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Résumé. — Nous démontrons des inégalités de Strichartz pour l’équation de Schrödinger sur
une grande famille de variétés asymptotiquement coniques. Si P est l’opérateur de Laplace et
f0 ∈ C∞0 (R) une fonction de troncature égale à 1 près de zéro, nous montrons d’abord que la
partie basse fréquence de toute solution e−itPu0, i.e. f0(P )e−itPu0, satisfait les mêmes inégalités
de Strichartz que sur Rn, en dimension n ≥ 3. Nous montrons également que la partie haute
fréquence (1 − f0)(P )e−itPu0 vérifie également des inégalités de Strichartz sans perte de dérivée
à l’extérieur d’un compact, même si la variété possède des géodésiques captées mais dans un
sens tempéré. Nous montrons ensuite que la solution complète e−itPu0 satisfait des inégalités de
Strichartz globales en espace-temps à condition que l’ensemble capté soit vide ou suffisamment fin,
et nous obtenons une théorie de la diffusion pour l’équation de Schrödinger non linéaire L2 critique
dans ce contexte géométrique.

Abstract. — We prove global Strichartz inequalities for the equation on a large class of asymp-
totically conical manifolds. Letting P be the nonnegative Laplace operator and f0 ∈ C∞0 (R) be
a smooth cutoff equal to 1 near zero, we show first that the low frequency part of any solution
e−itPu0, i.e. f0(P )e−itPu0, enjoys the same global Strichartz estimates as on Rn in dimension
n ≥ 3. We also show that the high energy part (1− f0)(P )e−itPu0 also satisfies global Strichartz
estimates without loss of derivatives outside a compact set, even if the manifold has trapped
geodesics but in a temperate sense. We then show that the full solution e−itPu0 satisfies global
space-time Strichartz estimates if the trapped set is empty or sufficiently filamentary, and we derive
a scattering theory for the L2 critical nonlinear Schrödinger equation in this geometric framework.





CHAPITRE 1

INTRODUCTION AND MAIN RESULTS

In the past ten or fifteen years, a lot of activity has been devoted to study Strichartz inequalities
on manifolds. We recall that these inequalities were stated first on Rn for the wave equation [37]
and then the Schrödinger one [21]; for the Schrödinger equation and a pair (p, q) ∈ [2,∞]× [2,∞],
they read

||u||Lp(R,Lq) . ||u0||L2 , u(t) = eit∆u0, if
2

p
+
n

q
=
n

2
, (n, p, q) 6= (2, 2,∞).

(A pair (p, q) satisfying the last two conditions is called Schrödinger admissible.) The strong
interest on Strichartz inequalities is mainly related to their key role in the study of nonlinear
dispersive equations (see e.g. [12, 38]).

On compact manifolds these estimates may be different as those on Rn, either due to the strong
confinment leading to derivative losses for the Schödinger equation [10] (the L2 norm of initial
data is replaced by some Sobolev norm) or to the absence of global in time estimates (if initial
data are eigenfunctions the solutions are periodic in time).

One may ask to which extent the estimates on Rn still hold on noncompact manifolds, at least
in the class of asymptotically flat ones. For the Schrödinger equation, the only one considered
from now on, this problem was considered in several articles for local in time estimates [36, 35,
22, 7, 30]. From the geometrical point of view, those papers consider stronger and stronger
perturbations, namely from compactly supported perturbations of the flat metric on Rn to long
range perturbations of conical metrics on manifolds. We refer to Definition 1.1 for a description
of long range asymptotically conical metrics but point out here that long range perturbations are
natural in that it is the only type of decay which is invariant under a change of radial coordinates
(see [5]).

Global in time estimates for long range perturbations are considerably more delicate to obtain
and have been considered in fewer papers [39, 29, 23] (see also [8] with a low frequency cutoff).

To prove global Strichartz inequalities on curved backgrounds, one has to face two difficulties.
The first one, which does not happen on Rn, is the possible occuring of trapped geodesics (geodesics
not escaping to infinity, in the future or in the past). This trapping is only sensitive at high
frequencies and may affect the estimates by a loss of derivatives. However, if it is sufficiently weak,
one can still expect Strichartz estimates without loss as shown in [11] locally in time. Trapping is
already a problem for local in time estimates hence a fortiori for global in time ones.

The second difficulty stems in the analysis of low frequencies. Indeed, except in a few model
situations such as Rn or flat cones [20] where the fundamental solution of the Schrödinger equation
can be computed explicitly, the only robust strategy accessible so far is to localize the solution
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in frequency, e.g. by mean of a Littlewood-Paley decomposition, and then to prove Strichartz
estimates for the spectrally localized components by using microlocal techniques to derive appro-
priate dispersive estimates. Due to the uncertainty principle, low frequency data cannot be studied
purely by microlocal techniques and thus require additional non trivial estimates. On Rn (or a
pure cone), one may use a global scaling argument to reduce the analysis of low frequency blocks
to the study at frequency one, but this is in general impossible on manifolds.

The first breakthrought on global in time Strichartz estimates was done by Tataru in [39] where
he considered long range and globally small perturbations of the Euclidean metric, with C2 and
time dependent coefficients. In this framework, no trapping could occur. The results were then
improved in [29] by allowing more general perturbations in a compact set, including some weak
trapping. Recently, Hassell-Zhang [23] partially extended those results by considering the general
geometric framework of asymptotically conic manifolds and including very short range potentials,
but using a non-trapping condition.

In the present paper, we improve on those references in the following directions. On one hand,
we consider a class of asymptotically conic manifolds which is larger than the one of Hassell-Zhang,
and contains all usual smooth long range perturbations of the Euclidean metric. More importantly,
we allow the possibility to have trapped trajectories and, assuming this trapping to be temperate
(assumption (1.5)), show that the solutions to the linear Schrödinger equation enjoy the same
global in time estimates without loss as on Rn outside a large enough compact set. This fact is a
priori not clear at all since, by the infinite speed of propagation of the Schrödinger equation, one
may fear that the geometry and the form of the initial datum inside a compact set has an influence
on the solution all the way to spatial infinity. This question was considered first in [7] locally in
time and then in [29] globally in time case but our approach in this paper allows to deal with much
stronger types of trapping than in this last reference (see the discussion after Theorem 1.3).

As a byproduct of this analysis, we derive global space-time Strichartz estimates without loss
if there is no trapping (thus recovering the results of Hassell-Zhang for a larger class of manifolds,
when there is no potential) or if the trapping is filamentary in the sense of [33, 11]. In particular,
we extend to the global in time case one of the results of [11].

Then, we apply these estimates to the scattering theory of the L2 critical nonlinear Schrödinger
equation with small data on a manifold with filamentary (or empty) trapped set (Theorem 9.1).

From the technical point of view, an important part of our paper is devoted to construct tools
adapted to the analysis of low frequencies. In particular, along the way, we develop a new version of
the Isozaki-Kitada parametrix for long range metrics. Recall that the Isozaki-Kitada parametrix
was introduced on Rn to study the scattering theory of Schrödinger operators with long range
potentials [25]. One of the new features of our parametrix is the treatment of low frequencies
which, to our knowledge, does not seem to have been much considered before, up to the reference
[17] in the context of scattering by potentials on Rn which is very different from ours (especially at
low energy). We derive related L2 propagation estimates which are needed in the present paper but
can be of interest for other questions of scattering theory, such as the study of scattering matrices
at low energy. In a more directly oriented PDE perspective, the methods developed in this paper
also allow to handle other dispersive models like the wave or Klein-Gordon equations [42].

Let us now state our results more precisely.
Let (M, G) be an asymptotically conic manifold, possibly with a boundary, i.e. a manifold

diffeomorphic away from a compact set to a product (RM,+∞)×S, for some closed Riemannian
manifold (S, ḡ), such that G is a long range perturbation of the exact conical metric dr2 + r2ḡ.
To state a precise definition, we denote by Γ(T pq S) the space of (p, q) tensors on S, i.e. sections
of (⊗pTS)⊗ (⊗qT ∗S), and for a given smooth map e = e(r) defined on (RM,+∞) with values in



CHAPITRE 1. INTRODUCTION AND MAIN RESULTS 9

Γ(T pq S), we will note

e ∈ S−ν ⇐⇒ Npq
(
∂jre(r)

)
. 〈r〉−ν−j for each semi-norm Npq of Γ(T pq S) and j ≥ 0.

If (θ1, . . . , θn−1) are local coordinates on S, this means equivalently that e is a linear combination

of terms of the form e
j1···jp
i1···iq (r, θ)dθi1 ⊗ · · · ⊗ dθiq ⊗ ∂θj1 ⊗ · · · ⊗ ∂θjp such that, for each j and α,

we have an estimate |∂jr∂αθ e
j1···jp
i1···iq (r, θ)| . 〈r〉−ν−j locally uniformly in θ. Here 〈·〉 is the standard

japanese bracket.

Definition 1.1. — A Riemannian manifold (M, G) is asymptotically conic if there exist a
continuous and proper function r :M→ [0,+∞), a compact subset K bM and a closed Rieman-
nian manifold (S, ḡ) such that for some RM > 0 there is a diffeomorphism

Ω :M\K 3 m 7→
(
r(m), ω(m)

)
∈ (RM,+∞)× S

through which

G = Ω∗
(
A(r)dr2 + 2rB(r)dr + r2g(r)

)
where A(r) ∈ Γ(T 0

0 S), B(r) ∈ Γ(T 0
1 S) and g(r) ∈ Γ(T 0

2 S) is a Riemannian metric on S such that,
for some ν > 0,

A− 1 ∈ S−ν , B ∈ S−ν , g(·)− ḡ ∈ S−ν .(1.1)

If A ≡ 1 and B ≡ 0, one says the metric G is in normal form.

Without loss of generality, we will assume that G is in normal form (see Appendix A). This
plays no role in the present introduction but will be useful in later chapters.

Everywhere in the sequel, we denote by Lq(M) or just Lq the Lebesgue spaces associated to
the Riemannian measure onM. We let P be the Friedrichs extension of −∆G on L2(M), namely
the unique selfadjoint realization if M has no boundary or the Dirichlet one if ∂M is not empty.
One interest of our geometric framework is that, if n ≥ 3, we have a Sobolev estimate

||v||L2∗ (M) ≤ C||P 1/2v||L2(M), 2∗ =
2n

n− 2
,(1.2)

for all v in the domain of P 1/2 (see Appendix C for a proof).
For u0 ∈ L2(M), we let u(t) := e−itPu0 be the solution to the Schrödinger equation

i∂tu− Pu = 0, u|t=0 = u0.

Let f0 ∈ C∞0 (R) be such that f0 ≡ 1 on [−1, 1] and split u(t) = ulow(t) + uhigh(t) according to low
and high frequencies, i.e.

ulow(t) := f0(P )e−itPu0, uhigh(t) = (1− f0)(P )e−itPu0.(1.3)

Theorem 1.2. — [Global space-time low frequency estimates] Assume that n ≥ 3 and let (p, q) be
a Schrödinger admissible pair. Then there exists C > 0 such that, for all u0 ∈ L2(M),∣∣∣∣ulow

∣∣∣∣
Lp(R;Lq(M))

≤ C||u0||L2(M).(1.4)

Notice that in this theorem ∂M may be empty or not.

Proof. Section 8.2.
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Theorem 1.3. — [Global in time high frequency estimates at spatial infinity] Assume that n ≥ 2
and that for some M > 0 large enough, we have for all χ ∈ C∞c (M)∣∣∣∣χ(P − λ± i0)−1χ

∣∣∣∣
L2(M)→L2(M)

.χ λ
M , λ ≥ 1.(1.5)

Then there exists R � 1 such that for any Schrödinger admissible pair (p, q) there exists C > 0
such that ∣∣∣∣1{r>R}uhigh

∣∣∣∣
Lp(R;Lq(M))

≤ C||u0||L2(M),(1.6)

for all u0 ∈ L2(M).

If we recast the global in time estimates at spatial infinity of [29, Theorem 1.5] in our framework,
these authors show that

||1{r>R}uhigh||Lp(R;Lq) ≤ C||u0||L2 + ||1{r<R}uhigh||L2(R;L2)

where the last term can be controlled by ||u0||L2 thanks to (1.5) if M ≤ 0 (the usual non-trapping
case is M = −1/2) but not clearly otherwise. In our result, the right hand side of (1.6) does not
involve any corrective term depending on u and holds for any M .

Note that examples of situations where bounds of the form (1.5) hold include [33, 14] in some
trapping geometries and, of course, the non-trapping case [43].

We also remark that, as in Theorem 1.2, the boundary of M does not need to be empty but
this observation is less relevant here for we consider estimates near infinity.

Theorems 1.2 and 1.3 reduce the proof of Strichartz estimates on u to estimates on 1{r≤R}uhigh.
This leads to the following result.

Theorem 1.4 (Global spacetime estimates without loss). — Assume that n ≥ 3 and ∂M
is empty. If either

– the geodesic flow is non-trapping and (p, q) is any Schrödinger admissible pair,
– the trapped set satisfies the assumptions of [11] (see also Assumption 8.7 in this paper) and

(p, q) is any non endpoint Schrödinger admissible pair,

then there exists C > 0 such that∣∣∣∣u∣∣∣∣
Lp(R;Lq(M))

≤ C||u0||L2(M),(1.7)

for all u0 ∈ L2(M).

This theorem improves on the result of [23] in two directions: Hassell-Zhang only consider the
non-trapping case and, even in the non-trapping situation, we consider more general types of ends.
It also provides a global in time version of the estimates of [11] in the asymptotically conic case.

We state this result in the boundaryless case in order to give complete proofs or references. We
emphasize however that using the techniques of [26] it can certainly be extended to the case when
M has a stricly geodesically concave boundary and is non-trapping for the associated billiard flow.

We recall finally the well known fact that inhomogeneous Strichartz estimates, for non endpoint
pairs, can be derived from the homogeneous ones (1.7) by using the Christ-Kiselev Lemma [13];
this is sufficient for the applications to the nonlinear equations studied in Section 9.

Here is the plan of our paper. In Section 2, we record notation about charts, partitions of
unity, scaling operators, etc. that will be used in further chapters. In Section 3, we describe the
pseudo-differential calculus adapted to our framework, including a rescaled one for low frequency
estimates which is not quite standard. In Section 4, we prove Littlewood-Paley decompositions
at low and high frequencies. In Sections 5 and 6, we construct an Isozaki-Kitada parametrix for
the microlocalized Schrödinger group, both at high and low frequencies. We use it in Section 7
to derive some L2 propagation estimates to be used in Section 8 where the theorems stated in
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this introduction are proved. Finally, in Section 9, we give nonlinear applications of our Strichartz
estimates.

Acknowledgments. JMB is partially supported by ANR Grant GeRaSic, ANR-13-BS01-0007-01.
HM is partially supported by JSPS Wakate (B) 25800083.





CHAPITRE 2

NOTATION

In this part, we collect some notation or definitions that will be used throughout this paper.

Coordinate charts. If κ : Uκ ⊂ S → Vκ ⊂ Rn−1 is a coordinate chart on S then, upon the
identification of (RM,+∞)× Uκ with a subset of M, the map

(r, ω) 7→ (r, κ(ω))(2.1)

defines a coordinate chart on M. We define Πκ and Π−1
κ respectively as the pullback and push-

forward operators associated to this chart on M, i.e.(
Πκv

)
(r, ω) = v

(
r, κ(ω)

)
,

(
Π−1
κ u

)
(r, θ) = u

(
r, κ−1(θ)

)
.(2.2)

If τ : V1 → V2 is a diffeomorphism between open subsets of Rn−1 (typically a transition map
between charts of S), we also define Πτ and Π−1

τ as above for the diffeomorphism (r, θ) 7→ (r, τ(θ))
between R × V1 → R × V2. With such a definition, if κj : Uj → Vj , j = 1, 2, are two coordinates
charts on S, it follows that

Π−1
κ2

Πκ1
= Π−1

τ12 , τ12 := κ2 ◦ κ−1
1 : κ1(U1 ∩ U2)→ κ2(U1 ∩ U2).(2.3)

We choose a finite atlas on S composed of charts with the property that κ∗ḡ =: ḡlm(θ)dθldθm
satisfies the following uniform estimates on each Vκ:

C−1
0 In−1 ≤

(
ḡlm(θ)

)
≤ C0In−1,(2.4) ∣∣∂αḡlm(θ)
∣∣ ≤ Cα.(2.5)

We will also use the matrices ḡ(θ) := (ḡlm(θ)), (ḡlm(θ)) := ḡ(θ)−1 as well as the function |ḡ(θ)| :=
detḡ(θ)1/2.

Partitions of unity. We pick a partition of unity 1 =
∑
κ ϕκ(ω) on S, with ϕκ ∈ C∞0

(
Uκ
)

and
where the sum over κ, as well as all similar sums below, is taken over the finite atlas we chose
above. For each κ, we also pick ϕ̃κ, ˜̃ϕκ ∈ C∞0

(
Uκ
)

such that ϕ̃κ ≡ 1 near supp
(
ϕκ
)

and ˜̃ϕκ ≡ 1

near supp(ϕ̃κ). We then pick ζ, ζ̃,
˜̃
ζ ∈ C∞(R) supported in (RM,∞), equal to 1 near infinity and

such that ζ̃ ≡ 1 near the support of ζ,
˜̃
ζ ≡ 1 near the support of ζ̃ and define

ψκ(r, ω) := ζ(r)ϕκ(ω), ψ̃κ(r, ω) := ζ̃(r)ϕ̃κ(ω),
˜̃
ψκ(r, ω) :=

˜̃
ζ(r) ˜̃ϕκ(ω).(2.6)

Their interest is that they are supported on coordinate patches of M and that∑
κ

ψκ = ζ(r) ≡ 1 near infinity, ψ̃κ ≡ 1 near supp(ψκ),
˜̃
ψκ ≡ 1 near supp(ψ̃κ).(2.7)

They will be useful to globalize pseudo-differential operators on M.
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Rescaling operators at infinity. For ε ∈ (0, 1], we will use the operators Dε defined by

Dεv(r, ω) = ε
n
2 v(εr, ω), if supp(v) ⊂ {r > RM}.(2.8)

Here v is a function onM but we will also freely use Dε for functions on Rn supported in (RM,∞)×
V , for any V ⊂ Rn−1. Note that Dεv is supported in {r > ε−1RM}. The normalization factor
εn/2 ensures that

||Dεv||L2(M) ≈ ||v||L2(M)

(i.e. their quotient is bounded from above and below uniformly in ε); indeed, by using that G is
in normal form, the measure in {r > RM} reads

|det(g(r, θ))|1/2rn−1drdθ

and is comparable to the exact conic measure rn−1|ḡ(θ)|drdθ by (1.1) (see also after (2.12)). We
define similarly

D−1
ε v(r, ω) = ε−

n
2 v(ε−1r, ω), if supp(v) ⊂ {r > ε−1RM}.(2.9)

Of course we have also the equivalence ||D−1
ε v||L2(M) ≈ ||v||L2(M).

Modified japanese bracket. Everywhere in the text, we will replace the usual japanese bracket
〈r〉 = (1 + r2)1/2 by another positive function still denoted by 〈r〉 and such that

〈r〉 =

{
1 on a large enough compact set

r for r � 1.
(2.10)

By large enough compact set, we mean that 〈r〉 = 1 in a neighborhood of the region where ζ(r) 6= 1
(see e.g. (2.7) for ζ). The interest is that commutators of powers of 〈r〉 with differential operators
will be automatically supported in a region where ζ(r) = 1, i.e. in a region where we can use
polar coordinates (2.1). More generally, commutators with powers of 〈εr〉 will be supported where
ζ(εr) = 1.

Laplacian. With the metric in normal form, the operator −P = ∆G reads in local coordinates
near infinity

∆G = ∂2
r + r−2gjk(r, θ)∂2

θjθk
+ (n− 1)r−1∂r + w(r, θ)∂r + wk(r, θ)∂θk(2.11)

where (gjk(r, θ)) = (gjk(r, θ))−1 if g(r) = gjk(r, θ)dθjdθk. The lower order coefficients are

w(r, θ) =
∂r|g(r, θ)|
|g(r, θ)|

∈ S−1−ν ,(2.12)

since |g(r, θ)| = det(gjk(r, θ))1/2 = |ḡ(θ)|+ S−ν , and

wk(r, θ) =
1

r2

1

|g(r, θ)|
∂θj
(
gjk(r, θ)|g(r, θ)|

)
∈ S−2.(2.13)

The description of the first order terms will be particularly useful to solve transport equations (see
Proposition 5.3). It is also useful to observe that, using the rescaled variable r̆ = εr,

∆G

ε2
= Dε∆GεD

−1
ε , Gε = dr̆2 + r̆2g(r̆/ε),(2.14)

that is

∆Gε = ∂2
r̆ + r̆−2gjk(r̆/ε, θ)∂2

θjθk
+ (n− 1)r̆−1∂r̆ + ε−1w(r̆/ε, θ)∂r̆ + ε−2wk(r̆/ε, θ)∂θk .

We will see in Lemma 3.3 that the negative powers of ε in front of w(r̆/ε, θ) and wk(r̆/ε, θ) are
harmless in {r̆ & 1}, i.e. in the region {εr & 1}.
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To distinguish clearly between what is globally defined and what is defined in a chart, we will
use the notation

Pκ = Π−1
κ PΠκ,

for the expression of P in local coordinates (that is minus the right hand side of (2.11)) and

Pε,κ = D−1
ε

Pκ
ε2

Dε.(2.15)

for its rescaled version (that is minus the above expression of ∆Gε). We denote respectively by

pκ = ρ2 + r−2gjk(r, θ)ηjηk and pε,κ = ρ̆2 + r̆−2gjk(r̆/ε, θ)ηjηk(2.16)

the principal symbols of Pκ and Pε,κ in local coordinates near infinity.





CHAPITRE 3

PSEUDODIFFERENTIAL CALCULUS

3.1. Operators on Rn.

We shall use symbols in the classes S̃m,µ which are defined as follows. For m,µ ∈ R, S̃m,µ is
the set of symbols on R2n such that∣∣∂jr∂αθ ∂kρ∂βη a(r, θ, ρ, η)

∣∣ ≤ C〈r〉µ−j−|β|(〈ρ〉+
〈η〉
〈r〉

)m−k−|β|
(3.1)

for all r, ρ ∈ R and θ, η ∈ Rn−1. As usual, the best constants C are semi-norms which define the

topology of S̃m,µ. We also set S̃−∞,µ := ∩mS̃m,µ. One should have in mind that the second index,
µ, measures the spatial decay of symbols. We use the semiclassical quantization

Oph(a) = a(r, θ, hDr, hDθ),

with h ∈ (0, 1]. Note that we put h in exponent in this notation to distinguish it with the one
of rescaled pseudo-differential operators introduced in Definition 3.2 below; high frequencies are
raised, while low frequencies will be lowered!

We need to consider admissible symbols, i.e. h dependent families of symbols with an asymptotic
expansion in h in the following usual sense

ah ∼
∑
j≥0

hjaj in S̃m,µ
def⇐⇒ for all N, h−N

(
ah −

∑
k<N

hjaj

)
is bounded in S̃m−N,µ−N .

Note that this implies in particular that each aj belongs to S̃m−j,µ−j . We call the symbol in the
right hand side the remainder of order N . When m = −∞, the above expansion means that it
holds for every finite m.

The pseudo-differential calculus in the classes S̃m,µ enjoys the usual symbolic properties since

the weight 〈ρ〉+ 〈η〉
〈r〉 is temperate, for it is easily seen that(
〈ρ+ δρ〉+

〈η + δη〉
〈r + δr〉

)
.

(
〈ρ〉+

〈η〉
〈r〉

)
(1 + |δr|+ |δρ|+ |δη|)2,

for all r, δr, ρ, δρ ∈ R and η, δη ∈ Rn−1. In particular, we have the following rules where for clarity,
we will denote by † the adjoints w.r.t. to the Lebesgue measure and keep the notation ∗ for adjoints
w.r.t. the Riemannian measure.

Proposition 3.1 (Symbolic calculus in S̃m,µ). — Let m,m′, µ, µ′ ∈ R.
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– Adjoint: for every a ∈ S̃m,µ, one has

Oph(a)† = Oph
(
a†h
)
, a†h ∼

∑
j≥0

hj

 ∑
k+|α|=j

Dk
rD

α
θ ∂

k
ρ∂

α
η ā

k!α!

 in S̃m,µ.

– Composition: for every a ∈ S̃m,µ and b ∈ S̃m′,µ′ , one has

Oph(a)Oph(b) = Oph
(
(a#b)h

)
, (a#b)h ∼

∑
j≥0

hj

 ∑
k+|α|=j

∂kρ∂
α
η aD

k
rD

α
θ b

k!α!

 in S̃m+m′,µ+µ′ .

– Invariance by angular diffeomorphisms: let τ : V1 → V2 be a diffeomorphism between

two open subsets of Rn−1. For all a ∈ S̃m,µ such that

supp(a) ⊂ R×K × Rn for some K b V1,(3.2)

and for all ϕ ∈ C∞0 (V1), one has

Π−1
τ Oph(a)ϕ(θ)Πτ = Oph

(
aτ (h)

)
, aτ (h) ∼

∑
j≥0

hjaτj in S̃m,µ,

with symbols aτj such that

supp(aτj ) ⊂
{(
r, τ(θ), ρ, (dτ(θ)T )−1η

)
| (r, θ, ρ, η) ∈ supp(a)

}
⊂ R× V2 × Rn.(3.3)

– L2 boundedness: There exists a constant C(a) depending on a finite number of semi-norms

of a ∈ S̃0,0 such that, for all such a and all h ∈ (0, 1],∣∣∣∣Oph(a)
∣∣∣∣
L2(〈r〉n−1drdθ)→L2(〈r〉n−1drdθ)

≤ C(a).(3.4)

Here and below, L2(〈r〉n−1drdθ) is a shorthand for L2(Rn, 〈r〉n−1drdθ).

We point out that all terms of the expansions as well as the remainders depend equicontinuously
on a (or (a, b) in the second item). In the fourth item, we consider the measure 〈r〉n−1drdθ for this
is of course the good model near infinity for the Riemannian measure of G. The L2 boundedness
is a consequence of the usual Calderón-Vaillancourt Theorem since∣∣∣∣Oph(a)

∣∣∣∣
L2(〈r〉n−1drdθ)→L2(〈r〉n−1drdθ)

=
∣∣∣∣〈r〉n−1

2 Oph(a)〈r〉
1−n
2

∣∣∣∣
L2(drdθ)→L2(drdθ)

,

where, by the second item of Proposition 3.1, 〈r〉n−1
2 Oph(a)〈r〉 1−n2 = Oph(a(h)) for some admissible

family a(h) ∈ S̃0,0.

We next introduce the convenient definition of rescaled pseudo-differential operators.

Definition 3.2 (Rescaled pseudo-differential operators). — If a ∈ S̃m,µ(Rr̆×Rn−1
θ ×Rρ̆×

Rn−1
η ) for some m,µ ∈ R, we set

Opε(a) := DεOp
1(a)D−1

ε .

Recall that Dε is defined in (2.8).

More explicitly,

Opε(a) = a

(
εr, θ,

Dr

ε
,Dθ

)
.

To clarify the presentation, we distinguish the variables (r, ρ) and (r̆, ρ̆) which have to be thought
as

εr = r̆,
ρ

ε
= ρ̆.
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In the typical situation we shall encounter, we will consider a(r̆, θ, ρ̆, η) = b
(
r̆, θ, ρ̆, r̆−1η

)
for which

Opε(a) = b

(
εr, θ,

Dr

ε
,

1

r

Dθ

ε

)
.

If b is compactly supported in momentum, this corresponds to a low frequency localization.
Let us comment a little bit more on Definition 3.2. Rescaled pseudo-differential operators will

be used to approximate low frequency localization of P , i.e. operators of the form f(P/ε2) with
f ∈ C∞0 (R+). By the uncertainty principle, one can only expect to get such an approximation
where r is large, typically r & ε−1, which corresponds to considering symbols a (or b as above)
supported in r̆ & 1. This is consistent with the following simple and crucial lemma.

Lemma 3.3. — Let a ∈ Sµ(Rr × Rn−1
θ ) with µ ∈ R. Let

aε(r̆, θ) := εµa (r̆/ε, θ) .

Then (aε)ε∈(0,1] belongs to a bounded subset of Sµ
(
(1,∞)r̆ × Rn−1

θ

)
, i.e.∣∣∂jr̆∂αθ aε(r̆, θ)∣∣ ≤ Cjαr̆µ−j , r̆ ≥ 1, θ ∈ Rn−1, ε ∈ (0, 1].

Proof. It suffices to write

∂jr̆∂
α
θ aε(r̆, θ) = εµ−j

(
∂jr∂

α
θ a
)
(r̆ε, θ) = O

(
εµ−j〈r̆/ε〉µ−j

)
and to observe that, for r̆ ≥ 1, 〈r̆/ε〉 ≈ r̆/ε. �

The meaning of this lemma is that aε is only singular for r̆ close to 0 (the threshold r̆ ≥ 1 could
be replaced by r̆ ≥ c for any c > 0 positive). In other words, as long as one works in the region
εr & 1, rescaling does not produce singular symbols.

We further illustrate the interest of rescaled pseudo-differential operators by keeping in mind
the example of (2.14). For k + |β| ≤ 2 and a ∈ Sk+|β|−2−ν (ν ≥ 0), we will consider in pratice
operators of the form

1

ε2
a(r, θ)(r−1Dθ)

βDk
r = Dε

(
1

ε2−k−|α|
a (r̆/ε, θ) (r̆−1Dθ)

αDk
r̆

)
D−1
ε ,

= Dε

(
ενaε (r̆/ε, θ) (r̆−1Dθ)

αDk
r̆

)
D−1
ε

with

aε(r̆, θ) = εk+|β|−2−νa(r̆/ε, θ).

Studying such operators in {εr & 1} corresponds to study aε(r̆, θ)(r̆
−1Dθ)

αDk
r̆ in {r̆ & 1}; by

Lemma 3.3, aε is bounded in Sk+|β|−2−ν((1,∞)r̆ × Rn−1
θ ), and allows to use pseudo-differential

calculus in the variables (r̆, θ, ρ̆, η). Typically, to construct a parametrix for χ(εr)(P/ε2 + i)−1 in
{εr ≥ R}, we will consider symbols of the form

χ(r̆)
1

ρ̆2 + r̆−2gjk(r̆/ε, θ)ηjηk + i

with χ supported in (R,+∞). By Lemma 3.3, this ε-dependent symbol belongs to a bounded

subset of S̃−2,0, allowing to perform the usual iterative parametrix construction (see Section 3.3).
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3.2. Operators on M.

Let us define the space S(M) by

u ∈ S(M) ⇐⇒ u ∈ ∩m>0Dom(Pm) and rj∂kr ∂
α
θ u ∈ L2 for all j, k, α,(3.5)

the second condition in the right hand side being a condition at infinity (it is invariant by change of
coordinates on S). It is the natural Schwartz space onM and will be convenient for our purposes.

Using the charts introduced in Section 2, we will note everywhere in this paper

Ophκ(a) := ΠκOp
h(a)Π−1

κ .(3.6)

If nothing is specified about a ∈ S̃m,µ(R2n), such operators are defined from C∞0 ((RM,∞)× Uκ)
to C∞((RM,∞) × Uκ). If in addition supp(a) ⊂ (RM,∞) × Vκ × Rn, which will always be the
case in this paper, they map C∞0 ((RM,∞) × Uκ) to C∞(M). In practice, we will only consider
globally defined operators of the form

Ophκ(a)ψ̃κ = Ophκ(a)ψ̃κ(r, ω)(3.7)

where the cutoff ψ̃κ localizes inside (RM,∞) × Uκ (see (2.6)) and where we will use symbols
spatially supported in (RM,∞) × Uκ (e.g. in the support of ψκ(r, κ−1(θ)) - see again (2.6)). We
point out that such operators are localized near infinity, where we will focus essentially all our

analysis. Note also that since pseudo-differential operators on Rn with symbols in S̃m,µ map the
Schwartz space (on Rn) into itself, we have

Ophκ(a)ψ̃κ : S(M)→ S(M).

We define analogously rescaled pseudo-differential operators on M by

Opε,κ(a) := ΠκOpε(a)Π−1
κ

and will consider, for symbols supported in (RM,∞)× Vκ × Rn,

Opε,κ(a)ψ̃κ(εr) = Opε,κ(a)ψ̃κ(εr, ω)(3.8)

(we will often drop the dependence on ω from the notation, though ψ̃κ(εr) really depends also on
ω ∈ S). It is important to note that if a is spatially localized in (RM,∞)r̆ × Vκ then the range

of Opε,κ(a)ψ̃κ(εr) contains only functions supported in (ε−1RM,∞)r × Uκ; in other words, such
operators are localized in {εr > RM} and will be used as microlocalization in this region only. We
finally note that we will often use ε dependent symbols, similar to those considered in Lemma 3.3.

For further use and to illustrate that such definitions fit the usual expected properties of
a pseudo-differential calculus, we compute adjoints with respect to the Riemannian measure
rn−1|g(r, θ)|drdθ (see Section 2 for |g(r, θ)|). Let a = a(r, θ, ρ, η) be a symbol spatially supported
inside (RM,+∞)× Vκ, i.e. with support in (r, θ) contained in (R,∞)×K for some R > RM and
K b Vκ. Then, using Proposition 3.1 and elementary computations, we find(

Ophκ(a)ψ̃κ

)∗
= ψ̃κΠκ

(
1

rn−1|g(r, θ)|
Oph(a)†rn−1|g(r, θ)|

)
Π−1
κ

= ψ̃κOp
h
κ(b(h))ψ1,κ(3.9)

for some admissible symbol b(h) in the same class as a and ψ1,κ supported in (RM,+∞) × Uκ.
Similarly(

Opε,κ(a)ψ̃κ(εr)
)∗

= ψ̃κ(εr)ΠκDε

(
1

r̆n−1|g(r̆/ε, θ)|
Op1(a)†r̆n−1|g(r̆/ε, θ)|

)
D−1
ε Π−1

κ

= ψ̃κ(εr)Opε,κ(bε)ψ1,κ(εr)(3.10)

with (bε)ε∈(0,1] bounded in the same class as a, also using here Lemma 3.3 to handle |g(r̆/ε, θ)|±1.
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To get L2 or Lq estimates, we will use the following proposition.

