature Ta(h), also 134 



at time (h), to predict the PV production at time (h+1). As the PV production depends on the 135 

position of the sun in the day while others input variables does not, a normalization is needed 136 

to eliminate this subordination. The input of the PV production at time (h) becomes now ),(hPm
 137 

the normalized value of the PV production with respect to the maximum value at time (h), 138 

Pmax(h). 139 

The absolute value of the PV output power prediction is then obtained by multiplying this 140 

normalized value with the maximum value of PV production at time (h+1), Pmax(h+1). This 141 

maximum value can be evaluated from the GHImax curve with the following equation: 142 

installedPV
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GHI
P .
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The Global Horizontal Irradiance (GHI) is the total amount of shortwave radiation received 143 

from above by a surface horizontal to the ground, which consists of the direct irradiance and 144 

the diffuse irradiance. The GHImax is the GHI calculated in the condition of clear sky, using the 145 

Kasten clear sky models. (Kasten, 1980) 146 

 147 

Figure 3. General process of the PV output power forecast 148 
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The Artificial Neural Network used in this research is a feedforward neural network for non-150 

linear regression with 1 hidden layer. The choice of the number of neurons in the hidden layer 151 

is a complicated issue. In this paper, a value of 4 is chosen based on several researches in 152 

literature (Blum, 1992), (Swingler, 1996), (Berry & Linoff, 1997), (Boger, 1997). The Artificial 153 

Neural Network will be trained by the historical data with the supervised learning technique, 154 

using the Levenberg-Marquardt algorithm (Seber & Wild., 2003). 155 

 156 

Figure 4. Diagram of the Artificial Neural Network configuration 157 

b. Multivariate Polynomial Model 158 

The polynomial models are very popular due to their simplicity in form, their well-known and 159 

understood properties and their flexibility of shapes. Moreover, they are computationally easy 160 

to use. For these reasons, there are many applications of these models in the forecasting in 161 

general, and in PV production forecasting in particular (Dazhi, 2012), (IEA, 2008). 162 

However, as the model takes into account only one input variable, the precision of forecast is 163 
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this field (Pedro & Coimbra, 2012). In this paper, a Multivariate Polynomial Model, which 165 

takes into account several input variables is proposed to improve the accuracy of the prediction 166 

of PV output power.  167 

The output prediction of the normalized value at time (h+1) is a multivariate polynomial 168 

function of the input variables: 169 
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The coefficients of the multivariate polynomial function are estimated from the historical data 170 

using the Levenberg-Marquardt nonlinear least squares algorithm (Seber & Wild., 2003). This 171 

algorithm allows to determine the set of parameters b giving the minimal squares of the 172 

deviations: 173 
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c. Persistence Model 174 

The persistence model is based on a simple rule: the output value of the predicted variable at 175 

(h+1) is equal to its value at (h). The advantage of this technique is that it does not need to be 176 

trained by a series of historical data, however the accuracy of the forecast is not high. 177 

In this paper, the Scaled Persistence Model is applied in order to reduce the forecasting error. 178 

This model is applied on the normalized value: 179 
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4. Results 181 

In this section, we will analyze the influence of the duration of training data on the forecasting 182 

error. The parameters of the forecast model (Artificial Neural Network and Multivariate 183 

Polynomial Model) will be estimated using the historical data in 30 days, 60 days, 90 days, 180 184 

days, 270 days and 365 days. Then, the model will be tested on a duration of 331 days 185 

(Guadeloupe) and 308 days (Lille). Due to its characteristic, the Scaled Persistence Model does 186 

not require any historical data, therefore, it will be tested directly with the testing data. 187 

4.1 Case of Guadeloupe  188 

The Table 1 and the Figure 5 show the evolution of the forecast error with different training 189 

duration in Guadeloupe. 190 

Table 1. The evolution of the forecast error with different training duration (Guadeloupe) 191 

