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Résumé. — Nous démontrons des inégalités de Strichartz pour ’équation de Schrédinger sur
une grande famille de variétés asymptotiquement coniques. Si P est l'opérateur de Laplace et
fo € C§°(R) une fonction de troncature égale & 1 prés de zéro, nous montrons d’abord que la
partie basse fréquence de toute solution e~®Fuyg, i.e. fo(P)e " uy, satisfait les mémes inégalités
de Strichartz que sur R", en dimension n > 3. Nous montrons également que la partie haute
fréquence (1 — fo)(P)e~uq vérifie également des inégalités de Strichartz sans perte de dérivée
a lextérieur d’'un compact, méme si la variété possede des géodésiques captées mais dans un
sens tempéré. Nous montrons ensuite que la solution complete e *Fuq satisfait des inégalités de
Strichartz globales en espace-temps a condition que 1’ensemble capté soit vide ou suffisamment fin,
et nous obtenons une théorie de la diffusion pour I’équation de Schrédinger non linéaire L? critique
dans ce contexte géométrique.

Abstract. — We prove global Strichartz inequalities for the equation on a large class of asymp-
totically conical manifolds. Letting P be the nonnegative Laplace operator and fy € C§°(R) be
a smooth cutoff equal to 1 near zero, we show first that the low frequency part of any solution
e~ Py, ie. fo(P)e~®Pug, enjoys the same global Strichartz estimates as on R™ in dimension
n > 3. We also show that the high energy part (1 — fo)(P)e~%Fuq also satisfies global Strichartz
estimates without loss of derivatives outside a compact set, even if the manifold has trapped
geodesics but in a temperate sense. We then show that the full solution e~"Fug satisfies global
space-time Strichartz estimates if the trapped set is empty or sufficiently filamentary, and we derive
a scattering theory for the L? critical nonlinear Schrédinger equation in this geometric framework.






CHAPITRE 1

INTRODUCTION AND MAIN RESULTS

In the past ten or fifteen years, a lot of activity has been devoted to study Strichartz inequalities
on manifolds. We recall that these inequalities were stated first on R™ for the wave equation [37]
and then the Schrodinger one [21]; for the Schrodinger equation and a pair (p, q) € [2, 00] X [2, o],
they read

lallzran S llwollzss— u(®) =", it 245 =2, (n.pg) # (2,2,00).
(A pair (p,q) satisfying the last two conditions is called Schrodinger admissible.) The strong
interest on Strichartz inequalities is mainly related to their key role in the study of nonlinear
dispersive equations (see e.g. [12, 38]).

On compact manifolds these estimates may be different as those on R"™, either due to the strong
confinment leading to derivative losses for the Schodinger equation [10] (the L? norm of initial
data is replaced by some Sobolev norm) or to the absence of global in time estimates (if initial
data are eigenfunctions the solutions are periodic in time).

One may ask to which extent the estimates on R"™ still hold on noncompact manifolds, at least
in the class of asymptotically flat ones. For the Schrédinger equation, the only one considered
from now on, this problem was considered in several articles for local in time estimates [36, 35,
22, 7, 30]. From the geometrical point of view, those papers consider stronger and stronger
perturbations, namely from compactly supported perturbations of the flat metric on R" to long
range perturbations of conical metrics on manifolds. We refer to Definition 1.1 for a description
of long range asymptotically conical metrics but point out here that long range perturbations are
natural in that it is the only type of decay which is invariant under a change of radial coordinates
(see [5]).

Global in time estimates for long range perturbations are considerably more delicate to obtain
and have been considered in fewer papers [39, 29, 23] (see also [8] with a low frequency cutoff).

To prove global Strichartz inequalities on curved backgrounds, one has to face two difficulties.
The first one, which does not happen on R™, is the possible occuring of trapped geodesics (geodesics
not escaping to infinity, in the future or in the past). This trapping is only sensitive at high
frequencies and may affect the estimates by a loss of derivatives. However, if it is sufficiently weak,
one can still expect Strichartz estimates without loss as shown in [11] locally in time. Trapping is
already a problem for local in time estimates hence a fortiori for global in time ones.

The second difficulty stems in the analysis of low frequencies. Indeed, except in a few model
situations such as R™ or flat cones [20] where the fundamental solution of the Schrodinger equation
can be computed explicitly, the only robust strategy accessible so far is to localize the solution
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in frequency, e.g. by mean of a Littlewood-Paley decomposition, and then to prove Strichartz
estimates for the spectrally localized components by using microlocal techniques to derive appro-
priate dispersive estimates. Due to the uncertainty principle, low frequency data cannot be studied
purely by microlocal techniques and thus require additional non trivial estimates. On R™ (or a
pure cone), one may use a global scaling argument to reduce the analysis of low frequency blocks
to the study at frequency one, but this is in general impossible on manifolds.

The first breakthrought on global in time Strichartz estimates was done by Tataru in [39] where
he considered long range and globally small perturbations of the Euclidean metric, with C? and
time dependent coefficients. In this framework, no trapping could occur. The results were then
improved in [29] by allowing more general perturbations in a compact set, including some weak
trapping. Recently, Hassell-Zhang [23] partially extended those results by considering the general
geometric framework of asymptotically conic manifolds and including very short range potentials,
but using a non-trapping condition.

In the present paper, we improve on those references in the following directions. On one hand,
we consider a class of asymptotically conic manifolds which is larger than the one of Hassell-Zhang,
and contains all usual smooth long range perturbations of the Euclidean metric. More importantly,
we allow the possibility to have trapped trajectories and, assuming this trapping to be temperate
(assumption (1.5)), show that the solutions to the linear Schrédinger equation enjoy the same
global in time estimates without loss as on R™ outside a large enough compact set. This fact is a
priori not clear at all since, by the infinite speed of propagation of the Schrédinger equation, one
may fear that the geometry and the form of the initial datum inside a compact set has an influence
on the solution all the way to spatial infinity. This question was considered first in [7] locally in
time and then in [29] globally in time case but our approach in this paper allows to deal with much
stronger types of trapping than in this last reference (see the discussion after Theorem 1.3).

As a byproduct of this analysis, we derive global space-time Strichartz estimates without loss
if there is no trapping (thus recovering the results of Hassell-Zhang for a larger class of manifolds,
when there is no potential) or if the trapping is filamentary in the sense of [33, 11]. In particular,
we extend to the global in time case one of the results of [11].

Then, we apply these estimates to the scattering theory of the L? critical nonlinear Schrédinger
equation with small data on a manifold with filamentary (or empty) trapped set (Theorem 9.1).

From the technical point of view, an important part of our paper is devoted to construct tools
adapted to the analysis of low frequencies. In particular, along the way, we develop a new version of
the Isozaki-Kitada parametrix for long range metrics. Recall that the Isozaki-Kitada parametrix
was introduced on R™ to study the scattering theory of Schrédinger operators with long range
potentials [25]. One of the new features of our parametrix is the treatment of low frequencies
which, to our knowledge, does not seem to have been much considered before, up to the reference
[17] in the context of scattering by potentials on R™ which is very different from ours (especially at
low energy). We derive related L? propagation estimates which are needed in the present paper but
can be of interest for other questions of scattering theory, such as the study of scattering matrices
at low energy. In a more directly oriented PDE perspective, the methods developed in this paper
also allow to handle other dispersive models like the wave or Klein-Gordon equations [42].

Let us now state our results more precisely.

Let (M,G) be an asymptotically conic manifold, possibly with a boundary, i.e. a manifold
diffeomorphic away from a compact set to a product (R, +00) x S, for some closed Riemannian
manifold (S, g), such that G is a long range perturbation of the exact conical metric dr? + r2g.
To state a precise definition, we denote by I'(T?S) the space of (p,q) tensors on S, i.e. sections
of (®PTS) ® (®1T*S), and for a given smooth map e = e(r) defined on (Ra4, +00) with values in
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[(TPS), we will note
eeS™ — Npq (&e(r)) S (r)y~v77 for each semi-norm N, of I'(T?S) and j > 0.

If (61,...,0,—1) are local coordinates on S, this means equivalently that e is a linear combination
of terms of the form egllff:f;’(r, 0)db;, @ --- ® df;, ® Jg;, ® --- @ Dy, such that, for each j and a,
we have an estimate |8ﬁag‘eﬁf: (r,0)] < (r)==7 locally uniformly in . Here (-) is the standard
japanese bracket.

Definition 1.1. — A Riemannian manifold (M, G) is asymptotically conic if there ezist a
continuous and proper function r : M — [0,+00), a compact subset KK @ M and a closed Rieman-
nian manifold (S,g) such that for some Raq > 0 there is a diffeomorphism

Q: M\K>m— (r(m),w(m)) € (Rp,+00) x S
through which
G = Q*(A(r)dr® + 2rB(r)dr + 7‘29(7“))
where A(r) € T(T3S), B(r) € T(TYS) and g(r) € T(T9S) is a Riemannian metric on S such that,
for some v > 0,
(1.1) A-1eS™, Be S, g(-)—gesS™.