Proposition 3.4. — Let ψ be bounded and supported in (RM,+∞)× Uκ and q ∈ [1,∞]. Then∣∣∣∣ψ(εr, ω)ΠκDε

∣∣∣∣
Lq(〈r〉n−1drdθ)→Lq(M)

. ε
n
2−

n
q(3.11) ∣∣∣∣D−1

ε Π−1
κ ψ(εr, ω)

∣∣∣∣
Lq(M)→Lq(〈r〉n−1drdθ)

. ε
n
q−

n
2(3.12)

for ε ∈ (0, 1].

Proof. It follows from an elementary change of variable together with the observation that, on the
support of ψ

(
εr, κ−1(θ)

)
,

rn−1|g(r, θ)|/C ≤ 〈r〉n−1 ≤ Crn−1|g(r, θ)|

for some C > 1. �

We note in particular that, when q = 2, Proposition 3.4 together with (3.4) imply that∣∣∣∣Opε,κ(a)ψ̃κ(εr)
∣∣∣∣
L2→L2 ≤ C(a), ε ∈ (0, 1],(3.13)

with C(a) bounded as long as a belongs to a bounded subset of S̃0,0 ( and a is spatially supported in
(RM,∞)×Vκ). For completeness, we also recall that at high frequency, under the same assumptions
on a, ∣∣∣∣Ophκ(a)ψ̃κ

∣∣∣∣
L2→L2 ≤ C(a), h ∈ (0, 1],(3.14)

which is more standard (and does not use Proposition 3.4).
We will also need Lq estimates on pseudo-differential operators.

Proposition 3.5. — Let a ∈ S̃−∞,0 be spatially supported in (RM,+∞)×Vκ. Let 1 ≤ q1 ≤ q2 ≤
∞. Then ∣∣∣∣Ophκ(a)ψ̃κ

∣∣∣∣
Lq1→Lq2 ≤ Ch

n
q2
− n
q1 ,(3.15) ∣∣∣∣Opε,κ(a)ψ̃κ(εr)

∣∣∣∣
Lq1→Lq2 ≤ Cε

n
q1
− n
q2 ,(3.16)

The constant is bounded as long as a belongs to a bounded subset of S̃−∞,0.

Proof. Write a(r, θ, ρ, η) = b(r, θ, ρ, η/r) so that b is a Schwartz function in the momentum vari-
ables, uniformly in (r, θ). The estimate in the semiclassical case follows from the similar estimate
for Oph(a) from Lq1(〈r〉n−1drdθ) to Lq2(〈r〉n−1drdθ) obtained from the usual Schur test and inter-
polation argument, by exploiting that its kernel with respect to 〈r〉n−1drdθ reads

(2πh)−nrn−1b̂

(
r, θ,

r′ − r
h

, r
θ′ − θ
h

)
〈r′〉1−n

where ˆ is the Fourier transform in the momentum variables. The low frequency case follows from
the above one with h = 1 together with Proposition 3.4. �
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3.3. Functional calculus

We will use operators of the form (3.7) or (3.8) to describe functions of P . In the semiclassical
or high frequency regime, this is mostly standard, see e.g. [3, 30], though we will need a sharper
description of the remainders than in those references. We will also consider the low frequency
regime, which is less standard but can be easily handled by considering appropriate spatial local-
izations and rescaled operators as follows. The first and main step is to construct a parametrix for
(P/ε2 − z)−1 in the region {εr > RM}. To do so, we need basically to use that(

P

ε2
− z
)

= ΠκDε

(
Pε,κ − z

)
D−1
ε Π−1

κ(3.17)

(see (2.15)) namely that P/ε2 is a rescaled (pseudo-)differential operator whose symbol is not
singular w.r.t. ε in the region {r̆ > RM} thanks to Lemma 3.3. One can then apply the usual
elliptic parametrix scheme to Pε,κ − z to construct an approximate inverse. Taking into account
the composition rules of Proposition 3.1, we obtain the following technical result.

Proposition 3.6. — Let ψ, ψ̃,
˜̃
ψ be smooth functions supported in a patch (R,∞)×Uκ with R >

RM, all belonging to S0 and such that

ψ̃ ≡ 1 near supp(ψ),
˜̃
ψ ≡ 1 near supp(ψ̃).

Then for j,N ∈ N and z ∈ C \ [0,+∞), one has

– High frequency parametrix: for h ∈ (0, 1],

ψ(r, ω)(h2P − z)−j =

N−1∑
l=0

hlψOphκ(ql(z))ψ̃ + hNRhigh(z, h)

where each ql(z) ∈ S̃−2j−l,−l is a linear combination of ak(pκ − z)−j−k for some symbol

ak ∈ S̃2k−l,−l independent of z, and with

Rhigh(z, h) = ψOphκ(r(z, h))
˜̃
ψ(h2P − z)−j

where r(z, h) ∈ S̃−N,−N with seminorms growing polynomially in 1/dist(z,R+) uniformly in
h as long as z belongs to a bounded set of C \ [0,+∞).

– Low frequency parametrix: for ε ∈ (0, 1],

ψ(εr, ω)(P/ε2 − z)−j =

N−1∑
l=0

ψ(εr, ω)Opε,κ(qε,l(z))ψ̃(εr, ω) +Rlow(z, ε)

where each qε,l(z) ∈ S̃−2j−l,−l is a linear combinations of aε,k(pε,κ − z)−j−k with symbols

aε,k ∈ S̃2k−l,−l bounded w.r.t. ε, and

Rlow(z, ε) = ψ(εr, ω)Opε,κ(rε(z))
˜̃
ψ(εr, ω)(P/ε2 − z)−j

where rε(z) ∈ S̃−N,−N with seminorms growing polynomially in 1/dist(z,R+) uniformly in ε
as long as z belongs to a bounded set of C \ [0,+∞).

We refer to (2.16) for the definitions of pκ and pε,κ.
Note that the spatial localizations are different at high and low frequency. We also point out

that the low frequency parametrix is not an asymptotic expansion in ε, but it only says that
(P/ε2− z)−jψ(εr, ω) is a sum of rescaled pseudo-differential operators and of a remainder which is
smoothing and spatially decaying like 〈εr〉−N . We finally remark that a similar proposition holds
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for (h2P − z)−jψ(r, ω) and (P/ε2 − z)−jψ(εr, ω) (this follows by taking the adjoints and using
(3.9)-(3.10)). We will use this occasionally.

As a first application, we record the following result where we use the function ζ introduced in
(2.6)-(2.7).

Proposition 3.7. — If j > n/4, then∣∣∣∣ζ(r)(h2P + 1)−j
∣∣∣∣
L2→L∞ . h

−n2 , h ∈ (0, 1],(3.18)

and ∣∣∣∣ζ(εr)(P/ε2 + 1)−j
∣∣∣∣
L2→L∞ . ε

n
2 , ε ∈ (0, 1].

Recall that for simplicity we have set Lq = Lq(M) (see after Definition 1.1).

Proof. We prove only the second estimate, the first one being standard (see e.g. [3]). We use

Proposition 3.6 with ψ replaced by ψκ, ψ̃ by ψ̃κ etc. (see (2.6)), and with N > n/2. Then
ζ(εr)(P/ε2 + 1)−j is a sum over κ of parametrices as in Proposition 3.6. For each κ, consider the
first term

ψκ(εr)Opε,κ(qε,0(−1))ψ̃κ(εr) = (ψκ(εr, ω)ΠκDε)
(
Op1
(
qε,0(−1)

)) (
D−1
ε Π−1

κ ψ̃κ(εr, ω)
)

where qε,0(−1) belongs to (a bounded set of) S̃−2j,0. The result is a consequence of the fact
that Op1(qε,0(−1)) maps L2(〈r〉n−1drdθ) into L∞(〈r〉n−1drdθ) since 2j > n/2 (see [3, Lemma
2.4])), together with the estimates (3.11) (with q′ = ∞) and (3.12) (with q = 2). The other
terms are treated analogously, as well as the remainder Rlow(−1, ε) by using additionally that
||(P/ε2 + 1)−j ||L2→L2 ≤ 1 for the remainder. �

To describe the remainders that will be involved in the different parametrices we are going to
construct, it us useful introduce the following norms

||u||
H

2j
µ

=
∣∣∣∣〈r〉µ(h2P + 1)ju

∣∣∣∣
L2 , ||u||

L
2j
µ

=
∣∣∣∣〈εr〉µ(P/ε2 + 1)ju

∣∣∣∣
L2 ,(3.19)

for µ ∈ R, j ∈ Z and u ∈ S(M). The first one is a standard weighted semiclassical Sobolev norm,
which will be used at high frequency, and the second one will be used at low frequency. We will
only consider these norms on S(M) for this space is stable by the resolvent of P (this is fairly
standard or can be checked by using the parametrix of Proposition 3.6 for ε = h = 1) so that the
norms (3.19) make clearly sense. We also point out that we do not define the spaces H2j

µ nor L2j
µ

(which should be the closures of S(M) for the corresponding norms) and will only use their norms
on S(M). The interest of using such norms is to state estimates which are uniform in ε or h. It is
also worth recalling that the japanese bracket used in (3.19) is the modified one chosen in (2.10).

Given a family of operators Aε preserving S(M), we will write

Aε = O
L

2j1
µ1
→L

2j2
µ2

(1) ⇐⇒ ||Aεu||L2j2
µ2

≤ C||u||
L

2j1
µ1

for all ε ∈ (0, 1], u ∈ S(M),

the point being that the constant is independent of ε. The notation Ah = O
H

2j1
µ1
→H

2j2
µ2

(1) is defined

similarly.

Proposition 3.8. — For all j, j′ ∈ Z and µ, µ′ ∈ R, we have

– Global estimates:

(P/ε2 + 1)j
′

= O
L

2j
µ →L

2(j−j′)
µ

(1), (h2P + 1)j
′

= O
H

2j
µ →H

2(j−j′)
µ

(1)(3.20)

and, as multiplication operators,

〈εr〉µ
′

= O
L

2j
µ →L

2j

µ−µ′
(1), 〈r〉µ

′
= O

H
2j
µ →H

2j

µ−µ′
(1).(3.21)
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– Embeddings estimates: the identity operator I satisfies

µ′ ≤ µ and j′ ≤ j =⇒ I = O
L

2j
µ →L

2j′
µ′

(1), I = O
H

2j
µ →H

2j′
µ′

(1).(3.22)

– Action of pseudo-differential operators: Let ψ̃ ∈ S0 be a smooth function supported in

the patch (RM,∞)× Uκ and a ∈ S̃2j′,µ′ be spatially supported in (RM,∞)× Vκ. Then

Opε,κ(a)ψ̃(εr) = O
L

2j
µ →L

2(j−j′)
µ−µ′

(1), Ophκ(a)ψ̃ = O
H

2j
µ →H

2(j−j′)
µ−µ′

(1).(3.23)

These uniform bounds remain valid as long as a belongs to a bounded subset of S̃2j′,µ′ .

We recall that in (3.23) ψ̃(εr) and ψ̃ are respectively shortands for ψ̃(εr, ω) and ψ̃(r, ω).

Proof. In all cases, we consider only the low frequency estimates, the semiclassical ones being
similar and more standard. (3.20) is an immediate consequence of the definitions of the norms
(3.19). We next prove the first estimate of (3.21). We observe first that for any j ∈ Z and µ ∈ R,
there exists C > 0 such that

C−1||u||
L

2j
µ
≤
∣∣∣∣(P/ε2 + 1)j〈εr〉µu

∣∣∣∣
L2 ≤ C||u||L2j

µ
,(3.24)

for all u ∈ S(M) and ε ∈ (0, 1]. Indeed, let us write

〈εr〉µ(P/ε2 + 1)j =
(
〈εr〉µ(P/ε2 + 1)j〈εr〉−µ(P/ε2 + 1)−j

)
(P/ε2 + 1)j〈εr〉µ.

The lower bound in (3.24) would then follow from the uniform L2 → L2 of the parenthesis. Assume
for instance that j ≥ 0. Then the parenthesis in the right hand side is the sum of the identity and

〈εr〉µ
[
(P/ε2 + 1)j , 〈εr〉−µ

]
ζ(εr)(P/ε2 + 1)−j(3.25)

where one can insert the cutoff ζ(εr) of the partition of unity (2.7) since the commutator is
supported in the region where ζ(εr) = 1 by (2.10). The operator (3.25) is uniformly bounded on
L2 since the composition of

〈εr〉µ
[
(P/ε2 + 1)j , 〈εr〉−µ

]
=
∑
κ

ΠκDε〈r〉µ
[
(Pκ,ε + 1)j , 〈r〉−µ

]
D−1
ε Π−1

κ ψκ(εr)

(see (3.17)) with the low energy parametrix for ζ(εr)(P/ε2+1)−j (derived from Proposition 3.6 and
the partition of unity (2.7)) is uniformly bounded on L2. This follows by using the composition rules
of Proposition 3.1 together with (3.13) and the bound ||(P/ε2 + 1)−j ||L2→L2 ≤ 1. The case j < 0
and the upper bound are proved similarly (using possibly the parametrix of (P/ε2 + 1)−jζ(εr)).
Now, with (3.24) at hand, the first estimate of (3.21) follows from∣∣∣∣〈εr〉µ′u∣∣∣∣L2j

µ−µ′
≤ C

∣∣∣∣(P/ε2 + 1)j〈εr〉µ−µ
′+µ′u

∣∣∣∣
L2 ≤ C2

∣∣∣∣u∣∣∣∣L2j
µ
.

Similarly the first estimate of (3.22) follows from (3.24) since

||〈εr〉µ
′
(P/ε2 + 1)j

′
u||L2 ≤ ||〈εr〉µ(P/ε2 + 1)j

′
u||L2

≤ C||(P/ε2 + 1)j
′
〈εr〉µu||L2 ≤ C||(P/ε2 + 1)j〈εr〉µu||L2 .

We finally consider (3.23). By using the equivalence of norms (3.24), the result follows from the
uniform L2 boundedness of

(P/ε2 + 1)j−j
′
〈εr〉µ−µ

′
Opε,κ(a)ψ̃(εr)〈εr〉−µ(P/ε2 + 1)−j .

By the composition rule of Proposition 3.1, we may assume that µ = µ′ = 0 up to the replacement
of a by ã such that Op1(ã) = 〈r〉µ−µ′Op1(a)〈r〉−µ. Then if both j − j′ and −j are non negative,
the result follows by using (3.17), the composition rule and the L2 bound (3.13). Otherwise we
expand the negative powers of P/ε2 +1 by mean of Proposition 3.6 so that we can compose rescaled
operators supported in the same patch and conclude again with (3.13). �
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Theorem 3.9. — For all f ∈ C∞0 (R) and all given N ,

ζ(r)f(h2P ) =

N−1∑
l=0

∑
κ

hlψκOp
h
κ(aκ,l)ψ̃κ + hNRhigh(f, h)

where aκ,l ∈ S̃−∞,−l with supp(aκ,l) ⊂ supp(f ◦ pκ) and, for any M > 0 and µ ∈ R,

Rhigh(f, h) = OH−2M
µ →H2M

µ+N
(1).

Also

ζ(εr)f(P/ε2) =

N−1∑
l=0

∑
κ

ψκ(εr)Opε,κ(aε,κ,l)ψ̃κ(εr) + Rlow(f, ε)(3.26)

where (aε,κ,l)ε∈(0,1] belongs to a bounded subset of S̃−∞,−l with supp(aε,κ,l) ⊂ supp(f ◦ pε,κ) and,
for any M > 0 and µ ∈ R

Rlow(f, ε) = OL−2M
µ →L2M

µ+N
(1).(3.27)

Proof. We consider only the proof of the low frequency parametrix (3.26), the high frequency one
being similar and more standard (see e.g. [8] in the asymptotically Euclidean case). Note first that
the l-th term in the sum (3.26) is, for any M , OL−2M

µ →L2M
µ+l

(1) by (3.23). Therefore, up to putting

additional terms of the expansion in the remainder, it suffices to prove (3.26) with a remainder
satisfying, instead of (3.27),

Rlow(f, ε) = O
L
−2MN
µ →L

2MN
µN

(1), with MN , µN →∞ as N →∞.(3.28)

Using the Helffer-Sjöstrand formula f(P/ε2) =
∫
C ∂̄f̃(z)(P/ε2 − z)−1L(dz) (f̃ ∈ C∞0 (C) being

an almost analytic extension of f , see [18]) together with Proposition 3.6, we get (3.26) with a
remainder which is a sum over κ of integrals of the form

Rlow,κ(f, ε) =

∫
C
∂̄f̃(z)ψκ(εr)Opε,κ(rε,κ(z))

˜̃
ψκ(εr)(P/ε2 − z)−1L(dz)

where rε,κ(z) ∈ S̃−N,−N has semi-norms growing polynomially in |Im(z)|−1 (which is harmless

since ∂̄f̃(z) = O(|Im(z)|∞)). In the above integral, we write

(P/ε2 − z)−1 = (P/ε2 − z)−1
(
1− ζ(εr)

)
+ (P/ε2 − z)−1ζ(εr).

Using Proposition 3.8, we observe that, for any M , 1−ζ(εr) = OL−2M
µ →L−2M

0
(1), for it is compactly

supported in εr. We also have (P/ε2 − z)−1 = O
L−2M

0 →L
−2(M−1)
0

(|Im(z)|−1) thanks to the spectral

theorem. By Proposition 3.8, we also get that, for some σ = σ(M,N),

ψκ(εr)Opε,κ(rε,κ(z))
˜̃
ψκ(εr) = O

L
−2(M−1)
0 →L

N−2(M−1)
N

(|Im(z)|−σ).(3.29)

All this implies that, for any given µ and N ,

Rlow,κ(f, ε)(1− ζ(εr)) = O
L−2M
µ →L

N−2(M−1)
N

(1).(3.30)

To analyse Rlow,κ(f, ε)ζ(εr), we use a parametrix for (P/ε2−z)−1ζ(εr) obtained analogously to the
one of Proposition 3.6: for any N ′ ∈ N, (P/ε2 − z)−1ζ(εr) is a sum of rescaled pseudo-differential

operators with symbols in S̃−2,0 and a remainder which is (P/ε2 − z)−1 composed (to the right)

with a sum of rescaled pseudo-differential operators with symbols in S̃−N
′,−N ′ . This implies that,

for any µ and M , and by choosing N ′ > |µ|, (P/ε2 − z)−1ζ(εr) is of the form

O
L−2M
µ →L

−2(M−1)
µ

(|Im(z)|−σ
′
) + (P/ε2 − z)−1O

L−2M
µ →LN

′−2M
0

(|Im(z)|−σ
′
)
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for some σ′ = σ′(M,N ′) > 0. Using an estimate similar to (3.29) together with the fact that
(P/ε2 − z)−1 = O

LN
′−2M

0 →L
N′−2(M−1)
0

(|Im(z)|−1), we get

Rlow,κ(f, ε)ζ(εr) = O
L−2M
µ →L

N−2(M−1)
N

(1).

Together with (3.30), this yields (3.28) by choosing M = MN = N/4 for instance. �

As a first consequence of Theorem 3.9, we have the following estimates.

Proposition 3.10 (L∞ → L∞ boundedness at spatial infinity)
For all f ∈ C∞0 (R),

||ζ(r)f(h2P )||L∞→L∞ . 1, h ∈ (0, 1]

and

||ζ(εr)f(P/ε2)||L∞→L∞ . 1, ε ∈ (0, 1].

Proof. We consider only the low frequency case. The high frequency one is essentially standard,
and can be proved e.g. as in [3]. We thus consider ζ(εr)f(P/ε2) which we expand using (3.26). The
(rescaled) pseudo-differential terms are bounded uniformly on L∞ by Proposition 3.5. Choosing
M = N and µ = −N in (3.27), the remainder can be written

Rlow(f, ε) = ζ̃(εr)(P/ε2 + 1)−NBε〈εr〉−N

with ||Bε||L2→L2 . 1. This follows from Proposition 3.8 and that ζ̃(εr)ζ(εr) = ζ(εr). If N > n/2,

we have ||〈εr〉−N ||L∞→L2 . ε−n/2 so, using the second estimate of Proposition 3.7 with ζ̃ instead
of ζ, we get

||ζ̃(εr)(P/ε2 + 1)−NBε〈εr〉−N ||L∞→L∞ . εn/2ε−n/2 . 1

which yields the result. �

To illustrate another application of Proposition 3.8, we record some rough a priori estimates
on the propagator e−itP which will be useful in Section 7. For k ≥ 0 integer, we define γ(k) by
γ(0) = 0 and γ(k + 1) = 2γ(k) + 1 (i.e. γ(k) = 2k − 1).

Proposition 3.11 (Rough propagation estimates). — For µ ∈ R denote by dµe the smallest
integer ≥ |µ|. Then for all j ∈ Z,

e−itP = OH2j
µ →H2j−2γ(dµe)

µ

(
〈t/h〉γ(dµe)

)
,(3.31)

meaning that 〈t/h〉−γ(dµe)e−itP = OH2j
µ →H2j−2γ(dµe)

µ
(1) uniformly in t ∈ R. Similarly

e−itP = OL2j
µ →L2j−2γ(dµe)

µ

(
〈ε2t〉γ(dµe)

)
.(3.32)

This proposition will be very useful to handle the remainders of some microlocal propagation
estimates. The knowledge of the power γ(dµe) is not very important, the main interest being only
the polynomial growth w.r.t to 〈t/h〉 and 〈ε2t〉. We rather comment on the different scalings in h
and ε. The estimate (3.31) reflects roughly that waves localized at frequency 1/hmove at speed 1/h.
Based on this intuition, one could expect to get a bound in term of 〈εt〉 in (3.32) for waves localized
at frequency ε. The reason why we have bounds in term of 〈ε2t〉 is that we use the rescaled spatial
weights 〈εr〉µ. Another way to see that the scalings are natural is to consider the flat Laplacian on
Rn and to observe that for every symbol a one has eit∆a(x,D) = a(x− 2tD,D)eit∆ we see easily
that

eit∆a(x, hD) = a

(
x− 2

t

h
hD, hD

)
eit∆
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and that

eit∆a

(
εx,

D

ε

)
= a

(
εx− 2tε2

D

ε
,
D

ε

)
eit∆,

where the power ε2 on t follows both from writing D = ε(D/ε) and from the scaling in x.
We finally note that Proposition 3.11 uses implicitly that S(M) is preserved by e−itP (recall

our convention to consider the H2j
µ and L2j

µ norms only on S(M)). This fact can be checked by
routine arguments using exactly the commutator techniques involved in the proof below, but we
omit this aspect and focus only on the estimates in time.

Proof of Proposition 3.11. Let us show (3.31). By (3.21), it suffices to show that 〈r〉µe−itP 〈r〉−µ

satisfies the expected bound between H2j
0 and H2(j−γ(dµe))

0 . If µ = 0, this is a straightforward
consequence of

||(h2P + 1)je−itP (h2P + 1)−j ||L2→L2 = 1.

Assume next that dµe = 1 and compute first the commutator[
〈r〉|µ|, e−itP

]
= i

∫ t

0

e−i(t−s)P [P, 〈r〉|µ|]e−isP ds.

Using that [P, 〈r〉|µ|] is h−1 times a sum of semiclassical differential operators with symbols in

S̃1,|µ|−1 ⊂ S̃2,0 as in (3.23) (they are supported in r � 1 by (2.10)), we can write the commutator[
〈r〉|µ|, e−itP

]
= OH2j

0 →H
2(j−1)
0

(|t|/h). Thus, using that

〈r〉µe−itP 〈r〉−µ = e−itP +


〈r〉−|µ|

[
e−itP , 〈r〉|µ|

]
if µ < 0

[
〈r〉|µ|, e−itP

]
〈r〉−|µ| if µ ≥ 0

we get the result since 〈r〉−|µ| is bounded on each H2k
0 by Proposition 3.8. If dµe > 1 we proceed

by induction by writing, e.g. if µ > 0,

〈r〉µe−itP 〈r〉−µ = 〈r〉µ−1

(
e−itP + i

∫ t

0

e−i(t−s)P [P, 〈r〉]e−isP ds〈r〉−1

)
〈r〉1−µ

The induction assumption and Proposition 3.8 then show that the right hand side is of order

O
(
〈t/h〉γ(dµe−1)

)
+

∫ t

0

O
(
〈(t− s)/h〉γ(dµe−1)

)
O(h−1)O

(
〈s/h〉γ(dµe−1)

)
ds

as an operator from H2j
µ to H2j−2γ(dµe)

µ . Using the definition of γ(.), we get (3.31). The proof of

(3.32) is similar, the gain in ε2 following from the fact that

[P, 〈εr〉] = ε2[P/ε2, 〈εr〉] = OL2j
µ →L2j−2

µ
(ε2)

for all µ and j since the commutator in the middle is a linear combination of rescaled pseudo-
differential operators as in (3.23). �





CHAPITRE 4

SPECTRAL LOCALIZATIONS

The purpose of this chapter is to prove Theorems 4.1 and 4.6 which provide Littlewood-Paley
type estimates, at low and high frequencies respectively. Specific comments are given after each
theorem. We only point out here that we adopt a pragmatic point of view, in the sense that we
do not try to mimic exactly the usual form of Littlewood-Paley estimates on Rn (e.g. by using
non trivial heat kernel bounds) but rather provide robust and spatially localized versions of such
estimates which seem naturally adapted to the proof of Strichartz estimates. In particular, the
form of the decompositions are not the same at high and low frequencies; this is related to the fact
that we use different types of estimates to treat the remainder terms.

We use the function f0 introduced in (1.3) and consider f(λ) = f0(λ) − f0(2λ) so that f ∈
C∞0 (R \ 0) and, for all λ ∈ R,

∞∑
`=0

f(2`λ) = 1R\0(λ)f0(λ),

∞∑
`=1

f(2−`λ) = 1− f0(λ).

The spectral theorem then implies that, in the strong sense on L2(M),

f0(P ) =
∑
`≥0

f(2`P ), (1− f0)(P ) =
∑
`≥1

f(2−`P ),(4.1)

using in the first sum that 0 is not an eigenvalue of P .

4.1. Low frequencies

In this section we prove the following result.

Theorem 4.1. — Assume that n ≥ 3. Let χ ∈ C∞0 (R) be equal to 1 on a large enough interval
so that (1− χ) = (1− χ)ζ (see (2.7)). Then

||f0(P )v||L2∗ .

( ∑
ε2=2−`

∣∣∣∣(1− χ)(εr)f(P/ε2)v
∣∣∣∣2
L2∗ +

∣∣∣∣〈r〉−1f(P/ε2)v
∣∣∣∣2
L2

)1/2

,

for all v ∈ L2. In the sum ` belongs to Z+.

Let us comment that this Littlewood-Paley estimate holds for the exponent 2∗ (and presumably
for exponents between 2 and 2∗) which is sufficient and somewhat natural for applications to
Strichartz estimates. Indeed, the first half of the sum is appropriately localized to use microlocal
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techniques while the second one can be treated in a straightforward fashion by using the L2

estimates (7.16)-(7.17).

Theorem 4.1 is a consequence of the next two propositions in which we pick f̃ ∈ C∞0 (R \ 0;R)

such that f̃ = 1 on supp(f) and let

Q̃(ε) = (1− χ)(εr)
∑
κ

ψκ(εr)Opε,κ
(
f̃ ◦ pε,κ

)
ψ̃κ(εr),(4.2)

that is the first term of the parametrix of (1−χ)(εr)f̃(P/ε2) according to Theorem 3.9. Here and
everywhere in this section, we set

ε2 = 2−`.

Proposition 4.2. — If n ≥ 3, then

||f0(P )v||L2∗ . sup
M

∣∣∣∣∣
∣∣∣∣∣
M∑
`=0

Q̃(ε)(1− χ)(εr)f(P/ε2)v

∣∣∣∣∣
∣∣∣∣∣
L2∗

+

∑
`≥0

∣∣∣∣〈r〉−1f(P/ε2)v
∣∣∣∣2
L2

1/2

for all v ∈ L2.

Up to the homogeneous Sobolev inequality (1.2) this proposition rests on purely L2 → L2

estimates. In particular, we feel it is quite robust and could be used generalized to other contexts.
To state the second proposition, we need to define the family of square functions

S̃Mw :=

(
M∑
`=0

∣∣Q̃(ε)∗w
∣∣2)1/2

, M ≥ 0,

where the adjoint is taken with respect to the Riemannian measure.

Proposition 4.3. — For all q1 ∈ (1, 2] there exists C > 0 such that∣∣∣∣S̃Mw∣∣∣∣Lq1 ≤ C||w||Lq1 ,
for all M ≥ 0 and all w ∈ C∞0 (M).

This proposition is a consequence of fairly standard singular integral estimates, by exploiting

the explicit form of the Schwartz kernel of Q̃(ε). Note that we do not need to assume n ≥ 3 here.
Before proving these two technical results, we prove Theorem 4.1.

Proof of Theorem 4.1. Let us set SMv :=
(∑M

`=0

∣∣(1− χ)(εr)f(P/ε2)v
∣∣2)1/2

. Then, by the

usual trick i.e. the Cauchy-Schwarz inequality in ` and the Hölder inequality in space, we have∣∣∣∣∣
(
w,

M∑
`=0

Q̃(ε)(1− χ)(εr)f(P/ε2)v

)∣∣∣∣∣ ≤ ||S̃Mw||L2∗ ||SMv||L2∗

so using Proposition 4.3 for q1 = 2∗, we obtain∣∣∣∣∣
∣∣∣∣∣
M∑
`=0

Q̃(ε)(1− χ)(εr)f(P/ε2)v

∣∣∣∣∣
∣∣∣∣∣
L2∗

≤ C||SMv||L2∗ .

We conclude by using ||SMv||L2∗ ≤
(∑

`≥0 ||(1− χ)(εr)f(P/ε2)ψ||2
L2∗

)1/2

, which follows from the

Minkowski inequality since 2∗ ≥ 2, together with Proposition 4.2. �

To prove Proposition 4.2, we recall first for clarity the following well known results.
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Proposition 4.4. — Let (T`)` be a sequence of linear operators on a Hilbert space H.

1. (Discrete Schur estimate) If ||T ∗j T`||H→H . 2−|`−j|/2, then there is C such that∣∣∣∣∑T`v`
∣∣∣∣
H ≤ C

(∑
||v`||2H

)1/2

,

for all sequence (v`) of H.
2. (Cotlar-Stein estimate) If ||T ∗j T`||H→H+ ||TjT ∗` ||H→H . 2−|`−j|/2, then there is C such that∣∣∣∣∑T`v

∣∣∣∣
H ≤ C||v||H,

for all v ∈ H.

We will apply the Schur estimate to two types of operators. The first one is very elementary: if
we let

T` = 2`/2P 1/2(2`P + 1)−1

then, assuming for instance ` ≥ j so that j+`
2 = − |j−`|2 + `, we have

||T ∗j T`||L2→L2 = 2−
|j−`|

2

∣∣∣∣(2jP + 1)−12`P (2`P + 1)−1
∣∣∣∣
L2→L2 ≤ 2−

|j−`|
2(4.3)

by using the spectral sheorem. The second type of operators requires a lemma.