NMBE 

Duration of training data 
Artificial Neural 

Network 

Multivariate 

Polynomial Model 

Scaled 

Persistence Model 

30days x 10 samples 1.74% -0.87% 

0.79% 

60days x 10 samples 0.22% -1.41% 

90days x 10 samples -0.62% -0.61% 

180days x 10 samples -0.30% -0.34% 

270days x 10 samples 0.27% 0.27% 

365days x 10 samples 0.67% 0.60% 

NMAE 

30days x 10 samples 9.90% 10.06% 

9.60% 

60days x 10 samples 9.32% 9.51% 

90days x 10 samples 9.23% 9.26% 

180days x 10 samples 9.13% 9.21% 

270days x 10 samples 9.07% 9.10% 

365days x 10 samples 9.22% 9.19% 

NRMSE 



30days x 10 samples 13.22% 13.00% 

13.07% 

60days x 10 samples 12.36% 12.21% 

90days x 10 samples 12.15% 11.97% 

180days x 10 samples 11.95% 11.94% 

270days x 10 samples 11.90% 11.86% 

365days x 10 samples 12.09% 11.93% 
 

 192 

 193 

Figure 5. The evolution of the NRMSE (%) with different training duration (Guadeloupe) 194 

The value of the bias error NMBE allows to evaluate the tendency of the prediction model to 195 
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not follow any certain rule (Table 1). 198 
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outcomes. As presented in the Table 1, from the training data of more than 1 month, the NMAE 200 

of the Artificial Neural Network and the Multivariate Polynomial Model is lower than the 201 

11,00

11,50

12,00

12,50

13,00

13,50

14,00

30 days 60 days 90 days 180 days 270 days 365 days

Artificial Neural Network Multivariate Polynomial Model

Scaled persistence model



Scaled Persistence Model. The NMAE of the Multivariate Polynomial Model is slightly higher 202 

than that of the Artificial Neural Network. 203 

The Root-Mean-Square Error (RMSE) is a frequently used measure of the differences between 204 

value (Sample and population values) predicted by a model or an estimator and the values 205 

actually observed. Basically, the RMSE represents the sample standard deviation of the 206 

differences between predicted values and observed values. The NRMSE is the RMSE divided 207 

by the range of observed values of the variable being predicted. In literature, the NRMSE is 208 

mostly preferred than the NMAE because this indicator contain both information of the bias 209 

and the variance of the prediction. 210 

As the Scaled Persistence Model does not require the historical data, the forecasting error of 211 

this model is usually the highest among the three. However, it is still lower than the forecasting 212 

error of Artificial Neural Network with only 1 month of training data. Generally, if the duration 213 

of the collected data is shorter than 1 month, it is advisable to use the Scaled Persistence Model. 214 

From more than one month of training data, the Artificial Neural Network and the Multivariate 215 

Polynomial Model are more accurate. The forecasting error reduce rapidly from more than 13% 216 

to less than 12% with the training data of 3 months (Multivariate Polynomial Model) or of 6 217 

months (Artificial Neural Network). With the Multivariate Polynomial Model, the difference of 218 

forecast error between the training duration of 3 months, 6 months, 9 months and 1 year in 219 

Guadeloupe is negligible. The training period can be considered as sufficient after 3 months of 220 

data collection. 221 

With the training data of 365 days, the forecast error is slightly higher than that given by the 222 

training data of 270 days, which is not coincident with the tendency of reduction of the forecast 223 

error with longer training data. This contradiction could be explained by a hypothesis that the 224 

training data of the period of 3 months which has just been added to the training data may 225 

disturb the forecast model. To verify this hypothesis, another forecast is implemented using the 226 



training data from the first 9 months of the training year (see Figure 1). The result shows that 227 

the forecast error in both models is higher than that using the training data from the last 9 months 228 

(12.21% with Artificial Neural Network and 12.01% with Multivariate Polynomial Model). 229 

Therefore, the hypothesis can be confirmed.  230 

4.2 Case of Lille 231 

The Table 2 and the Figure 6 show the evolution of the forecast error with different training 232 

duration in Lille. 233 

Apart from the Scaled Persistence Model, which does not require the historical data, the forecast 234 

error of the Artificial Neural Network and the Multivariate Polynomial Model is high with the 235 

training data from 1 to 3 months due to the seasonal effect of Lille. With this effect, the right 236 

parameters of the forecast model cannot be evaluate from the training data of 1 to 3 months. 237 

However, from 6 months and above, the forecast error is reduced significantly (from 12.71% 238 

to 10.69% with Multivariate Polynomial Model). The reduction starts from 6 months of training 239 

data, not from 1 year, due to the symmetry of the PV production of Lille in a year (see Figure 240 

2). The difference of forecast error between the training duration of 6 months, 9 months and 1 241 

year in Lille is negligible. The training period could be finished after 6 months of data 242 

collection. 243 

Table 2. The evolution of the forecast error with different training duration (Lille) 244 