If A=1 and B =0, one says the metric G is in normal form.

Without loss of generality, we will assume that G is in normal form (see Appendix A). This
plays no role in the present introduction but will be useful in later chapters.

Everywhere in the sequel, we denote by L9(M) or just L? the Lebesgue spaces associated to
the Riemannian measure on M. We let P be the Friedrichs extension of —Ag on L%(M), namely
the unique selfadjoint realization if M has no boundary or the Dirichlet one if M is not empty.
One interest of our geometric framework is that, if n > 3, we have a Sobolev estimate

2n
n—2’

(1.2) 101l 2= vy < CIPY 20l L2y, 2" =

for all v in the domain of P/? (see Appendix C for a proof).
For ug € L?(M), we let u(t) := e~ *Fuq be the solution to the Schrédinger equation

10pu — Pu = 0, Ujg=0 = Uo-

Let fo € C§°(R) be such that fo =1 on [—1,1] and split u(t) = wiew(t) + wnign () according to low
and high frequencies, i.e.

(1.3) Ulow (T) 1= fo(P)eiitPuO, Unigh(t) = (1 — fo)(P)efitPuo.

Theorem 1.2. — [Global space-time low frequency estimates] Assume that n > 3 and let (p,q) be
a Schrédinger admissible pair. Then there exists C > 0 such that, for all ug € L*(M),

(1.4) HUIOWHLP(R;L‘Z(M)) < Clluol|z2(m)-

Notice that in this theorem 9 M may be empty or not.

Proof. Section 8.2.
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Theorem 1.3. — [Global in time high frequency estimates at spatial infinity] Assume that n > 2
and that for some M > 0 large enough, we have for all x € C° (M)

(1.5) || x(P - )\:l:iO)_lx|]L2(M)_>L2(M) S AM A> 1

Then there exists R > 1 such that for any Schrédinger admissible pair (p,q) there exists C > 0
such that

(1.6) |’]1{7“>R}uhigh|’LP(]R;L‘?(M)) < Cfluoll 2y,
for all ug € L*(M).

If we recast the global in time estimates at spatial infinity of [29, Theorem 1.5] in our framework,
these authors show that

11 {r> Ry Unigh| L (;0) < Clluol|rz + |1 r< Ry tnign||L2(®;L2)

where the last term can be controlled by [|ug||2 thanks to (1.5) if M < 0 (the usual non-trapping
case is M = —1/2) but not clearly otherwise. In our result, the right hand side of (1.6) does not
involve any corrective term depending on w and holds for any M.

Note that examples of situations where bounds of the form (1.5) hold include [33, 14] in some
trapping geometries and, of course, the non-trapping case [43].

We also remark that, as in Theorem 1.2, the boundary of M does not need to be empty but
this observation is less relevant here for we consider estimates near infinity.

Theorems 1.2 and 1.3 reduce the proof of Strichartz estimates on u to estimates on 1<) unigh-
This leads to the following result.

Theorem 1.4 (Global spacetime estimates without loss). — Assume that n > 3 and OM
1s empty. If either
— the geodesic flow is non-trapping and (p,q) is any Schrodinger admissible pair,
— the trapped set satisfies the assumptions of [11] (see also Assumption 8.7 in this paper) and
(p,q) is any non endpoint Schridinger admissible pair,

then there exists C' > 0 such that
(.7) HUHLP(R;L«;(M)) < Clluol|z2(m),
for all ug € L*(M).

This theorem improves on the result of [23] in two directions: Hassell-Zhang only consider the
non-trapping case and, even in the non-trapping situation, we consider more general types of ends.
It also provides a global in time version of the estimates of [11] in the asymptotically conic case.

We state this result in the boundaryless case in order to give complete proofs or references. We
emphasize however that using the techniques of [26] it can certainly be extended to the case when
M has a stricly geodesically concave boundary and is non-trapping for the associated billiard flow.

We recall finally the well known fact that inhomogeneous Strichartz estimates, for non endpoint
pairs, can be derived from the homogeneous ones (1.7) by using the Christ-Kiselev Lemma [13];
this is sufficient for the applications to the nonlinear equations studied in Section 9.

Here is the plan of our paper. In Section 2, we record notation about charts, partitions of
unity, scaling operators, etc. that will be used in further chapters. In Section 3, we describe the
pseudo-differential calculus adapted to our framework, including a rescaled one for low frequency
estimates which is not quite standard. In Section 4, we prove Littlewood-Paley decompositions
at low and high frequencies. In Sections 5 and 6, we construct an Isozaki-Kitada parametrix for
the microlocalized Schrédinger group, both at high and low frequencies. We use it in Section 7
to derive some L? propagation estimates to be used in Section 8 where the theorems stated in
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this introduction are proved. Finally, in Section 9, we give nonlinear applications of our Strichartz
estimates.

Acknowledgments. JMB is partially supported by ANR Grant GeRaSic, ANR-~13-BS01-0007-01.
HM is partially supported by JSPS Wakate (B) 25800083.






CHAPITRE 2

NOTATION

In this part, we collect some notation or definitions that will be used throughout this paper.

Coordinate charts. If x : U, € S — V,, C R"! is a coordinate chart on S then, upon the
identification of (R, +00) x U, with a subset of M, the map

(2.1) (ryw) = (r,k(w))

defines a coordinate chart on M. We define II,, and IT,;! respectively as the pullback and push-
forward operators associated to this chart on M, i.e.

(2.2) (ILv) (r,w) = v(r, K(w)), (IT; ") (1, 0) = u(r, k= (0)).

If 7: Vi — Vs is a diffeomorphism between open subsets of R™~! (typically a transition map
between charts of S), we also define IL, and II-! as above for the diffeomorphism (r, ) — (r, 7(6))
between R x Vi — R x V5. With such a definition, if x; : U; — Vj, 7 = 1,2, are two coordinates
charts on S, it follows that

(23) H;;Hnl = H;li, T12 := Kg O K;l : Hl(Ul n UQ) — KQ(Ul N Uz)

We choose a finite atlas on & composed of charts with the property that k*g =: g;,,(0)d6,d6,,
satisfies the following uniform estimates on each Vj:

(24) C()iljnfl S (glm(a)) S COInflv

We will also use the matrices g(#) := (g (0)), (3"™(0)) := g(6) ! as well as the function |g(6)| :=
detg(0)'/2.

Partitions of unity. We pick a partition of unity 1 = ) _¢.(w) on S, with ¢, € C§° (UH) and
where the sum over £, as well as all similar sums below, is taken over the finite atlas we chose
above. For each k, we also pick ¢, ¢ € C§°(Uy) such that ¢, = 1 near supp(p,) and ¢, =1
near supp(@x). We then pick ¢, ¢, Ce QDO(R) supported in (Raq, 00), equal to 1 near infinity and
such that ¢ = 1 near the support of ¢, ¢ = 1 near the support of ¢ and define

(2.6)  e(r,w) i=((Nesw),  Pulr,w) ={(r)@gaw),  Pu(r,w) = {(r)Pa(w).
Their interest is that they are supported on coordinate patches of M and that

(2.7)2 ¥ =C(r) =1 near infinity, Yo =1 near supp (), z/zjﬁ =1 near supp(¢y).

They will be useful to globalize pseudo-differential operators on M.
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Rescaling operators at infinity. For € € (0, 1], we will use the operators D, defined by
(2.8) Dev(r,w) = e2v(er,w), if supp(v) C {r > Rm}.

Here v is a function on M but we will also freely use D, for functions on R™ supported in (R4, 00) X
V, for any V. C R""!. Note that D.v is supported in {r > e *Rp}. The normalization factor
€"/? ensures that

[ Dev|lrz(my = [[vl L2 (a1
(i.e. their quotient is bounded from above and below uniformly in €); indeed, by using that G is
in normal form, the measure in {r > Ry} reads

|det(g(r,0))|*/2r"1drdo

and is comparable to the exact conic measure 7"~1|g(6)|drdd by (1.1) (see also after (2.12)). We
define similarly

(2.9) D lo(r,w) = e 2o(etr,w), if supp(v) C {r > e 'Ry}
Of course we have also the equivalence || D7 0|[2(m) = |[v]] L2(m)-

Modified japanese bracket. Everywhere in the text, we will replace the usual japanese bracket
(ry = (14 72)/2 by another positive function still denoted by (r) and such that

(2.10) (ry = {1 on a large enough compact set

e forr> 1.

