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Introduction and Main result

We set ∆ = -∇ i (∇ i ) the Laplace-Beltrami operator. We are on compact Riemannian surface (M, g) without boundary.

We start with the following example: for all ǫ > 0 the constant functions z ǫ = log ǫ a with a > 0, are solutions to ∆z ǫ +ǫ = ae zǫ and tend to -∞ uniformly on M .

Question: What's about the solutions u ǫ to the following equation

∆u ǫ + ǫ = V ǫ e uǫ , (E ǫ ) with 0 < a ≤ V ǫ (x) ≤ b < +∞ on M ?
Next, we assume V ǫ Hölderian and

V ǫ → V in L ∞
The equation (E ǫ ) is of prescribed scalar curvature type equation. The term ǫ replace the scalar curvature.

Theorem 1.1 . If ǫ → 0, the solutions u ǫ to (E ǫ ) satisfy: sup M u ǫ → -∞.
By using the same arguments of the next theorem, we have: * E-mails: samybahoura@yahoo.fr, samybahoura@gmail.com 1 Theorem 1.2 . If ǫ → 0, the solutions u ǫ to (E ǫ ) satisfy:

u ǫ -log ǫ → k ∈ R.
uniformly on M . Thus, we have a unifrom bound for the solutions:

k 1 + log ǫ ≤ u ǫ ≤ log ǫ + k 2 .
We also have another proof of the uniqueness result which appear in [START_REF] Bartolucci | Uniqueness and bifurcation for seminilinear elliptic equations on closed surfaces[END_REF]. This proof uses Brezis Merle arguments.

Theorem 1.3 . If ǫ → 0, the solutions u ǫ to (E ǫ ) with V ǫ ≡ 1, are such: u ǫ ≡ log ǫ.
2 Proof of the theorems 1,2,3.

Proof of theorem 1:

We have:

M V ǫ e uǫ → 0. ( * ) Let's consider x ǫ a point such that max M u ǫ = u ǫ (x ǫ ), then x ǫ → x 0 .
We consider a neighborhood of x 0 and we use isothermal coordinates around x 0 (see [START_REF] Chern | An elementary proof of the existence of isothermal parameters on a surface[END_REF]), there exists α > 0 and a regular function φ such that:

∆ E u ǫ + ǫe φ = V ǫ e φ e uǫ in B(0, α).
The metric g of M satisfies g = e φ (dx 2 + dy 2 ). Let's consider u 0 such that:

∆ E u 0 = e φ in B(0, α).
(with Dirichlet condition for example). The function v ǫ = u ǫ + ǫu 0 satisfies:

∆ E v ǫ = Ṽǫ e vǫ ,
with Ṽǫ = V ǫ e φ-ǫu0 . We use ( * ) to have:

B(0,α) e vǫ → 0 and 0 < ã ≤ Ṽǫ ≤ b. ( * * )
with α > 0.

The sequence v ǫ satisfies all the conditions of the theorem of Brezis and Merle, see [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF].

As v ǫ satisfy ( * * ), the last condtion of the theorem of [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF] is not possible. Now, suppose that the first assertion of the theorem of Brezis and Merle is true. We have the local boundedness result. We can say that u ǫ converge uniformly on M to a fonction u and in C 2 topology by the elliptic estimates.

If we tend ǫ to 0 we get that u satisfies in the sense of distributions:

∆u = V e u .
If we integrate the equation, we have a contradiction (since 0 < a ≤ V ≤ b < +∞.

Thus, u ǫ satisfies the second assertion of the theorem of [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF] and thus u ǫ diverge uniformly to -∞ on M .

Proof of Theoreme 2,3:

We set,

w ǫ = u ǫ -log ǫ.
Then, w ǫ is solution to:

∆w ǫ + ǫ = ǫV ǫ e wǫ .
We use Brezis and Merle's theorem and the previous arguments of theoerm 1, to have a convergence to a constant:

w ǫ → w ∞ = ct,
uniformly on M . In isothermal coordinates around x 0 = lim x ǫ with x ǫ such that, w ǫ (x ǫ ) = max M w ǫ , as in the previous case

∆ E w ǫ + ǫe φ = ǫe φ V ǫ e wǫ in B(0, α).
The metric g of M satisfies g = e φ (dx 2 + dy 2 ). Let's consider u 0 such that:

∆ E u 0 = e φ in B(0, α).
(with Dirichlet condition for example). The function v ǫ = w ǫ + ǫu 0 satisfies:

∆ E v ǫ = Ṽǫ e vǫ ,
with Ṽǫ = ǫV ǫ e φ-ǫu0 . One can apply the theorem of Brezis and Merle, see [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]. 

w ǫ → w ∞ , in the C 2 topology with, ∆w ∞ = 0 ⇒ w ∞ ≡ k ∈ R.
For the third theorem we have:

M e wǫ = |M | ⇒ k = 0.
We write:

w ǫ = wǫ + f i ,
with the fact that, M f i = 0, and, f i is solution to: ∆f i = ǫ i (e wi+fi -1) = ǫ i (e wi (1 + f i + O(f 2 i )) -1), We multiply the equation by f i and we integrate, we obtain:

||∇f i || 2 L 2 = o(||f i || 2 L 2
). This is in contradiction with the Poincaré inequality if f i ≡ 0. Thus, f i ≡ 0, w i ≡ wi = 0.

  First we have, M V ǫ e wǫ = |M |, which imply, w ǫ → -∞, and, M ǫV ǫ e wǫ = ǫ|M | → 0, which imply the non-concentration. And,