Lemma 4.5. — Let κ : Uκ → Vκ be a chart on S. Let ψ be smooth onM, supported in (RM,∞)×
Uκ and belonging to S0. For s = 0 or 1, denote

T` =
(
P 1/2/ε

)s
Opε,κ(aε + bε)ψ(εr, ω),

where, for some given J b (0,+∞) (independent of ε),

(aε)ε is bounded in S̃−∞,0, supp(aε) ⊂ p−1
ε,κ(J), (bε)ε is bounded in S̃−∞,−1,

are all spatially supported in (RM,∞)× Vκ. Then, if s = 0, 1,∣∣∣∣T ∗j T`∣∣∣∣L2→L2 ≤ C2−
|j−`|

2(4.4)

and, if s = 0, ∣∣∣∣TjT ∗` ∣∣∣∣L2→L2 ≤ C2−
|j−`|

2 .(4.5)

Proof. We start with two preliminary remarks. First, it suffices to prove both estimates when
` ≥ j (otherwise take the adjoint). The second one is that, if s = 0, T ∗` is of the same form as T`
(see (3.10)) up to perhaps changing the function ψ. In particular, proving (4.4) is sufficient. Let
us prove (4.4) when s = 1. For simplicity, we set ψ(r̆) = ψ(r̆, κ−1(θ)). Using Proposition 3.4 with
q = 2, it suffices to show that∣∣∣∣∣∣∣∣Op1(cεj )ψ(r̆)D−1

εj

Pκ
εjε`

Dε`Op
1(dε`)

∣∣∣∣∣∣∣∣
L2(〈r̆〉n−1dr̆dθ)→L2(〈r̆〉n−1dr̆dθ)

. 2−
|j−`|

2(4.6)

with ε` = 2−`/2, and (cε)ε, (dε)ε bounded families of S̃−∞,0 supported in (RM,∞)×Vκ with respect
to (r̆, θ). Using that ` ≥ j and (2.15), we write

Pκ
εjε`

Dε` = 2
j−`
2
Pκ
ε2`

Dε` = 2−
|j−`|

2 Dε`Pε`,κ.

Then Pε`,κOp1(dε`) = ψ̃(r̆)Op1(eε`) for some bounded family (eε)ε of S̃−∞,0, with support contained

in the one of dε which allows to introduce for free a cutoff ψ̃(r̆) supported in (RM,∞) and equal
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to 1 near the support of the symbols. Now (4.6) follows from the Calderón-Vaillancourt Theorem
(in the form (3.4)) together with∣∣∣∣∣∣ψ(r̆)D−1

εj Dε` ψ̃(r̆)
∣∣∣∣∣∣
L2((RM,∞)×Rn−1,〈r̆〉n−1dr̆dθ)→L2(Rn,〈r̆〉n−1dr̆dθ)

. 1,(4.7)

which follows from the unitarity of D−1
εj Dε` = Dε`−j on L2((0,∞) × Rn−1, r̆n−1dr̆dθ). We next

prove (4.4) when s = 0. It suffices to show that∣∣∣∣∣∣Op1(b̃εj )ψ(r̆)D−1
εj Dε`Op1(dε`)ψ

∣∣∣∣∣∣
L2(〈r̆〉n−1dr̆dθ)→L2(〈r̆〉n−1dr̆dθ)

. 2−
|j−`|

2(4.8)

and ∣∣∣∣∣∣Op1(āεj )ψ(r̆)D−1
εj Dε`Op

1(dε`)
∣∣∣∣∣∣
L2(〈r̆〉n−1dr̆dθ)→L2(〈r̆〉n−1dr̆dθ)

. 2−
|j−`|

2(4.9)

whenever (b̃ε)ε ∈ S̃−∞,−1 and (dε)ε ∈ S̃−∞,0 are spatially supported in (RM,∞) × Vκ. To prove
(4.8), we use

r̆−1D−1
εj Dε` = ε`ε

−1
j D−1

εj Dε` r̆
−1

to write

Op1(b̃εj )ψ(r̆)D−1
εj Dε` = Op1(b̃εj )ψ(r̆)r̆r̆−1D−1

εj Dε` = 2−
|j−`|

2 Op1(b̃εj )r̆ψD
−1
εj Dε` r̆

−1

and conclude again from the L2(〈r̆〉n−1drdθ) boundedness of Op1(b̃ε)r̆ and r̆−1Op1(dε) (there is no
singularity at r̆ = 0 since dε is supported in {r ≥ RM}) together with (4.7). We finally prove

(4.9). The support assumption on aε implies that aε/pε,κ is a smooth symbol in S̃−∞,0 so, using
in addition that ψ ∈ S0, we can write by symbolic calculus

Op1(āε)ψ(r̆) = Op1(āε/pε,κ)ψPε,κ +Op1
(˜̃
bε
)
ψ̃(r̆)

with (
˜̃
bε)ε bounded in S̃−∞,−1 and some cutoff ψ̃(r̆, θ) ∈ S0, both supported in (RM,∞)×V with

respect to (r̆, θ). The contribution of the second term in the right hand side follows from (4.8).
For the first term, one can use (4.6) once observed that

Op1(āεj/pεj ,κ)ψ(r̆)Pεj ,κD
−1
εj Dε` = Op1(āεj/pεj ,κ)ψ(r̆)D−1

εj

Pκ
ε2j

Dε`

and that ε−2
j = 2

j−`
2 (εjε`)

−1 (so that we actually get an estimate of order 2−|j−`| for this term).
This completes the proof. �

Proof of Proposition 4.2. Let us write (1−χ)(εr)f̃(P/ε2) = Q̃(ε) + R̃(ε) according to (4.2) and

Theorem 3.9. Using that ff̃ = f and that 1 = χ(εr) + (1− χ)(εr), we have

f(P/ε2) = Q̃(ε)(1− χ)(εr)f(P/ε2) + εT (ε)〈εr〉−1f(P/ε2)

with

T (ε) = ε−1
(
χ(εr)f̃(P/ε2) + (1− χ)(εr)f̃(P/ε2)χ(εr) + R̃(ε)

)
〈εr〉.(4.10)

Using the first sum in (4.1) (which converges strongly in L2 but also in L2∗ by Sobolev embedding)
and the homogeneous Sobolev estimate (1.2), we have

||f0(P )v||L2∗ . sup
M

(∣∣∣∣∣
∣∣∣∣∣
M∑
`=0

Q̃(ε)(1− χ)(εr)f(P/ε2)v

∣∣∣∣∣
∣∣∣∣∣
L2∗

+

∣∣∣∣∣
∣∣∣∣∣
M∑
`=0

P 1/2T (ε)ε〈εr〉−1f(P/ε2)v

∣∣∣∣∣
∣∣∣∣∣
L2

)
where it suffices to estimate the second norm. Using Theorem 3.9, one can write

P 1/2T (ε) = ε−1P 1/2(P/ε2 + 1)−1B(ε),(4.11)
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with B(ε) bounded on L2 uniformly in ε. The least obvious contribution of terms of (4.10) is

the uniform L2 boundedness of (P/ε2 + 1)χ(εr)f̃(P/ε2)〈εr〉. One can analyze it as follows. On
one hand, the commutator [(P/ε2 + 1), χ(εr)] being a sum of rescaled (pseudo-)differential oper-
ators vanishing outside the support of ζ(εr), one can use Theorem 3.9 to get a parametrix for

[(P/ε2 + 1), χ(εr)]f̃(P/ε2)〈εr〉 from which the uniform L2 boundedness follows. On the other

hand, χ(εr)(P/ε2 + 1)f̃(P/ε2)〈εr〉 = χ(εr)f̃1(P/ε2)〈εr〉 with f̃1 ∈ C∞0 . We then write 〈εr〉 =
χ(εr)〈εr〉 + (1 − χ)(εr)〈εr〉 whose first term is obviously uniformly bounded on L2 while one can

use the parametrix for f̃1(P/ε2)(1 − χ)(εr) to see that χ(εr)f̃1(P/ε2)(1 − χ)(εr)〈εr〉 is uniformly
bounded on L2. Now with (4.11) at hand, by using (4.3) and Lemma 4.5 with s = 1 together with
the Schur estimate of Proposition 4.4, we have

sup
M

∣∣∣∣∣
∣∣∣∣∣
M∑
`=0

P 1/2T (ε)ε〈εr〉−1f(P/ε2)v

∣∣∣∣∣
∣∣∣∣∣
L2

≤ C

∑
k≥0

||ε〈εr〉−1f(P/ε2)v||2L2

1/2

.

In the right hand side of this inequality, we finally use that

ε〈εr〉−1 . 〈r〉−1

and we get the result. �

We now consider the proof of Proposition 4.3.

Proof of Proposition 4.3. It follows the same line as the one for the standard Littlewood-Paley
decomposition (see e.g. [32]). Let (%`)`≥0 be the usual Rademacher sequence (realized as functions
of t ∈ [0, 1]). By the Khintchine inequality, it suffices to show that∣∣∣∣∣

∣∣∣∣∣
M∑
`=0

%`(t)Q̃(ε)∗

∣∣∣∣∣
∣∣∣∣∣
Lq1 (M)→Lq1 (M)

≤ C, t ∈ [0, 1], M ≥ 0.

This in turn follows from the Marcinkiewicz interpolation theorem provided we prove the above

estimate for q1 = 2 as well as weak type (1, 1) estimates for
∑
`≤M %`(t)Q̃(ε)∗ uniformly in t and M .

Using the form of Q̃(ε) given by (4.2), the uniform L2 → L2 bound follows from the Cotlar-Stein
estimate of Proposition 4.4 together with the estimates (4.4) and (4.5) (with s = 0) of Lemma 4.5.
The weak type (1, 1) estimate follows from essentially standard estimates on Calderón-Zygmund
operators; we postpone to Appendix B the technical details. �

4.2. High frequencies

The purpose of this section is to prove the following result.

Theorem 4.6. — Let N ≥ 0 and χ ∈ C∞0 (R) be equal to 1 on a large enough set so that ζ ≡ 1
(see (2.7)) near the support of 1− χ. Let q ∈ [2,∞). Then

||(1− χ)(r)(1− f0)(P )v||Lq .

( ∑
h2=2−`

∣∣∣∣(1− χ)(r)f(h2P )v
∣∣∣∣2
Lq

+ hN
∣∣∣∣〈r〉−Nf(h2P )v

∣∣∣∣2
L2

)1/2

,

for all v ∈ S(M). In the sum ` belongs to N.

This is a spatially localized Littlewood-Paley decomposition similar to the one of [2]. The
improvement here is that the nonlocal L2 correction involves the weight 〈r〉−N which will allow
us to use the resolvent estimates (1.5) and their time dependent counterparts (see Section 7.2 and
Section 8).
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To prove this theorem, we pick again f̃ ∈ C∞0 (R \ 0;R) such that f̃ = 1 on supp(f). We define
the square functions

ΣMv =

(
M∑
`=1

|(1− χ)(r)f(h2P )v|2
)1/2

and

Σ̃Mw =

(
M∑
`=1

|ζ(r)f̃(h2P )w|2
)1/2

.

Here and throughout this section, we set h2 = 2−`.

Proof of Theorem 4.6. It is very close to that of Theorem 4.1. We only explain what changes.
Using the second sum in (4.1), we write

(
w, (1 − χ)(r)(1 − f0)(P )v

)
as the limit as M → ∞ of∑M

`=1(w, (1 − χ)(r)f(h2P )v). Using standard semiclassical estimates based on Theorem 3.9 and

Proposition 3.7, and using that (1− f̃) vanishes near the support of f , we see that, for any N ,

(1− f̃)(h2P )(1− χ)(r)f(h2P ) = hNBN (h)〈r〉−Nf(h2P ),

with
||BN (h)||L2→Lq ≤ C, h ∈ (0, 1].

Therefore, using additionally that ζ(r)(1− χ)(r) = (1− χ)(r), we have∣∣(w, (1− χ)(r)(1− f0)(P )v
)∣∣ ≤ sup

M

∣∣∣∣∣
M∑
`=1

(
ζ(r)f̃(h2P )w, (1− χ)(r)f(h2P )v

)∣∣∣∣∣+

C||w||Lq′
∑
`≥1

hN ||〈r〉−Nf(h2P )v||L2 .

By proceeding as in the proof of Theorem 4.1, in particular by using that the supremum above is

bounded by supM ||Σ̃Mw||Lq′ ||ΣMv||Lq , Theorem 4.6 follows from Proposition 4.7 below. �

Proposition 4.7. — For all q1 ∈ (1, 2], there exists C > 0 such that∣∣∣∣Σ̃Mw∣∣∣∣Lq1 ≤ C||w||Lq1
for all M ≥ 1 and all w ∈ S(M).

Proof. As in the proof of Proposition 4.3, it suffices to show that
∑M
`=1 %`(t)ζ(r)f̃(h2P ) is bounded

on L2 and satisfies weak type (1, 1) estimates, uniformly in t and M . The uniform boundedness
on L2 follows from the spectral theorem and the fact that the functions

λ 7→
M∑
`=1

%`(t)f̃(2−`λ)

belong to L∞(R) uniformly in t,M since at most a finite number (λ,M, t independent) of terms of
the sum do not vanish. To prove the weak type (1, 1) estimate, we use Theorem 3.9 to decompose

ζ(r)f̃(h2P ) = Qhigh(h) + hRhigh(h)

with Rhigh(h) uniformly (in h) bounded on L1 and L2. The uniform boundedness on L2 is obvious.

To see the uniform boundedness on L1, one uses an expansion of ζ(r)f̃(h2P ) to a sufficiently high
order N0+1 so that one can write hRhigh(h) = h1+N0〈r〉−N0B(h)(h2P+1)−N0 with B(h) uniformly

bounded on L2. Then using on one hand that (h2P+1)−N0 : OL1→L2(h−n/2) (by taking the adjoint
estimate of (3.18) near infinity and using a standard elliptic regularity estimate on any compact
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set – including near the boundary if any) and on the other hand that 〈r〉−N0 : L2 → L1, one gets
the desired L1 → L1 estimate. In particular, we have∑

`≥1

h
∣∣∣∣Rhigh(h)

∣∣∣∣
L1→L1 <∞.(4.12)

Then, it suffices to prove the uniform weak type (1, 1) estimates for
∑M
`=1 %`(t)Qhigh(h) and this

follows again from standard arguments on Calderón-Zygmund operators (see Appendix B). �

Remark. In more general situations, e.g. with non smooth coefficients in a compact set, it may
be not easy to prove (4.12). Actually, it would suffice to have

∑
`≥1 h

∣∣∣∣Rhigh(h)
∣∣∣∣
L2∗→L2∗ <∞ for

our purpose. It would restrict the range of exponents in Proposition 4.7 to [2∗, 2], and thus those
of Theorem 4.6 to [2, 2∗], but this would be sufficient for Strichartz estimates.





CHAPITRE 5

CLASSICAL SCATTERING

In this chapter, we construct real phase functions solutions to Hamilton-Jacobi equations that
will be used to construct Isozaki-Kitada type parametrices. The transport equations associated to
such parametrices are also studied.

Everywhere in this chapter, we work in a single chart at infinity (RM,∞)× Vκ. Since we want
to consider both high and low frequencies parametrices, we have to analyze the Hamiltonian flow
of pκ and pε,κ (see (2.16)). Observing that pκ = p1,κ, we will state the main results only for pε,κ
for 0 < ε ≤ 1.

We let φsε,κ be the Hamiltonian flow of pε,κ and define φs0 by

φs0(r, ϑ, %, η) :=
(
r + 2s%, ϑ, %, η

)
that is the Hamiltonian flow of %2. We denote the time by s here since it will be interpreted as a
rescaled version of t in the applications (either s = t/h or s = tε2).

For R� 1, V ⊂ Vκ, and ε > 0, we define the subset of R× (Rn−1)2

Θ(R, V, ε) = {(r, θ, ϑ) | r > R, θ ∈ V, |θ − ϑ| < ε} .(5.1)

To describe the asymptotic behaviour of our phases, and to take into account the dependence on
ε of the functions we are going to consider (e.g. the components of the flow φsε,κ), the following
definition will be useful.

Definition 5.1. — Let R > 0, V ⊂ Vκ and ε > 0. For µ ∈ R,

1. Sµ is the set of (ε dependent families of) functions on Θ(R, V, ε) such that∣∣∂jr∂αθ ∂βϑaε(r, θ, ϑ)
∣∣ ≤ Crµ−j ,

for all (r, θ, ϑ) ∈ Θ(R, V, ε) and all ε ∈ (0, 1] (the constant is independent of ε).
2. For any integer m ≥ 0, we denote by Sµ(θ − ϑ)m the set of all functions of the form∑

|γ|=m

aε,γ(r, θ, ϑ)(θ − ϑ)γ ,

with aε,γ ∈ Sµ.
3. Given real numbers µ1, µ2 and integers m1,m2, the equality

aε = bε + Sµ1
(ϑ− θ)m1 + Sµ2

(ϑ− θ)m2

means that aε − bε is the sum of an element of Sµ1
(ϑ− θ)m1 and a one of Sµ2

(ϑ− θ)m2 .

The main result of this chapter is the following theorem.
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Theorem 5.2 (Eikonal equation). — Fix an open subset V b Vκ. Assume that V is convex.
Then we can find R� 1 and 0 < ε� 1 such that for all ε ∈ (0, 1], there exists a smooth function

ψε : Θ(R, V, ε)→ R

such that the function ϕε(r, θ, %, ϑ) := %ψε(r, θ, ϑ) satisfies the following properties:

1. It solves the Hamilton-Jacobi equation

pε,κ
(
r, θ, ∂rϕε, ∂θϕε

)
= %2.(5.2)

2. The range of

(r, θ, %, ϑ) 7→ (r, θ, ∂rϕε, ∂θϕε), (r, θ, ϑ) ∈ Θ(R, V, ε), ±% > 0,

is contained in a set Γ̃±st where (φsε,κ)±s≥0 and the limit lims→±∞ φ−s0 ◦ φsε,κ =: F±ε,κ are
defined. Furthermore, one has

F±ε,κ
(
r, θ, ∂rϕε, ∂θϕε

)
=
(
∂%ϕε, ϑ, %,−∂ϑϕε

)
.(5.3)

3. One has the expansions

ψε = r + S1−ν(ϑ− θ) + S1(ϑ− θ)2.(5.4)

∂rψε = 1 + S−ν(ϑ− θ) + S0(ϑ− θ)2(5.5)

∂θψε = rḡ(θ)(ϑ− θ) + S1−ν(ϑ− θ) + S1(ϑ− θ)2(5.6)

∂ϑψε = −rḡ(θ)(ϑ− θ) + S1−ν(ϑ− θ) + S1(ϑ− θ)2(5.7)

Remark. Be careful not to mistake ε (the low frequency parameter) for ε which is a small enough
but fixed number defining Θ(R, V, ε).

The purpose of the next proposition is to solve transport equations associated to ϕε and which
will be used in Section 6. We consider equations of the form

(∂ρ,ηpε,κ)
(
r, θ, ∂rϕε, ∂θϕε

)
· ∂r,θu+ bε(r, θ, ϑ, %)u = fε(r, θ, %, ϑ),(5.8)

where fε is a given short range symbol (see condition (5.13)) and

bε := −Pε,κϕε.(5.9)

In practice, we will study these equations only locally in %, namely on sets of the form

Θ±(R, V, I, ε) := {(r, θ, %, ϑ) | (r, θ, ϑ) ∈ Θ(R, V, ε), %2 ∈ I, ±% > 0}(5.10)

where I b (0,+∞) is a given relatively compact interval. The natural domains to work on are
actually the larger sets (of trajectories starting in Θ±(R, V, I, ε))

T ±ε (R, V, I, ε) :=
{((

r̄sε , ϑ̄
s
ε

)
(r, θ, ∂r,θϕε(r, θ, %, ϑ)), %, ϑ

)
| (r, θ, %, ϑ) ∈ Θ±(R, V, I, ε), ±s ≥ 0

}
,

where (
r̄sε , ϑ̄

s
ε , %̄

s
ε , η̄

s
ε

)
= components of φsε,κ.(5.11)

It will follow from the proof below that
(
r, θ, ∂r,θϕε(r, θ, %, ϑ)

)
belongs to a set where the flow φsε,κ

is well defined for all ±s ≥ 0 (if ±% > 0) so that the sets T ±ε (R, V, I, ε) are well defined.

Proposition 5.3 (Transport equations). — Let Θ(R, V, ε) be as in Theorem 5.2 and I b
(0,+∞).
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1. Form of characteristics: For all (r, θ, %, ϑ) ∈ Θ±(R, V, I, ε), ±s ≥ 0 and ε ∈ (0, 1] define(
řsε , θ̌

s
ε , ρ̌

s
ε , η̌

s
ε

)
:= φsε,κ

(
r, θ, ∂r,θϕε(r, θ, %, ϑ)

)
.

Then (
ρ̌sε , η̌

s
ε

)
=
(
∂r,θϕε

)(
řsε , θ̌

s
ε , %, ϑ

)
.

In particular,

(∂ρ,ηpε,κ)
(
řsε , θ̌

s
ε , (∂r,θϕε)(ř

s
ε , θ̌

s
ε , %, ϑ)

)
=
(

˙̌rsε ,
˙̌θsε
)
.

2. Time integrability of bε along characteristics: For all j, α, k, β, there exists C indepen-
dent of ε ∈ (0, 1] such that∣∣∣∂jr∂αθ ∂k%∂βϑ (bε(řsε , θ̌sε , %, ϑ)

)∣∣∣ ≤ C〈s/r〉−1−νr−1−ν−j + C〈s/r〉−2r−1−j(5.12)

for ±s ≥ 0 and (r, θ, %, ϑ) ∈ Θ±(R, V, I, ε).
3. Form of solutions: Assume that fε belongs to S−1−µ := S−1−µ

(
T ±ε (R, V, I, ε)

)
for some

µ > 0, i.e. on T ±ε (R, V, I, ε)

|∂jr∂αθ ∂k%∂
β
ϑfε(r, θ, ϑ, %)| . 〈r〉−1−µ−j ,(5.13)

uniformly in ε. Then, given a constant C, the solution to (5.8) going to C as r →∞ is given
by

C exp

(∫ ±∞
0

bε(ř
s
ε , θ̌

s
ε , %, ϑ)ds

)
−
∫ ±∞

0

fε(ř
s
ε , θ̌

s
ε , %, ϑ) exp

(∫ s

0

b(řs1ε , θ̌
s1
ε , %, ϑ)ds1

)
ds.

This solution is still defined on T ±ε (R, V, I, ε) and, if C = 0, it belongs to S−µ.

Remark. In the asymptotically Euclidean case with global coordinates, the usual construction of
the Isozaki-Kitada phase shows that bε is a short range symbol, which implies easily its integrability
in time when evaluated along a trajectory. Here, it only follows from the asymptotics of Theorem
5.2 that

bε = S−1−ν + S−1(θ − ϑ)

which in general fails to be short range because of the second term. However, when evaluated
along a trajectory, we will recover the integrability in time (5.12) by exploiting the decay in time
of θ̌sε − ϑ (see (5.40)).

We will prove Theorem 5.2, and Proposition 5.3 likewise, only in the case ε = 1. Indeed, by
Lemma 3.3, if we define v(r, θ) := (vjk(r, θ)) by

gjk(r, θ) = ḡjk(θ) + vjk(r, θ),(5.14)

we have pε,κ = ρ2 + r−2ḡjk(θ)ηjηk + r−2vjk(r/ε, θ)ηjηk where v(r/ε, θ) is bounded in S−ν as
ε ∈ (0, 1] (it is actually O(εν)). The analysis below for ε = 1 still applies uniformly for ε ∈ (0, 1],
but only at the expense of heavier statments and notation(1). Thus, for simplicity, we will drop ε
and κ from the notation (except on Vκ) everywhere below.

We let p = p1,κ(r, θ, ρ, η) and (r̄s, ϑ̄s, %̄s, η̄s) := φs be the components of φs(= φs1,κ), namely the
solution to

˙̄rs = (∂ρp)(φ
s), ˙̄ϑs = (∂ηp)(φ

s), ˙̄%s = −(∂rp)(φ
s) ˙̄ηs = −(∂θp)(φ

s),(5.15)

with initial condition
(r̄s, ϑ̄s, %̄s, η̄s)|s=0 = (r, θ, ρ, η).

(1)in the same spirit, since we don’t need to use the distinction between r̆ and r in this part; we use the simpler
notation r though pε,κ must be though as a function of r̆
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We will see it exists for ±s ≥ 0 on strongly outgoing (+)/ incoming (-) areas defined, for V ⊂ Vκ,
R > RM and 0 < ε < 1, by

Γ̃±st(R, V, ε) =
{

(r, θ, ρ, η) | r > R, θ ∈ V, ±ρ > (1− ε2)p1/2
}

where p = p(r, θ, ρ, η). Note that the square on ε ensures that the condition ±ρ > (1 − ε2)p1/2 is
equivalent to |η|/r . ε and ±ρ > 0.

These sets are conical (i.e. invariant under (ρ, η) 7→ (λρ, λη) for any λ > 0) and symmetric
w.r.t. eachother, i.e.

(r, θ, ρ, η) ∈ Γ̃+
st(R, V, ε) ⇐⇒ (r, θ,−ρ,−η) ∈ Γ̃−st(R, V, ε).

This symmetry together with the property that, for any λ ∈ R and as long as the flow exists,(
r̄s, ϑ̄s

)
(r, θ, λρ, λη) =

(
r̄λs, ϑ̄λs

)
(r, θ, ρ, η),(

%̄s, η̄s
)
(r, θ, λρ, λη) = λ

(
%̄λs, η̄λs

)
(r, θ, ρ, η),

(5.16)

will allow us to restrict the analysis to strongly outgoing regions and times s ≥ 0. The same
homogeneity properties hold for φs0 which in turns implies they also hold for F±.

The reason for denoting the angular position by ϑ̄s rather than θ̄s and the radial momentum
by %̄s rather than ρ̄s is the following one. Let introduce(

r̄, ϑ̄, %̄, η̄
)

:= lim
s→+∞

(
r̄s − 2s%̄s, ϑ̄s, %̄s, η̄s

)
= lim
s→+∞

φ−s0 ◦ φs(r, θ, ρ, η),(5.17)

which will be shown to exist for (r, θ, ρ, η) in a strongly outgoing area Γ̃+
st (the parameters of which

we omit here). The item 2 of Theorem 5.2 means that ϕ is a generating function of the Lagrangian
submanifold

Λ+ =
{(

(r, θ, ρ, η), (r̄, ϑ̄, %̄, η̄
))
| (r, θ, ρ, η) ∈ Γ̃+

st

}
,(5.18)

i.e. the graph of the symplectic map F+. The existence of ϕ rests on the fact that Λ+ can be
parametrized by (r, θ), the initial positions, and by (%, ϑ), the final radial momentum and angular
position. In particular, it is crucial to distinguish between the variables θ and ϑ which motivates
our choice of notation.

Before starting the proof of Theorem 5.2 which will come after several preparatory results, we
introduce one more notation, for I b (0,∞),

Γ̃±st(R, V, I, ε) =
{

(r, θ, ρ, η) ∈ Γ̃±st(R, V, ε) | p(r, θ, ρ, η) ∈ I
}
.(5.19)

It allows to localize flow estimates in the energy shell p−1(I), without loss of generality by the
above homogeneity properties. Occasionally, we will also use Γ+

st(R, V, I, ε) defined by

(r, θ, ρ, ξ) ∈ Γ+
st(R, V, I, ε) ⇐⇒ (r, θ, ρ, rξ) ∈ Γ̃+

st(R, V, I, ε).(5.20)

Note that ρ2 + gjk(r, θ)ξjξk ∈ I on Γ+
st(R, V, I, ε) so ρ, ξ (and θ) are bounded there. In particular,

all symbolic estimates on functions defined on Γ+
st(R, V, I, ε) will be only with respect to r.

To start the proof we recall a result from [30].

Proposition 5.4 (Long time geodesic flow estimates). — Let V0 b Vκ and I0 ⊂ (0,∞).
One can choose R0 � 1 large enough and 0 < ε0 � 1 such that

1. for all (r, θ, ρ, η) ∈ Γ̃+
st(R0, V0, I0, ε0), φs(r, θ, ρ, η) is defined for all s ≥ 0 and

(r̄s, ϑ̄s) ∈ (R0,∞)× Vκ, s ≥ 0,
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2. for all (j, α, k, β) ∈ Z2n
+ , there exists C > 0 such that for all (r, θ, ρ, η) ∈ Γ̃+

st(R0, V0, I0, ε0)and
all s > 0, ∣∣∣∣∂jr∂αθ ∂kρ∂βη ( r̄s − r − 2sρ

s
, ϑ̄s, %̄s,

η̄s

r

)∣∣∣∣ ≤ Cr−j−|β|.
Moreover, there exists C > 0 such that

(r + s)/C ≤ r̄s ≤ C(r + s),(5.21)

for s ≥ 0 and (r, θ, ρ, η) ∈ Γ̃+
st(R0, V0, I0, ε0).

In the rest of the chapter, we choose R0, V0, I0 and ε0 as in Proposition 5.4.

To study (5.17) it will be convenient to use asymptotics in suitable symbol classes, in the spirit

of those of Definition 5.1. Given functions a and b on Γ̃+
st(R0, V0, I0, ε0), a real number µ and an

integer m, we define

a = b+ S̃µ(η/r)m
def⇐⇒ a− b =

∑
|γ|=m

cγ

(
r, θ, ρ,

η

r

) ηγ

r|γ|
with cγ ∈ Sµ,

where Sµ = Sµ(Γ+
st(R0, V0, I0, ε0)). The relation a = b + S̃µ1(η/r)m1 + S̃µ2(η/r)m2 , with m1,m2

integers and µ1, µ2 ∈ R, is defined analogously.
It is useful to record the following characterization of symbols of the form c(r, θ, ρ, η/r).

Lemma 5.5. — A function a : Γ̃+
st(R0, V0, I0, ε0)→ C is of the form

a(r, θ, ρ, η) = c
(
r, θ, ρ,

η

r

)
for some c in Sµ

(
Γ+

st(R0, V0, I0, ε0)
)

if and only if, for all (j, α, k, β),∣∣∂jr∂αθ ∂kρ∂βη a(r, θ, ρ, η)
∣∣ ≤ Cjαkβrµ−j−|β|,(5.22)

for all (r, θ, ρ, η) ∈ Γ̃+
st(R0, V0, I0, ε0). In particular, if a satisfies (5.22), then

a(r, θ, ρ, η) = a(r, θ, ρ, 0) + (r∇ηa)(r, θ, ρ, 0) · η
r

+ S̃µ(η/r)2.(5.23)

Proof. Follows from routine computations by considering c(r, θ, ρ, ξ) := a(r, θ, ρ, rξ). �

Proposition 5.6 (Asymptotics for F+). — For all (r, θ, ρ, η) ∈ Γ̃+
st(R0, V0, I0, ε0), the limit

(5.17) exists. Furthermore, we have the expansions

r̄ = r + S̃1(η/r)2(5.24)

%̄ = ρ+ S̃0(η/r)2(5.25)

η̄ = η + S̃1(η/r)2(5.26)

and

ϑ̄ = θ + ḡ(θ)−1 η

rρ
+ S̃−ν(η/r) + S̃0(η/r)2.(5.27)
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Notice that ρ is positive on Γ̃+
st(R0, V0, I0, ε0) so the second term is the right hand side of (5.27)

is well defined. To prove this proposition, we will use the easily verified fact that for s ≥ 0 and

(r, θ, ρ, 0) ∈ Γ̃+
st(R0, V0, I0, ε0), we have

(r̄s, ϑ̄s, %̄s, η̄s)|η=0 = (r + 2sρ, θ, ρ, 0),(5.28) (
∂η r̄

s, ∂ηϑ̄
s, ∂η%̄

s, ∂η η̄
s
)
|η=0

=

(
0,

2ḡ(θ)−1 + 2v(r + 2sρ, θ)

(r + 2sρ)2
, 0, In−1

)
,(5.29)

where we recall that v is defined in (5.14). We will also need the following lemma.

Lemma 5.7. — For all (j, α, k, β) ∈ Z2n
+ , setting ∂γ = ∂jr∂

α
θ ∂

k
ρ∂

β
η , there is C > 0 such that,∣∣∣∣∂γ r̄sr̄s

∣∣∣∣ ≤ Cr−j−|β|,(5.30)

|∂γ(r/r̄s)| ≤ C(1 + |s/r|)−1r−j−|β|,(5.31)

for all (r, θ, ρ, η) ∈ Γ̃+
st(R0, V0, I0, ε0) and s ≥ 0. If furthermore b ∈ Sµ

(
(R0,∞)× Vκ

)
, then∣∣∂γ(b(r̄s, ϑ̄s))∣∣ ≤ C(r̄s/r)µrµ−j−β ,(5.32)

with a constant bounded as long as b varies in a bounded set.

Proof. The estimate (5.30) is a simple consequence of the item 2 of Proposition 5.4 and the fact
that ∂γ(r + 2sρ) = O(r + s)r−j−|β|. Next, by observing that

∂γ(r/r̄s) = linear comb. of
∂γ

1

r

r̄s
∂γ

2

r̄s

r̄s
· · · ∂

γN r̄s

r̄s
with γ1 + · · ·+ γN = γ, N ≤ |γ|+ 1,

we see that (5.31) follows from (5.21) and (5.30). Finally, the estimate (5.32) follows from the item
2 of Proposition 5.4 for ϑ̄s, (5.31) and the fact that ∂γ

(
b(r̄s, ϑ̄s)

)
is a linear combination of

(∂ j̃r∂
α̃
ϑ b
)
(r̄s, ϑ̄s)∂γ

1
1 r̄s · · · ∂γ

1
j̃ r̄s · · · ∂γ

n
1 ϑ̄sn−1 · · · ∂

γnα̃n−1 ϑ̄sn−1

with γ1
1 + · · ·+ γ1

j̃
+ · · ·+ γn1 + · · ·+ γnα̃n−1

= γ. �

Proof of Proposition 5.6. We give the proofs of (5.24) and (5.27), the ones of (5.25) and (5.26)

being similar (and slightly simpler). We start with (5.27). Writing ϑ̄T = θ +
∫ T

0
˙̄ϑsds and letting

T → +∞, we obtain

ϑ̄ = θ + 2

∫ +∞

0

(
ḡ
(
ϑ̄s
)−1

+ v
(
r̄s, ϑ̄s

)) η̄s

(r̄s)2
ds

where the integral is convergent since, for fixed (r, θ, ρ, η), η̄s is bounded while r̄s & r+s by (5.21).
Then, by using (5.31), (5.32) and the item 2 of Proposition 5.4 for η̄s/r, we see that

∂jr∂
α
θ ∂

k
ρ∂

β
η

((
ḡ
(
ϑ̄s
)−1

+ v
(
r̄s, ϑ̄s

)) η̄s

(r̄s)2

)
= O

(
(1 + |s/r|)−2r−1−j−|β|).(5.33)

Integrating this estimate in s and using the characterization of Lemma 5.5, we find ϑ̄ = θ + S̃0

(see after Proposition 5.4 for this notation). Using (5.23) together with (5.28) and (5.29) we get
the improved expansion (5.27) since

2r

∫ +∞

0

ḡ(θ)−1 In−1

(r + 2sρ)2
ds =

ḡ(θ)−1

ρ
, r

∫ +∞

0

v(r + 2sρ, θ)
In−1

(r + 2sρ)2
ds = S̃−ν .

We next prove (5.24). We start by writing r̄T = r +
∫ T

0
2%̄sds and

%̄s = %̄T −
∫ T

s

(
2

r̄u
(
ḡlm(ϑ̄u) + vlm(r̄u, ϑ̄u)

)
− (∂rv

lm)(r̄u, ϑ̄u)

)
η̄ul η̄

u
m

(r̄u)2
du.(5.34)
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Similarly to (5.33), the ∂jr∂
α
θ ∂

k
ρ∂

β
η derivative of the integrand in (5.34) is O

(
(1+|u/r|)−3r−1−j−|β|).

This implies on one hand that the limit of r̄T − 2T %̄T exists as T → +∞ and equals

r̄ = r − 2

∫ +∞

0

(∫ +∞

s

(
2

r̄u
(
ḡlm(ϑ̄u) + vlm(r̄u, ϑ̄u)

)
− (∂rv

lm)(r̄u, ϑ̄u)

)
η̄ul η̄

u
m

(r̄u)2
du

)
ds

and on the other hand that, for any (j, α, k, β), the ∂jr∂
α
θ ∂

k
ρ∂

β
η derivative of the above double

integral is O(r1−j−β). This gives the rough bound r̄ = r + S̃1 which then improves to (5.24) by
using the above expression together with (5.23), (5.28) and (5.29). �

The last intermediate result needed to prove Theorem 5.2 is the following one.