By large enough compact set, we mean that (r) = 1 in a neighborhood of the region where ((r) # 1
(see e.g. (2.7) for ). The interest is that commutators of powers of (r) with differential operators
will be automatically supported in a region where {(r) = 1, i.e. in a region where we can use
polar coordinates (2.1). More generally, commutators with powers of (er) will be supported where

Cler) =1.

Laplacian. With the metric in normal form, the operator —P = Ag reads in local coordinates
near infinity

(2.11) Ag = 83 + r_zgjk(r, 9)8gj9k +(n— 1)7“_1& + w(r,0)0, + wi(r,0)0y,
where (7% (r,0)) = (gk(r,0)) " if g(r) = g;(r,0)df;db),. The lower order coefficients are
Olg(r,0)| _ q1-
2.12 w(r,f) =——"———€85 77,
212 "0 =)
since |g(r, 0)| = det(g;x(r,0))'/? = |g(0)| + S~¥, and
1 1 -
(2.13) wi(r, ) = 9, (¢7%(r,0)|g(r,0)|) € S~2.

% |g(r,0)]
The description of the first order terms will be particularly useful to solve transport equations (see

Proposition 5.3). It is also useful to observe that, using the rescaled variable 7 = er,

(2.14) = =DAg, D, G. = di* +#g(¥/e),
that is
A, = 07+ 72 (7/€,0)05 g, + (n = 1)F 105 + € Lw(i/e,0)05 + € *wi(i/€,0)0p,

We will see in Lemma 3.3 that the negative powers of € in front of w(7/e, ) and wy(¥/¢, 0) are
harmless in {# = 1}, i.e. in the region {er = 1}.
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To distinguish clearly between what is globally defined and what is defined in a chart, we will
use the notation

P, =TI 'PII,,
for the expression of P in local coordinates (that is minus the right hand side of (2.11)) and
P,
_qp-1Lfx
(2.15) Pe =D 5 De.

for its rescaled version (that is minus the above expression of Ag, ). We denote respectively by
(216)  pe=p 1 0P Oy and  pex =50+ 2T (7 e, )y

the principal symbols of P, and P, in local coordinates near infinity.






CHAPITRE 3

PSEUDODIFFERENTIAL CALCULUS

3.1. Operators on R".

We shall use symbols in the classes Sm which are defined as follows. For m,u € R, S ig
the set of symbols on R?" such that

m—k—|B|
(31) 0350%050(r,0,p.1)| < Oy () + 1)
r
for all r,p € R and 6,7 € R”_L As usual, the best constants C' are semi-norms which define the
topology of S™*. We also set ST :=N,,,S"*#. One should have in mind that the second index,
1, measures the spatial decay of symbols. We use the semiclassical quantization

Op"(a) = a(r,0, hD,, hDy),

with h € (0,1]. Note that we put h in exponent in this notation to distinguish it with the one
of rescaled pseudo-differential operators introduced in Definition 3.2 below; high frequencies are
raised, while low frequencies will be lowered!

We need to consider admissible symbols, i.e. h dependent families of symbols with an asymptotic
expansion in h in the following usual sense

ap ~ Zhjaj in ™k & for all N, h N (ah — Z hjaj> is bounded in §™ N:#=N
j=20 k<N

Note that this implies in particular that each a; belongs to S™ 7#~7. We call the symbol in the
right hand side the remainder of order N. When m = —oo, the above expansion means that it
holds for every finite m.

The pseudo-differential calculus in the classes S enjoys the usual symbolic properties since
the weight (p) + % is temperate, for it is easily seen that

1
{n + Jy) (n) 2
) — < — | (144, ) onl)?,
(o460 + 230) < (4 20 ) v o 18,1+ 1)
for all r, 6,, p, 6, € R and n, 6, € R"~1. In particular, we have the following rules where for clarity,
we will denote by T the adjoints w.r.t. to the Lebesgue measure and keep the notation * for adjoints

w.r.t. the Riemannian measure.

Proposition 3.1 (Symbolic calculus in gm”) — Let m,m/, u, 1’ € R.
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— Adjoint: for every a € S™*", one has

DFDgo%0%a ~
O () =0 (o)), o~ [ 3 DRSO g g,
§>0 k4| al=3 o
— Composition: for every a € S™H and b € gm"”/, one has
. 3k60‘anDo‘b ~ ’ ’
O ()0 (5) = Op" ((a#th)n), (athhy~ Sow0 [ S0 DOEEEOD )y G

=0 k+|al=j

— Invariance by angular diffeomorphisms: let 7 : Vi — V, be a diffeomorphism between
two open subsets of R"~1. For all a € S™" such that

(3.2) supp(a) CR x K x R" for some K €@ V7,
and for all ¢ € C§°(V1), one has
' Op" (a)p(O)TT, = Op* (a7 (h)),  a”(h) ~ Y Wa] in S™",
>0
with symbols a} such that
(3.3)  supp(aj) C {(r,7(0),p, (dr(0)")"'n) | (r,0,p,n) € supp(a)} C R x V5 x R".

— L? boundedness: There erists a constant C(a) depending on a finite number of semi-norms
of a € 8%Y such that, for all such a and all h € (0,1],

h
(3.4) ||Op (a)||L2((7->n—1d7-da)—>L2(<7->n—1d7-de) < Cla).
Here and below, L?({r)"~tdrdf) is a shorthand for L*(R™, (r)"~tdrdd).

We point out that all terms of the expansions as well as the remainders depend equicontinuously
on a (or (a,b) in the second item). In the fourth item, we consider the measure (r)"~1drdf for this
is of course the good model near infinity for the Riemannian measure of G. The L? boundedness
is a consequence of the usual Calderén-Vaillancourt Theorem since

1;
HOph HL2 ({ryn—1drd6)— L2 ((r)n—1drde) || (r) 2nHL2(drd0)—>L2(drd6)7

where, by the second item of Proposition 3.1, (r)“z" Oph( )(r ) = Op"(a(h)) for some admissible
family a(h) € S9°.

We next introduce the convenient definition of rescaled pseudo-differential operators.
Definition 3.2 (Rescaled pseudo-differential operators). — Ifa € S™#(R; X Ry~ xRy x
R;‘_l) for some m, u € R, we set

Ope(a) = D.Op'(a)D;*
Recall that D, is defined in (2.8).
More explicitly,

Ope(a) =a (6’/‘, 0, %, D@) .

To clarify the presentation, we distinguish the variables (r, p) and (7, ) which have to be thought

as
oy P _ .
er =7, - =

€



3.1. OPERATORS ON R". 19

In the typical situation we shall encounter, we will consider a(7, 8, g, n) = b (7*, 0,p, 7*’177) for which

If b is compactly supported in momentum, this corresponds to a low frequency localization.

Let us comment a little bit more on Definition 3.2. Rescaled pseudo-differential operators will
be used to approximate low frequency localization of P, i.e. operators of the form f(P/€?) with
f € C§°(Ry). By the uncertainty principle, one can only expect to get such an approximation
where r is large, typically » > =1, which corresponds to considering symbols a (or b as above)
supported in 7 2 1. This is consistent with the following simple and crucial lemma.

Lemma 3.3. — Let a € S*(R, x Ry™) with u € R. Let
ac(7,0) .= e'a (V/e,0).

Then (ac)ee(o,1) belongs to a bounded subset of S"((l,oo)% X Rg_l), i.e.

0105 ac(#,0)] < Cjai=1,  F>=1, 0 € R"!, e (0,1].

Proof. 1t suffices to write
05 ac(F,0) = "~1(0195a)(Fe, 0) = O ("I (7/e)!~7)

and to observe that, for # > 1, (#/e) = #/e. O

The meaning of this lemma is that a. is only singular for 7 close to 0 (the threshold 7# > 1 could
be replaced by # > ¢ for any ¢ > 0 positive). In other words, as long as one works in the region
er 2 1, rescaling does not produce singular symbols.

We further illustrate the interest of rescaled pseudo-differential operators by keeping in mind
the example of (2.14). For k + || < 2 and a € SFI8I=2=v (1 > 0), we will consider in pratice
operators of the form

la‘(rv9)(7'71-D«9‘)6Dk D $a(%/€,9)(%71D9)QD@ @717
€2 r e2—k—|a| 7 €

D. (e”a6 (7/¢,0) (fﬁng)O‘Df) D;l

with
ac(7,0) = FT181=2=v 4 (7 /e, 9).