NMBE 

Duration of training data 
Artificial Neural 

Network 

Multivariate 

Polynomial Model 

Scaled 

Persistence Model 

30days x 10 samples -5.62% -7.65% 

-0.09% 
60days x 10 samples -9.35% -6.78% 

90days x 10 samples -4.45% -4.08% 

180days x 10 samples -0.24% -0.23% 



270days x 10 samples -0.73% -0.81% 

365days x 10 samples -0.76% -0.81% 

NMAE 

30days x 10 samples 13.02% 11.43% 

7.44% 

60days x 10 samples 12.17% 10.90% 

90days x 10 samples 10.54% 9.36% 

180days x 10 samples 7.63% 7.62% 

270days x 10 samples 7.65% 7.71% 

365days x 10 samples 7.62% 7.75% 

NRMSE 

30days x 10 samples 18.39% 16.21% 

11.37% 

60days x 10 samples 16.07% 15.34% 

90days x 10 samples 14.79% 12.71% 

180days x 10 samples 10.83% 10.69% 

270days x 10 samples 10.62% 10.63% 

365days x 10 samples 10.53% 10.63% 
 

 245 

Figure 6. The evolution of the NRMSE (%) with different training duration (Lille) 246 
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We can observe that the duration of data collection required to have a good forecast in Lille is 247 

higher than the duration of data collection needed in Guadeloupe (6 months compared to 3 248 

months). However, the forecast error in Lille is smaller (10.69% compared to 11.97%). 249 

4.3 Analysis and recommendations 250 

Among the 3 models, the Scaled Persistence Model does not require the historical data, 251 

therefore the forecast can be obtained directly without training period. However, the quality of 252 

forecast is not high. In the beginning, this model can compete with the others 2 forecast models 253 

but from 2 months of training data (Guadeloupe) and from 6 months of training data (Lille), the 254 

quality of the forecast by these model is much better than that of the Scaled Persistence Model. 255 

The Artificial Neural Network and the Multivariate Polynomial Model have the same evolution 256 

of forecast error due to the fact that both of these models use the Levenberg-Marquardt 257 

algorithm as core learning technique. The Multivariate Polynomial Model has a better forecast 258 

quality than the Artificial Neural Network. In Guadeloupe, the Artificial Neural Network needs 259 

6 months of training data to acquire the forecast error lower than 12% while the Multivariate 260 

Polynomial Model needs only 3 months to go under this level. Another advantage of the 261 

Multivariate Polynomial Model is the simplicity and the transparency of the model. This is an 262 

analytical model, it means that the relation between the predicted value and the input variables 263 

can be represented in the form of an equation, different from the Artificial Neural Network, 264 

where this relation can only be represented by a black box.  265 

As presented in the Figure 1 and the Figure 2, the PV production of Guadeloupe and Lille has 266 

very different characteristics. In Lille, there is a seasonal effect that there is not in Guadeloupe. 267 

However the PV production of Lille is less fluctuant than that of Guadeloupe. Therefore, to 268 

obtain a good quality forecast, the model of Lille needs a longer duration of training data (6 269 



months instead of 3 months). But once the model is trained, it provides a better performance 270 

than that of Guadeloupe. 271 

5. Conclusions 272 

This paper focus on the necessary duration of data collection to have a quality forecast of PV 273 

production for two climatic conditions: a temperate and a tropical weather conditions. In order 274 

to investigate this issue, the study is implemented on 2 PV installations: the first one in 275 

Guadeloupe, the second in Lille; using 3 different forecast models: the Scaled Persistence 276 

Model, the Artificial Neural Network and the Multivariate Polynomial Model. 277 

The results show that with the temperate climate such as Lille, where the seasonal effect existed, 278 

a training duration of at least 6 months is needed to acquire a high accuracy forecast for PV 279 

generation instead of 3 months with the tropical climate at Guadeloupe. However, once the 280 

model is trained, the performance is better (error of 10.69% at Lille compared to 11.97% at 281 

Guadeloupe). 282 

This research proposes to use the Scaled Persistence Model to forecast the PV output power 283 

during the data collection as this model does not require the historical data. Once the data 284 

collection phase is finished, the Multivariate Polynomial Model could be applied in order to 285 

provide a better accuracy. With the application of PV output forecast, the exploitation of PV 286 

becomes more efficient, reducing the risk of power outages and improving the reliability of 287 

power supply. 288 
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