Proposition 5.8 (projecting the Lagrangian). — Let I1 b I0 and V1 b V0 with V1 convex.
Then one can find R1 � 1 and C > 1 such that for all ε� 1, the map

(r, θ, ρ, η) 7→ (r, θ, %̄, ϑ̄)(5.35)

is a diffeomorphism from Γ̃+
s (R1, V1, I0, Cε) onto an open subset containing Θ+(R1, V1, I1, ε). On

Θ+(R1, V1, I1, ε), the inverse of (5.35) is of the form

(r, θ, %, ϑ) 7→
(
r, θ, ρ, η

)
with

ρ(r, θ, %, ϑ) = %+ S−ν(ϑ− θ) + S0(ϑ− θ)2,(5.36)

η(r, θ, %, ϑ) = r%ḡ(θ)(ϑ− θ) + S1−ν(ϑ− θ) + S1(ϑ− θ)2.(5.37)

Recall that the notation Θ+(R, V, I, ε) is defined in (5.10). To understand informally why we
can take proportional parameters Cε and ε, we recall that the condition ρ > (1−Cε2)p1/2 means
that |η|/r . ε (and ρ > 0) which, by (5.37), is comparable to the condition |θ − ϑ| . ε.

Proof of Proposition 5.8. Denote by H̃ the map (5.35). Consider the maps H and K defined by

H(r, θ, ρ, ξ) =
(
r, θ, ρ, θ + ρ−1ḡ(θ)−1ξ

)
, K(r, θ, %, ϑ) =

(
r, θ, %, %ḡ(θ)(ϑ− θ)

)
,

which are inverse to eachother (on appropriate domains given below). We also set

E(r, θ, ρ, ξ) = (r, θ, ρ, rξ).

It follows from (5.25) and (5.27) that

H̃(r, θ, ρ, η) = H(r, θ, ρ, η/r) + S̃−ν(η/r) + S̃0(η/r)2.

thus, after composition with E ◦K and using Lemma 5.5, we see that

H̃ ◦ E ◦K = I + S−ν(ϑ− θ) + S0(ϑ− θ)2.(5.38)

These computations make sense on the following sets. Since H̃ is defined on Γ̃+
st(R0, V0, I0, ε0),

it follows from (5.20) that (5.38) holds on any set which is mapped into Γ+
s (R0, V0, I0, ε0) by K.

Using (2.4) and the fact that I0 is relatively compact, one can find C > 1 such that

K
(
Θ+(R0, V0, I0, ε)

)
⊂ Γ+

st (R0, V0, I0, Cε) ,

and thus (5.38) holds on Θ+(R0, V0, I0, ε) if Cε < ε0. Since the right hand side of (5.38) is a small
perturbation of identity where r is large and θ − ϑ is small, it follows from a routine argument
that if R is large enough and ε is small enough, it is a diffeomorphism on Θ±(R, V1, I0, ε) onto
an open set containing Θ±(R, V1, I1, ε/8). Note that Θ+(R, V1, I0, ε) is convex which is useful to
justify this fact, for instance to prove the injectivity of (5.38) by using the mean value theorem.
Note also that (r, θ) is unchanged by the left hand side of (5.38) and that, when ϑ = θ, we have
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(H̃ ◦ E ◦K)(r, θ, %, θ) = (r, θ, %, θ). This allows to check that the inverse mapping to (5.38) is still
of the form I + S−ν(ϑ− θ) + S0(ϑ− θ)2. Composing E ◦K with this inverse diffeomorphism, we
get the existence of

(
ρ, η
)

and the expansions (5.36)-(5.37). �

Proof of Theorem 5.2. We choose I1 = I and V1 = V in Proposition 5.8 (recall that I0 and V0

were chosen arbitrarily). We prove the items 1 and 2 at the same time. By Proposition 5.6, F+ is

well defined on Γ̃+
st(R0, V0, I0, ε0). Since φs and φ−s0 are symplectic maps so is F+ and its graph is

Lagrangian. Together with Proposition 5.8, this implies that the differential form

ρ(r, θ, %, ϑ)dr + η(r, θ, %, ϑ)dθ + r̄(r, θ, ρ, η)d%− η̄(r, θ, ρ, η)dϑ

is closed on Θ(R, V, I, ε) for ε small enough. Since this set is convex, we get the existence of a
function ϕ, unique up to an additive constant, such that

∂rϕ = ρ ∂θϕ = η ∂%ϕ = r̄(r, θ, ρ, η) ∂ϑϕ = −η̄(r, θ, ρ, η).(5.39)

To fix the constant and to define ϕ globally in %, we observe that (5.16) (for λ > 0) implies that
ρ, η are homogeneous of degree 1 in % and r̄(r, θ, ρ, η), η̄(r, θ, ρ, η) of degree 0. We can thus find a
unique solution ϕ defined for (r, θ, ϑ) ∈ Θ(R, V, ε) and % > 0, which is homogeneous of degree 1 in
%. Then (5.39) and Proposition 5.8 yield the item 2. It turns out that if one considers %ϕ(r, θ, 1, ϑ)
with % ∈ R, we get the expected solution for it is also a generating function of F− for % < 0 by the
symmetry (5.16) for λ = −1. To prove that ϕ satisfies the eikonal equation it suffices to observe
that

p(r, θ, ρ, η) = %̄(r, θ, ρ, η)2,

which is well known (see e.g. [30]) and easy to get from Proposition 5.4 and the conservation of
energy. By evaluating this equality on (r, θ, ρ, η), we get (5.2). For the item 3, (5.5) and (5.6) are
direct consequences of Proposition 5.8 by (5.39). The expansions (5.7) and (5.4) follow from (5.39)
combined with (5.36)-(5.37) and Proposition 5.6. �

We end up this chapter with the proof of Proposition 5.3 on transport equations (recall that
ε, κ have been dropped from the notation). As before, we only consider the case when s ≥ 0 (and
% > 0).

Proof of Proposition 5.3. The item 1 follows from the well known method of characteristics
(see e.g. [19]) and has nothing to do with our specific geometric context so we only give the main

lines. We let (r̃s, θ̃s) be the maximal solution to the ODE(
˙̃rs,

˙̃
θs
)

= (∂ρ,ηp)
(
r̃s, θ̃s, ∂r,θϕ(r̃s, θ̃s, %, ϑ)

)
,

(
r̃0, θ̃0

)
= (r, θ).

We also let (ρ̃s, η̃s) = ∂r,θϕ(r̃s, θ̃s, %, ϑ). By differentiating (5.2) in (r, θ), one has

(∂r,θp)(r, θ, ∂r,θϕ) +
(
D2
r,θϕ

)
(∂ρ,ηp)(r, θ, ∂r,θϕ) = 0

where D2
r,θϕ is the Hessian matrix of ϕ (seen as a function of (r, θ)). By evaluating this identity

at (r̃s, θ̃s, %, ϑ), we obtain (
˙̃ρs, ˙̃ηs

)
= (∂ρ,ηp)

(
r̃t, θ̃t, ρ̃t, η̃t

)
which, together with the first equation, shows that

(
r̃s, θ̃s, ρ̃s, η̃s

)
solves the equation (5.15) with

initial condition (r, θ, ∂r,θϕ). Thus
(
řs, θ̌s, ρ̌s, η̌s

)
=
(
r̃s, θ̃s, ρ̃s, η̃s

)
satisfies the expected properties

of the first item. To prove the second item, the main observation is that

Pϕ = S−1−ν + S−1(ϑ− θ),
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which follows from (2.11), (5.5) and (5.6). Using (5.3) (see also (5.17)), we have

θ̌s → ϑ̄(r, θ, ∂r,θϕ) = ϑ, s→ +∞.

Thus, by integrating ˙̌θs from s to +∞ and using the flow estimates of Proposition 5.4 and Lemma
5.7 together with the estimates on ϕ given in the item 3 of Theorem 5.2, we get

|∂jr∂αθ ∂k%∂
β
ϑ(θ̌s − ϑ)| . 〈s/r〉−1r−j .(5.40)

By the same techniques we can estimate the derivatives of řs and we get the result by routine
calculations. The third item follows from the usual method of characteristics for linear transport
equations. We only record that to prove that the solution is in S−µ (if C = 0 and f ∈ S−1−µ), it
suffices to observe that ∣∣∣∂jr∂αθ ∂k%∂βϑ (f(řs, θ̌s, %, ϑ)

)∣∣∣ . 〈s/r〉−1−µr−1−µ−j ,

on T +(R, V, I, ε). �





CHAPITRE 6

THE ISOZAKI-KITADA PARAMETRIX

In this chapter, we construct a new version of the Isozaki-Kitada parametrix compared to the
ones introduced in [4, 30]. The novelty stems basically from the parametrization of the Lagrangian
(5.18) in term of the final angular position ϑ̄ rather than the final angular momentum η̄; it turns
out that it is more accurate to deal with global in time estimates.

Before displaying the parametrix, we need some notation and preliminary results for operators
on Rn. For µ ∈ R, Sµ(R2n) denotes the space of symbols defined on R2n such that

|∂jr∂αθ ∂k%∂βη a(r, θ, %, ϑ)| ≤ C〈r〉µ−j , on R2n.(6.1)

We equip it with the standard topology. We will also need the space Smin
µ (R3n) of functions

satisfying

|∂jr∂αθ ∂
j′

r′∂
α′

θ′ ∂
k
%∂

β
ηA(r, θ, r′, θ′, %, ϑ)| ≤ C〈min(r, r′)〉µ−j−j

′
, on R3n.

Let us consider first the semiclassical version of the operators. For a ∈ Sµ(R2n) supported in
Θ±(R, V, I, ε) (see (5.10)), we define

Jh(a)v(r, θ) = (2πh)−
n+1
2

∫ ∫ ∫
e
i
h

(
ϕ1(r,θ,%,ϑ)−x%

)
a(r, θ, %, ϑ)v(x, ϑ)dxd%dϑ,

where ϕ1 is the phase constructed in Theorem 5.2 with ε = 1. The operator Jh(a) is well defined
on S(Rn) and it is not hard to check that it maps S(Rn) into itself. Its formal adjoint (with respect
to the Lebesgue measure) is given by

Jh(a)†u(x, ϑ) = (2πh)−
n+1
2

∫ ∫ ∫
e
i
h

(
x%−ϕ1(r′,θ′,%,ϑ)

)
a(r′, θ′, %, ϑ)u(r′, θ′)d%dr′dθ′

and Jh(a)† also maps the Schwartz space into itself. The prototype of our parametrix at high
frequency will be of the form

Jh(a)e−itD
2
xJh(b)†.(6.2)

For the parametrix at low frequency, we will rather consider operators of the form

DεJε(aε)e
−iε2tD2

xJε(bε)
†D−1

ε(6.3)

where Jε(aε) is defined by

Jε(aε)v(r, θ) = (2π)−
n+1
2

∫ ∫ ∫
ei
(
ϕε(r,θ,%,ϑ)−x%

)
aε(r, θ, %, ϑ)v(x, ϑ)dxd%dϑ,

i.e. is defined as Jh with h = 1 and ϕ1 replaced by ϕε. In this case, we need to consider ε
dependent amplitudes aε, bε which will be bounded in their classes with respect to ε and supported
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in ε independent areas of the form Θ±(R, V, I, ε). Omitting the scaling operators Dε and D−1
ε in

(6.3), we can write the Schwartz kernels (with respect to the Lebesgue measure) of both (6.2) and
(6.3) under the following single form

(2πh)−n
∫ ∫

e
i
h

(
ϕε(r,θ,%,ϑ)− ε2th %2−ϕε(r′,θ′,%,ϑ)

)
aε(r, θ, %, ϑ)b̄ε(r

′, θ′, %, ϑ)d%dϑ.(6.4)

Indeed, (6.2) corresponds to ε = 1 and h ∈ (0, 1], while (6.3) corresponds to h = 1 and ε ∈ (0, 1].
The form of this kernel motivates the introduction of oscillatory integrals of the form

Ihε (Aε,s) = (2πh)−n
∫ ∫

e
i
hΦε(s,r,θ,r

′,θ′,%,ϑ)Aε,s(r, θ, r
′, θ′, %, ϑ)d%dϑ,(6.5)

where Φε = Φε(s, r, θ, r
′, θ′, %, ϑ) is defined as

Φε := ϕε(r, θ, %, ϑ)− s%2 − ϕε(r′, θ′, %, ϑ).

In the applications we will take either s = t/h or s = ε2t (and h = 1) to fit (6.4). We will consider
amplitudes Aε,s bounded in Smin

0 (R3n) with respect to (ε, s) and satisfying the support condition

supp(Aε,s) ⊂ Θ̂±(R, V,R′, V ′, I, ε, ε′)(6.6)

where Θ̂±(R, V,R′, V ′, I, ε, ε′) is the set

{(r, θ, r′, θ′, %, ϑ) | (r, θ, ϑ) ∈ Θ(R, V, ε), (r′, θ′, ϑ) ∈ Θ(R′, V ′, ε′), %2 ∈ I, ±% > 0}.
We refer to (5.1) for Θ(R, V, ε) and, as in Theorem 5.2, we will assume that V is convex. Note
that the above amplitudes are compactly supported with respect to (%, ϑ). In the same spirit, to
cover both definitions of Jh and Jε in the next chapter, we will use

Jhε (aε)v(r, θ) = (2πh)−
n+1
2

∫ ∫ ∫
e
i
h

(
ϕε(r,θ,%,ϑ)−x%

)
aε(r, θ, %, ϑ)v(x, ϑ)dxd%dϑ,

where aε is allowed to depend on ε in a bounded fashion.

6.1. FIO estimates

In this section, we record properties on operators Jhε (aε) and oscillatory integrals Ihε (Aε,s). All
propositions and lemmas are stated in full generality; however, for notational simplicity only, we
will prove them in the outgoing case (+ case) and will omit the dependence on ε in the notation
of proofs, similarly to what we did in Section 5.

Proposition 6.1 (Non stationary phase estimates). — Let I = (%2
inf , %

2
sup) with %sup > %inf >

0.

1. Let δ ∈ (0, 1). If ε and ε′ are small enough, then

(1− δ)r ≥ (r′ ± 2s%sup)
or

r ≤ (1− δ)(r′ ± 2s%inf)

 =⇒ Ihε (Aε,s) = O
(
h∞〈s, r, r′〉−∞

)
,

uniformly in ε, provided that ±s ≥ 0 and (Aε,s) belongs to a bounded set of Smin
0 (R3n) such

that (6.6) holds.
2. Let c ∈ (0, 1). If R is large enough and ε is small enough, then

ε′ ≤ ε2 and |θ − ϑ| ≥ cε on supp(Aε,s) =⇒ Ihε (Aε,s) = O
(
h∞〈s, r, r′〉−∞

)
uniformly in ε, provided that ±s ≥ 0 and (Aε,s) belongs to a bounded set of Smin

0 (R3n) such
that (6.6) holds.
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Proof. For both items, we consider only the outgoing case. For the first one, using the expansion
(5.4) we find that, on the support of the amplitude,

∂%Φ = −2s%+ r
(
1 +O(ε)

)
− r′(1 +O(ε′)).

Therefore, if (1− δ)r ≥ r′ + 2s%sup we see that

∂%Φ

r
≥ δ − Cε− Cε′

where the right hand side is larger than δ/2 if ε, ε′ are small enough. Then, repeated integrations
by part in % show that Ih(As) = O(h∞r−∞) which yields the result since r′+ |s| . r in this regime.
On the other hand, if r ≤ (1− δ)(r′ + 2s%inf) then

∂%Φ

r′ + 2s%inf
≤ −δ + Cε+ Cε′.

Then, as above, integrations by part in % show that Ih(As) = O
(
h∞(r′+ |s|)−∞

)
which yields the

result since r . r′ + |s|. For the second item we observe first that by the item 1, we can assume
that C−1r ≤ r′ + s ≤ Cr. Then using the expansion (5.7), we have

∂ϑΦ = −r%
(
ḡ(θ)(ϑ− θ) +O(R−νε) +O(ε2)

)
+ r′%O(ε2)

on the support of the amplitude. Thus, if |ϑ− θ| ≥ cε, we see that for R large enough and ε small
enough,

|∂ϑΦ|
r
& ε

since r′/r is bounded thanks to the assumption r′ + s ≤ Cr. Then, integrating by part in ϑ, we
obtain Ih(As) = O

(
h∞r−∞

)
which yields the full decay since we also assume that r & r′ + s. �

We next state an Egorov type theorem. It is a classical result but we quote it explicitly for we
are not in a completely standard situation and also consider ε dependent phases and symbols.

Proposition 6.2 (Egorov theorem). — We can choose R′ � 1 and 0 < ε′ � 1 such that for
all bounded families (aε) ∈ Sµ(R2n), (bε) ∈ Sµ′(R2n) such that

supp(aε) ⊂ Θ±(R′, V, I, ε′), supp(bε) ⊂ Θ±(R′, V, I, ε′)

one has

Jhε (aε)J
h
ε (bε)

† = Oph(cε(h)),

for some admissible cε(h) ∈ S̃−∞,µ+µ′+1−n(R2n) depending in a bounded fashion on ε and such
that

cε(h) ∼
∑
j≥0

hjcε,j , cε,0 = aε(r, θ, %̄ε, ϑ̄ε)b̄ε(r, θ, %̄ε, ϑ̄ε)
∣∣det dρ,η

(
%̄ε, ϑ̄ε

)∣∣,
where we recall that (%̄ε, ϑ̄ε) are components of F±ε,κ (see the item 2 of Theorem 5.2), namely

(%̄ε, ϑ̄ε) := lim
s→±∞

(
%̄sε , ϑ̄

s
ε

)
, where

(
r̄sε , ϑ̄

s
ε , %̄

s
ε , η̄

s
ε

)
= φsε,κ(r, θ, ρ, η).

For j ≥ 1, cε,j has its support contained in the support of cε,0.

In several proofs below, the following definition will be useful

A = Smin
µ

(
(ϑ− θ) + (ϑ− θ′)

)k def⇐⇒ A =
∑

|α|+|α′|=k

Aαα′(ϑ− θ)α(ϑ− θ′)α
′
, Aαα′ ∈ Smin

µ .

Such expansions are of course similar to those in Definition 5.1.
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Proof. We study the kernel (6.4) with t = 0 (and the dependence on ε omitted). Consider the
function (ρ̂, η̂) of (r, θ, r′, θ′, %, ϑ) defined by

(ρ̂, η̂) =

∫ 1

0

(
∂rϕ, ∂θϕ

)
(rλ, θλ, %, ϑ)dλ

where rλ = r′ + λ(r − r′) and θλ = θ′ + λ(θ − θ′). Note that by convexity of V (see after (6.6)),
(rλ, θλ, %, ϑ) belongs to Θ+(R, V, I, ε) if both (r, θ, %, ϑ) and (r′, θ′, %, ϑ) do. Introduce next

ξ̂ =
2

r + r′
ḡ(θ)−1

ρ̂
η̂

so that the phase becomes

ϕ(r, θ, %, ϑ)− ϕ(r′, θ′, %, ϑ) = ρ̂(r − r′) + ξ̂ · r + r′

2
ρ̂ḡ(θ)(θ − θ′).(6.7)

By using (5.5) and (5.6), we obtain

ρ̂ = %
(

1 + Smin
−ν
(
(ϑ− θ) + (ϑ− θ′)

)
+ Smin

0

(
(ϑ− θ) + (ϑ− θ′)

)2)
,

and

ξ̂ = ϑ− θ′ − 2r + r′

3(r + r′)
(θ − θ′) + Smin

−ν
(
(ϑ− θ) + (ϑ− θ′)

)
+ Smin

0

(
(ϑ− θ) + (ϑ− θ′)

)2
.(6.8)

Both expansions follow from routine computations, using that ϑ− θλ = (1− λ)(ϑ− θ′) + λ(ϑ− θ)
and

2

r + r′

∫ 1

0

rλ(ϑ− θλ)dλ = ϑ− θ′ − 2r + r′

3(r + r′)
(θ − θ′).

All this shows that ρ̂ and (the components of) ξ̂ belong to Smin
0 , and also that∣∣d%,ϑ(ρ̂, ξ̂)− In

∣∣ . min(r, r′)−ν + |ϑ− θ|+ |ϑ− θ|′.

Thus, if we assume that r, r′ > R′ � 1 and ε′ � 1, (%, ϑ) 7→ (ρ̂, ξ̂) is a diffeomorphism from
{|ϑ− θ| < ε′} ∩ {|ϑ− θ′| < ε′} ∩ {%2 ∈ I, % > 0} onto its range. If we denote by (ρ, ξ) 7→ (%̌, ϑ̌) the

inverse map (which depends also on r, θ, r′, θ′), the fact that ρ̂, ξ̂ ∈ Smin
0 implies that,∣∣∂jr∂αθ ∂j′r′∂α′θ′ ∂kρ∂βξ (%̌, ϑ̌)

∣∣ ≤ C min(r, r′)−j−j
′

(6.9)

on its domain of definition, hence on the support of a(r, θ, %̌, ϑ̌)b̄(r′, θ′, %̌, ϑ̌). Also, since ρ̂ − %
is small, ρ must belong to a compact subset of (0,+∞) (remember we prove the outgoing case).

Then, by using successively the changes of variables (%, ϑ) 7→ (ρ̂, ξ̂) and ξ 7→ η := r+r′

2 ρḡ(θ)ξ (recall

(6.7)), the kernel of Jh(a)Jh(b)† becomes

(2πh)−n
∫ ∫

e
i
h

(
(r−r′)ρ+(θ−θ′)·η

)
a(r, θ, %̃, ϑ̃)b̄(r′, θ′, %̃, ϑ̃)|∂ρ,η(%̃, ϑ̃)|dρdθ

where

(%̃, ϑ̃) = (%̂, ϑ̂)

(
r, θ, r′, θ′, ρ,

2

r + r′
ḡ(θ)−1

ρ
η

)
and where |∂ρ,η(%̃, ϑ̃)| is the corresponding Jacobian, which satisfies in particular

|∂ρ,η(%̃, ϑ̃)| = O
(
(r + r′)1−n).(6.10)

Note in addition that, restricted to r = r′ and θ = θ′, (%̃, ϑ̃) = (%̄, ϑ̄) since it is the inverse of
(%, ϑ) 7→ ∂r,θϕ(r, θ, %, ϑ). One can then rewrite the kernel with an amplitude c(h) independent
of (r′, θ′) according to the usual procedure (see e.g. [44, Theorem 4.20]). That c(h) belongs to
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S̃−∞,µ+µ′+1−n follows from (6.9), (6.10) and the fact that a ∈ Sµ, b ∈ Sµ′ . This concludes the
proof. �

We next consider two applications of Proposition 6.2.

Proposition 6.3. — If (aε)ε is a bounded family in S0(R2n), supported in Θ±(R′, V, I, ε′) (with
ε′ as in Proposition 6.2), then∣∣∣∣Jhε (aε)

∣∣∣∣
L2(dxdϑ)→L2(〈r〉n−1drdθ)

≤ C,

with a constant C independent of h, ε ∈ (0, 1]. Similarly, if (bε)ε is a bounded family of Sn−1

supported in Θ±(R′, V, I, ε′), ∣∣∣∣Jhε (bε)
†∣∣∣∣

L2(〈r〉n−1drdθ)→L2(dxdϑ)
≤ C,

with a constant C independent of h, ε ∈ (0, 1].

Proof. The first estimate is equivalent to the fact that 〈r〉n−1
2 Jh(a)Jh(a)†〈r〉n−1

2 is bounded on
L2(Rn) equipped with the Lebesgue measure. By Proposition 6.2, Jh(a)Jh(a)† is of the form

Oph(c(h)) for some admissible symbol c(h) ∈ S̃−∞,1−n. Thus, when composed on both sides

with 〈r〉n−1
2 , Proposition 3.1 shows we get a pseudo-differential operator with admissible symbol

in S̃−∞,0. Since such pseudo-differential operators are bounded on L2(Rn), according to the
usual Calderón-Vaillancourt Theorem, the result follows. The second estimate is equivalent to the

boundedness of Jh(b)†〈r〉 1−n2 on L2(Rn) and thus follows from the first case by taking the adjoint

since b〈r〉 1−n2 = 〈r〉n−1
2 a for some a ∈ S0. �

In the next proposition, to take into account the dependence on ε, we introduce the sets

Γ̃±ε,st(R, V, I, ε) = {(r, θ, ρ, η) | r > R, θ ∈ V, pε,κ ∈ I, ±ρ > (1− ε2)p1/2
ε,κ },(6.11)

(see (2.16) for pε,κ). This is the convenient replacement of (5.19) at low frequency. It allows to cover
the case ε = 1 used for high frequency parametrices (in which case we drop the dependence on ε),

while the regime ε ∈ (0, 1) will be for low frequency parametrices. In this last case, Γ̃±ε,st(R, V, I, ε)
has to be understood as a set of (r̆, θ, ρ̆, η). We use only (6.11) in the intermediate technical
statements but, for clarity, we will use both (5.19) and (6.11) to state the main result of this
section (Theorem 6.10).

Proposition 6.4 (Factorizing ΨDO). — Assume we are given N bounded families (aε,0), . . . , (aε,N )
of symbols supported in Θ±(R′, V, I, ε′) such that, for some c > 0 independent of ε,

aε,j ∈ S−j(R2n), aε,0 ≥ c > 0 on some Θ±
(
R′′, V ′′, I ′, ε′′

)
.

Let I ′′ b I ′. Then there exists C > 0 such that, for all 0 < ε � 1, µ ∈ R and all bounded family

(fε) of S̃−∞,µ(R2n) such that

supp(fε) ⊂ Γ̃±ε,st(R
′′, V ′′, I ′′, ε),

one can write

Oph(fε) =
∑

j+k≤N

hj+kJhε (aε,j)J
h
ε (bε,k)† + hNOph(fε,N (h)),

with (fε,N (h))ε,h∈(0,1] bounded in S̃−∞,µ−N (R2n) and some bε,0, . . . , bε,N such that

(bε,k)ε∈(0,1] bounded in Sµ+n−1−k(R2n),(6.12)
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and

supp(bε,k) ⊂ supp
(
fε(., ., ∂rϕε, ∂θϕε)

)
⊂ Θ±(R′′, V ′′, I ′, Cε).(6.13)

For k = 0, we have explicitly

bε,0(r, θ, %, ϑ) = f̄ε
(
r, θ, ∂rϕε, ∂θϕε

) |det
(
∂%,ϑ∂r,θϕε

)
|

āε,0(r, θ, %, ϑ)
.(6.14)

Notice that when µ = 0, this proposition shows in particular that a bounded pseudo-differential
operator can be factorized (up to a nice error) as a product Jhε (a)Jhε (b)† where, according to
Proposition 6.3, Jhε (a) and Jhε (b)† are bounded respectively from L2(dxdϑ) to L2(〈r〉n−1drdθ) and
from L2(〈r〉n−1drdθ) to L2(dxdϑ).

Proof of Proposition 6.4. The principle is well known. We recall it briefly to emphasize where the
support estimate in (6.13) comes from. To seek which conditions must be fulfilled by the bk’s we
compute first

N−1∑
j=0

N−1∑
k=0

hj+kJh(aj)J
h(bk)† =

N−1∑
j,k,l=0

hj+k+lOph(cj,k,l) + hNOph(rN (h)).

By Proposition 6.2, the first symbol reads c0,0,0 = a0(r, θ, %̄, ϑ̄)b̄0(r, θ, %̄, ϑ̄)|det(∂ρ,η(%̄, ϑ̄))| so the
requirement that c0,0,0 = f together with Proposition 5.8 (in particular (5.39)) show that b0
must equal (6.14). This function is well defined since f̄

(
r, θ, ∂rϕ, ∂θϕ

)
is supported in the image of

supp(f) by the map (5.35) hence, using (5.25) and (5.27), in Θ+(R′′, V ′′, I ′, Cε) if ε is small enough;
in particular, a0 is bounded below on such a domain. Using then that det

(
∂%,ϑ∂r,θϕ

)
∈ Sn−1, we

see that b0 ∈ S̃−∞,µ+n−1. Then, the next symbol in the expansion is
∑
j+k+l=1 cj,k,l and we

require it to be 0, which yields the equation

a0(r, θ, %̄, ϑ̄)b̄1(r, θ, %̄, ϑ̄)|det(∂ρ,η(%̄, ϑ̄))| = −
∑

j+k+l=1,
k=0

cj,k,l

where, by Proposition 6.2 and the form of b0, the right hand side vanishes outside the support of
b0(r, θ, %̄, ϑ̄). One can thus divide by a0 and find b1. Higher order terms are obtained by iterating
this process. �

In the sequel, we let U0(s) = e−ishD
2
x be the semiclassical Schrödinger group on the line Rx.

Proposition 6.5 (Propagation estimates for the parametrix)
Let I b (0,+∞). If ε′ is small enough and R′ large enough then for all integer N ≥ 0, all

bounded families (aε)ε of S0(R2n) and (bε)ε of Sn−1(R2n), both supported in Θ±(R′, V, I, ε′), there
exists C > 0 such that∣∣∣∣〈r〉−NJhε (aε)U0(s)Jhε (bε)

†(r ± s)N
∣∣∣∣
L2(〈r〉n−1drdθ)→L2(〈r〉n−1drdθ)

≤ C,(6.15)

for all ±s ≥ 0 and all h, ε ∈ (0, 1]. In particular, we have∣∣∣∣〈r〉−N1−N2Jhε (aε)U0(s)Jhε (bε)
†〈r〉N1

∣∣∣∣
L2(〈r〉n−1drdθ)→L2(〈r〉n−1drdθ)

≤ C〈s〉−N2 ,

if N1, N2 ≥ 0 are integers.

Proof. The main observation is that 2s%+ ∂%ϕ(r′, θ′, %, ϑ) & r′ + s by (5.4). We can then write

r′ + s =
r′ + s

∂%ϕ′ + 2s%
(∂%ϕ

′ + 2s%)
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where the prime on ϕ is a shortand for the evaluation at (r′, θ′, ϑ, %). Here the fraction belongs to
S0 uniformly with respect to s ≥ 0. Writing next ∂%ϕ

′ + 2s% = ∂%ϕ(r, θ, %, ϑ) − ∂%Φ and setting

b̃ = b(r + s)/(∂%ϕ+ 2s%), integrating by part in % shows that 〈r〉−1Jh(a)U0(s)Jh(b)†(r + s) reads

Jh
(
〈r〉−1∂%ϕa

)
U0(s)Jh(b̃)† − ih〈r〉−1

(
Jh(∂%a)U0(s)Jh(b̃)∗ + Jh(a)U0(s)Jh(∂%b̃)

†)
which is bounded on L2(〈r〉n−1drdθ) uniformly in s ≥ 0 by Proposition 6.3 since 〈r〉−1∂%ϕa and b̃

belong respectively to S0(R2n) and Sn−1(R2n) (uniformly in s ≥ 0 for b̃). This proves the estimate
(6.15) with N = 1. For N ≥ 2, the result is obtained by iteration of this process. �

We next turn to the proof of dispersive estimates for the oscillatory integrals of the form (6.5).

Proposition 6.6 (Stationary phase estimates). — Let I b (0,+∞). If ε, ε′ are small enough
and R,R′ large enough, then for all bounded family (Aε)ε of Smin

0 (R3n) satisfying (6.6), one has∣∣Ihε (Aε)
∣∣ . min

(
h−n, |hs|−n/2

)
, s ∈ R, ε, h ∈ (0, 1].

Notice that, unlike the non stationary phase estimates of Proposition 6.1 and the propagation
estimates of Proposition 6.5, we do not need any sign condition on s here.

To prove Proposition 6.6 (omitting ε as before), we will rewrite

ϕ(r, θ, %, ϑ)− ϕ(r′, θ′, %, ϑ) = (r − r′)∂̃rϕ+ (θ − θ′) · ∂̃θϕ

where, setting rλ = r′ + λ(r − r′) and θλ = θ′ + λ(θ − θ′),

∂̃rϕ :=

∫ 1

0

∂rϕ(rλ, θ
′, %, ϑ)dλ, ∂̃θϕ :=

∫ 1

0

∂θϕ(r, θλ, %, ϑ)dλ.

Lemma 6.7 (Improved asymptotic expansion). —

∂̃rϕ = %

(
1− 1

2
(ϑ− θ′) · ḡ(θ′)(ϑ− θ′) + Smin

−ν (ϑ− θ′)2 + Smin
0 (ϑ− θ′)3

)
.

Proof. Using the notation and estimates of the proof of Proposition 5.6, we have η̄s = η+ S̃1(η/r)

and ḡ(ϑs) = ḡ(θ) + S̃0(η/r) (where the remainders S̃0(η/r), S̃1(η/r) depend in a bounded fashion
on s) so by using the motion equations and letting s go to infinity, we get easily

%̄ = ρ+
1

2ρ

η

r
· ḡ(θ)−1 η

r
+ S̃−ν

(η
r

)2

+ S̃0

(η
r

)3

.

Evaluating this identity at (ρ, η) = (∂rϕ, ∂θϕ) and using (5.5)-(5.6), we find

% = ∂rϕ+
%

2
(ϑ− θ) · ḡ(θ)−1(ϑ− θ) + S−ν (ϑ− θ)2

+ S0 (ϑ− θ)3
.