Studying such operators in {er > 1} corresponds to study a(¥,0)(¥~1Dg)*DE in {# > 1}; by
Lemma 3.3, a, is bounded in S*+1#1=2=¥((1,00); x R} ™), and allows to use pseudo-differential
calculus in the variables (%, 6, p,n). Typically, to construct a parametrix for x(er)(P/e? +14)~! in

{er > R}, we will consider symbols of the form

1
p*+ 729k (7 e, 0)nme + 1

x(7)

with x supported in (R,+00). By Lemma 3.3, this e-dependent symbol belongs to a bounded
subset of S~20 allowing to perform the usual iterative parametrix construction (see Section 3.3).
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3.2. Operators on M.
Let us define the space §(M) by
(3.5) u € 8§(M) — U € NppsoDom(P™) and r79%93u € L? for all j,k, o,

the second condition in the right hand side being a condition at infinity (it is invariant by change of
coordinates on §). It is the natural Schwartz space on M and will be convenient for our purposes.
Using the charts introduced in Section 2, we will note everywhere in this paper

(3.6) Opt(a) i= T1,.0p" (@)1

If nothing is specified about a € §™#(R2"), such operators are defined from C((Rpm,00) x Uy,)
to C*°((Ram,00) x Uy). If in addition supp(a) C (Ra,00) x V,; x R™, which will always be the
case in this paper, they map C§°((Raq, 00) X Uy) to C°(M). In practice, we will only consider
globally defined operators of the form

(3.7) Opri(@)n = Opli(a)bn(r,w)

where the cutoff i, localizes inside (Rpq,00) x U, (see (2.6)) and where we will use symbols
spatially supported in (Raq,00) X Uy, (e.g. in the support of 1, (r, k= 1()) - see again (2.6)). We
point out that such operators are localized near infinity, where we will focus essentially all our

analysis. Note also that since pseudo-differential operators on R™ with symbols in S map the
Schwartz space (on R™) into itself, we have

Opp(@) iy : 8(M) — 8(M).
We define analogously rescaled pseudo-differential operators on M by
Q)S,H(a) = Hm@)e(a)H;1

and will consider, for symbols supported in (R, 00) X Vo x R™,

(3.8) Ope, (@)Y (er) = Ope (@) (er, w)
(we will often drop the dependence on w from the notation, though ’(/;,{(67") really depends also on
w € 8). Tt is important to note that if a is spatially localized in (R, 00)i X V,, then the range
of Opéy,{(a)d;,{ (er) contains only functions supported in (e"'Raq, 00), x Uy; in other words, such
operators are localized in {er > R} and will be used as microlocalization in this region only. We
finally note that we will often use € dependent symbols, similar to those considered in Lemma 3.3.
For further use and to illustrate that such definitions fit the usual expected properties of
a pseudo-differential calculus, we compute adjoints with respect to the Riemannian measure
"~ g(r,0)|drdd (see Section 2 for |g(r,0)|). Let a = a(r, 0, p,n) be a symbol spatially supported
inside (Raq, +00) x Vi, i.e. with support in (r, ) contained in (R, 00) x K for some R > R and
K € V,. Then, using Proposition 3.1 and elementary computations, we find

(Wht@ri)” = e (e O @) o0 ) 1

(3.9) Dk Opl(b(h)) b1

for some admissible symbol b(h) in the same class as a and 1 , supported in (R, +00) x U,.
Similarly

) =g er _ Ya) Tt g(#/e |
(@rnt@icen)” = 2. (i ey O @)oo/ 0)] ) D7
(310) = ¢5(6T)Ol7e,ﬁ(be)¢l,ﬁ(er)

with (be)ee(o,1) bounded in the same class as a, also using here Lemma 3.3 to handle [g(7/¢, 0)

|i1.
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To get L? or L9 estimates, we will use the following proposition.
Proposition 3.4. — Let ¢ be bounded and supported in (Raq,+00) X Uy, and q € [1,00]. Then

(3.11) ’”‘l}(eraw)nﬁpf"Lq(<r>n*1drd6)~>L‘1(M)

<
(3.12) H@;lﬂglw(er,w <

)}‘L‘I(M)—>L‘1(<r>”*1drd9)

for e € (0,1].

Proof. Tt follows from an elementary change of variable together with the observation that, on the
support of ¢ (er, x1(0)),

" Hg(r,0)/C < ()"t < O g(r, )]

for some C' > 1. O

We note in particular that, when ¢ = 2, Proposition 3.4 together with (3.4) imply that
(3.13) ||Ope(a)ihn(er)|] o, < Cla), €€ (0,1],

with C'(a) bounded as long as a belongs to a bounded subset of 500 (‘and a is spatially supported in
(R, 00) x V). For completeness, we also recall that at high frequency, under the same assumptions
on a,

(3.14) ||Opk (@il 2, ,» < Cla), h e (0,1],

which is more standard (and does not use Proposition 3.4).
We will also need L? estimates on pseudo-differential operators.

Proposition 3.5. — Leta € 5000 pe spatially supported in (Raq,+00) X V. Let 1 < g1 < qa <
oo. Then

(315) HQ?Z(CL)Q;NHLQI%LQZ S Ch%iﬁ’

n n

(3.16) ||Ope.c(@) i (er)]| o e S CenTa,

The constant is bounded as long as a belongs to a bounded subset of §=o00,

Proof. Write a(r, 8, p,n) = b(r,0, p,n/r) so that b is a Schwartz function in the momentum vari-
ables, uniformly in (r,0). The estimate in the semiclassical case follows from the similar estimate
for Op"(a) from L9 ({(r)"~1drd®) to L((r)"~'drdf) obtained from the usual Schur test and inter-
polation argument, by exploiting that its kernel with respect to (r)"~'drdf reads

/

—n,n—17 r—r 0 -0 Nnl—n
(2mh)™"r b(r,@,h L ><r)

where " is the Fourier transform in the momentum variables. The low frequency case follows from
the above one with h = 1 together with Proposition 3.4. O
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3.3. Functional calculus

We will use operators of the form (3.7) or (3.8) to describe functions of P. In the semiclassical
or high frequency regime, this is mostly standard, see e.g. [3, 30], though we will need a sharper
description of the remainders than in those references. We will also consider the low frequency
regime, which is less standard but can be easily handled by considering appropriate spatial local-
izations and rescaled operators as follows. The first and main step is to construct a parametrix for
(P/e? — z)~! in the region {er > Ra(}. To do so, we need basically to use that

€2

(3.17) (P — z> =11.D.(P.,. — 2)D I

(see (2.15)) namely that P/e? is a rescaled (pseudo-)differential operator whose symbol is not
singular w.r.t. € in the region {7 > R} thanks to Lemma 3.3. One can then apply the usual
elliptic parametrix scheme to P, — 2 to construct an approximate inverse. Taking into account
the composition rules of Proposition 3.1, we obtain the following technical result.

Proposition 3.6. — Let 1, 1/;,1/:1 be smooth functions supported in a patch (R,o00) x U, with R >
Ry, all belonging to S° and such that

=1 near supp(v), Y =1 near supp(v).
Then for j,N € N and z € C\ [0,+00), one has
— High frequency parametrix: for h € (0,1],
. N_l ~
VW) (WP —2)77 = Y h'Opi(a(2)d + b Ruign (2, h)
1=0
where each q(z) € S~2~1=1 s a linear combination of ar(p. — z)~7~* for some symbol
ap € S*=bL= independent of z, and with
Ruign(2,h) = ¢Op(r(z, W)Y (R*P — 2)™
where r(z,h) € S™N=N with seminorms growing polynomially in 1/dist(z,R.) uniformly in
h as long as z belongs to a bounded set of C\ [0, +00).
— Low frequency parametrix: for e € (0, 1],
N-1 3
D(er,w)(P/e? —2)77 = ¥ h(er,w)Ope (e ()1 (er,w) + Riow (2, €)
1=0
where each q.(z) € S=21=L=1 s q linear combinations of et (pes — 2)7I7% with symbols
acr € S*L=1 bounded w.r.t. €, and

Riow(z,€) = U(er,w)Ope s (re(2))d(er,w)(P/e* — 2)77

where r.(z) € S=N=N with seminorms growing polynomially in 1/dist(z, Ry.) uniformly in €
as long as z belongs to a bounded set of C\ [0, +00).

We refer to (2.16) for the definitions of p,, and pe k.

Note that the spatial localizations are different at high and low frequency. We also point out
that the low frequency parametrix is not an asymptotic expansion in e, but it only says that
(P/e® — 2)7I1p(er,w) is a sum of rescaled pseudo-differential operators and of a remainder which is
smoothing and spatially decaying like (er)~". We finally remark that a similar proposition holds
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for (P — 2)7J9(r,w) and (P/e? — 2)~71(er,w) (this follows by taking the adjoints and using
(3.9)-(3.10)). We will use this occasionally.

As a first application, we record the following result where we use the function ¢ introduced in
(2.6)-(2.7).

Proposition 3.7. — If j > n/4, then
(3.18) [|¢(r)(R*P +1

and

n

)7j||L2_>Lac 5h753 hG(O,l],

[C(en) (Pl + 1) 7| oy S €%, €€ (0,1].
Recall that for simplicity we have set L? = LY(M) (see after Definition 1.1).