This provides an expansion of ∂rϕ which yields the result after evaluation at (rλ, θ
′, %, ϑ) and

integration on [0, 1]λ. �

Lemma 6.8. — Let δ ∈ (0, 1). If ε, ε′ are small enough and R,R′ large enough, then

r|θ − θ′| ≥ δ|s| and |s| ≥ h =⇒ Ih(A) = O
(
h−n(s/h)−∞

)
.
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Proof of Lemma 6.8. Let us observe first that

∂̃θϕ = %r

[
ḡ(θ′)

(
ϑ− θ + θ′

2

)
+ Smin

−ν
(
(ϑ− θ) + (ϑ− θ′)

)
+ Smin

0

(
(ϑ− θ) + (ϑ− θ′)

)2]
,

which follows from the expansion (5.6) and by writing θλ = θ′+λ(θ−ϑ) +λ(ϑ− θ′). Then, in the

integral (6.5), we use the one dimensional (linear) change of variable % 7→ ∂̃rϕ. Its inverse is of the
form

%̃ 7→
(

1 +
1

2
(ϑ− θ′) · ḡ(θ′)(ϑ− θ′) + Smin

−ν (ϑ− θ′)2 + Smin
0 (ϑ− θ′)3

)
%̃.(6.16)

Letting Φ̃ be the expression of Φ composed with this change of variable, we have

Φ̃ = (r − r′)%̃− s%̃2 (1 + (ϑ− θ′) · ḡ(θ′)(ϑ− θ′)) + %̃r(θ − θ′)ḡ(θ′)

(
ϑ− θ + θ′

2

)
+ Ω̃(6.17)

with a remainder of the form

Ω̃ = r(θ − θ′)
(
Smin
−ν
(
(ϑ− θ) + (ϑ− θ′)

)
+ Smin

0

(
(ϑ− θ) + (ϑ− θ′)

)2)
+

s
(
Smin
−ν (ϑ− θ′)2 + Smin

0 (ϑ− θ′)3
)
.

The interest of this change of variable is that the only term involving r − r′, namely (r − r′)%̃, is
independent of ϑ. Therefore, using the above expansion, we have

∂ϑΦ̃ = %̃ḡ(θ′)r(θ − θ′) + sO(ε′) + r(θ − θ′)
(
O
(

min(R,R′)−ν
)

+O(ε) +O(ε′)
)
.

Hence, by using r|θ − θ′| ≥ δ|s| and by taking ε, ε′ small enough as well as R,R′ large enough, we

get a lower bound |∂ϑΦ̃| & |s| from which the result follows by integrations by part. �

Proof of Proposition 6.6. The estimate is trivial if |s| ≤ h. Thus we assume that |s| ≥ h
and, according to Lemma 6.8, that r|θ − θ′| ≤ δ|s| for some small enough δ to be chosen below,
otherwise we use that h−n|s/h|−N . h−n|s/h|−n/2 = |hs|−n/2 for any integer N ≥ n/2. Using the

same change of variable as in Lemma 6.8, we find that the Hessian matrix of Φ̃ reads

d2
%̃,ϑΦ̃ = −2s

(
1 0
0 %̃2ḡ(θ′)

)
+ s
(
O(ε′) +O(min(R,R′)−ν)

)
+O(r|θ − θ′|).

We choose δ small enough so that O(r|θ−θ′|/s) = O(δ) is sufficiently small with respect to the first
matrix on the right hand side (here we use (2.4)). This imposes to consider ε and ε′ sufficiently
small too and R,R′ sufficiently large to use Lemma 6.8. Then, by possibly decreasing again ε′ and
increasing again R,R′, we find that s−1d2

%̃,ϑΦ̃ is a negative definite matrix uniformly with respect

to r, r′, θ, θ′ on the support of the amplitude (and such that r|θ − θ′| ≤ δ|s|). The result then
follows from the stationary phase theorem with s/h as a large parameter. �

6.2. Construction of the parametrix

In this section, we state the main result of the chapter which is Theorem 6.10 on the construction
of an Isozaki-Kitada type parametrix. Given a chart κ : Uκ ⊂ S → Vκ ⊂ Rn−1 and V ⊂ Vκ as in
Theorem 5.2, we introduce the notation

Jhκ (a) := ΠκJ
h(a), Jhκ (b)† := Jh(b)†Π−1

κ

and

Jε,κ(a) := ΠκDεJε(a), Jε,κ(b)† := Jε(b)
†D−1

ε Π−1
κ ,(6.18)

where, in (6.18), the symbols will depend on ε in the applications. We refer to (2.2) for Πκ.
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As a starting point, we observe that the general formula

e−itPB(0) = B(t)− i
∫ t

0

e−i(t−τ)P (PB(τ)− iB′(τ)) dτ,

leads respectively to the identities

e−itPJhκ (a)Jhκ (b)† = Jhκ (a)e−itD
2
xJhκ (b)† − Rhi(6.19)

with

Rhi =
i

h2

∫ t

0

e−i(t−τ)P
(

Πκ

[
h2PκJ

h(a)− Jh(a)h2D2
x

]
e−iτD

2
xJh(b)†

)
dτ,

and similarly,

e−itPJε,κ(aε)Jε,κ(bε)
† = Jε,κ(aε)e

−itε2D2
xJε,κ(bε)

† − Rlo(6.20)

with

Rlo = iε2
∫ t

0

e−i(t−τ)P
(

ΠκDε

[
Pε,κJε(aε)− Jε(aε)D2

x

]
e−iτε

2D2
xJε,κ(bε)

†
)
dτ.

Recall from (2.15) that PΠκDε = ε2ΠκDεPε,κ. Note also the scaling in time.
We seek a, b and aε, bε such that Rhi and Rlo are respectively small and such that Jhκ (a)Jhκ (b)†

and Jε,κ(aε)Jε,κ(bε)
† can be prescribed.

We consider in detail the high frequency case. The first step is to find

a = a(h) := a0 + ha1 + · · ·+ hMaM ,

such that h2PκJ
h(a(h))− Jh(a(h))h2D2

x is small, in an appropriate sense (here M is an arbitrary
integer order which is fixed). A simple calculation yields

h2PκJh(a(h))− Jh(a(h))h2D2
x = Jh

(
c0 + · · ·+ hM+2cM+2

)
,(6.21)

where

c0 = Ea0(6.22)

c1 = Ea1 − iTa0(6.23)

cj = Eaj − iTaj−1 + Pκaj−2, 2 ≤ j ≤M(6.24)

cM+1 = −iTaM + PκaM−1(6.25)

cM+2 = PκaM(6.26)

where E corresponds to the eikonal term and T to the transport operator, namely

E = pκ(r, θ, ∂r,θϕ)− %2, T = (∂ρ,ηp)
(
r, θ, ∂r,θϕ

)
· ∂r,θ − Pκϕ.

By Theorem 5.2, we can solve the equation E = 0 on Θ(R, V, ε) for any given convex subset V b Vκ
and some R� 1, ε� 1. Therefore, solving the system of equations

cj = 0, 0 ≤ j ≤M + 1,(6.27)

on subsets of Θ(R, V, ε) amounts to solve transport equations of the form (5.8), which can thus be
done by Proposition 5.3 (third item). More precisely, given I0 b (0,+∞) and V0 b V , we can find
R0 > R, 0 < ε0 < ε and solutions â±0 , . . . , â

±
M to (6.27) such that

â±j ∈ S−j
(
Θ±(R0, V0, I0, ε0)

)
(see (5.10) for the definition of Θ±(R, V, I, ε)) with the additional condition that, locally uniformly
with respect to (θ, ϑ, %),

â±0 (r, θ, ϑ, %)→ 1, r →∞.(6.28)
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We use the notation â±j to make a clear difference between these symbols defined on Θ±(R0, V0, I0, ε0)

and the final a±j defined globally on R2n in (6.30). We also point out the technical fact that, to

find solutions â±j defined on Θ±(R0, V0, I0, ε0), we choose R0 and ε0 respectively large enough and
small enough to ensure that

Θ±(R0, V0, I0, ε0) ⊂ T ±(R0, V0, I0, ε0) ⊂ Θ±(R, V, I0, ε)(6.29)

(see prior to Proposition 5.3 for T ±(R, V, I, ε)). The interest is to guarantee, if (r̄s, ϑ̄s) are the
spatial components of the Hamiltonian flow of pκ, that (r̄s(r, θ, ∂r,θϕ), ϑ̄s(r, θ, ∂r,θϕ), %, ϑ) belongs
to the domain of definition of ϕ for ±s ≥ 0 (see Proposition 5.3). The first inclusion in (6.29) is
trivial while the second one is a consequence of

r̄s(r, θ, ∂r,θϕ) & r,
∣∣ϑ̄s(r, θ, ∂r,θϕ)− θ

∣∣ . |∂θϕ|
r
. |ϑ− θ|

which follow from the flow estimates of Proposition 5.4, (5.28) for ϑ̄s and the asymptotics of ϕ in
Theorem 5.2.

We next globalize the symbols. Given R1 > R0, V1 b V0, I1 b I0 and ε1 < ε0, it is easy to
construct

χ± ∈ S0(R2n), χ± ≡ 1 on Θ±(R1, V1, I1, ε1), supp(χ±) ⊂ Θ±(R0, V0, I0, ε0),

by choosing it of the form χ1(r)χ2 (θ − ϑ)χ3(ϑ)χ4(±%) with suitable χ1, χ2, χ3 ∈ C∞0 and χ1 ≡ 1
near +∞. We then define

a±j := χ±â
±
j ∈ S−j(R

2n).(6.30)

Notice that if we compute (6.21) with a(h) = a(h)± :=
∑
j a
±
j , we also have to take into account the

derivatives falling on the cutoff χ±; we summarize the above results in the following proposition,
including the case of low frequencies which is completely similar.

Proposition 6.9 (Approximate intertwining). — Let V be a convex relatively compact subset
of Vκ. Then for all V1 b V0 b V and I1 b I0 b (0,+∞), we can find R1 > R0 � 1 and
0 < ε1 < ε0 � 1 such that:

1. at high frequency: one can find symbols a±j ∈ S−j(R2n), j ≥ 0, supported in Θ±(R0, V0, I0, ε0)
such that

a±0 (r, θ, ϑ, %) ≥ 1/2, on Θ±(R1, V1, I1, ε1)

and, if one sets ah = a±0 + · · ·+ hMa±M ,

h2PκJ
h
(
ah
)
− Jh

(
ah
)
h2D2

x = hM+2Jh
(
rhM
)

+ Jh
(
ǎh
)

+ Jh
(
ahc
)

with rhM ∈ S−M−2, ǎh, ahc ∈ S0, all supported in Θ±(R0, V0, I0, ε0), bounded with respect to h
and, mainly, such that

supp
(
ǎh
)
⊂ {|θ − ϑ| ≥ ε1}, supp

(
ahc
)
⊂ {r ≤ R1}.(6.31)

2. At low frequency: one can find bounded families of symbols (a±ε,j)ε∈(0,1] in S−j(R2n), j ≥ 0,

supported in Θ±(R0, V0, I0, ε0) such that

a±ε,0(r, θ, ϑ, %) ≥ 1/2, on Θ±(R1, V1, I1, ε1)

and, if one sets aε = a±ε,0 + · · ·+ a±ε,M ,

Pε,κJε
(
aε
)
− Jε

(
aε
)
D2
x = Jε

(
rε,M

)
+ Jε

(
ǎε
)

+ Jε
(
aε,c
)
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with rε,M ∈ S−M−2, ǎε, aε,c ∈ S0, all supported in Θ±(R0, V0, I0, ε0), bounded with respect to
ε and such that

supp
(
ǎε
)
⊂ {|θ − ϑ| ≥ ε1}, supp

(
aε,c
)
⊂ {r ≤ R1}.(6.32)

We point out that the terms ǎ, ac are the contributions of derivatives falling on the cutoff χ±.
The properties (6.31) and (6.32) will be useful to derive non stationary phase estimates from
Proposition 6.1. The ellipticity condition a±0 ≥ 1/2 (and likewise for a±ε,0) is a consequence of

(6.28).
The next step is a direct application of Proposition 6.4. Here again we only consider the

procedure in the high frequency case but summarize both high and low frequencies parametrices
in Theorem 6.10. Given a symbol χ±st supported in strongly outgoing or incoming area (see (5.19)
in which we recall that p = pκ), we can factorize the corresponding pseudo-differential operator
by mean of Proposition 6.4. More precisely, if I2 b I1 and V2 b V1 are given, then for R2 large

enough, ε2 small enough and all χ±st ∈ S̃−∞,0(R2n) supported in Γ̃±st(R2, V2, I2, ε2), one can find
symbols bk ∈ Sn−1−k supported in Θ±(R2, V2, I1, Cε2), such that bh := b±0 + · · ·+ hMb±M satisfies

Jhκ (ah)Jhκ (bh)† = Ophκ(χ±st)ψ̃κ + hMOphκ(r̃hM )ψ̃κ

with r̃hM ∈ S̃−∞,−M (R2n), boundedly in h. Recall that the cutoff ψ̃κ is defined in (2.7). Using
Proposition 3.8, this can also be written

Jhκ (ah)Jhκ (bh)† = Ophκ(χ±st)ψ̃κ +OH−2M
−M/2→H2M

M/2
(hM ).(6.33)

We synthetize the analysis of this section in the next theorem. Notice that, at low frequency,

we consider the ε dependent areas Γ̃±ε,st(R, V, I, ε) introduced in (6.11).

Theorem 6.10 (Isozaki-Kitada parametrix). — Let κ : Uκ → Vκ be a chart of the atlas of
Section 2 and V b Vκ be a convex open subset. For all given

V2 b V0 b V and I2 b I1 b I0 b (0,+∞)

one can choose C > 0, 0 < ε1 < ε0 and R1 > R0 such that for all N ≥ 0 and all 0 < ε2 � 1,
R2 � R1, the following approximations hold.

1. High frequency: there are ah, ahc , ǎ
h ∈ S0(R2n) supported in Θ±(R0, V0, I0, ε0), satisfying

supp(ahc ) ⊂ {r ≤ R1}, supp(ǎh) ⊂ {|θ − ϑ| ≥ ε1}

and rhN ∈ S−N (R2n) also supported in Θ±(R0, V0, I0, ε0), such that for all χ±st ∈ S̃−∞,0

satisfying

supp(χ±st) ⊂ Γ̃±st(R2, V2, I2, ε2)

one can find bh ∈ S0(R2n) such that

supp(bh) ⊂ Θ±(R2, V2, I1, Cε2)

and

e−itPOphκ(χ±st)ψ̃κ = Jhκ (ah)e−itD
2
xJhκ (bh)† +RhN (t)(6.34)

with

RhN (t) = e−itPOH2N
−N→H2N

N

(
hN
)
− i

h2

∫ t

0

e−i(t−τ)PJhκ
(
ahc + ǎh + hNrhN

)
e−iτD

2
xJhκ (bh)†dτ.
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2. Low frequency: there are aε, aε,c, ǎε ∈ S0(R2n) supported in Θ±(R0, V0, I0, ε0), satisfying

supp(aε,c) ⊂ {r ≤ R1}, supp(ǎε) ⊂ {|θ − ϑ| ≥ ε1}
and rε,N ∈ S−N (R2n) also supported in Θ±(R0, V0, I0, ε0), such that for all bounded family

(χ±ε,st)ε∈(0,1] of S̃−∞,0 satisfying

supp(χ±ε,st) ⊂ Γ̃±ε,st(R2, V2, I2, ε2)

one can find bε ∈ S0(R2n) such that

supp(bε) ⊂ Θ±(R2, V2, I1, Cε2)

and

e−itPOpε,κ(χ±st,ε)ψ̃κ(εr) = Jε,κ(aε)e
−iε2tD2

xJε,κ(bε)
† +Rε,N (t)(6.35)

with

Rε,N (t) = e−itPOL−2N
−N →L2N

N

(
1
)
− i
∫ ε2t

0

e−i(ε
2t−s) P

ε2 Jε,κ
(
aε,c + ǎε + rε,N

)
e−isD

2
xJε,κ(bε)

†ds.

In both cases, the symbols are bounded uniformly in h and ε respectively.

So far we have not justified to which extent the remainder terms in (6.34) and (6.35) are small.
We will use Theorem 6.10 in subsection 7.3 to prove L2 propagation estimates for e−itP and will see
there that the remainders decay as ±t→∞. In Section 8, we will use Theorem 6.10 in association
with the (dual) propagation estimates of subsection 7.3 to control the remainders RhN (t), Rε,N (t)
in L1 → L∞ norm.

Remark. For future purposes, we record that, by using (5.5) and (5.6), ε0 and R0 can be chosen
respectively small and large enough in such a way (depending on V0 and I0) that we have

∂rϕ

%
∈ (1/2, 2) and C−1r|%||θ − ϑ| ≤ |∂θϕ(r, θ, %, ϑ)| ≤ Cr|%||θ − ϑ|,(6.36)

on Θ±(R0, V0, I0, ε0). In particular, ∂rϕ and % have the same strict sign.



CHAPITRE 7

PROPAGATION ESTIMATES

7.1. Finite time estimates

In this section, we prove propagation estimates, that is an Egorov type theorem, over finite
times but which depend on the spatial and frequency localization. The result is summarized in
Theorem 7.4.

We introduce first some notation. We are going to work on T ∗((RM,∞)×S) which is isomorhic
to T ∗(RM,∞) × T ∗S, so we will write its elements as (r, ρ,$) with (r, ρ) ∈ (RM,∞) × R and
$ ∈ T ∗S. We then let pε = pε(r, ρ,$) be the principal symbols of −∆Gε (see (2.14)) which is
intrinsically defined on T ∗

(
(RM,∞) × S

)
. We let φsε be the associated Hamiltonian flow. Notice

that, for ε = 1, p1 is the principal symbol of −∆G. Note also that the flow φsε is not complete on
T ∗
(
(RM,∞)× S

)
. We then set(

r̄sε , %̄
s
ε

)
:= component of φsε(r, ρ,$) on T ∗(RM,∞).

For R > RM and −1 < σ < 1, we finally consider

Γ̃±ε (R, σ) = {(r, ρ,$) ∈ T ∗((RM,∞)× S) | r > R, ±ρ > σp1/2
ε }.(7.1)

It is an open conical subset of T ∗((RM,∞)× S) \ 0 (the strict inequality in (7.1) prevents (ρ,$)
from being 0). We will sometimes need refinements of such areas, namely similar sets localized
both on charts of S and in energy; if κ : Uκ → Vκ is a chart of the atlas chosen in Section 2,
V b Vκ and I b (0,+∞), we set

Γ̃±ε (R, V, I, σ)κ := {(r, θ, ρ, η) ∈ R2n | r > R, θ ∈ V, pε,κ ∈ I, ±ρ > σp1/2
ε,κ },(7.2)

where we recall that pε,κ is defined in (2.16). We will call such regions outgoing (+)/ incoming (-) re-
gions according to a classical terminology. Note the difference with the strongly outgoing/incoming
regions defined in (5.19)-(6.11) in the case when σ = 1− ε2 is close to 1.

We record first non angularly localized estimates on the flow.

Proposition 7.1. — For all σ ∈ (−1, 1), there exists R� 1 such that

1. there exists c > 0 such that, for all ε ∈ (0, 1],

r̄sε ≥ c
(
r + |s|p1/2

ε

)
, for all ± s ≥ 0 and (r, ρ,$) ∈ Γ̃±ε (R, σ).

In particular, R can be chosen such that φsε is defined on Γ̃±ε (R, σ) for all ±s ≥ 0.
2. For all 0 < ε < 1, there exists T > 0 such that, for all ε ∈ (0, 1],

±%̄sε > (1− ε2)p1/2
ε provided that ± s ≥ Trp−1/2

ε and (r, ρ,$) ∈ Γ̃±ε (R, σ).
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3. Let 0 < ε < 1 and t0 > 0 (as small as we want). One can find δ > 0 such that, for all ε > 0

and all (r, ρ,$) ∈ Γ̃±ε (R, σ), we have

|ρ|
p

1/2
ε

< 1− ε2 and ± s ≥ t0rp−1/2
ε =⇒ ± %̄sε

p
1/2
ε

> ±

(
ρ

p
1/2
ε

+ δ

)
.

Remark. As in previous parts, we will give all proofs in the case ε = 1 (and then drop the index ε
from the notation) and, when there is a sign condition, for s ≥ 0. This only simplifies the notation.

Proof. We choose first R1 � 1 such that −∂p∂r ≥ r
−1(p− ρ2) for r > R1. This implies that, as long

as r̄s > R1

d2

ds2
(r̄s)2 = 2

d

ds
(r̄s%̄s) ≥ 4(%̄s)2 + 2(p− (%̄s)2) ≥ 2p,

hence that

(r̄s)2 ≥ r2 + 2srρ+ s2p ≥ r2 − 2|sσ|rp1/2 + s2p ≥ (1− |σ|)
(
r2 + s2p

)
.

By a simple bootstrap argument, using the above argument, one can see that r̄s > R1 for all s ≥ 0
provided that r > (1 − |σ|)−1/2R1. This completes the proof of the item 1. For the item 2, we
observe that r̄s ≤ r + 2sp1/2 hence, by integrating

˙̄%s

p− (%̄s)2
≥ 1

r̄s
≥ 1

r + 2sp1/2
,

we get

artanh

(
%̄s

p1/2

)
≥ artanh

(
ρ

p1/2

)
+

1

2
ln

(
1 +

2sp1/2

r

)
and for sp1/2/r large enough the right hand side is greater than artanh(1− ε2), yielding the result.
For the item 3, we observe that %̄s is non decreasing in s so if the estimate holds at some time
before t0rp

−1/2 then it holds for all larger times. By possibly increasing R1, we may assume that,
for r > R1, we have |∂p∂r | ≤ 4r−1(p− ρ2). Therefore, using that r̄s > R1 by the item 1, we have

|%̄s − ρ| ≤ 4ps/r,

so by assuming sp1/2/r small enough, we have |%̄s/p1/2| ≤ 1 − ε2

2 . Thus, for such times, the first
inequality in the proof of the item 1 yields

˙̄%s ≥ (1− (1− ε2/2)2)
p

r̄s
.

On the other hand, using once more that r̄s ≤ r + 2p1/2s, the above inequality yields

˙̄%s ≥ (ε2 − ε4/4)
p

r
(
1 + 2sp1/2/r

) ≥ ε2 p

2r
,

provided sp1/2/r is small enough, say not greater than 4δ, where δ > 0 can be chosen smaller than
ε2t0/2. By integration over such times, we get %̄s ≥ ρ+ sε2 p

2r which yields %̄s/p1/2 > ρ/p1/2 + δ if

ε2sp1/2/r > 2δ hence in particular if sp1/2/r > t0. �

In the next proposition, we record estimates on the geodesic flow in a coordinate patch. We
consider a chart κ : Uκ → Vκ on S from the atlas chosen in Section 2. We recall that φsε,κ(r, θ, ρ, η)
is the flow of pε,κ on (RM,∞)× Vκ, the components of which we denote as in (5.11).

Proposition 7.2. — Let V b Vκ and I b (0,+∞). There exists t1 > 0 and RV,I � 1 such that,
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1. for all ε ∈ (0, 1], φsε,κ(r, θ, ρ, η) is defined for |s| ≤ t1r and (r̄sε , ϑ̄
s
ε) belongs to (RM,∞)× Vκ,

provided that

r > RV,I , θ ∈ V, pε,κ(r, θ, ρ, η) ∈ I.(7.3)

2. For all (j, α, k, β) ∈ Z2n
+ , there exists C > 0 such that, uniformly in ε ∈ (0, 1],∣∣∂jr∂αθ ∂kρ∂βη (ϑ̄sε − θ, %̄sε − ρ)∣∣ ≤ Cr−j−|β| |s|r(7.4) ∣∣∂jr∂αθ ∂kρ∂βη (r̄sε − r, η̄sε − η)∣∣ ≤ Cr1−j−|β| |s|

r
(7.5)

for all initial data satisfying (7.3) and all |s| ≤ t1r.

Proof. See [30]. �

In Theorem 7.4 below, we will propagate observables which do not remain localized in a single
chart. To handle this fact, the following coordinate invariance property will be useful.

Proposition 7.3 (Normalizing the angular supports). — Let κ1 : U1 → V1 be a chart on S
of the atlas chosen in Section 2 and ψ̃κ1 as in (2.6). Let (aR)R�1 be a bounded family in S̃−∞,0

such that,

supp(aR) ⊂ (R,∞)×K × Rn, for some K b Vκ1
.

Then, for all given N ≥ 0, one can write

Ophκ1
(aR)ψ̃κ1

=

(∑
κ2

Ophκ2

(
aR,κ2

(h)
)
ψ̃κ2

)
+OH−2N

−N →H2N
N

(hNR−N )

and

Opε,κ1(aR)ψ̃κ1(εr) =

(∑
κ2

Opε,κ2

(
aR,κ2,ε

)
ψ̃κ2(εr)

)
+OL−2N

−N →L2N
N

(R−N ),

where (aR,κ2(h))R,h and (aR,κ2,ε)R,ε belong to bounded subsets of S̃−∞,0 and, using the notation
(2.3) and (2.6), are supported in{(

r, τ12(θ), ρ,
(
dτ12(θ)T

)−1
η
)
| (r, θ, ρ, η) ∈ supp(aR)

}
∩ [R,∞)× supp(ϕκ2

)× Rn.(7.6)

If aR depends in a bounded way on additional parameters, then so do the symbols aR,κ2
(h), aR,κ2,ε

and the remainder terms.

The meaning of this proposition is twofold: it says first the natural fact that a (possibly rescaled)
pseudodifferential operator with symbol supported in (R,∞) × K × Rn with a compact set K
contained in Vκ1

but possibly larger than the support of the angular cutoff ϕκ1
, can be written

as a sum of operators with symbols angularly localized in the support of ϕκ2
. The second point,

which is technically important, is the control of the remainder terms with respect to R. This will
be useful to prove Theorem 7.4 below.

Proof. For definiteness, we consider rescaled operators, the other case is similar. By introducing
the partition of unity (2.7), which is equal to 1 near the range of the operator since its symbol is
supported in r ≥ R� 1, we have

Opε,κ(aR)ψ̃κ1(εr) =
∑
κ2

ψκ2(εr)Opε,κ1(aR)ψ̃κ1(εr)
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where we keep only those κ2 such that Uκ1
∩ Uκ2

6= ∅ otherwise the corresponding operator
vanishes by the support properties of ψκ2 and aR. In each term of the right hand side we write

ψ̃κ1
= ψ̃κ1

ψ̃κ2
+ ψ̃κ1

(1− ψ̃κ2
). The terms involving 1− ψ̃κ2

are of the form

Πκ1Dε

(
ψκ2(r̆, κ−1

1 (θ))Op1(aR)ψ̃κ1(1− ψ̃κ2)(r̆, κ−1
1 (θ))

)
D−1
ε Π−1

κ1
= OL−N−N→LNN

(R−N ).(7.7)

Indeed, since 1 − ψ̃κ2 vanishes near the support of ψκ2 , the composition rules of Proposition 3.1

show that the parenthese is a pseudodifferential operator with symbol O(R−∞) in S̃−∞,−∞ which
in turns show it is as in the right hand side (for any N) by the third item of Proposition 3.8. Next,

using the notation (2.3) for the transition maps, the terms ψκ2
(εr)Opε,κ1

(aR)(ψ̃κ1
ψ̃κ2

)(εr) can be
written

Πκ2Dε

(
Π−1
τ12ψκ2(r̆, κ−1

1 (θ))Op1(aR)(ψ̃κ1 ψ̃κ2)(r̆, κ−1
1 (θ))Πτ12

)
D−1
ε Π−1

κ2

by using that (Πκ1
Dεu)(r) = Πκ2

Dε

(
Π−1
τ12u(r̆)

)
. We then use the third item of Proposition 3.1 to

write, for any N , the parenthese as the sum of an operator with symbol supported in (7.6) and a

remainder term with symbol O(R−N ) in S̃−∞,−2N which produces a remainder as in (7.7). This
completes the proof. �

We are now ready to prove the main result of this section. We refer to (3.6) for the notation

which is used extensively below. We also refer to (7.2) for Γ̃±ε (R, V, I, σ)κ.
In the following theorem, given a chart κ : Uκ → Vκ on S of the atlas of Section 2, as all charts

below, we let

Cκ : (RM,∞)× Vκ × Rn → T ∗((RM,∞)× Uκ)

be the inverse of the chart on T ∗((RM,∞) × Uκ) associated to κ, namely that is defined by
Cκ(r, θ, ρ, η) = ρdr +

∑
j ηjdθj ∈ T ∗(r,κ−1(θ))((RM,∞)× Uκ). Notice in particular that

φsε ◦ Cκ = Ck ◦ φsε,κ

on all initial data and times such that φsε,κ(r, θ, ρ, η) remains localized inside (RM,∞)× Vκ ×Rn.

Theorem 7.4. — Let I b (0,∞), σ ∈ (−1, 1) and V0 b Vκ0 for some given chart κ0. There exists

R0 � 1 such that for all given T > 0, all N ≥ 0 and all bounded family (bε,R) of S̃−∞,0 (indexed
by R ≥ R0 and ε ∈ (0, 1]) and satisfying

supp(bε,R) ⊂ Γ̃±ε (R, V0, I, σ)κ0
(7.8)

the following properties hold:

1. High frequency propagation (ε = 1 and h ∈ (0, 1]) : as long as

R ≥ R0, h ∈ (0, 1], 0 ≤ ± t
h
≤ TR,

one can write

e−itP
(
ψκ0

Ophκ0
(b1,R)ψ̃κ0

)
eitP =

∑
κ

ψκOp
h
κ

(
bR(t, h)κ

)
ψ̃κ +OH−2N

−N →H2N
N

(
hNR−N

)
with (bR(t, h)κ)R,t,h bounded in S̃−∞,0 and such that

Cκ
(
supp

(
bR(t, h)κ

))
⊂ φth

−1

1

(
Cκ0

(supp(b1,R))
)
.
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2. Low frequency propagation (h = 1 and ε ∈ (0, 1]) : as long as

R ≥ R0, ε ∈ (0, 1], 0 ≤ ±tε2 ≤ TR,

one can write

e−itP
(
ψκ0(εr)Opε,κ0(bε,R)ψ̃κ0(εr)

)
eitP =

(∑
κ

ψκ(εr)Opε,κ
(
bε,R(t)κ

)
ψ̃κ(εr)

)
+ OL−2N

−N →L2N
N

(
R−N

)
with (bε,R(t)κ)ε,R,t bounded in S̃−∞,0 and such that

Cκ
(
supp

(
bε,R(t)κ

))
⊂ φtε

2

ε

(
Cκ0(supp(bε,R))

)
.

This is a quantitative version of the Egorov theorem. Its interests are to quantify (in terms of
R) the range of times on which it holds, to estimate the remainder terms in suitable topologies
and to include a rescaled/low frequency version which is not completely standard.

Proof of Theorem 7.4. For definiteness, we consider the high frequency outgoing case (for which
the notation is lighter since there is no ε parameter). We use the general formula,

e−itPA(0)eitP = A(t)−
∫ t

0

e−i(t−τ)P
(
A′(τ) + i

[
P,A(τ)

])
ei(t−τ)P dτ.(7.9)

Choose t1 as in Proposition 7.2 and consider first 0 ≤ s ≤ t1R so that the flow remains localized
in a single chart. We seek B(s) = A(sh), or equivalently A(t) = B(t/h), of the form

B(0) = ψκ0
Ophκ0

(bR)ψ̃κ0
, B(s) =

J(N)∑
j=0

hjOphκ0
(bj(s))ψ̃κ0

=: ΨN (s)ψ̃κ0
,

for some s dependent symbols bj(·) and some large enough order J(N) to be chosen. Here and
below we set bR = bε,R for ε = 1. A simple calculation yields

hB′(s) + h2[P,B(s)] =
(
hΨ′N (s) + i

[
h2P,ΨN (s)

])
ψ̃κ0 + iΨN (s)[h2P, ψ̃κ0 ].(7.10)

According to the usual procedure, we try first to make the first parentheses in the right hand side
small. This is obtained by constructing iteratively the symbols bj as solutions to

b′0(s) + {b0(s), pκ0
} = 0, b0(0) = ψκ0

(
r, κ−1

0 (θ)
)
bR,(7.11)

b′j(s) + {bj(s), pκ0
} = fj(s), bj(0) = 0,(7.12)

with

fj(s) = −
∑

j′+k+l=j+1
j′<j

(pκ0,k#bj′(s))l − (bj′(s)#pκ0,k)l,

where pκ0,0 = pκ0
is the principal symbol of P in the chart associated to κ0 and pκ0,0 + pκ0,1 is its

full symbol, and where {a, b} = ∂xa · ∂ξb− ∂ξa · ∂xb is the Poisson bracket. The solutions are given
by

b0(s) = bR ◦ φ−s1,κ0
, bj(s) =

∫ s

0

fj(u, φ
u−s
1,κ0

)du,(7.13)

with φs1,κ0
the Hamiltonian flow of pκ0 . According to the estimates (7.4) and (7.5), the formulas

in (7.13) define symbols

bj,R(s) := bj(s) bounded in S̃−∞,−j(R2n) for R ≥ R0, |s| ≤ t1R.
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Moreover, by choosing a relatively compact open subset K0 b Vκ0
and R1 � 1 so that

V0 b K0, ψ̃κ0(r, κ−1
0 (θ)) ≡ 1 near (R1,∞)×K0,(7.14)

we can ensure, by possibly taking a smaller t1 > 0, that for R� 1 and 0 ≤ s ≤ t1R
supp(bj,R(s)) ⊂ (R1,∞)×K0 × Rn.

Hence, by the last condition in (7.14), ΨN (s) and [h2P, ψ̃κ0
] in (7.10) have disjoint supports. More

precisely, the support of bj,R(s) is contained in {r & R} so the symbol of ΨN (s)[h2P, ψ̃κ0
] is

O(h∞R−∞) in S̃−∞,−∞ which implies, by the third item of Proposition 3.8, that

ΨN (s)[h2P, ψ̃κ0
] = O

H
−2N−2γ(dNe)
−N →H

2N+2γ(dNe)
N

(
hNR−N−2γ(dNe)

)
.

Here γ(dNe) is as in Proposition 3.11 (we will see the interest of this choice below). On the other

hand, the construction of the bj(s) ensures that, for some b̃N,R(s) bounded in S̃−∞,−J(N) and
supported in {r & R},(

hΨ′N (s) + i
[
h2P,ΨN (s)

])
ψ̃κ0 = hJ(N)Ophκ0

(b̃N,R(s))ψ̃κ0

= O
H
−2N−2γ(dNe)
−N →H

2N+2γ(dNe)
N

(
hNR−N−2γ(dNe)

)
by choosing J(N) large enough and by using again the third item of Proposition 3.8. The interest
of going to the order ±2(N + γ(dNe)) in the remainder terms is that, by Proposition 3.11,

ei(t−τ)P = O
H−2N
−N →H

−2N−2γ(dNe)
−N

(Rγ(dNe)) for times |t− τ | ≤ t1hR,

and similarly from H
2N+2γ(dNe)
N to H2N

N . This allows to take into account the conjugation by
propagators in the integral of (7.9) and get, for our choice of A(t) = B(t/h),

e−itPA(0)eitP −A(t) = OH−N−N→HN
N

(
hN−1R1−N) .

Here N is arbitrary so getting hN−1R1−N rather than hNR−N is of course harmless. Furthermore,
one can rewrite A(t) as a sum of ψκOp

h
κ(bR(t, h)κ)ψ̃κ by mean of Proposition 7.3, which yields the

result for |t| ≤ t1hR. Then, by iterating this procedure a finite number (≈ O(T/t1)) of times, we
get the result (note that along such an iteration, the symbols remain supported in r & R + |t/h|
by Proposition 7.1).

The proof at low frequency is similar up to the replacement of pseudodifferential operators by
rescaled ones and to the different time scaling s = ε2t. �

7.2. Resolvent estimates and their consequences

In this short section, we record some a priori decay estimates for e−itP in weighted spaces,
obtained as direct consequences of resolvent estimates. We consider both high and low frequency
spectral localizations.

We recall first first well known consequences of the following Stone formula

f(H)e−itH =
1

2iπ

∫
R
e−itλf(λ)

(
(H − λ− i0)−1 − (H − λ+ i0)−1

)
dλ

valid for any arbitrary self-adjoint operator H and f ∈ C∞0 (R). By integrations by part in λ
together with the fact that

∂kλ(H − λ∓ i0)−1 = k!(H − λ∓ i0)−1−k

it allows to convert estimates on powers of the resolvent into time decay estimates for f(H)e−itH .
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Everywhere below, we let I b (0,+∞) and f ∈ C∞0 (I). We consider first low frequency estimates
for P . Using the resolvent estimates of [6] namely∣∣∣∣∣∣〈εr〉−k (ε−2P − λ± i0

)−k 〈εr〉−k∣∣∣∣∣∣
L2→L2

≤ Ck, λ ∈ I, ε ∈ (0, 1],

we obtain from the Stone formula, applied to H = P/ε2 and t replaced by ε2t, that for any k ∈ N∣∣∣∣〈εr〉−1−kf(P/ε2)e−itP 〈εr〉−1−k∣∣∣∣
L2→L2 . 〈ε2t〉−k, t ∈ R, ε ∈ (0, 1].(7.15)

Another estimate from [6] that will be particularly useful is∣∣∣∣∣∣〈r〉−1 (P − λ± i0)
−1 〈r〉−1

∣∣∣∣∣∣
L2→L2

≤ C, λ ∈ (0, 1),(7.16)

for it implies (see e.g. [34, Thm XIII.25]) that(∫
R

∣∣∣∣〈r〉−1e−itP f(P/ε2)u0

∣∣∣∣2
L2 dt

)1/2

≤ C||u0||L2 , ε ∈ (0, 1), u0 ∈ L2.(7.17)

Getting similar estimates at high frequency, with polynomial growth in 1/h, requires an as-
sumption, for instance a non-trapping condition. This is where the assumption (1.5) is useful since
it allows to prove the following proposition.

Proposition 7.5 (Semiclassical power resolvent estimates). — Assume (1.5). Then for all
k ≥ 0 there exists Nk such that∣∣∣∣∣∣〈r〉−1−k (h2P − λ± i0

)−1−k 〈r〉−1−k
∣∣∣∣∣∣
L2→L2

. h−Nk , λ ∈ I, h ∈ (0, 1].(7.18)

Proof. It is based on an argument in [43, Prop. 1.3]. It consists in finding an operator P0 defined on
(0,+∞)×S coinciding with P near infinity and satisfying nice resolvent estimates (as (7.20) below)
and then to use iterations of the resolvent identity. We explain schematically how to implement it
in our context. We let |DS | = (−∆ḡ)

1/2 be the square root of the asymptotic Laplacian on S and

hjLj , h
mL′m ∈ {1, h∂r, r−1h|DS |}

where j,m ∈ {0, 1} are the orders of the operators. Proceeding as in [6], one can find a second
order differential operator P0 on (0,+∞)×S which is close everywhere to exact conical Laplacian
−∂2

r − r−2∆ḡ and equal to P near infinity in such a way that, letting P0,h be the rescaled version
of P0, namely

P0,h = Dh

(
h2P0

)
D−1
h ,

we have, for any K b C \ 0 and k ∈ N,∣∣∣∣〈r〉−kLj(P0,h − z)−kL′m〈r〉−k
∣∣∣∣ ≤ C, h ∈ (0, 1], z ∈ K \ R,(7.19)

where for simplicity, || · || is the operator norm on L2
(
(0,∞) × S, rn−1drdvolḡ

)
. Such resolvent

estimates follow from the techniques of [6] (more precisely Proposition 3.13 and Lemma 4.2 there)
which are based on a rescaling argument; they were used to prove low frequency estimates but
work equally well at high frequency (one only uses that P0,h is close to −∂2

r −r−2∆ḡ which satisfies

a global positive commutator estimate at energy 1). Then, by unitarity of D±1
h and (7.19), we find∣∣∣∣〈r〉−khjLj(h2P0 − z)−khjL′m〈r〉−k

∣∣∣∣ =
∣∣∣∣D−1

h 〈hr〉
−kLj(P0,h − z)−kL′m〈hr〉−kDh

∣∣∣∣
=

∣∣∣∣〈hr〉−kLj(P0,h − z)−kL′m〈hr〉−k
∣∣∣∣

. h−2k
∣∣∣∣〈r〉−kLj(P0,h − z)−kL′m〈r〉−k

∣∣∣∣
. h−2k.(7.20)
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To illustrate the starting point of the method of [43], we check rapidly (7.18) for k = 0, more
precisely that ∣∣∣∣〈r〉−1(h2P − z)−1〈r〉−1

∣∣∣∣
L2(M)→L2(M)

. h−2−M ,(7.21)

whose interest is to replace the compactly supported cutoffs χ in (1.5) by the weight 〈r〉−1. By

using the cutoffs ζ, ζ̃ introduced in Section 2 which are equal to 1 near infinity and using the
following resolvent identity

ζ(r)(h2P − z)−1 = ζ(r)(h2P0 − z)−1ζ̃(r)− ζ(r)(h2P0 − z)−1
[
ζ̃(r), h2P

]
(h2P − z)−1(7.22)

together with (1.5) and (7.20), we find that for any χ ∈ C∞c (M)∣∣∣∣〈r〉−1(h2P − z)−1χ
∣∣∣∣
L2(M)→L2(M)

. h−2 + h−1−M .

By using a second time the resolvent identity (7.22) and using the above estimate, we obtain (7.21).
This leads to (7.18) for k = 0. We get the result for higher k by the same induction as in [43]. �

Using again the Stone formula with H = h2P and t replaced by t/h2, Proposition 7.5 yields
automatically∣∣∣∣〈r〉−1−kf(h2P )e−itP 〈r〉−1−k∣∣∣∣

L2→L2 . h
−Nk〈t/h2〉−k, t ∈ R, h ∈ (0, 1],

which in turn provides the weaker estimate∣∣∣∣〈r〉−1−kf(h2P )e−itP 〈r〉−1−k∣∣∣∣
L2→L2 . h

−Nk〈t/h〉−k, t ∈ R, h ∈ (0, 1],(7.23)

which we record under this form to follow the natural semiclassical time scaling. Similarly to the
estimate (7.17), we also have the following consequence of (7.18) for k = 0,(∫

R

∣∣∣∣〈r〉−1e−itP f(h2P )u0

∣∣∣∣2
L2 dt

)1/2

≤ Ch1−N0
2 ||u0||L2 , h ∈ (0, 1), u0 ∈ L2.(7.24)

We recall that when the manifold is non-trapping, one can take N0 = 1, and the resulting h1/2

factor on the right hand side corresponds to the H1/2 smoothing effect of the Schrödinger equation.
In Section 8.4, we will also recall that, if the trapped set is sufficiently filamentary, then (1.5) holds
with e.g. M = 0 (actually λM can be replaced by λ−1/2 log λ) and that (7.24) does not hold with
h1/2 but rather with h1/2| log(h)|.

7.3. Long time estimates

In this section, we prove several L2 propagation estimates on e−itP . They will be used in
Section 8 to control the remainder terms of the parametrices. However, their interest goes beyond
the applications to Strichartz inequalities. They generalize well known estimates (see e.g. [31, 25])
in two ways: on one hand we consider the general geometric framework of asymptotically conical
manifolds and on the other hand we include a low frequency version of such inequalities which, to
our knowledge, is an original result.

Everywhere below, we consider a fixed chart κ : Uκ → Vκ on S and the related polar coordinates
(2.1) on M.

We start with the following result on strongly outgoing/incoming microlocalizations (see (5.19)
and (6.11) for the related areas). This is a first application of Theorem 6.10.

Proposition 7.6. — Let k ∈ N, f ∈ C∞0 (0,+∞), I2 b (0,+∞) and V2 b Vκ. Then, if R2 � 1
and 0 < ε2 � 1, we have the following estimates:
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1. High frequency: Assume (1.5). If χ±st ∈ S̃−∞,0(R2n) is supported in Γ̃±st(R2, V2, I2, ε2),∣∣∣∣〈r〉−3ke−itP f(h2P )Ophκ(χ±st)ψ̃κ〈r〉2k
∣∣∣∣
L2→L2 . 〈t/h〉−k, ±t ≥ 0, h ∈ (0, 1].

2. Low frequency: if (χ±ε,st)ε is a bounded family of S̃−∞,0 supported in Γ̃±st,ε(R2, V2, I2, ε2),∣∣∣∣〈εr〉−3ke−itP f(P/ε2)Opε,κ(χ±ε,st)ψ̃κ(εr)〈εr〉2k
∣∣∣∣
L2→L2 . 〈ε2t〉−k, ±t ≥ 0, ε ∈ (0, 1].

We point out that, in the high frequency estimate, we don’t have any loss in h, as the h−Nk in
(7.23).

Proof of Proposition 7.6. We may assume k ≥ 1. For definiteness, we consider the outgoing high
frequency case. We use the notation of Theorem 6.10, in particular (6.34). Note that, up to
possibly decomposing χ+

st as a sum of symbols supported in balls with respect to θ, we assume
that V2 b V for some convex open subset V b Vκ. The contribution of the main term of the
Isozaki-Kitada parametrix is(

〈r〉−3kf(h2P )〈r〉3k
)
〈r〉−3kJhκ (ah)e−iτD

2
xJhκ (bh)†〈r〉2k.

Here the parenthese is a bounded operator on L2 according to Theorem 3.9 while the second factor
provides the expected decay 〈t/h〉−k by Proposition 6.5. We next consider the contribution of the
remainders of the parametrix. The first term of the remainder RhN (t) of (6.34) produces a term of
the form

〈r〉−3kf(h2P )e−itPOH−2N
−N →H2N

N
(hN )〈r〉2k

which is O
(
〈t/h〉1−2khN−Nk

)
in L2 operator norm if N ≥ 2k by (7.23) since one can write

OH−2N
−N →H2N

N
(hN ) = 〈r〉−NOL2→L2(hN )〈r〉−N .(7.25)

By possibly increasing N so that N ≥ Nk, we get an estimate by 〈t/h〉−k (since 2k − 1 ≥ k). In
the integral term of RhN (t), we consider first the contribution of Jhκ (hNrN ). By choosing N large
enough (N ≥ 6k + 1 and N ≥ Nk), Proposition 6.5 and (7.23) imply that∣∣∣∣∣∣〈r〉−3kf(h2P )e−i(t−τ)PJhκ (hNrN )e−iτD

2
xJhκ (bh)†〈r〉2k

∣∣∣∣∣∣
L2→L2

. 〈(t− τ)/h〉1−3k〈τ/h〉−k−1.

After integration in τ between 0 and t, we get an estimate by 〈t/h〉−k. It then remains to study
the contributions of ahc and ǎh. They follow as the one of hNrN once observed that we have the
following estimates. By assuming R2 large enough, the first item of Proposition 6.1 allows to write,
for all N ,

Jhκ (ahc )e−iτD
2
xJhκ (bh)† = OH−2N

−N →H2N
N

(hN 〈τ/h〉−N ), ±τ ≥ 0,(7.26)

since one has r � r′ on the support of the kernel of Jh(ahc )e−iτD
2
xJh(bh). Using the second item

of Proposition 6.1 and choosing ε2 small enough (hence ensuring that |θ− ϑ| & 1 and |θ′ − ϑ| � 1

on the support of the Schwartz kernel of Jhκ (ǎh)e−iτD
2
xJhκ (bh)†), we obtain similarly.

Jhκ (ǎh)e−iτD
2
xJhκ (bh)† = OH−2N

−N →H2N
N

(hN 〈τ/h〉−N ), ±τ ≥ 0.(7.27)

Using (7.25) with hN 〈τ/h〉−N instead of hN , we have the required spatial decay to use (7.23) and
to control the growing weight 〈r〉2k. This completes the proof at high frequency. The proof is
completely similar at low frequency by using (7.15) instead of (7.23). �
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In the next result, we partially relax the assumptions of Proposition 7.6 by replacing strongly
outgoing (or incoming) microlocalizations by general outgoing (or incoming) ones, but at the
expense of a stronger weight (which will eventually be harmless). In the sequel, we denote

Γ̃±(R, V, I, σ) = {(r, θ, ρ, η) | r > R, θ ∈ V, pκ ∈ I, ±ρ > σp1/2
κ }

Γ̃±ε (R, V, I, σ) = {(r, θ, ρ, η) | r > R, θ ∈ V, pε,κ ∈ I, ±ρ > σp1/2
ε,κ }.(7.28)

These regions correspond to (7.2) but we now drop the index κ (unless it is necessary, i.e. in
Proposition 7.9) and distinguish between the high and low frequency cases. We recall that the
difference with strongly outgoing/incoming regions considered in Proposition 7.6 is that σ can be
any real number (−1, 1), while σ = 1− ε2 was close to 1 in the previous proposition.

Proposition 7.7 (Half microlocalized propagation estimates)
Let k ∈ N, I2 b (0,+∞), V2 b Vκ and σ ∈ (−1, 1). Then, if R2 � 1, we have the following

estimates:

1. High frequency estimates: if χ± ∈ S̃−∞,0 is supported in Γ̃±(R2, V2, I2, σ),∣∣∣∣∣∣〈r〉−4ke−itP f(h2P )Ophκ(χ±)ψ̃κ〈r〉k
∣∣∣∣∣∣
L2→L2

. 〈t/h〉−k, ±t ≥ 0, h ∈ (0, 1].(7.29)

2. Low frequency estimates: if (χε,±)ε is a bounded family of symbols in S̃−∞,0 which are

supported in Γ̃±ε (R2, V2, I2, σ),∣∣∣∣∣∣〈εr〉−4ke−itP f(P/ε2)Opε,κ(χε,±)ψ̃κ(εr)〈εr〉k
∣∣∣∣∣∣
L2→L2

. 〈ε2t〉−k, ±t ≥ 0, ε ∈ (0, 1].

We will use here the results of Section 7.1.

Proof of Proposition 7.7. We consider in detail the high frequency outgoing case for t ≥ 0. We can

replace Ophκ(χ+)〈r〉k by Ophκ(χk+) for some χk+ ∈ S̃−∞,k supported in the same set as χ+; indeed,

this is only at the expense of a remainder of the form 〈r〉−NOL2→L2(hN ) (for any fixed N) and
whose contribution to the estimate is a bound by 〈t/h〉−k thanks to (7.23). We then use a spatial
dyadic partition of unity to split

χk+ =
∑
R=2l

l≥l0

χk+,R, χk+,R = χ(r/R)χk+,(7.30)

with some χ ∈ C∞0 (0,+∞) so that each χk+,R belongs to S̃−∞,0 with seminorms of order Rk. For
some small enough ε2 > 0 to be chosen below, we pick T+ > 0, large enough such that for all
l ≥ l0,

φs
(
Cκ(supp(χk+,R))

)
⊂
{
ρ > (1− ε2

2)p1/2, r > R2

}
for s ≥ RT+,(7.31)

with φs = φs1 defined prior to Proposition 7.1 (in the low frequency case, we should consider φsε).
This is possible by the item 2 of Proposition 7.1 since, using the notation (7.1) with ε = 1,

Cκ(supp(χk+,R)) ⊂ Γ̃±1 (R2, σ).

For each R, we then proceed as follows:
If 0 ≤ t ≤ T+hR. We write 〈r〉−4ke−itP f(h2P )Ophκ(χk+,R)ψ̃κ as(

〈r〉−4kf(h2P )〈r〉4k
)
〈r〉−4k

(
e−itPOphκ(χk+,R)ψ̃κe

itP
)
e−itP ,

where, as in the proof of Proposition 7.6, the first parenthese in the right hand side is bounded on
L2 thanks to Theorem 3.9. The second parenthese can be computed by mean of Theorem 7.4. We
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get a sum of bounded pseudo-differential operators with symbols supported where r ∼ R (using
the item 1 of Proposition 7.1 and that we propagate the support of χk+,R over a time t/h . R)

plus a remainder which is, for any fixed N , of order hNR−N , say in L2 operator norm (here the

stronger H−2N
−N → H2N

N norm is not necessary). Since 〈r〉−4k composed with pseudo-differential

operator localized in r ∼ R has norm O(R−4k) and since 0 ≤ t/h . R, we find∣∣∣∣∣∣〈r〉−4ke−itP f(h2P )Ophκ(χk+,R)ψ̃κ

∣∣∣∣∣∣
L2→L2

. R−4kRk

. 〈t/h〉−kR−2k,(7.32)

where the factor Rk takes into account that R−kχk+,R is bounded in S̃−∞,0.

If t ≥ T+hR. In this case, we write 〈r〉−4ke−itP f(h2P )Ophκ(χk+,R)ψ̃κ as

〈r〉−4kf(h2P )e−i(t−T+hR)P
(
e−iT+hRPOphκ(χk+,R)ψ̃κe

iT+hRP
)
e−iT+hRP .

By (7.31), Theorem 7.4 and the seminorms estimates of χk+,R, the parenthese is a sum of pseudo-

differential operators with symbols of size Rk in S̃−∞,0, supported in strongly outgoing areas,∑
κ

Ophκ(χkκ,R(h))ψ̃κ, supp(χkκ,R(h)) ⊂ Γ̃+
st(R/C, Vκ, I2, ε2)(7.33)

with the additional property that r ∼ R on their supports, and of a remainderOH−N−2N→HN
2N

(hNR−N )

for any fixed N . In particular, if we take N ≥ max(k + 1, Nk) (see (7.23)), we get∣∣∣∣∣∣〈r〉−4kf(h2P )e−i(t−T+hR)POH−2N
−N →H2N

N
(hNR−N )

∣∣∣∣∣∣
L2→L2

. hN−NkR−k−1
∣∣∣∣∣∣〈r〉−k−1f(h2P )e−i(t−T+hR)P 〈r〉−k−1

∣∣∣∣∣∣
L2→L2

. 〈t/h− T+R〉−kR−k−1

. 〈t/h〉−kR−1.(7.34)

To get the contribution of the pseudo-differential sum (7.33), we use Theorem 6.10, which is why
we need to choose ε2 small enough. For any given N , we can write

Ophκ(χkκ,R(h))ψ̃κ = Jhκ (ah)Jhκ (bhR)† +OH−N−N→HN
N

(hNR−N )

where, by (6.13), bhR is supported in r ∼ R (this allows to get the additional factor R−N in the
remainder term) and belongs to S0 with seminorms of order Rk (uniformly h). The contribution
of the remainder is estimated as above by choosing N large enough, while the contribution of the
first term follows from Proposition 7.6 through∣∣∣∣∣∣〈r〉−4kf(h2P )e−i(t−T+hR)PJhκ (ah)Jhκ (bhR)†

∣∣∣∣∣∣
L2→L2

. R−3k
∣∣∣∣∣∣〈r〉−4kf(h2P )e−i(t−T+hR)PJhκ (ah)Jhκ (bhR)†〈r〉3k

∣∣∣∣∣∣
L2→L2

. R−3k〈t/h− T+R〉−kRk

. R−k〈t/h〉−k,(7.35)

where the factor Rk on the third line is the size of seminorms of bhR in S0. Combining (7.32), (7.34)
and (7.35), we get ∣∣∣∣∣∣〈r〉−4kf(h2P )e−itPOphκ(χk+,R)ψ̃κ

∣∣∣∣∣∣
L2→L2

. R−1〈t/h〉−k

which, once summed over R = 2l, provides the estimate (7.29). The low frequency case is obtained
analogously by using the low frequency part of Theorem 7.4 together with (7.15). �
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Proposition 7.7 provides time decay estimates with rate proportional to the decay rate of the
weight. In the next two propositions, we get fast decay (and O(h∞) estimates at high frequency)
for suitable microlocalizations.

Proposition 7.8 (Improved microlocal propagation estimates I)
Let I2 b (0,+∞), V2 b Vκ, σ ∈ (−1, 1) and R1 ≥ 1. If R2 � 1 then for each k ∈ N and

χ± ∈ S̃−∞,0 supported in Γ̃±(R2, V2, I2, σ), one has∣∣∣∣∣∣1[0,R1](r)f(h2P )e−itPOphκ(χ±)ψ̃κ(r)
∣∣∣∣∣∣
L2→L2

. hk〈t/h〉−k, ±t ≥ 0, h ∈ (0, 1].

This proposition reflects the intuitive fact that the forward (resp. backward) propagation of
data localized in a far away outgoing (resp. incoming) area does not meet the region {r ≤ R1}.
Note that we consider only the high frequency case, for which the estimate is improved by a factor
hk compared to the one of Proposition 7.7. At low frequency, Proposition 7.7 will be sufficient for
us.

Proof of Proposition 7.8. Here again we consider the outgoing case. We use the notation of the
proof of Proposition 7.7, in particular T+ and the decomposition (7.30). We distinguish two cases.
If 0 ≤ t ≤ T+hR. By Proposition 7.4, we can write

1[0,R1](r)f(h2P )e−itPOphκ(χ+,R)ψ̃κ =
∑
κ1

1[0,R1](r)f(h2P )Ophκ1
(ahR(t))ψ̃κ1

e−itP

+ OL2→L2(hNR−N )

with symbols ahR(t) bounded in S̃−∞,0 as h, t, R vary and supported in r ∼ R by the first item
of Proposition 7.1. In particular, they are supported in sets where r & R2 � 1. Thus, using the
pseudodifferential expansion of f(h2P ) in Theorem 3.9 (here the localization ζ(r) is implicit for
we can write f(h2P )Ophκ1

(ahR(t)) = f(h2P )ζ(r)Ophκ1
(ahR(t))), it follows from symbolic calculus and

the form of the remainder terms in this theorem that

1[0,R1](r)f(h2P )Ophκ1
(ahR(t)) = OL2→L2(hNR−N )

for any N . We thus conclude that, for any given k,∣∣∣∣1[0,R1](r)f(h2P )e−itPOphκ(χ+,R)ψ̃κ
∣∣∣∣
L2→L2 = O(hkR−1−k) = O

(
hk〈t/h〉−kR−1

)
.(7.36)

If t ≥ T+hR. In comparison to the proof of Proposition 7.7, it suffices to consider the terms∣∣∣∣1[0,R1](r)f(h2P )e−i(t−T+hR)PJhκ (ah)Jhκ (bhR)†
∣∣∣∣
L2→L2 .

R−2k
∣∣∣∣1[0,R1](r)f(h2P )e−i(t−T+hR)PJhκ (ah)Jhκ (bhR)†〈r〉2k

∣∣∣∣
L2→L2

since all the other ones are remainder terms carrying an additional hN factor with N arbitrarily
large. To estimate the norm in the second line, we use the Isozaki-Kitada parametrix as in the
proof of Proposition 7.6. All remainders decay as 〈t/h−T+R〉−k times hk (or even hN ) by pushing
the expansion to a sufficiently high order exactly as in the proof of Proposition 7.6. Thus, it
remains to consider the main term which is

1[0,R1](r)f(h2P )Jhκ (ah)e−i(t−T+hR)D2
x)Jhκ (bhR)†〈r〉2k.(7.37)

Using Theorem 3.9, one can write

1[0,R1](r)f(h2P ) = 1[0,R1](r)f(h2P )1[0,R̃1](r) +OL2→L2(hN )〈r〉−N
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with R̃1 > R1. By choosing N ≥ 3k, the contribution of the above remainder to (7.37) is of the

form O(hk〈t/h− T+R〉−k) by Proposition 6.5. On the other hand, by choosing R2 � R̃1, the first
item of Proposition 6.1 shows that (uniformly in R)

1[0,R1](r)f(h2P )Jhκ (ah)e−i(t−T+hR)D2
xJhκ (bhR)†〈r〉2k = O(〈t/h− T+R〉−∞h∞).

We thus get

R−2k
∣∣∣∣1[0,R1](r)f(h2P )e−i(t−T+hR)PJhκ (ah)Jhκ (bhR)†〈r〉2k

∣∣∣∣
L2→L2 . hkR−2k〈t/h− T+R〉−k

. hkR−k〈t/h〉−k.
Taking (7.36) into account, we conclude as in Proposition 7.7 by summing all estimates over R. �

In the next proposition, we use the notation (7.2) (when ε = 1 we do not indicate the dependence
on ε). We let χ±st and χ±ε,st be supported in an angular patch associated to a given chart κ (the same
as in all previous propositions) but we allow the symbols χ∓ and χε,∓ to be angularly supported
in a possibly different patch associated to another chart κ′.

Proposition 7.9 (Improved microlocal propagation estimates II)
Let V2 b V0 b Vκ, I2 b (0,+∞). Let also V ′2 b Vκ′ , I

′
2 b (0,+∞) and σ ∈ (−1, 1). If ε2 > 0 is

small enough and R2 > 0 is large enough, the following estimates hold for all k ∈ N:

1. High frequency case: if χ±, χst ∈ S̃−∞,0 satisfy

supp(χ∓) ⊂ Γ̃∓(R2, V
′
2 , I
′
2, σ)κ′ , supp(χ±st) ⊂ Γ̃±st

(
R2, V2, I2, ε2

)
then, for ±t ≥ 0 and h ∈ (0, 1],∣∣∣∣∣∣〈r〉kψ̃κ′Ophκ′(χ∓)∗f(h2P )e−itPOphκ(χ±st)ψ̃κ〈r〉k

∣∣∣∣∣∣
L2→L2

. hk〈t/h〉−k.

2. Low frequency case: if (χε,±)ε, (χ
±
ε,st)ε are bounded families of S̃−∞,0 satisfying

supp(χε,∓) ⊂ Γ̃∓ε (R2, V
′
2 , I
′
2, σ)κ′ , supp(χε,st) ⊂ Γ̃±st,ε

(
R2, V2, I2, ε2

)
then, for ±t ≥ 0 and ε ∈ (0, 1],∣∣∣∣∣∣〈εr〉kψ̃κ′(εr)Opε,κ′(χε,∓)∗f(P/ε2)e−itPOpε,κ(χ±ε,st)ψ̃κ(εr)〈εr〉k

∣∣∣∣∣∣
L2→L2

. 〈ε2t〉−k.

We need the following lemma that provides a suitable version of the action of a pseudo-differential
operator on a Fourier integral operator. We recall that the symbol class S0 is defined at (6.1) and
the area Θ±(R, V, I, ε) at (5.10).

Lemma 7.10. — Let I0 b (0,+∞). If ε0 > 0 is small enough and R0 > 0 is large enough, then
for all a ∈ S0 supported in Θ±(R0, V0, I0, ε0) and χ ∈ S−∞,k supported in (R2,∞)× V2 ×Rn with
R2 ≥ R0, one can write for any N

Ophκ(χ)Jhκ (a) = Jhκ (aN (h)) + finite sum of hN 〈r〉−NBh〈r〉−NJhκ (rN (h))

with ||Bh||L2→L2 . 1, (rN (h))h bounded in S̃−∞,0 and supported in Θ±(R0, V0, I0, 2ε0), and with

(aN (h))h bounded in S̃−∞,k satisfying

supp(aN (h)) ⊂ supp
(
χ(., ., ∂rϕ, ∂θϕ

)
× a
)
.

More precisely,

aN (h) = χ(r, θ, ∂rϕ, ∂θϕ)a(r, θ, %, ϑ) +O(h)

where O(h) is a finite sum of products of derivatives of χ (of order ≥ 1) evaluated at (r, θ, ∂rϕ, ∂θϕ),
of derivatives of a and of rational fractions in derivatives of ϕ.
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Proof. It follows from the usual calculation of the action of a pseudo-differential operator on an
oscillatory integral, see e.g. [1, 40]. �

Remark. Of course, a completely parallel statement holds at low frequency but we do not quote
it for we give the proof of Proposition 7.9 only in the high frequency case. Also, the parameter
2ε0 in the support of the remainder terms (coming from technical considerations due to the non
locality of Ophκ(χ)) could be replaced by any ε̃0 > ε0 but this is irrelevant for our purposes.

Proof of Proposition 7.9. We consider again the high frequency case for t ≥ 0. Also, w.l.o.g. as in
the proof of Proposition 7.6, we may assume that V0 is convex to be in position to use the expression
of e−itPOphκ(χ+

st)ψ̃κ given by Theorem 6.10. Proceeding exactly as in the proof of Proposition 7.6,
up to the replacement of (7.23) by the new a priori estimate∣∣∣∣〈r〉kψ̃κ′Ophκ′(χ−)∗f(h2P )e−i(t−τ)P 〈r〉−N

∣∣∣∣
L2→L2 . 〈(t− τ)/h〉−k−1, 0 ≤ τ ≤ t,

which follows from the adjoint estimate to (7.29) for N large enough, we see that the contribution
of the remainder RhN (t) is O(hk〈t/h〉−k). Note that here, we do not have to care about the fact
that κ and κ′ may be different. It then remains to consider the contribution of

〈r〉kψ̃κ′Ophκ′(χ−)∗f(h2P )Jhκ (ah)e−itD
2
xJhκ (bh)†〈r〉k.

We consider the case when κ = κ′ and explain at the end of the proof how to handle the general
case. Using the expansion of Theorem 3.9 and symbolic calculus, one can write for any N ,

〈r〉kψ̃κOphκ(χ−)∗f(h2P ) = Ophκ(χk−(h))
˜̃
ψκ +O(hN )L2→L2〈r〉−N

with χk−(h) ∈ S̃−∞,k with the same support as χ− and bounded with respect to h. Note that we

Jhκ (ah) =
˜̃
ψκJ

h
κ (ah) by the localization of the support of ah. The contribution of the remainder

follows from Proposition 6.5, provided we take N ≥ k. On the other hand, using Lemma 7.10, we
can compute

Ophκ(χk−(h))Jhκ (ah)e−itD
2
xJhκ (bh)† = Jhκ (aN (h))e−itD

2
xJhκ (bh)† + remainder terms.

The contribution of the remainder terms follows from Proposition 6.5, using their fast decay in r and

h. On the other hand, on the support of aN (h), one must have (r, θ, ∂rϕ, ∂θϕ) ∈ Γ̃−(R2, V2, I2, σ)
and (r, θ, %, ϑ) ∈ Θ+(R0, V0, I0, ε0). This implies in particular that

−∂rϕ > σpκ(r, θ, ∂rϕ, ∂θϕ)1/2 = σ|%| and % > 0.

By (6.36), these conditions are incompatible if σ ≥ 0, so aN (h) ≡ 0 in this case. On the other
hand, if σ < 0, one has 0 < ∂rϕ < |σ|p(r, θ, ∂rϕ, ∂θϕ)1/2, hence

σ2r−2gjk(r, θ)∂θjϕ∂θkϕ > (1− σ2)(∂rϕ)2

which, together with (6.36), implies that for some cσ > 0

|θ − ϑ| > cσ%
2.

Thus, on the support of the kernel of Jh(aN (h))e−itD
2
xJh(bh)†, we have

|θ − ϑ| > cσ%
2 � ε2 & |θ′ − ϑ|

so we obtain the fast decay by mean of the item 2 of Proposition 6.1, provided ε2 is small enough
and R2 is large enough. This completes the proof (when κ = κ′). When κ 6= κ′, we may split
Ophκ′(χ−)∗ as Ophκ′(χ−)∗χκ + Ophκ′(χ−)∗(1 − χκ) with χκ ≡ 1 near the spatial projection of the
support of ah. The operator Ophκ′(χ−)∗χκ can then be written in the chart κ as in Proposition
7.3 (and then be treated as above), up to terms which decay fast in h and r. The contribution
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of (1 − χκ)f(h2P )Jhκ (ah) also produces terms which are O(h∞) and decay fast in r. All these
decaying remainders can then be handled thanks to Proposition 6.5. �





CHAPITRE 8

STRICHARTZ ESTIMATES

In this chapter, we prove the results stated in Chapter 1. We focus on the low frequency case
(in dimension n ≥ 3), i.e. on ulow defined in (1.3). Indeed the proof of Theorem 8.2 is slightly more
technical than the one of Theorem 1.3, for instance to handle the Lq → Lq estimates of f(P/ε2).
In Section 8.3, we explain the minor modifications to handle high frequencies. In Section 8.4, we
prove Theorem 1.4, by showing that the global in time Staffilani-Tataru trick, used initially for
non-trapping geodesic flows, still applies to the case of a sufficiently filamentary trapped set.