Proof. 'We prove only the second estimate, the first one being standard (see e.g. [3]). We use
Proposition 3.6 with v replaced by ¥y, ¥ by 1, etc. (see (2.6)), and with N > n/2. Then
C(er)(P/e® +1)77 is a sum over  of parametrices as in Proposition 3.6. For each k, consider the
first term

Un(er) Opes (o (=) biler) = (te(er, )T D) (00 (e0(=1)) (DI (e, )

where g o(—1) belongs to (a bounded set of) S§~27:0 The result is a consequence of the fact
that Op'(ge,0(—1)) maps L2((r)"~tdrdf) into L>°({r)"~'drdf) since 2j > n/2 (see [3, Lemma
2.4])), together with the estimates (3.11) (with ¢’ = oo) and (3.12) (with ¢ = 2). The other
terms are treated analogously, as well as the remainder Riow(—1,€) by using additionally that
[|(P/€? +1)77||p2— 12 < 1 for the remainder. O

To describe the remainders that will be involved in the different parametrices we are going to
construct, it us useful introduce the following norms

(3.19)  Nlullges = [[(n)* (2P + 10| 0n lull gz = [[(er)(P/e + 1) ul|

for p € R, j € Z and u € §(M). The first one is a standard weighted semiclassical Sobolev norm,
which will be used at high frequency, and the second one will be used at low frequency. We will
only consider these norms on §(M) for this space is stable by the resolvent of P (this is fairly
standard or can be checked by using the parametrix of Proposition 3.6 for ¢ = h = 1) so that the
norms (3.19) make clearly sense. We also point out that we do not define the spaces J—Cij nor Lij
(which should be the closures of §( M) for the corresponding norms) and will only use their norms
on 8(M). The interest of using such norms is to state estimates which are uniform in € or h. It is
also worth recalling that the japanese bracket used in (3.19) is the modified one chosen in (2.10).
Given a family of operators A, preserving 8(M), we will write

A, = 052;'1_)5?22 (1) <= ||A€u‘|5ij22 < CHuHLiJll forall e € (0, 1], u e 8(./\/1),

)
the point being that the constant is independent of €. The notation A, = O g¢22 (1) is defined
M2

231
FHo—

similarly.
Proposition 3.8. — For all j,j' € Z and p, ' € R, we have
— Global estimates:

(320)  (P/R+ 1T =0 o (), (BPP+1) =040 o ()

—Ly

and, as multiplication operators,

(3.21) (er)t = Oﬂfg_wifw/(l), (ry¥ = Og{ggqg{iﬁu (1).
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— Embeddings estimates: the identity operator I satisfies
(322)/}/ S 1% and j/ S _7 — I = Oﬁij%Li‘i/(l)7 I = O 9_(2] (].)

— Action of pseudo-differential operators: Let ¥ € 59 be a smooth function supported in
the patch (Rag,00) x Uy and a € G231 pe spatially supported in (Raq,00) X V.. Then
(323> @e,n(aﬁ;(a") = OL2 o 2(J J )(1) Q)Z(G/)Q& = Og_f% q¢26— J )(1)
s —n! “ ; —n!
These uniform bounds remain valid as long as a belongs to a bounded subset of S2d"n"
We recall that in (3.23) 1]}(67") and v are respectively shortands for ’(Z)(ET’, w) and z/;(r,w).

Proof. In all cases, we consider only the low frequency estimates, the semiclassical ones being
similar and more standard. (3.20) is an immediate consequence of the definitions of the norms
(3.19). We next prove the first estimate of (3.21). We observe first that for any j € Z and p € R,
there exists C' > 0 such that

(3.24) CMull g2 < |[(P/€ + 1) (er)ul| o < Clful| g2,
for all u € §(M) and € € (0, 1]. Indeed, let us write
(er)*(P/e* + 1)) = ((er)"(P/€* + 1) (er) *(P/e* +1)77) (P/€* + 1) (er)".

The lower bound in (3.24) would then follow from the uniform L? — L? of the parenthesis. Assume
for instance that j > 0. Then the parenthesis in the right hand side is the sum of the identity and

(3.25) (er) [(P/€* + 1), (er)™*] ((er)(P/e* + 1)

where one can insert the cutoff ((er) of the partition of unity (2.7) since the commutator is
supported in the region where ((er) = 1 by (2.10). The operator (3.25) is uniformly bounded on
L? since the composition of

(er)* [(P/e® + 1) ZH De(r)! [(Pae +1)7, (r)#] DI by (er)

(see (3.17)) with the low energy parametrix for ¢ (er)(P/e?>+1)~7 (derived from Proposition 3.6 and
the partition of unity (2.7)) is uniformly bounded on L?. This follows by using the composition rules
of Proposition 3.1 together with (3.13) and the bound ||(P/e? + 1)77||z2— 2> < 1. The case j < 0
and the upper bound are proved similarly (using possibly the parametrix of (P/e% + 1)77((er)).
Now, with (3.24) at hand, the first estimate of (3.21) follows from

[er)#ul [ ar | < Of|(P/€+ 1) (ery 12 < C[ul] 2

Similarly the first estimate of (3.22) follows from (3.24) since
[(er) (P& + 1) ullz < [|(er)*(P/e +1) e
< C||(P/e® +1) <er>“u||L2 < C||(P/e® 4 1) (er) ul| .

We finally consider (3.23). By using the equivalence of norms (3.24), the result follows from the
uniform L? boundedness of

(P/€® + 177 (er)" =+ Ope w(a)d(er){er) "(P/e* + 1)
By the composition rule of Proposition 3.1, we may assume that g = ' = 0 up to the replacement
of a by a such that Opy(@) = (r)*~# Opy(a)(r)=#. Then if both j — j/ and —j are non negative,
the result follows by using (3.17), the composition rule and the L? bound (3.13). Otherwise we
expand the negative powers of P/e?+1 by mean of Proposition 3.6 so that we can compose rescaled
operators supported in the same patch and conclude again with (3.13). ([l
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Theorem 3.9. — For all f € C§°(R) and all given N,

N-1
Cf(RPP) =Y > W' Opt(an)dw + BN Ruign(f, )

I=0 &K
where a,,] € S—o0=L with supp(ax,1) C supp(f o px) and, for any M >0 and p € R,
:Rhlgh(fa ) f}( 2M*>g_c21v[ (1)

Also

(3.26) C(er)f(P/e?) Z > () OPe (e ) Vn (€7) + Riows (£ €)

=0 &~

where (G x,1)ec(0,1] belongs to a bounded subset of S=oo=L with Supp(ae k1) C supp(f o pex) and,
forany M >0 and p € R

(327) :Rlow(fa ) L 2M_>L2M (1)

N

Proof. We consider only the proof of the low frequency parametrix (3.26), the high frequency one

being similar and more standard (see e.g. [8] in the asymptotically Euclidean case). Note first that

the I-th term in the sum (3.26) is, for any M, Oﬁsz_%le (1) by (3.23). Therefore, up to putting
H nt

additional terms of the expansion in the remainder, it suffices to prove (3.26) with a remainder

satisfying, instead of (3.27),

(3.28) leow(f, €) = OL—zMN_>L2MN (1), with My, uny — coas N — oo.

Using the Helffer-Sjostrand formula f(P/e?) = [, df (2)(P/e® — 2)"'L(dz) (f € C§°(C) being
an almost analytic extension of f, see [18]) together Wlth Proposition 3.6, we get (3.26) with a
remainder which is a sum over k of integrals of the form

Riown(f€) / BF (=)t (€r) b (e (2)) 0 (er) (P — =)~ L(dz)

where r¢ . (2) € S~N.=N has semi-norms growing polynomially in |[Im(z)|~! (which is harmless

since 0f(z) = O(|Im(2)|>°)). In the above integral, we write

(P/e® —2)7" = (P/e® = 2) 7' (1 = ((er)) + (P/e® — 2) 7 ((er).
Using Proposition 3.8, we observe that, for any M, 1—((er) = O, - PRy (1), for it is compactly
g0 1>(|Im( )|71) thanks to the spectral
theorem. By Proposition 3.8, we also get that, for some 0 = o(M, N),

supported in er. We also have (P/e? — 2)~! = O, —2u
0

(3.29) V(€0 Open (resn(2))ihn(€r) = O a1 o200 ([Im(2)] 7).
All this implies that, for any given p and N,
(330) Rlow,n(f, 6)( C(G’f’)) OL 21\/1_”6%72(1\/171)(1).