8.1. Finite time estimates

In this section, we use the well known geometric optics technique to derive propagator approx-
imations for finite times, but depending both on the frequency and spatial localizations. This
follows previous similar arguments introduced in [30] for high frequency localizations. Our main
purpose is to give such an approximation at low frequency, but we restate the high frequency case
both for completeness and for comparison with the low frequency regime.

For a given chart κ : Uκ → Vκ on the angular manifold S, V ⊂ Vκ, I b (0,+∞), C ≥ 1,
ε ∈ (0, 1] and R� 1, we use the notation

ΩR(V, I, C) = {(r, θ, ρ, η) ∈ p−1
κ (I) | r ∈ (R/C,CR), θ ∈ V }

Ωε,R(V, I, C) = {(r̆, θ, ρ̆, η) ∈ p−1
ε,κ(I) | r̆ ∈ (R/C,CR), θ ∈ V }.

Note that ΩR(V, I, C) = Ω1,R(V, I, C)

Proposition 8.1 (Existence of phase functions). — Let V b Vκ be a relatively compact open
convex subset of Vκ. Let V0 b V , C0 > 1 and I0 b (0,+∞). There are 0 < t0 � 1 and R0 � 1
such that one can find a family of smooth functions

(ϕε,R)ε∈(0,1],R≥R0

defined on (−t0R, t0R)× Ωε,R(V0, I0, C0), solving the eikonal equation

∂sϕε,R + pε,κ(r, θ, ∂r,θϕε,R) = 0, ϕε,R(0, r, θ, ρ, η) = rρ+ θ · η,

and satisfying the estimates∣∣∂jr∂αθ ∂kρ∂βη (ϕR,ε(s)− ϕε,R(0) + spε,κ
)∣∣ ≤ Cγ s2

R
R−j−|β|,(8.1)

for R ≥ R0, ε ∈ (0, 1], |s| < t0R and (r, θ, ρ, η) ∈ Ωε,R(V0, I0, C0).
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Proof. It follows the usual local in time resolution of the Hamilton-Jacobi equation, by using the
flow estimates given in Proposition 7.2 which allow to show that the map (r, θ, ρ, η) 7→ (r̄sε , ϑ̄

s
ε , ρ, η)

is a diffeomorphism if |s| ≤ t0R with t0 small enough. More precisely, to prove that this is
a diffeomorphism, one can check that the map (x, θ) 7→ (R−1r̄sε , ϑ̄

s
ε)(Rx, θ, ρ, η) is close to the

identity on (1/2C0, 2C0)×V provided that s/R is close enough, uniformly in ε, ρ, η. The convexity
of V allows to check that this map is injective while standard arguments show that the range will
contain (1/C0, C0)× V0. �

We can next consider the related Fourier integral operators

Wε,R(s,Aε)u(r̆, θ) = (2π)−n
∫ ∫

ei
(
ϕε,R(s,r̆,θ,ρ̆,η)−r̆′ρ̆−θ′·η

)
Aε(s, r̆, θ, ρ̆, η)u(r̆′, θ′)dρ̆dηdr̆′dθ′(8.2)

and, setting ϕR = ϕ1,R,

Wh
R(s,A)u(r, θ) = (2πh)−n

∫ ∫
e
i
h

(
ϕR(s,r,θ,ρ,η)−r′ρ−θ′·η

)
A(s, r, θ, ρ, η)u(r′, θ′)dρdηdr′dθ′

which are globally well defined on Rn provided the amplitudes Aε and A are supported respectively
in Ωε,R(V0, I0, C0) and Ω1,R(V0, I0, C0). Using the cutoffs ψ̃κ(εr) and ψ̃κ(r) chosen in (2.6), we can
pull these operators back on M, i.e. define the operators

Wε,R,κ(s,Aε)ψ̃κ(εr) := Πκ

(
DεWε,R(s,Aε)D

−1
ε

)
Π−1
κ ψ̃κ(εr)

and

Wh
R,κ(s,A)ψ̃κ(r) := ΠκW

h
R(s,A)Π−1

κ ψ̃κ(r).

Proposition 8.2. — Let V b Vκ be convex. Let V1 b V0 b V , C0 > C1 > 1 and I1 b I0 b
(0,+∞). There are 0 < t0 � 1 and R0 � 1 such that for any N ∈ N the following approximations
hold.

1. Low energy WKB approximation: Given a bounded family (aε,R)ε,R of S̃−∞,0 supported

in Ωε,R(V1, I1, C1), one can find a bounded family (Aε,R(ε2t))ε,R,t of S̃−∞,0 supported in
Ωε,R(V0, I0, C0) and χ ∈ C∞0 (0,+∞) such that

e−itPOpε,κ(aε,R)ψ̃κ(εr) = Wε,R,κ

(
ε2t, Aε,R

)
χ(εr/R)ψ̃κ(εr) +OL1→L2(ε

n
2R−N )

and ∣∣∣∣Wε,R,κ

(
ε2t, Aε,R

)
χ(εr/R)ψ̃κ(εr)

∣∣∣∣
L1→L∞ . 〈t〉

−n2(8.3)

as long as

ε ∈ (0, 1], R ≥ R0, |t| ≤ t0ε−2R.

2. High energy WKB approximation: Given a bounded family (aR)R of S̃−∞,0 supported in

ΩR(V1, I1, C1), one can find a bounded family (AhR( th ))R,h,t of S̃−∞,0 supported in ΩR(V0, I0, C0)
and χ ∈ C∞0 (0,+∞) such that

e−itPOphκ(aR)ψ̃κ(r) = Wh
R,κ

(
t/h,AhR

)
χ(r/R)ψ̃κ(r) +OL1→L2(hNR−N )

and ∣∣∣∣Wh
R,κ

(
t/h,AhR

)
χ(r/R)ψ̃κ(r)

∣∣∣∣
L1→L∞ . |t|

−n2(8.4)

as long as

h ∈ (0, 1], R ≥ R0, |t| ≤ t0hR.

We will use the following lemma that clarifies the roles of the low frequency scaling and of the
Riemannian measure.
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Lemma 8.3. — Let K(r̆, θ, r̆′, θ′) be the kernel of an operator Won Rn with respect to the Lebesgue

measure dr̆dθ. Assume that K is supported in
(
(R0,∞)×V

)2
for some V b Vκ. Then, the Schwartz

kernel Kε of Πκ

(
DεWD−1

ε

)
Π−1
κ with respect to the Riemannian measure satisfies∣∣Kε(r, ω, r′, ω′)∣∣ ≤ Cεn∣∣K(εr, θ, εr′, θ′)(εr′)1−n∣∣, ω = κ−1(θ), ω′ = κ−1(θ′),

for some constant C depending on V but not on K nor ε.

Proof. We omit the conjugation by Πκ whose role is irrelevant here. Then

DεWu(r, θ) = ε
n
2

∫ ∫
K(εr, θ, r̆′, θ′)u(r̆′, θ′)dr̆′dθ′

= εn
∫ ∫

K(εr, θ, εr′, θ′)(εr′)1−n(Dεu)(r′, θ′)(r′)n−1dr′dθ′

so that the kernel of DεWD−1
ε with respect to (r′)n−1dr′dθ′ is εnK(εr, θ, εr′, θ′)(εr′)1−n. Since

(r′)n−1dr′dθ′ is comparable to the Riemannian density (r′)n−1det(g(r′, θ))1/2dr′dθ′, we get the
result. �

Proof of Proposition 8.2. We consider the low energy case. Dropping the spatial cutoff for sim-
plicity, one has the identity

e−itPWε,R,κ(0, Aε,R) = Wε,R,κ(ε2t, Aε,R)−
∫ ε2t

0

e−i(t−
s
ε2

)PWε,R,κ(s, bε,R)ds(8.5)

where

Wε,R(s, bε,R) = ∂sWε,R(s,Aε) + iPε,κWε,R(s,Aε).

By the usual geometric optics construction, we can find, for any N , symbols Aε,R(s, r, θ, ρ, η) in a

bounded set of S̃−∞,0 (as ε ∈ (0, 1], R ≥ R0 and |s| ≤ t0R vary), supported in Ωε,R(V0, I0, C0) and
such that

Aε,R|s=0 = aε,R, bε,R(s) in a bounded subset of S̃−∞,−N supp
(
bε,R(s)

)
⊂ Ωε,R(V0, I0, C0).

This follows by solving iteratively transport equations in the usual manner and by observing that,
in the iterative construction of the amplitude Aε,R, the symbols decay faster and faster in r̆; in other

words, the scale of classes S̃−∞,−j replaces here the scale of powers hj in the usual semiclassical
framework. The boundedness in s of the solutions to the transport equations follows from the flow
estimates of Proposition 7.2. To get the remainder estimate and (8.3), we proceed as follows. Since
aε,R is supported in a region where r̆ ∼ R, we can write

Op1(aε,R) = Op1(aε,R)χ(r̆/R) +Op1(a∞,ε,R)

with a∞,ε,R = O(R−N ) in S̃−N,−N for any N . In particular, using Lemma 8.3, it is not hard to
check that

||Opε(a∞,ε,R)ψ̃κ(εr)||L1→L2 .N R−N εn/2.

This allows to replace e−itPOphκ(aR)ψ̃κ(r) by e−itPOphκ(aR)χ(εr/R)ψ̃κ(εr) and we are left with two
types of terms: the main term of the expansion Wε,R,κ(s,Aε,R), which will produce (8.3), and the

remainder involving Wε,R,κ(s, bε,R)χ(εr/R)ψ̃κ(εr) coming from the integral in (8.5). We start with
this remainder. Using (8.2), with bε,r instead of Aε, and using the decay in r̆ together with the fact
that we integrate over a fixed bounded in region in η/r̆, the Schwartz kernel of Wε,R(s, bε,R)χ(r̆/R)

with respect to dr̆dθ is bounded by Cr̆−N+(n−1) and is supported in a region where both r̆ and r̆′

are of size R. Note that the power r̆n−1 comes from the fact that the kernel is given by an integral



78 CHAPITRE 8. STRICHARTZ ESTIMATES

where η belongs to a region of volume r̆n−1. Then, by Lemma 8.3, the kernel of Wε,R,κ(s, bε,R)
with respect to the Riemannian measure is bounded by

εn〈εr〉−N/3〈εr′〉−N/3R−N/3.
The corresponding operator has an L1 → L2 norm of order εn/2R−N/3 (if N/3 > n/2). Since N is
arbitrary, |ε2t| . R and the propagator is unitary on L2, we get the control on the remainder of
(8.5) in L1 → L2 operator norm. Finally, the dispersion estimate (8.3) follow from the fact that

the L1 → L∞ norm of Wε,R,κ (s,Aε,R) ψ̃κ(εr)χ(εr/R) is controled by

εn sup
r̆,θ,r̆′,θ′,ε

∣∣∣∣(∫ ei
(
ϕε,R(s,r̆,θ,ρ̆,η)−r̆′ρ̆−θ′·η

)
Aε(s, r̆, θ, ρ̆, η)dρ̆dη

)
〈r̆′〉1−nχ(r̆′/R)

∣∣∣∣ . εn〈s〉−n/2
where the estimate by 〈s〉−n/2 follows from a standard non stationary phase argument by exploiting
that

ϕε(s, r̆, θ, ρ̆, η) = (r̆ − r̆′)ρ̆+ (θ − θ′) · η − spκ,ε(r̆, θ, ρ̆, η) +O(s2/R),

(by (8.1)). Note that the weight 〈r̆′〉1−n is crucial to compensate that we integrate over a region

of volume O(r̆n−1) in η (recall that both r̆ and r̆′ are of order R here). With s = ε2t we find that
εn〈ε2t〉−n/2 . 〈t〉−n/2. We refer to [30] for more details on the stationary phase. The proof is
similar at high energy. Up to the scaling in time, the main differences are that we drop the scaling
operators D±ε and that in the iterative construction of the amplitude we gain both decay in h and
in r. �

8.2. Proof of Theorem 1.2

It suffices to prove the result for the endpoint pair (p, q) = (2, 2∗) =
(
2, 2n

n−2

)
, the other ones

following by interpolation with the trivial estimate for (p, q) = (∞, 2).
For u0 ∈ L2, we use the notation (1.3). The starting point is the estimate

||ulow||2L2(R;L2∗ ) .
∑

ε2=2−k

||(1− χ(εr))f(P/ε2)u||2L2(R;L2∗ ) + ||〈r〉−1f(P/ε2)u||2L2(R;L2)(8.6)

which follows from Theorem 4.1. By the integrated L2 decay estimate (7.17), we have

||〈r〉−1f(P/ε2)u||L2(R;L2) . ||u0||L2

where, in the right hand side, we may replace u0 by f̃(P/ε2)u0 with f̃ ∈ C∞0 (0,+∞) equal to 1
near the support of f . We thus only have to prove

||(1− χ(εr))f(P/ε2)u||L2(R;L2∗ ) . ||u0||L2 , ε ∈ (0, 1], u0 ∈ L2.(8.7)

Indeed, with (8.7) (whose right hand side can be replaced by ||f̃(P/ε2)u0||L2) at hand, (8.6) yields

||ulow||L2(R,L2∗ ) .

( ∑
ε2=2−k

||f̃(P/ε2)u0||2L2

)1/2

. ||u0||L2

by quasi-orthogonality in the second line, which completes the proof of Theorem 1.2 .

The rest of this section is thus devoted to the proof of (8.7).

We write (1− χ)(εr)f(P/ε2) = (1− χ)(εr)f̃(P/ε2)f(P/ε2) with f̃ ∈ C∞0 (0,+∞) equal to 1 on
the support of f . Then, using Theorem 3.9, we can decompose

(1− χ)(εr)f̃(P/ε2) =
∑
κ

ψ̃κ(εr)Opε,κ(χε,κ)∗ + Rε(8.8)
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where, for some N as large as we wish and some bounded family (Bε)ε∈(0,1] of bounded operators

on L2,

Rε = ζ(εr)(P/ε2 + 1)−NBε〈εr〉−N .
Each χε,κ = χε,κ(r̆, θ, ρ̆, η) belongs to S̃−∞,0, has uniform bounds in ε and is supported in a way

that (r̆, θ) ∈ supp(1−χ)×Vκ and pε,κ(r̆, θ, ρ̆, η) ∈ supp(f). Furthermore, ψ̃κ ≡ 1 near the support
of χε,κ. Note that we use adjoint pseudo-differential operators Opε,κ(χε,κ)∗ (this is possible by
(3.10)), which is not essential but will be more convenient.

Proposition 8.4. — If N ≥ n/2 + 1, one has(∫
R
||Rεf(P/ε2)e−itPu0||2L2∗dt

)1/2

. ||u0||L2 , ε ∈ (0, 1], u0 ∈ L2.

Proof. It follows from Proposition 3.7 and (7.15) that∣∣∣∣Rεf(P/ε2)e−i(t−t
′)P f(P/ε2)R∗ε

∣∣∣∣
L1→L∞ . εn

∣∣∣∣〈εr〉−Ne−i(t−t′)P f2(P/ε2)〈εr〉−N
∣∣∣∣
L2→L2

. εn〈ε2(t− t′)〉1−N

. 〈t− t′〉−n/2.
The result follows then from the TT ∗ criterion of [28] applied to Rεf(P/ε2)e−itP (which is bounded
on L2 uniformly in ε and t). �

We are left with the (rescaled) pseudodifferential terms in (8.8). For each κ (which we omit in
the notation below), we split

χε,κ = χ+
ε,st + χε,int + χ−ε,st,(8.9)

with χ±ε,st, χε,int ∈ S̃−∞,0 (with uniform bounds in ε) supported in strongly outgoing/incoming
areas (see (6.11)), i.e.

supp
(
χ±ε,st

)
⊂ Γ̃±ε,st(R, V, I, ε)(8.10)

for some R� 1 and 0 < ε� 1 to be chosen below independently of ε, and V b Vκ, I b (0,+∞).
Note that to be able to choose R large, we have to assume that (1 − χ)(r̆) is supported in r̆ ≥ R
which is not a restriction since, in (8.6) and Theorem 4.1, we may choose χ ≡ 1 on a set as large
as we wish. The third symbol χε,int satisfies

supp
(
χε,int

)
⊂ Γ̃+

ε (R, V, I, σ) ∩ Γ̃−ε (R, V, I, σ)(8.11)

for some σ independent of ε (see (7.28) for the notation of the areas). The decomposition (8.9)
follows easily by applying a partition of unity to ρ̆/pε,κ(r̆, θ, ρ̆, η) adapted to regions where this
quotient is either lower than −1 + ε2, greater than 1− ε2 or between −1 + ε2/2 and 1− ε2/2.

Proposition 8.5. — If ε is small enough and R is large enough, one has(∫
R
||ψ̃κ(εr)Opε,κ(χ±ε,st)

∗f(P/ε2)e−itPu0||2L2∗dt

)1/2

. ||u0||L2 , ε ∈ (0, 1], u0 ∈ L2.

Proof. We consider the + case. We use again the TT ∗ criterion and show that∣∣∣∣ψ̃κ(εr)Opε,κ(χ+
ε,st)

∗f2(P/ε2)e−itPOpε,κ(χ+
ε,st)ψ̃κ(εr)

∣∣∣∣
L1→L∞ . |t|

−n/2,(8.12)

for t 6= 0 and ε ∈ (0, 1]. Upon taking the adjoint, it suffices to consider t ≤ 0 (following a trick of
[7]). For simplicity, we let

K∗ε = ψ̃κ(εr)Opε,κ(χ+
ε,st)

∗f2(P/ε2).
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We then use Theorem 6.10 to expand e−itPOpε,κ(χ+
ε,st)ψ̃κ(εr). Consider first the main term

Jε,κ(aε)e
−itε2D2

xJε,κ(bε,κ)† of this expansion. Using Proposition 6.6 (with h = 1 and s = ε2t)
together with Proposition 3.4 to handle the contribution of the scaling operators, we find∣∣∣∣Jε,κ(aε)e

−iε2tD2
xJε,κ(bε)

†∣∣∣∣
L1→L∞ . ε

n
2 〈ε2t〉−n2 εn2

. 〈t〉−n2 .
Note that no sign condition on t is required here. Observing that the support of χ+

ε,st allows to

write Opε,κ(χ+
ε,st)

∗ = Opε,κ(χ+
ε,st)

∗ζ(εr), we see that ||K∗ε ||L∞→L∞ . 1 by Propositions 3.5 and
3.10, hence that ∣∣∣∣K∗ε Jε,κ(aε)e

−iε2tD2
xJε,κ(bε)

†∣∣∣∣
L1→L∞ . 〈t〉−n2 .(8.13)

We next consider the first term of the remainder Rε,N (t) of (6.35), where N is as large as we wish.
It is of the form

e−itPOL−2N
−N →L2N

N

(
1
)

= e−itP 〈εr〉−NBε(P/ε2 + 1)−Nζ(εr),

with ||Bε||L2→L2 . 1. To get the time decay, we exploit that this operator is composed to the left
with K∗ε which we can rewrite as

K∗ε = ζ(εr)(P/ε2 + 1)−N
(
ψ̃κ(εr)Opε,κ(χ̃+

ε,st)
∗ +B′ε〈εr〉−N

)
f2(P/ε2)(8.14)

with χ̃+
ε,st ∈ S̃−∞,0 with the same support as χ+

ε,st and B′ε bounded on L2. This follows simply by

expanding (P/ε2 + 1)N ψ̃κ(εr)Opε,κ(χ+
ε,st)

∗. Then, as in the proof of Proposition 8.4,∣∣∣∣ζ(εr)(P/ε2 + 1)−NB′ε〈εr〉−Nf2(P/ε2)e−itP 〈εr〉−NBε(P/ε2 + 1)−Nζ(εr)
∣∣∣∣
L1→L∞ . 〈t〉

−n2 .

On the other hand, the adjoint estimates of Proposition 7.6 together with Proposition 3.7 yield∣∣∣∣ζ(εr)(P/ε2 + 1)−N ψ̃κ(εr)Opε,κ(χ̃+
ε,st)

∗f2(P/ε2)e−itP 〈εr〉−NBε(P/ε2 + 1)−Nζ(εr)
∣∣∣∣
L1→L∞

. εn
∣∣∣∣ψ̃κ(εr)Opε,κ(χ̃+

ε,st)
∗f2(P/ε2)e−itP 〈εr〉−N

∣∣∣∣
L2→L2 . ε

n〈ε2t〉−N/3

for t ≤ 0. Therefore, if N is large enough,∣∣∣∣K∗ε e−itPOL−2N
−N →L2N

N

(
1
)∣∣∣∣

L1→L∞ . 〈t〉
−n2 , t ≤ 0.(8.15)

It remains to treat the integral terms of RN,ε(t), involving the operator Jε,κ(aε,c + rε,N + ǎε). At
low frequency, the contribution of aε,c + rε,N follows only from its spatial decay (see the slight
difference with the high frequency case in section 8.3). We thus only exploit that

Jε,κ(aε,c) + Jε,κ(rε,N ) := 〈εr〉−NJε,κ(ãε,N ),

for some bounded family of symbols (ãε,N )ε in S0, supported in Θ+(R0, V0, I0, ε0) with R0 as large
as we wish by taking R large enough. To estimate the contribution of this term in RN,ε(t), we use
the estimate∣∣∣∣K∗ε e−i(t− s

ε2
)P 〈εr〉−NJε,κ(ãε,N )e−isD

2
xJε,κ(bε)

†∣∣∣∣
L1→L∞ . ε

n〈ε2t− s〉−N6 〈s〉−N2

for t ≤ t − s
ε2 ≤ 0 and which, after integration in s, provides an upper bound by 〈t〉−n2 if N is

chosen large enough. To get the above estimate, we use on one hand that∣∣∣∣K∗ε e−i(t− s
ε2

)P 〈εr〉−N/2
∣∣∣∣
L2→L∞ . ε

n
2 〈ε2t− s〉−N6

by using the decomposition (8.14) together with the propagation estimates given by (7.15) and
(the adjoint estimates of) Proposition 7.6. On the other hand, we use∣∣∣∣〈εr〉−N/2Jε,κ(ãε,N )e−isD

2
xJε,κ(bε)

†∣∣∣∣
L1→L2 . ε

n
2 〈s〉−N2
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which comes from Proposition 6.5 for the time decay, up to the replacement of the source space
L2 by L1 which provides the additional εn/2 factor. This replacement is possible by writing
Jε,κ(bε)

† = Jε,κ(b̃ε)
†(P/ε2 + 1)−Nζ(εr) for some b̃ε with the same properties as bε (it is obtained

by computing Jε,κ(bε)
†(P/ε2 + 1)N = Jε,κ(b̃ε)

†) and by using Proposition 3.7.
The last term of Rε,N (t) to consider is the one containing Jε,κ(ǎε). Here the crucial observation

is that |θ − ϑ| is bounded below on the support of ǎε. In particular, using (6.36) we see that
|∂θϕε|/r̆∂r̆ϕε is bounded from below on the support of ǎε, which implies that (r̆, θ, ∂r̆ϕε, ∂θϕε)
must belong to an incoming area. More precisely, according to (6.32) and (6.36), we must have
∂r̆ϕε < σ1pε,κ(r̆, θ, r̆ϕε, ∂θϕε)

1/2 on the support of ǎε with σ1 = 1− ε2
1/C independent o f ε (i.e. of

ε2 in Theorem 6.10). Thus, using Lemma 7.10 we can replace Jε,κ(ǎε) by Opε,κ(χ̃−ε )Jε,κ(ǎε) with
χ̃−ε supported in an incoming region, up to decaying remainders that can be treated as before. We
can then proceed as above except that now we use the adjoint a priori estimate of Proposition
7.9 (since one can choose ε as small as we want, without affecting the value of σ1 above) which
provides the estimate∣∣∣∣K∗ε e−i(t− s

ε2
)POpε,κ(χ̃−ε )Jε,κ(ǎε)e

−isD2
xJε,κ(bε)

†∣∣∣∣
L1→L∞ . ε

n〈s〉−n2 〈ε2t− s〉−N

and then the final estimate by 〈t〉−n/2 after integration in s. The result follows. �

To complete the proof of (8.7), it remains to study the contribution of χε,int in (8.9). We follow
the idea of [4, 30], by adapting it to the low frequency and global in time case.

Everywhere below, we choose t0 > 0 small enough as in Proposition 8.2. Also, the parameter ε
used in (8.10) (and hence the parameter σ in (8.11)) is chosen according to Proposition 8.5. We
then choose δ > 0 small enough, according to the third item of Proposition 7.1, and we split χε,int

as a sum

χε,int =
∑
j∈J

χε,j , supp(χε,j) ⊂ supp(χε,int) ∩

{
jδ <

ρ̆

p
1/2
ε

< (j + 1)δ

}
,

where J is a finite subset of Z (depending on δ) and (χε,j)ε is a bounded family of S̃−∞,0. It now
suffices to prove global in time dispersion estimates, say for t ≥ 0, for the operators

ψ̃κ(εr)Opε,κ(χε,j)
∗f2(P/ε2)e−itPOpε,κ(χε,j)ψ̃κ(εr),(8.16)

uniformly in ε. To do so, we introduce a spatial partition of unity on the support of the symbols,

1 =
∑
`≥`0

φ(r̆/R`), R` = 2`, φ ∈ C∞0 (0,∞)

and define

χ
(`)
ε,j(r̆, θ, ρ̆, η) = φ(r̆/R`)χε,j(r̆, θ, ρ̆, η).

Picking φ̃ ∈ C∞0 (0,∞) equal to 1 near the support of φ and using that 1− φ̃(r̆/R`) vanishes near

the support of χ
(`)
ε,j , we obtain by symbolic calculus that, for any given N ,

Opε,κ
(
χ

(`)
ε,j

)
ψ̃κ(εr) = Opε,κ

(
χ

(`)
ε,δ

)
ψ̃κ(εr)φ̃(εr/R`) + 〈εr〉−NB(ε, R`)(P/ε

2 + 1)−Nζ(εr),(8.17)

where, uniformly in ε,

||B(ε, R`)||L2→L2 . R−N` .

The contribution of the remainder term of (8.17) can be treated as the remainders in the above
proof of Proposition 8.5 by propagation estimates and we get∣∣∣∣ψ̃κ(εr)Opε,κ(χε,j)

∗f2(P/ε2)e−itP 〈εr〉−NB(ε, R`)(P/ε
2 + 1)−Nζ(εr)

∣∣∣∣
L1→L∞ . 〈t〉

−n/2R−N`
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for all t ≥ 0 (actually this holds for all t ∈ R since χε,j is both incoming and outgoing by (8.11)).
These estimates can be easily summed over k. On the other hand, using the general fact that∣∣∣∣∣

∣∣∣∣∣∑
`

A`φ̃(εr/R`)v

∣∣∣∣∣
∣∣∣∣∣
L∞

≤
(

sup
`
||A`φ̃(εr/R`)||L1→L∞

)∑
`

∫
εr
R`
∈suppφ̃

|v|

where the last sum is bounded above by C||v||L1 (with C independent of ε and k), we see that the
dispersion estimate for (8.16) is a consequence of the following uniform estimates.

Proposition 8.6. — There exists C > 0 such that for all ` ≥ `0, all ε ∈ (0, 1] and all t ≥ 0,∣∣∣∣∣∣ψ̃κ(εr)Opε,κ(χε,j)
∗f2(P/ε2)e−itPOpε,κ

(
χ

(`)
ε,j

)
ψ̃κ(εr)φ̃(εr/R`)

∣∣∣∣∣∣
L1→L∞

≤ C〈t〉−n2 .(8.18)

Proof. For 0 ≤ ε2t ≤ t0R`, the estimate follows from Proposition 8.2 together with the fact that

||ψ̃κ(εr)Opε,κ(χε,j)
∗f2(P/ε2)||L∞→L∞ . 1, ||ψ̃κ(εr)Opε,κ(χε,j)

∗f2(P/ε2)||L2→L∞ . ε
n/2,

the second estimate being used to treat the remainder term of the parametrix of Proposition 8.2,
which provides an L1 → L∞ estimate by εnR−n` . 〈t〉−n/2. Then, for t ≥ ε−2t0R, we use L2

propagation estimates as follows. First, we write for an arbitrary N > 0,

Opε,κ
(
χ

(`)
ε,j

)
ψ̃κ(εr)φ̃(εr/R`) =

(
Opε,κ(χ̃

(`)
ε,j)ψ̃κ(εr) + 〈εr〉−N B̃(ε, R`)

)
(P/ε2 + 1)−Nζ(εr)

with ||B̃(ε, R`)||L2→L2 . R−N` and (χ̃
(`)
ε,j)ε,` bounded in S̃−∞,0 with the same support as χ

(`)
ε,j . This

is obtained by expanding Opε,κ
(
χ

(`)
ε,j

)
ψ̃κ(εr)φ̃(εr/R`)(P/ε

2 + 1)N . Then the contribution of the

term involving B̃(ε, R`) is similar to the one of the remainder of (8.17) and provides a L1 → L∞

estimate by R−N` 〈t〉−n/2. We are thus left with the contribution of χ̃
(`)
ε,j . For this term, we

distinguish between two cases

t0R` ≤ ε2t ≤ TR`, ε2t > TR`

with T > 0 large enough (independent of ε and `) chosen according to the item 2 of Proposition

7.1, namely such that the support of χ̃
(`)
ε,j is mapped into a stronly outgoing region by the classical

flow at time TR`. Indeed, for ε2t > TR`, we can write the contribution of χ̃
(`)
ε,j to the estimate

(8.18), as the one of

ψ̃κ(εr)Opε,κ
(
χε,j

)∗
f2(P/ε2)e−i

(
t−TR`

ε2

)
P
(
e−i

TR`
ε2

POpε,κ
(
χ̃

(`)
ε,j

)
ψ̃κ(εr)ei

TR`
ε2

P
)
e−i

TR`
ε2

P (P/ε2+1)−Nζ(εr).

Using Proposition 7.4, we can write for any given N the parenthese as a sum (over angular charts
κ2) of operators of the form

R−N` Opε,κ2
(χ̂

(`)
ε,st,κ2

)ψ̃κ2
(εr)〈εr〉` + 〈εr〉−NOL2→L2(R−N` )

with (χ̂
(`)
ε,st,κ2

)ε,` bounded in S̃−∞,0 and supported in a an outgoing region with parameter σ′ as
close to 1 as we wish, hence in particular disjoint from the support of χε,j . Using Propositions

7.7 and 7.9, we get a dispersion estimate of order εnR−N` 〈ε2t − TR`〉−N . 〈t〉−
n
2 . Finally, for

t0R` ≤ ε2t ≤ TR`, we write the contribution of χ̃
(`)
ε,j to the estimate (8.18), as the one of

ψ̃κ(εr)Opε,κ(χε,j)
∗f2(P/ε2)

(
e−itPOpε,κ(χ̃

(`)
ε,j)ψ̃κ(εr)eitP

)
e−itP (P/ε2 + 1)−Nζ(εr).

By Theorem 7.4 together with the third item Proposition 7.1 and our choice of δ, the parenthese

is microlocalized in a set where ρ̆/p
1/2
ε,κ > (j + 1)δ, hence disjoint from the support of χε,j . Thus,

only residual terms contribute and they produce a norm of order εnR−∞` = O(〈t〉−n/2) since ε2t is
of order R` in this case. This completes the proof. �
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8.3. Proof of Theorem 1.3

Here the analysis is very similar to the one of [30], the main difference being that we control
the remainder terms globally in time. The techniques are the same as those of Section 8.2, upon
the replacement of the low frequency propagations estimates of Section 7.3 by high frequency
ones, and low frequency parametrices by high frequency ones. Regarding the Littlewood-Paley
decomposition, we now use Theorem 4.6 instead of Theorem 4.1. We only record here that the
estimates of Section 7.3 are not sensitive to a possible trapping since the moderate growth in λ ∼
h−2 in (1.5) is controlled by the large powers of h provided by the remainders in the expansions (the
a priori resolvent estimates are only used to control the remainders). We also mention the following
minor technical point in the transposition of the proof of Proposition 8.5 to high frequencies. In
the remainder RhN (t) of the high frequency Isozaki-Kitada parametrix (see after (6.34)) neither ahc
nor ǎh decay in h, so it is not clear that they will have a negligible contribution in the end. To
make sure they are negligible in the derivation of dispersion bounds, we need to observe that these
terms have a O(h∞) contribution. For ahc this follows from Proposition 7.8. The contribution of
ǎh is handled by the propagation estimates of Proposition 7.9 which provide the fast decay in h.

8.4. Proof of Theorem 1.4

Thanks to Theorem 1.3, it suffices to prove that for any given χ ∈ C∞0 (M), one has the global
Strichartz estimates

||χuhi||Lp(R,Lq(M)) . ||u0||L2 .(8.19)

In the non-trapping case, this follows from the well knownn techniques of [9, 36]. For hyperbolic
trapping, the analysis is detailed in [11] for local in time estimates. For the sake of completeness,
we check below that this analysis holds also globally in time. Before doing so, we point out that
are allowed to use Theorem 1.3 since, under the assumptions of Theorem 1.4, the resolvent has
high energy bounds growing at worst like λ−1/2 log λ (see [33]).

Let K ⊂ T ∗M be the trapped set of the geodesic flow and π(K) bM be its projection onto the
base space. We need the following condition on K.

Assumption 8.7. — There exists an open set MK containing π(K) such that MK is extended to
a complete manifold (which we denote again by the same symbolMK) and thatMK is geodesically
convex in M and has sectional curvatures bounded from above by a negative constant. Moreover,
the topological pressure P (s) of the trapped set K satisfies P (1/2) < 0.

We refer to [33] for details on the topological pressure P (s).
From now on, we work under Assumption 8.7. We shall prove the following.

Theorem 8.8. — There exists δ > 0 such that, for any χ ∈ C∞0 (M), ϕ ∈ C∞0 ((1− δ, 1 + δ))) and
any admissible pair (p, q) with p > 2, we have

||χe−itPϕ(h2P )u0||Lp(R;Lq) . ||u0||L2 , 0 < h� 1.