To analyse Riow.«(f, €)((er), we use a parametrix for (P/e? —2)~1((er) obtained analogously to the
one of Proposition 3.6: for any N’ € N, (P/e? — z)~1((er) is a sum of rescaled pseudo-differential
operators with symbols in S~20 and a remainder which is (P/e2 — z)~1 composed (to the right)
with a sum of rescaled pseudo-differential operators with symbols in S—N'.=N'_ This implies that,
for any p and M, and by choosing N > |u|, (P/e* — z)71((er) is of the form

O sty gzou- (=) ™)+ (P/e = 2) 20, aus_, oo ([Tm(2)| =)
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for some ¢’ = o/(M,N’) > 0. Using an estimate similar to (3.29) together with the fact that
(P/e® —2)~! = OL(J]V'—zM_w(J)W—z(MfU(|Im(z)‘_1)a we get

Rlow,n(fa E)C(ET) = OL;2AI‘>L%72(M—1)(1).
Together with (3.30), this yields (3.28) by choosing M = My = N/4 for instance. O

As a first consequence of Theorem 3.9, we have the following estimates.

Proposition 3.10 (L — L>° boundedness at spatial infinity)
For all f € C§°(R),
1¢(r) f(R* P 5o S 1, ke (0,1]
and

1C(er) f(P/e)|emsr~ 1, €€ (0,1].

Proof. We consider only the low frequency case. The high frequency one is essentially standard,
and can be proved e.g. as in [3]. We thus consider ((er) f(P/€?) which we expand using (3.26). The
(rescaled) pseudo-differential terms are bounded uniformly on L by Proposition 3.5. Choosing
M = N and g = —N in (3.27), the remainder can be written

Riow (f,€) = C(er)(P/e? + 1)~V Be(er) ™™

with ||Be||z2—r2 < 1. This follows from Proposition 3.8 and that ((er)¢(er) = C(er). If N >n/2,

we have ||(er) V|| Lo 12 < € ™2 so0, using the second estimate of Proposition 3.7 with ¢ instead
of {, we get

1C(er)(P/€® + 1) "N Befer) ™ V||peosre S €2 51
which yields the result. O

To illustrate another application of Proposition 3.8, we record some rough a priori estimates
on the propagator e~*" which will be useful in Section 7. For k > 0 integer, we define v(k) by
¥(0) =0 and y(k + 1) = 2y(k) + 1 (i.e. (k) =2% —1).

Proposition 3.11 (Rough propagation estimates). — For u € R denote by [p] the smallest
integer > |p|. Then for all j € Z,

(3.31) e = OH?%H?X’””“” <<t/h>7(“m) ,

meaning that (t/h)~7[#De=tF = O 2j_p25-2+ru)) (1) uniformly in t € R. Similarly
W M

H
(3.32) 7 = 05, pas-nriri) (<62t>v<m>) .

This proposition will be very useful to handle the remainders of some microlocal propagation
estimates. The knowledge of the power v([u]) is not very important, the main interest being only
the polynomial growth w.r.t to (t/h) and (€*t). We rather comment on the different scalings in h
and e. The estimate (3.31) reflects roughly that waves localized at frequency 1/h move at speed 1/h.
Based on this intuition, one could expect to get a bound in term of (et) in (3.32) for waves localized
at frequency e. The reason why we have bounds in term of (¢?t) is that we use the rescaled spatial
weights (er)*. Another way to see that the scalings are natural is to consider the flat Laplacian on
R™ and to observe that for every symbol a one has e”*®a(z, D) = a(z — 2tD, D)e'*> we see easily
that

, t 4
e a(z,hD) = a (x - 2EhD7 hD) elts
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. D D D\ ,
eta (e:l:, > =a (ex —2te? =, > A,
€ € €

where the power €2 on ¢ follows both from writing D = ¢(D/e€) and from the scaling in .

We finally note that Proposition 3.11 uses implicitly that §(M) is preserved by e~®F (recall
our convention to consider the U{ij and Lij norms only on §(M)). This fact can be checked by
routine arguments using exactly the commutator techniques involved in the proof below, but we
omit this aspect and focus only on the estimates in time.

and that

Proof of Proposition 3.11. Let us show (3.31). By (3.21), it suffices to show that (r)te="*F (r)=#
satisfies the expected bound between ’ng and 7—[3(3'_7([”1)). If p = 0, this is a straightforward
consequence of
|(h2P + 1)7e P (h2P 4 1) || 122 = 1.
Assume next that [u] =1 and compute first the commutator
t

[(r)'“',eiitp] = z/ eii(i*S)P[P, <T>|“|]eﬂ'spds.
0

Using that [P, (r)/#l] is = times a sum of semiclassical differential operators with symbols in
Sblul=1 = §2.0 a5 in (3.23) (they are supported in 7 > 1 by (2.10)), we can write the commutator
[(rylul e=itP] = Ongﬁng_l) (|t|/h). Thus, using that

_ _ (ry=Iul [e=F (p)Iel] i <0
<T>H67’Ltp<,r>fﬂ _ efth +
[m\u\’e—itP] <r>—\u\ if 4 >0

we get the result since (r)~1#| is bounded on each }2* by Proposition 3.8. If [] > 1 we proceed
by induction by writing, e.g. if > 0,

eyt = e (e i [P e st ) '

0
The induction assumption and Proposition 3.8 then show that the right hand side is of order

0 (W@Wm*l)) + /t O (((t - 8)/h>”(m*1)) e (<s/h>v(mfl)) s
0

as an operator from 'Hij to Hij_%([“]). Using the definition of «(.), we get (3.31). The proof of

(3.32) is similar, the gain in €2 following from the fact that
(P, (er)] = EIP/e, (er)] = O s, pas-2(e)

for all p and j since the commutator in the middle is a linear combination of rescaled pseudo-
differential operators as in (3.23). O






CHAPITRE 4

SPECTRAL LOCALIZATIONS

The purpose of this chapter is to prove Theorems 4.1 and 4.6 which provide Littlewood-Paley
type estimates, at low and high frequencies respectively. Specific comments are given after each
theorem. We only point out here that we adopt a pragmatic point of view, in the sense that we
do not try to mimic exactly the usual form of Littlewood-Paley estimates on R™ (e.g. by using
non trivial heat kernel bounds) but rather provide robust and spatially localized versions of such
estimates which seem naturally adapted to the proof of Strichartz estimates. In particular, the
form of the decompositions are not the same at high and low frequencies; this is related to the fact
that we use different types of estimates to treat the remainder terms.

We use the function f;y introduced in (1.3) and consider f(A) = fo(\) — fo(2)) so that f €
C§°(R\ 0) and, for all A € R,

DR = TN fo(N), D FRTN) =1- folN).
£=0

=1
The spectral theorem then implies that, in the strong sense on L?(M),
(4.1) fo(Py=)_f2'P),  (1—fo)(P)=2_ f(27'P),
£>0 1

using in the first sum that 0 is not an eigenvalue of P.

4.1. Low frequencies

In this section we prove the following result.

Theorem 4.1. — Assume that n > 3. Let x € C5°(R) be equal to 1 on a large enough interval
so that (1 —x) = (1 —x)C (see (2.7)). Then

1/2
[ fo(P)v[|L2 < ( > 11— ) (er) f(P/e2)o| [0 + ||<T>1f(P/62)v|!2LQ> ;

2=9—¢
for all v € L%. In the sum { belongs to Z. .
Let us comment that this Littlewood-Paley estimate holds for the exponent 2* (and presumably

for exponents between 2 and 2*) which is sufficient and somewhat natural for applications to
Strichartz estimates. Indeed, the first half of the sum is appropriately localized to use microlocal
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techniques while the second one can be treated in a straightforward fashion by using the L2
estimates (7.16)-(7.17).

Theorem 4.1 is a consequence of the next two propositions in which we pick f € Ce(R\ O;R)
such that f =1 on supp(f) and let

(4.2) Q(e) = (1= x)(er) Y 1n(er) Opesw (F © Pee) e (er),

that is the first term of the parametrix of (1 — x)(er)f(P/€®) according to Theorem 3.9. Here and
everywhere in this section, we set
2 =274
Proposition 4.2. — Ifn > 3, then
1/2

o DGR GO

L2* £>0

I fo(P)vl| 2~ <SUP

S (en)f(P/)o

£=0

for all v € L2.

Up to the homogeneous Sobolev inequality (1.2) this proposition rests on purely L? — L2
estimates. In particular, we feel it is quite robust and could be used generalized to other contexts.
To state the second proposition, we need to define the family of square functions

M 1/2
Syw = <Z ’5(6)*w|2> , M >0,
=0

where the adjoint is taken with respect to the Riemannian measure.

Proposition 4.3. — For all ¢1 € (1,2] there exists C > 0 such that
HSMwHLm < CHw||L‘“7

for all M > 0 and all w € CF(M).

This proposition is a consequence of fairly standard singular integral estimates, by exploiting
the explicit form of the Schwartz kernel of Q(e). Note that we do not need to assume n > 3 here.
Before proving these two technical results, we prove Theorem 4.1.