Moreover, if M is non-trapping and n ≥ 3 then the same estimate with (p, q) = (2, 2∗) also holds.

Passing from Theorem 8.8 to (8.19) uses a Littlewood-Paley decomposition. Since we assume
here that the manifold has no boundary, we have an analogue to Theorem 4.6 where 1 − χ can
be replaced by χ (the point here is that the absence of boundary allows to use pseudo-differential
calculus near the support of χ and thus to repeat the analysis used near infinity on the support of
(1− χ)). We omit this part.
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The proof of Theorem 8.8 is based on the method by [36] for the non-trapping case and its
modification of [11] under Assumption 8.7. We first record several known results which play
crucial roles. The following lemma concerns local smoothing effects under Assumption 8.7.

Lemma 8.9. — There exists h0 > 0 such that

||χϕ(h2P )e−itPu0||L2(R;L2) . (h| log h|)1/2||u0||L2 , h ∈ (0, h0].(8.20)

Démonstration. — By Kato’s smooth perturbation theory [27], (8.20) follows from

sup
λ∈R,ε>0

||χϕ(h2P )(h2P − λ− iε)−1ϕ(h2P )χ||L2→L2 . h−1| log h|, h ∈ (0, h0].(8.21)

Let I b (0,∞) be an interval with supp(ϕ) b I. When λ /∈ I, one has

sup
λ/∈I
||χϕ(h2P )(h2P − λ− iε)−1ϕ(h2P )χ||L2→L2 . sup

λ/∈I,ρ∈supp(ϕ)

|ρ− λ|−1 . 1(8.22)

uniformly in h and ε by the spectral theorem. Next, we consider the case when λ ∈ I. Under
Assumption 8.7, it was shown by Nonnenmacher-Zworski [33] and Datchev [15] that the following
semiclassical resolvent estimate with a logarithmic loss

sup
ε>0
||〈r〉−1(h2P − λ∓ iε)−1〈r〉−1||L2→L2 ≤ CIh−1| log h|, λ ∈ I,(8.23)

holds for all h ∈ (0, h0] and λ ∈ I. Combining (8.22) and (8.23) with the bound

sup
h∈(0,1]

||χϕ2(h2P )〈r〉||L2→L2 . 1,(8.24)

which is standard (it follows e.g. from Theorem 3.9), we have (8.21). This completes the proof.

It is well-known that (8.23) and, thus, (8.20) hold without the logarithmic loss | log h| in the
non-trapping case (see, e.g., [43]). We need the following microlocal improvement of this fact.

Lemma 8.10. — Let a ∈ C∞0 (T ∗M) be identically 1 near K and Ah be a pseudo-differential
operator on M with principal symbol a. Then

||χ(1−Ah)ϕ(h2P )e−itPu0||L2(R;L2) . h
1/2||u0||L2 , h ∈ (0, h0].(8.25)

In particular, if K = ∅ i.e. M is non-trapping, then (8.25) holds with 1−Ah replaced by 1.

Here the form of the pseudo-differential quantization does not need to be specified for the
difference between two of them will produce corrections of size h for which the upper bound (8.25)
holds trivially.

Démonstration. — By the same argument as above, it suffices to show

sup
ε>0
||〈r〉−1(1−Ah)(h2P − λ∓ iε)−1(1−Ah)〈r〉−1||L2→L2 ≤ CIh−1, λ ∈ I,(8.26)

which is a consequence of [16, Theorem 1.2] and (8.23).

We also need the following dispersive estimates.

Lemma 8.11. — (1) For any χ ∈ C∞0 (M), there exists c = c(χ, δ) > 0 such that, for all |t| ≤ ch
and h ∈ (0, h0], one has the following dispersive estimate

||χϕ(h2P )e−itPχ||L1→L∞ . |t|−n/2.(8.27)

(2) If χ is supported in MK, then (8.27) holds for all |t| ≤ ch| log h| and h ∈ (0, h0].
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Démonstration. — The estimate (8.27) for |t| ≤ ch can be proved by constructing the semiclassical
WKB parametrix up to |t| = O(h) and applying the stationary phase method (see [10, Section 2]).
The latter statement was proved by [11, Proposition 3.9].

We are now ready to prove Theorem 8.8.

Proof of Theorem 8.8. — Taking a neighborhood M̃K of K satisfying M̃K b MK and χK ∈
C∞0 (M) supported in MK and satisfying χK ≡ 1 on M̃K, we decompose χ = χ1 + χ2 with
χ1 = χKχ and χ2 = (1 − χK)χ. Note that supp(χ2) ∩ K = ∅ and that one can take χK ≡ 0 and,
thus, χ2 ≡ χ in the non-trapping case. To prove the theorem, it then suffices to show that

||χjϕ(h2P )e−itPu0||Lp([0,∞);Lq) . ||u0||L2 , j = 1, 2, 0 < h� 1,(8.28)

with the implicits constant being independent of h. Set ϕh = ϕ(h2P ) for simplicity. Consider a
decomposition [0,∞) =

⋃
j≥0 Jj , where Jj are mutually disjoint intervals such that 0 /∈ Jj unless

j = 0 and |Jj | ≤ ch| log h|/2. Let θj(t) ∈ C∞0 (R) be supported in a small neighborhood of Jj and
satisfy

θ′j(t) = O((h| log h|)−1).(8.29)

Let J̃j be intervals such that Jj b supp(θj) b J̃j and |J̃j | ≤ ch| log h|. For j = 0, by Lemma 8.11
(2) and the TT ∗-argument (and Keel-Tao’s theorem [28] in the endpoint case for n ≥ 3), we have

||θjχ1ϕhe
−itPu0||Lp([0,∞);Lq) . ||θjχ1ϕhe

−itPu0||Lp(J̃j ;Lq)
. ||u0||L2 .(8.30)

For j ≥ 1, since vj = θjχ1ϕhe
−itPu0 solves the Cauchy problem

(i∂t − P )vj = iθ′jχ1ϕhe
−itPu0 + [χ1, P ]θjϕhe

−itPu0; vj |t=0 = 0,

it follows from Duhamel’s formula that

||θjχ1ϕhe
−itPu0||Lp(Jj ;Lq) .

∣∣∣∣∣∣∣∣∫ t

0

χ̃1e
−i(t−s)P θ′jχ1ϕhe

−isPu0ds

∣∣∣∣∣∣∣∣
Lp(J̃j ;Lq)

+

∣∣∣∣∣∣∣∣∫ t

0

χ̃1e
−i(t−s)P θj(s)[χ1, P ]ϕhe

−isPu0ds

∣∣∣∣∣∣∣∣
Lp(J̃j ;Lq)

,

where χ̃1 ∈ C∞0 (MK) is chosen so that χ̃1χ1 ≡ χ1. We now take ϕ̃ ∈ C∞0 satisfying ϕ̃ ≡ 1 on
supp(ϕ) and supported in a sufficiently small neighborhood of supp(ϕ). Since χ1ϕh and [χ1, P ]ϕh
have h-pseudo-differential expansions with symbols supported in supp(χ1ϕ(|ξ|2g)) modulo O(h∞),
one has

χ1ϕh = ϕ̃hχ1ϕh +R1〈r〉−N ϕ̃h, R1 = OH−2N
0 →H2N

0
(hN ),

[χ1, P ]ϕh = ϕ̃3
h[χ1, P ]ϕh +R2〈r〉−N ϕ̃h, R2 = OH−2N

0 →H2N
0

(hN ),

for all N ≥ 0. Here we use the notation introduced prior Proposition 3.8 for the remainder terms
R1 and R2. Moreover, using that [χ1, P ] has coefficients vanishing on M̃K since χ1 ≡ 1 on M̃K,
ϕ̃h[χ1, P ] can be written in the form

ϕ̃h[χ1, P ] = h−1B̃∗hBh +R3〈r〉−N , R3 = OH−2N
0 →H2N

0
(hN )
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with some pseudo-differential operator Bh, B̃h with symbols vanishing identically near K and sup-
ported in supp(χ1) ∩ supp(ϕ(|ξ|2g)). Now we set

I1 =

∫ t

0

χ̃1e
−i(t−s)P ϕ̃hθ

′
j(s)χ1ϕhe

−isPu0ds,

I2 = h−1

∫ t

0

χ̃1e
−i(t−s)P ϕ̃2

hθj(s)B̃
∗
hBhϕhe

−isPu0ds.

We then apply Lemma 8.11 and Keel-Tao’s theorem [28] to get

||I1||Lp(J̃j ;Lq)
. (h| log h|)−1||χ̃1ϕhe

−itPu0||L1(J̃j ;L2)

. (h| log h|)−1/2||χ̃1ϕhe
−itPu0||L2(J̃j ;L2)(8.31)

using also (8.29) in the second line. This holds for all admissible pair (p, q), including the endpoint
case if n ≥ 3.

To deal with the second term I2, we observe first that, by Lemma 8.11 and the dual estimate
of (8.25), ∣∣∣∣∣∣∣∣h−1

∫ ∞
0

χ̃1e
−i(t−s)P ϕ̃2

hθj(s)B̃
∗
hf(s)ds

∣∣∣∣∣∣∣∣
Lp(J̃j ;Lq)

. h−1/2||f ||L2(J̃j ;L2)(8.32)

for all non-endpoint admissible pair (p, q) with p > 2. Since p > 2, Christ-Kiselev’s lemma [13]
shows that in the left hand side of (8.32) the integral over [0,∞) can be replaced by an integral
over [0, t]. This implies that

||I2||Lp(J̃j ;Lq)
. h−1/2||Bhϕhe−isPu0||L2(J̃j ;L2).(8.33)

We also obtain the estimates for the error terms by Sobolev estimates∣∣∣∣∣∣∣∣∫ t

0

χ̃1e
−i(t−s)P θ′j(s)R1〈x〉−Nϕhe−isPu0ds

∣∣∣∣∣∣∣∣
Lp(J̃j ;Lq)

. hN−
n
2 |h log(h)|

1
p−

1
2 ||〈r〉−N ϕ̃he−itPu0||L2(J̃j ;L2)(8.34)

and likewise for R2 and R3. By (8.30)–(8.34) and picking N large enough, we obtain from
Minkowski’s inequality

||χ1ϕhe
−itPu0||pLp([0,∞);Lq)

.
∑
j≥0

||χ1ϕhe
−itPu0||pLp(J̃j ;Lq)

. ||u0||pL2 +
(∑
j≥1

(h| log h|)−1||χ̃1ϕhe
−itPu0||2L2(J̃j ;L2)

)p/2
+
(∑
j≥1

h−1||Bhϕhe−itPu0||2L2(J̃j ;L2)

)p/2
+
(∑
j≥1

hN/2||〈r〉−N ϕ̃he−itPu0||2L2(J̃j ;L2)

)p/2
. ||u0||pL2 + (h| log h|)−p/2||χ̃1ϕhe

−itPu0||pL2([0,∞);L2) + h−p/2||Bhϕhe−itPu0||pL2([0,∞);L2).

Notice that we have used (7.24) to handle the contribution of the remainder terms. We now apply
Lemma 8.9 to the second term and Lemma 8.10 to the third term in the last line, respectively, to
obtain (8.28) for j = 1.
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The proof of (8.28) for j = 2 is almost the same. The only difference is that we decompose
[0,∞) =

⋃
j≥0 Jj with mutually disjoint intervals Jj satisfying |Jj | ≤ ch. Now, under the non-

trapping condition, we can use Lemma 8.10 with a ≡ 0 to obtain (8.28) for j = 2. This completes
the proof.





CHAPITRE 9

NONLINEAR EQUATIONS

In this part, we use the global Strichartz inequalities of Theorem 1.4 to study the L2 critical
nonlinear Schrödinger equation

(NLS) i∂tu− Pu = σ|u| 4nu

where n ≥ 3 is the space dimension and σ is a sign; σ = 1 corresponds to the defocusing case and
σ = −1 to the focusing case. Here the sign will not matter since we are going to consider small
data. We will solve (NLS) in

X := L2+ 4
n (R×M) ∩ Cscat(R, L2(M))

where

Cscat(R, L2(M)) =

{
u ∈ C(R, L2(M)) | the limits lim

t→±∞
eitPu(t) exist in L2(M)

}
is a Banach space for the norm ||u||L∞L2 := supt∈R ||u(t)||L2(M) (it is a closed subspace of the

space of bounded uniformly continuous functions u : R → L2(M)). We then equip X with the
norm

||u||X = ||u||
L2+ 4

n (R×M)
+ ||u||L∞L2 ,

which makes it a Banach space.

Theorem 9.1. — Let σ = 1 or −1. Under the assumptions of Theorem 1.4, there exists ε > 0
such that, for all u0 ∈ L2(M) satisfying ||u0||L2 < ε, there exists a unique u ∈ X such that

u(0) = u0 and u solves (NLS) in the distributions sense.

In particular, since it belongs to Cscat(R, L2(M)), this solution scatters as t→ ±∞, i.e. there are
u± ∈ L2(M) such that

||u(t)− e−itPu±||L2 → 0, t→ ±∞.

This theorem is of course similar to the well known result for (NLS) on Rn. Its novelty stems in
the fact that we work on an asymptotically conical manifold and that a possible hyperbolic trapping
on M will not change the usual picture, namely the global well posedness and the existence of
scattering for small data.

The proof follows the usual scheme, the main tool being the global Strichartz estimates. We
record the main lines below to point out the where one has to be careful in the transposition of
the proof on Rn.
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Proof of Theorem 9.1. The principle is to solve (NLS) in the Duhamel form

(Duh) u(t) = e−itPu0 +
σ

i

∫ t

0

e−i(t−s)P |u(s)| 4nu(s)ds,

by a fixed point argument on a ball BX(0, r) with r small enough. We note first that the pair (p, q)
defined by p = q = 2 + 4

n is Schrödinger admissible, so the homogeneous Strichartz inequalities of
Theorem 1.4 show that the map

U : L2(M) 3 u0 7→ [t 7→ e−itPu0] ∈ X

is well defined and that one has

U (BL2(0, ε)) ⊂ BX(0, Cε).

Also, since (p, q) is not an endpoint pair (i.e. p 6= 2), the homogeneous inequalities provide
inhomogeneous Strichartz inequalities thanks to the Christ-Kiselev lemma [13]. This means that,
if we set

(Df)(t) :=

∫ t

0

e−i(t−s)P f(s)ds,(9.1)

we have

(9.2) ||Df ||
L2+ 4

n (R×M)
≤ C||f ||

L
2n+4
n+4 (R×M)

,

where 2n+4
n+4 is the conjugate exponent to 2 + 4

n . More precisely, the integral defining Df has a

clear sense if f ∈ C(R, L2(M)) so the precise meaning of (9.2) is that it holds on the dense subset

C(R, L2(M)) ∩ L
2n+4
n+4 (R ×M) and that D can then be extended by density to L

2n+4
n+4 (R ×M).

The adjoint estimates to the the homogeneous Strichartz estimates also imply that

||Df ||L∞L2 ≤ C||f ||
L

2n+4
n+4 (R×M)

,

and that∣∣∣∣eitP (Df)(t)− eit
′P (Df)(t′)

∣∣∣∣
L2(M)

=

∣∣∣∣∣∣∣∣∫ t

t′
eisP f(s)ds

∣∣∣∣∣∣∣∣
L2(M)

≤ C||f ||
L

2n+4
n+4 ([t′,t]×M)

,

for all f ∈ C(R, L2(M))∩L
2n+4
n+4 (R×M). This last inequality implies that eitP (Df)(t) has limits

as t→ ±∞ hence that Df belongs to Cscat(R, L2(M)). Thus

D : L
2n+4
n+4 (R×M)→ X

is well defined and continuous, by taking the closure of D : C(R, L2(M)) ∩ L
2n+4
n+4 (R ×M) → X.

One has however to be careful that the closure of D is no longer clearly given by the explicit
integral form (9.1).

To handle the nonlinearity u 7→ N(u) := |u| 4nu, we use the estimate on complex numbers∣∣|z| 4n z − |ζ| 4n ζ∣∣ ≤ Cn|z − ζ|(|z| 4n + |ζ| 4n
)
,(9.3)

to derive the estimate∣∣∣∣N(u)−N(v)
∣∣∣∣
L

2n+4
n+4 (R×M)

≤ Cn||u− v||
L2+ 4

n (R×M)

(
||u||

4
n

L2+ 4
n (R×M)

+ ||v||
4
n

L2+ 4
n (R×M)

)
which implies in particular that

N : X ⊂ L2+ 4
n (R×M)→ L

2n+4
n+4 (R×M)
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is well defined and Lipschitz on balls of X. The above estimate with v = 0 also implies that

N
(
BX(0, r)

)
⊂ B

L
2n+4
n+4 (R×M)

(
0, Cnr

1+ 4
n

)
.

We can thus define the map Fu0
: X → X by

Fu0
(u) = U(u0) +

σ

i
D(N(u))

which gives a precise sense to the right hand side of (Duh). Furthermore, for u, v ∈ BX(0, r) and
u0 ∈ BL2(0, ε), one has

||Fu0
(u)||X ≤ ||U(u0)||X + ||D(N(u))||X ≤ Cε+ Cr1+ 4

n

and

||Fu0(u)− Fu0(v)||X = ||D(N(u)−N(v))||X ≤ Cr
4
n ||u− v||X ,(9.4)

so, if r is small enough and ε� r, the ball BX(0, r) is stable by Fu0
on which it is a contraction.

This provides a solution to the equation u = Fu0
(u). To complete the proof, one has to observe that

this solution is a solution in the distributions sense and, conversely, that if we have a distributional
solution which belongs to X then it satisfies Fu0(u) = u.

To prove these two facts, we will use that, if χ ∈ C∞0 (R) is equal to 1 near 0, then for every
given u ∈ X

χ(2−jP )u→ u in X as j →∞.(9.5)

Here χ(2−jP )u = [t 7→ χ(2−jP )u(t)]. The convergence (9.5) follows from the strong convergence

of χ(2−jP ) to the identity on both L2(M) and L2+ 4
n (M), which can be proved as on Rn for

Fourier multipliers by using the pseudo-differential description of χ(2−jP ). We omit the details of
the proof but only record that to prove

sup
t∈R
||u(t)− χ(2−jP )u(t)||L2(M) → 0, j →∞

we may replace the norm by ||eitPu(t) − χ(2−jP )eitPu(t)||L2(M) and exploit that t 7→ eitPu(t) is
uniformly continuous with limits at ±∞ to get the uniform convergence as j →∞. Thus, given a
solution u to u = Fu0(u) and letting uj = χ(2−jP ), one has Fu0(uj) → Fu0(u) = u by (9.4) and

(9.5). Since |uj |
4
nuj belongs to C(R, L2(M)) (this can be checked by using (9.3) and that χ(2−jP )

maps L2(M) into L∞(M)), we can write

Fu0(uj)(t) = e−itPu0 +
σ

i

∫ t

0

e−i(t−s)P |uj(s)|
4
nuj(s)ds

(i.e. the integral has a clear sense) and, from this expression, we easily infer that

(i∂t − P )F (uj) = σ|uj |
4
nuj

in the distributions sense on R ×M. Letting j → ∞, we conclude that u solves (NLS) in the
distributions sense.

Conversely, if u ∈ X solves (NLS) in the distributions sense, it remains to prove that u = Fu0(u).
By definition, we have∫

R

∫
M

(i∂t − P )φ(t, x)u(t, x)dvolgdt = σ

∫
R

∫
M
φ(t, x)|u(t, x)| 4nu(t, x)dvolgdt(9.6)
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for all φ ∈ C∞0 (R ×M) and then for all φ ∈ C∞0 (R, S(M)) by a simple limiting argument (see
(3.5) for S(M)). The interest of allowing φ(t) = φ(t, .) to belong to S(M), is that we can write
the left hand side of (9.6) as ∫

R

(
i∂t(e

itPφ(t)), eitPu(t)
)
L2(M)

dt,

since eitP leaves S(M) stable but not C∞0 (M). On the other hand, by approximating u by
uj = χ(2−jP )u using (9.5), the right hand side of (9.6) reads

σ

∫
R

∫
M
φ(t, x)|uj(t, x)| 4nuj(t, x)dvolgdt+O

(
||u− uj ||X

)
.

Using that t 7→ |uj(t)|
4
nuj(t) is continuous with values in L2(M), one can write

σ|uj(t)|
4
nuj(t) = e−itP i∂t

(
σ

i

∫ t

0

eisP |uj(s)|
4
nuj(s)ds

)
.

Then, by integration by part, (9.6) yields∫
R

(
i∂t(e

itPφ(t)), eitPu(t)−G(N(uj))(t)
)
L2(M)

dt = O
(
||u− uj ||X

)
,

where

G(f)(t) :=
σ

i

∫ t

0

eisP f(s)ds

is well defined for f ∈ C(R, L2(M)) with values on C(R, L2(M)) but can be extended to all

f ∈ L
2n+4
n+4 (R × M) by the adjoint of homogeneous Strichartz estimates. Letting j → ∞ and

choosing φ(t) = e−itPψ(t) with ψ ∈ C∞0 (R×M), we find that∫
R

∫
M
i∂tψ(t, x)

{
eitPu(t, x)−G(N(u))(t, x)

}
dvolgdt = 0

hence that eitPu(t, x)−G(N(u))(t, x) is independent of t. By evaluation at t = 0, we find

eitP
(
u(t)− σ

i
D(N(u))(t)

)
= u0, t ∈ R,

since e−itPG(N(u))(t) = σ
iD(N(u))(t). This proves that u = Fu0(u) and completes the proof. �



APPENDICE A

PUTTING THE METRIC IN NORMAL FORM

Proposition A.1. — If (M, G) is asymptotically conic, G can be put in normal form.

Proof. The main steps are described in [22], but locally with respect to the angular variable. We
briefly describe here how to globalize the construction on S. It is sufficient to prove the existence
of sequences of compact subsets Kk bM, real numbers Rk > 0 and diffeomorphisms

Ωk :M\Kk 3 m 7→
(
rk(m), ωk(m)

)
∈ (Rk,∞)× S,

with rk/r bounded from above and below on M\Kk (so that preimages of bounded intervals by
rk are relatively compact in M), through which G = Ω∗k

(
Ak(rk)dr2

k + 2rkBk(rk)drk + r2
kgk(rk)

)
with

Ak(·)− 1 ∈ S−kν , Bk(·) ∈ S−kν gk(·)− ḡ ∈ S−ν .(A.1)

If we achieve this, then in a finite number of steps we have kν > 1 and can put the metric in normal
form by using [5]. We proceed by induction by setting first Ω1 = Ω. We seek Ωk = D−1

k ◦ Ωk−1,
between suitable open subsets of Rx × S, by constructing a diffeomorphism of the form

Dk(x, ω) =
(
x+ xσk(x, ω), expω(Vk(x))

)
for some symbol σk and some x dependent vector field Vk(x) on S. For Rk large enough, we define
σk and then Vk on (Rk,∞)× S as the unique solutions in S(1−k)ν to

2
(
x∂xσk + σk

)
= 1−Ak−1(x), x∂xVk(x) = −ḡ−1

(
dωσk(x) +Bk−1(x)

)
,(A.2)

where ḡ−1 stands for the isomorphism T ∗S → TS induced by ḡ, and dω is the differential on S.
These objects are globally defined with respect to the angular variable on S. Note in particular
that, since V (x) → 0 as x → ∞, expω(V (x)) is close to the identity on S. It is then not hard to
check that, for Rk large enough, Dk is a diffeomorphim between (Rk,∞)× S and an open subset

of (Rk−1,∞)× S which contains (R̃k−1,∞)× S for some R̃k−1 large enough. We find that

D∗k
(
Gk−1(rk−1)

)
= Ak(rk)dr2

k + 2rkBk(rk)drk + r2
kgk(rk)

with

Ak(rk) = 1 + 2σk(rk) + rk∂rkσk(rk) + (Ak−1 − 1)(rk) + S−kν

Bk(rk) = ḡ
(
rk∂rkVk(rk)

)
+Bk−1(rk) + dωσk(rk) + S−kν

gk(rk) = ḡ + S−ν .
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By (A.2), we see that (A.1) is satisfied. Furthermore, the form of Dk implies that rk/rk−1 is
bounded from above and below, so by the induction assumption on rk−1 the same holds for rk/r.
The result follows. �



APPENDICE B

WEAK TYPE (1, 1) ESTIMATES

In this appendix, we explain how to reduce the proof of weak type (1, 1) estimates on L1(M) for
the operators of Propositions 4.3 and 4.7 to the standard theory of Calderón-Zygmund operators
on Rn (Theorem B.2 below).

We first recall some general and elementary facts. Assume that X is a manifold equipped with
a measure µ which is a positive smooth density. We recall that a linear map T on L1(X , µ) (with
values on measurable functions on X ) is said to be of weak type (1, 1) with bound C if

µ
(
{|Tf | > λ}

)
≤ C

λ
||f ||L1(X ,µ)

for all λ > 0 and f ∈ L1(X , µ).

Proposition B.1. — Let T be of weak type (1, 1) on L1(X , µ) with bound C.

1. Let b : X → [m,M ], with 0 < m < M , be measurable and let µb be the measure defined by

µb(B) :=

∫
B

bdµ.

Then T is of weak type (1, 1) on L1(X , µb) with bound CM/m.
2. Let Φ : X → Y be a diffeomorphism between X and another manifold Y.

(a) Then Φ∗TΦ∗ is of weak type (1, 1) on L1(Y,Φ∗µ) with bound C.
(b) If T is bounded on L2(X , µ) (but not necessarily of weak type (1, 1)), then Φ∗TΦ∗ is

bounded on L2(Y,Φ∗µ) with the same operator norm.

In this proposition, Φ∗µ is the usual pushforward measure (i.e. Φ∗µ(B) = µ
(
Φ−1(B)

)
) and

Φ∗,Φ
∗ are respectively the pushforward and pullback operators (i.e. Φ∗v = v ◦ Φ−1 and Φ∗f =

f ◦ Φ).
We will apply Proposition B.1 to prove the weak type (1, 1) bounds stated in the proofs of

Propositions 4.3 and 4.7, that is for operators of the form

Tlow(M, t) :=

M∑
`=0

%`(t)DεΠκOp1

(
aε
)
ψΠ−1

κ D−1
ε , ε2 = 2−`,

and

Thigh(M, t) :=

M∑
`=1

%`(t)ΠκOph
(
ah
)
ψΠ−1

κ , h2 = 2−`.
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We recall that Πκ is associated to the angular chart κ : U → V by (2.2), ψ is a smooth cutoff
supported in (R0,∞)× V and that aε, ah are symbols of the form

b
(
r, θ, ρ,

η

r

)
,

with b(r, θ, ξ) ∈ S0 (possibly depending on ε or h in a bounded fashion) supported in (R0,∞) ×
K × {c ≤ |ξ| ≤ C} for some K b V and C > c > 0 independent of ε or h.

We proceed as follows. When X =M and µ is the Riemannian measure |g(r, θ)|rn−1drdθ, the
item 2 (a) with Φ = Πγ allows to transfer the analysis fromM to a chart (R,∞)×V equipped with
the measure |g(r, θ)|rn−1drddθ. The item 1 allows to drop the factor |g(r, θ)|. We next introduce
the diffeomorphism

Φ(r, θ) := (r, rθ)

between R+ × Rn−1
θ and R+ × Rn−1

z , whose interest is that

Φ∗
(
rn−1drdθ

)
= drdz.

Then another application of the item 2 (a) shows that it suffices that

Alow(M, t) := Φ∗Π
−1
κ (Tlow(M, t)) ΠκΦ∗, Ahigh(M, t) := Φ∗Π

−1
κ (Thigh(M, t)) ΠκΦ∗,

satisfy weak type (1, 1) estimates on L1(Rn, drdz). To prove the latter, it suffices to check they
satisfy the assumptions of the following theorem.

Theorem B.2 (Calderón-Zygmund operators). — Let (AM ) be a sequence of operators on
Rr × Rn−1

z with Schwartz kernel KM such that, for some C > 0 and all M ,

||AM ||L2(Rn,drdz)→L2(Rn,drdz) ≤ C, M ≥ 0,

and, for any j, α such that j + |α| ≤ 1,

|∂jr′∂
α
z′KM (r, z, r′, z′)| ≤ C(|r − r′|+ |z − z′|)−n−j−|α|, (r, z, r′, z′) ∈ R2n, M ≥ 0.

Then AM is of weak type (1, 1) on L1(Rn, drdz) with bound uniform in M .

We refer for instance to [41] for a proof of this theorem.
The uniform L2(drdz) boundedness of Alow(M, t) follows from the item 2 (b) of Proposition B.1

together with the Cotlar-Stein argument described in the proof of Proposition 4.3. For Ahigh(M, t),
it suffices to observe that

M∑
`=1

%`(t)a(h) ∈ S̃0,0,

uniformly in M and t. This follows from the form of a(h). Therefore Thigh(M, t) is uniformly
bounded on L2(M) so Ahigh(M, t) is uniformly bounded on L2(drdz) by the item 2 (b) of Propo-
sition B.1.

We next consider the kernel estimates. To put both cases under a single form, we compute the
Schwartz kernel of

Ahε := Φ∗DεOph
(
a
)
ψD−1

ε Φ∗

with respect to drdz, with

a(r, θ, ρ, η) = b
(
r, θ, ρ,

η

r

)
, b ∈ S−∞.

The Schwartz kernel of Oph(a) with respect to drdθ is of the form

(2πh)−nb̂

(
r, θ,

r − r′

h
,
r(θ − θ′)

h

)
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where b̂ is the Fourier transform with respect to (ρ, η). After elementary calculations, we find that
the Schwartz kernel of Ahε reads (up to the irrelevant factor (2π)−n)

Kh
ε (r, z, r′, z′) =

( ε
h

)n ( r
r′

)n−1

b̂
(
εr,

z

r
,
ε

h
(r − r′), ε

h

(
z − (r/r′)z′

))
ψ

(
εr′,

z′

r′

)
.

We want to show that
∑
%`(t)K

h
1 and

∑
%`(t)K

1
ε satisfy the second assumption of Theorem B.2.

By exploiting that z′/r′ belongs to a compact set, as well and the fact that εr′ is bounded below
by some R � 1, these kernel estimates follow from the following lemma which we use either with
λ = h or λ = ε−1.

Lemma B.3. — 1. For all N ≥ 0, there exists C > 0 such that(
1 +
|r − r′|
λ

+

∣∣z − r
r′ z
′
∣∣

λ

)−3N (
1 +
|z′|
r′

)−N
≤ C

(
1 +
|r − r′|
λ

+
|z − z′|
λ

)−N
for all λ > 0, all r, r′ > 0 and all z, z′ ∈ Rn−1.

2. Let c > 0. There exists C > 0 such that, for all r, r′ > 0 and λ > 0, we have

r

r′
≤ C

(
1 +
|r − r′|
λ

)
provided that

r′

λ
≥ c.

3. Let s ∈ [0, 1] and N > n+ 1. Then∑
λ=2`

`∈Z

λ−n−s
(

1 +
|x− y|
λ

)−N
. |x− y|−n−s

for all x, y ∈ Rn such that x 6= y.

Proof. In the item 1, the left hand side is not greater than(
1 +
|r − r′|
λ

)−2N
(

1 +

∣∣z − r
r′ z
′
∣∣

λ

)−N (
1 +
|z′|
r′

)−N
.

Writing z − r
r′ z
′ = z − z′ + r′−r

r′ z
′ and using the Peetre inequality for the term in the middle, we

obtain an upper bound of the form

C

(
1 +
|r − r′|
λ

)−2N
(

1 +

∣∣z − z′∣∣
λ

)−N (
1 +
|r − r′|
λ

|z′|
r′

)N (
1 +
|z′|
r′

)−N
,

which in turn is bounded by

C

(
1 +
|r − r′|
λ

)−2N
(

1 +

∣∣z − z′∣∣
λ

)−N (
1 +
|r − r′|
λ

)N
.

This yields the result once observed that(
1 +
|r − r′|
λ

)−N (
1 +

∣∣z − z′∣∣
λ

)−N
≤

(
1 +
|r − r′|
λ

+

∣∣z − z′∣∣
λ

)−N
.

The item 2 follows simply from the fact that r
r′ = 1 + r−r′

λ
λ
r′ . The item 3 is standard. �





APPENDICE C

SOBOLEV ESTIMATE

In this appendix we provide a short proof of the homogeneous Sobolev estimate (1.2).
Using the same cutoff f0 as in (1.3), we have

||(1− f0)(P )v||L2∗ (M) . ||(P + 1)1/2(1− f0)(P )v||L2(M) . ||P 1/2v||L2(M)

thanks to the inhomogeneous Sobolev estimate (see e.g. [3])

||u||L2∗ (M) . ||(P + 1)1/2u||L2(M)(C.1)

and the spectral theorem. Thus we have to show that

||f0(P )v||L2∗ (M) . ||P 1/2v||L2(M).

To do so, we choose χ ∈ C∞c (M) which is equal to 1 on a large enough compact set and observe
that

||χf0(P )v||L2∗ (M) . ||〈r〉−1v||L2(M) . ||P 1/2v||L2(M)

using first that χf0(P )〈r〉 is bounded from L2 to L2∗ (which follows from (C.1) and a standard
commutator argument) and then the Hardy inequality (see e.g. [6, Prop. 2.2]). Using a partition
of unity

∑
κ ϕκ(ω) = 1 on S with functions supported in coordinates patches, we can see that

||(1− χ)ϕκ(ω)f0(P )v||L2∗ (M) .
∣∣∣∣∇g((1− χ)ϕκ(ω)f(P0)v

)∣∣∣∣
L2(M)

using the usual proof of the Sobolev inequality on Rn since the cutoff (1−χ)ϕκ(ω) localizes in the
product of a half line and a patch. From this estimate, we then obtain

||(1− χ)f0(P )v||L2∗ (M) . ||∇gf(P0)v||L2(M) + ||〈r〉−1f(P0)v||L2(M)

. ||P 1/2v||L2(M)

using again the Hardy inequality.
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