1/2
Proof of Theorem 4.1. Let us set Syv := (Zej\io |(1- x)(er)f(P/eQ)v|2> . Then, by the

usual trick i.e. the Cauchy—Schwarz inequality in ¢ and the Holder inequality in space, we have

( ZQ er)f (P/€)> §‘|§Mw||L2*

so using Proposition 4.3 for q1 = 24, we obtain

5MU||L2*

M

> A(e)(1 = x)(er) f(P/e*)w

£=0

< C||Sarvl|p2--
L2*

/2
We conclude by using ||Sav]| 2 < (Zezo [[(1 = x)(er) f(P/e )wHLz*) , which follows from the
Minkowski inequality since 2* > 2, together with Proposition 4.2. ([

To prove Proposition 4.2, we recall first for clarity the following well known results.
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Proposition 4.4. — Let (Ty)e be a sequence of linear operators on a Hilbert space H.
L. (Discrete Schur estimate) If ||T; Tol|3—n < 2-16=31/2  then there is C such that

I Tl < € (S Iheli) ™

for all sequence (vg) of H.
2. (Cotlar-Stein estimate) If || T} To||w—n + |15 [|1—n S 2716=31/2 “then there is C such that

122 Tevlly, < Cllollaes
for allv e H.

We will apply the Schur estimate to two types of operators. The first one is very elementary: if
we let
TZ — 2@/2P1/2(2€P + 1)—1

then, assuming for instance ¢ > j so that % = f@ + ¢, we have

li—2]

<27

li—

7|27 P +1)"12¢P2P + 1

(4-3) ||TfoHL2ﬁL2 =27 )_1||L2—>L2

by using the spectral sheorem. The second type of operators requires a lemma.

Lemma 4.5. — Letk : U, — V, be a chart on' S. Let 1 be smooth on M, supported in (R, 00) X
U, and belonging to S°. For s =0 or 1, denote

T, = (P1/2/€)80p67n(a6 + be)w(gr, w),
where, for some given J € (0,+00) (independent of €),

(ac)e is bounded in 50, supp(ac) C p;;(J), (be)e is bounded in Soo1,
are all spatially supported in (Rpq,00) X Vi;. Then, if s = 0,1,
* _li—a
(4.4) 15T o < O27 2
and, if s =0,
* _lize
(4.5) T || o e <C27 72

Proof. We start with two preliminary remarks. First, it suffices to prove both estimates when
¢ > j (otherwise take the adjoint). The second one is that, if s = 0, T}/ is of the same form as T}
(see (3.10)) up to perhaps changing the function . In particular, proving (4.4) is sufficient. Let
us prove (4.4) when s = 1. For simplicity, we set ¢(¥) = ¢ (¥, k~*(0)). Using Proposition 3.4 with
q = 2, it suffices to show that

L P

9 €jer

< 9- Uge\

~

L2((F)n—1d7d0)— L2 ((F)n—1d¥do)

(4.6) Op' (ce; )(7)D D, Op' (de,)

with ¢, = 272 and (c.)., (dc). bounded families of S~ supported in (R, 00) X V;, with respect
to (¥, 0). Using that £ > j and (2.15), we write

P, - P, li—¢|

it _
~rp, =27 £D,=2""7 D,P,,.
€j€¢ €

Then P., .Op:(d.,) = (#)Op1(ec,) for some bounded family (e.). of 5720 with support contained
in the one of d. which allows to introduce for free a cutoff ¢ () supported in (Raq, 00) and equal
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to 1 near the support of the symbols. Now (4.6) follows from the Calderén-Vaillancourt Theorem
(in the form (3.4)) together with
<1

47 H DD, d(F
(4.7) ¥(r) € W) L2((Rp,00) XxRP=1 (#)yn=1d5dg)— L2 (R, (F)n—1dido) ~

which follows from the unitarity of D_'D,, = D, ; on L*((0,00) x R*~',#"~drdf). We next
prove (4.4) when s = 0. It suffices to show that

)

~ l5—2|
4.8 H be, ) () D, D, <9~
(48) Op1(be; J¥(F)De; De, Opa(d yn=1didf)— L2 ((¥)n—1drdo) ’
and

=l
4.9 H LG, Y (#)D-1D, Op*(d. <973
(4.9) Op (e, J¥(7) ¢ DaOp (de) L2((Fyn—1drd0)— L2 ((#)"—1did0)

whenever (b,). € S—°%=1 and (de)e € S0 are spatially supported in (Rpm,00) x V,;. To prove
(4.8), we use
7271@;1964 = eeej_l@;jlﬂejfl

to write

O (be, )(F)D "D, = Op* (be, ) (F)i# DD, (be,)FyD D, i

and conclude again from the L2((¥)"~!drdf) boundedness of Op*(b.)# and #~1Op*(d.) (there is no
singularity at # = 0 since d. is supported in {r > Ra}) together with (4.7). We finally prove
(4.9). The support assumption on a. implies that a./p . is a smooth symbol in G000 S0, using
in addition that ¢ € S°, we can write by symbolic calculus

O (@)1 (F) = Op* (@ /e ) Pe + Op* (be) 1 (F)

with (l:)e)E bounded in S§~°~! and some cutoff 1(#,6) € S°, both supported in (Raq, 00) x V with
respect to (7,6). The contribution of the second term in the right hand side follows from (4.8).
For the first term, one can use (4.6) once observed that

1 Pr
le(aej/pejﬁ) (7 )Pej, Dc. 1D @1(&5]'/pﬁjam)z/)(r)DﬁjI?Del
J

and that E;Q = 2%(@@)_1 (so that we actually get an estimate of order 2~1—* for this term).
This completes the proof. O

Proof of Proposition 4.2. Let us write (1 — x)(er) f(P/e2) = Q(e) + R(¢) according to (4.2) and
Theorem 3.9. Using that ff = f and that 1 = x(er) + (1 — x)(er), we have
F(P/€) = Q(e)(1 = x)(er)f(P/€*) + €T (€)(er) ™ f(P/€?)
with
(410)  T(e) = € (X(en)F(P/e) + (1 = )(en) f(P/e)x(er) + R(e) ) fer).

Using the first sum in (4.1) (which converges strongly in L? but also in L2 by Sobolev embedding)
and the homogeneous Sobolev estimate (1.2), we have
L2>

[ fo(P)vl[ 2 <Sup< ZQ (er)f(P/e*)v ZPWT eler) " f(P/e¥)v

2"
where it suffices to estimate the second norm. Using Theorem 3.9, one can write

(4.11) PY2T(e) = e ' PY2(P/® + 1)1 B(e),
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with B(e) bounded on L? uniformly in e. The least obvious contribution of terms of (4.10) is
the uniform L? boundedness of (P/e? + 1)x(er)f(P/e?){er). One can analyze it as follows. On
one hand, the commutator [(P/e? + 1), x(er)] being a sum of rescaled (pseudo-)differential oper-
ators vanishing outside the support of ((er), one can use Theorem 3.9 to get a parametrix for
[(P/e? + 1), x(er)]f(P/e?){er) from which the uniform L? boundedness follows. On the other
hand, x(er)(P/e? + 1)f(P/e?)(er) = x(er)fi(P/€®)(er) with fi € C3°. We then write (er) =
x(er){er) + (1 — x)(er)(er) whose first term is obviously uniformly bounded on L? while one can
use the parametrix for fi(P/e2)(1 — x)(er) to see that x(er)fi(P/e2)(1 — x)(er)(er) is uniformly
bounded on L?. Now with (4.11) at hand, by using (4.3) and Lemma 4.5 with s = 1 together with
the Schur estimate of Proposition 4.4, we have

1/2

sup
M

M
> P27 (e)e(er) f(P/e*)v

£=0

< [ X lleter) " £(P/)ol 3

L2 k>0

In the right hand side of this inequality, we finally use that
eler) ™t < ()7

and we get the result. |
We now consider the proof of Proposition 4.3.

Proof of Proposition 4.3. It follows the same line as the one for the standard Littlewood-Paley
decomposition (see e.g. [32]). Let (o¢)¢>0 be the usual Rademacher sequence (realized as functions
of t € [0,1]). By the Khintchine inequality, it suffices to show that

<C, tel0,1, M >0.

L91 (M) — L1 (M)

> 0(t)3(e)*
=0

This in turn follows from the Marcinkiewicz interpolation theorem prgvided we prove the above
estimate for ¢; = 2 as well as weak type (1, 1) estimates for >, ,, 0,(¢)Q(€)* uniformly in ¢ and M.
Using the form of Q(e) given by (4.2), the uniform L2 — L? bound follows from the Cotlar-Stein
estimate of Proposition 4.4 together with the estimates (4.4) and (4.5) (with s = 0) of Lemma 4.5.
The weak type (1,1) estimate follows from essentially standard estimates on Calderén-Zygmund
operators; we postpone to Appendix B the technical details. ([l

4.2. High frequencies
The purpose of this section is to prove the following result.

Theorem 4.6. — Let N > 0 and x € C§°(R) be equal to 1 on a large enough set so that ( = 1
(see (2.7)) near the support of 1 — x. Let q € [2,00). Then

1/2
111 =x)(r) (A = fo)(P)vlLa < ( STl = @) fB2PY]|;, + hNH<7">‘Nf(h2P)vH;> ;

h2=2—1¢
for allv € §(M). In the sum £ belongs to N.

This is a spatially localized Littlewood-Paley decomposition similar to the one of [2]. The
improvement here is that the nonlocal L? correction involves the weight (r)~" which will allow
us to use the resolvent estimates (1.5) and their time dependent counterparts (see Section 7.2 and
Section 8).
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To prove this theorem, we pick again f € C§°(R\ 0;R) such that f=1on supp(f). We define
the square functions

o 1/2
Spv = (Z (1 - X)(T)f(h2P)v|2>
=1

and

M 1/2

S = (L iert)
=1

Here and throughout this section, we set h? = 27¢.

Proof of Theorem 4.6. It is very close to that of Theorem 4.1. We only explain what changes.
Using the second sum in (4.1), we write (w, (1 — x)(r)(1 — fo)(P)v) as the limit as M — oo of

évil(w, (1 — x)(r)f(h?P)v). Using standard semiclassical estimates based on Theorem 3.9 and
Proposition 3.7, and using that (1 — f) vanishes near the support of f, we see that, for any N,
(1= H(R*P)(1 = X)(r) f(h*P) = kN By (h)(r) =N f(h*P),
with
IBn(W)|[p2—pa <C, he(0,1].
Therefore, using additionally that ¢(r)(1 — x)(r) = (1 — x)(r), we have

M
[(w, (1 =) ()1 = fo)(P)v)| < Sup Y ()R Pyw, (1= x)(r) f(h*P)o)| +
=1
Clfwll e Y hVIr) =N f(B2P)ol| .

£>1
By proceeding as in the proof of Theorem 4.1, in particular by using that the supremum above is
bounded by sup,; [|Zaw|| e |2 av|| e, Theorem 4.6 follows from Proposition 4.7 below. O

Proposition 4.7. — For all q1 € (1,2], there exists C > 0 such that

‘ENJMwHqu < C|wl|pa

for all M > 1 and all w € §(M).

Proof. As in the proof of Proposition 4.3, it suffices to show that Eé\il 00(t)¢(r) f(h2P) is bounded
on L? and satisfies weak type (1,1) estimates, uniformly in ¢ and M. The uniform boundedness
on L? follows from the spectral theorem and the fact that the functions

M
A > o) F (270N
(=1

belong to L*°(R) uniformly in ¢, M since at most a finite number (A, M, ¢ independent) of terms of
the sum do not vanish. To prove the weak type (1, 1) estimate, we use Theorem 3.9 to decompose

¢(r) f(h*P) = Quign () + hRuign (h)

with Rpigh () uniformly (in 2) bounded on L' and L?. The uniform boundedness on L? is obvious.
To see the uniform boundedness on L', one uses an expansion of {(r) f (h?P) to a sufficiently high
order No+1 so that one can write hRpigh (h) = h' N0 (r)=No B(h)(h? P+1) =N with B(h) uniformly
bounded on L?. Then using on one hand that (h?P-+1)""o : Op1_,12(h~"/2) (by taking the adjoint
estimate of (3.18) near infinity and using a standard elliptic regularity estimate on any compact



4.2. HIGH FREQUENCIES 35

set — including near the boundary if any) and on the other hand that (r)=™o : L2 — L', one gets
the desired L' — L' estimate. In particular, we have

(4.12) ZhHRhigh(h)||Ll—>Ll < 00
£>1

Then, it suffices to prove the uniform weak type (1,1) estimates for Zé\il 0¢(t)Qnign (h) and this
follows again from standard arguments on Calderén-Zygmund operators (see Appendix B). O

Remark. In more general situations, e.g. with non smooth coefficients in a compact set, it may
be not easy to prove (4.12). Actually, it would suffice to have »,- h| |Rhigh(h)||L2*_>L2* < oo for
our purpose. It would restrict the range of exponents in Proposition 4.7 to [24,2], and thus those
of Theorem 4.6 to [2,2*], but this would be sufficient for Strichartz estimates.






CHAPITRE 5

CLASSICAL SCATTERING

In this chapter, we construct real phase functions solutions to Hamilton-Jacobi equations that
will be used to construct Isozaki-Kitada type parametrices. The transport equations associated to
such parametrices are also studied.

Everywhere in this chapter, we work in a single chart at infinity (Raq, 00) X Vi. Since we want
to consider both high and low frequencies parametrices, we have to analyze the Hamiltonian flow
of p,, and p,; (see (2.16)). Observing that p, = p1 ., we will state the main results only for p .
for0<e<1.

We let ¢7 ,, be the Hamiltonian flow of p. ,; and define ¢ by

o4(r, 9, 0,m) == (r + 2s0,9, 0,7)

that is the Hamiltonian flow of p?>. We denote the time by s here since it will be interpreted as a
rescaled version of ¢ in the applications (either s = t/h or s = te?).
For R>> 1,V CV,, and € > 0, we define the subset of R x (R"~1)2

(5.1) OR,V,e) = {(r0,9) | r >R, 0V, |0 -0 <e}.

To describe the asymptotic behaviour of our phases, and to take into account the dependence on
e of the functions we are going to consider (e.g. the components of the flow ¢ ), the following
definition will be useful.

Definition 5.1. — Let R> 0,V CV, ande > 0. For u € R,
1. S, is the set of (e dependent families of) functions on ©(R,V,¢) such that
090505 ac(r,0,9)| < Cri,
for all (r,0,9) € ©(R,V,e) and all € € (0,1] (the constant is independent of €).
2. For any integer m > 0, we denote by S, (0 — )™ the set of all functions of the form
D acy(r,0,9)(0 —9),
|v|=m

with ac~ € 5,.
3. Given real numbers p1, ps and integers my, mq, the equality

e = be + Sy, (0 = 6)™ + 5, (9 — 6)™
means that a. — be is the sum of an element of Sy, (¥ — )™ and a one of S, (¥ — 6)™.

The main result of this chapter is the following theorem.
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Theorem 5.2 (Eikonal equation). — Fiz an open subset V. € V.. Assume that V is convex.
Then we can find R> 1 and 0 < e < 1 such that for all € € (0,1], there exists a smooth function

Ye: O(R,V,e) » R
such that the function @c(r,0,0,9) := ob(r,0,9) satisfies the following properties:

1. It solves the Hamilton-Jacobi equation
(5:2) Pew (10, 0rpc, Dope) = 0.
2. The range of
(r,0,0,9) = (r,0,0-0c, Dppe), (r,0,9) € ©(R,V,e), 0> 0,

s contained in a set f;tt where (¢F,.)+s>0 and the limit limg 100 ¢o° 0 ¢F . =: ijn are
defined. Furthermore, one has

(5.3) FE (r,0,0,0c,090) = (90,9, 0, —0pe).

3. One has the expansions

(5.4) Ve = 1+ 81,0 —0)+ 59 —0)>

(5.5) e = 148, —0)+ So(d —0)°

(5.6) Do = 1g(0)(@ — 0) + S1- (9 — 0) + S1(J — )

(5.7) Dot = —rg(0) (& — 0) + S1 (9 = 0) + S1 (I — 6)°

Remark. Be careful not to mistake e (the low frequency parameter) for € which is a small enough
but fixed number defining O(R,V,¢).

The purpose of the next proposition is to solve transport equations associated to ¢, and which
will be used in Section 6. We consider equations of the form

(58) (ap,npe,n) (7", 07 87‘@67 80906) : 87«_’9’& + be(r» 97 197 Q)’LL = fe (7’7 97 0, 19)7
where f. is a given short range symbol (see condition (5.13)) and
(5.9) be := —P. 1 pe.

In practice, we will study these equations only locally in g, namely on sets of the form
(5.10) OF(R,V,1,¢) :={(r.0,0,9) | (r,0,9) € O(R,V.¢), 0 € I, 0> 0}

where I € (0,400) is a given relatively compact interval. The natural domains to work on are
actually the larger sets (of trajectories starting in ©F (R, V, I,¢))

TER,V, 1,e) = {((FE,95) (1,0,0r,00(r,0, 0,9)),0,9) | (r,0,0,9) € OF(R,V,1,¢), £s >0},
where
(5.11) (ff,ﬁi, @i,ﬁﬁ) = components of ¢; .

It will follow from the proof below that (r, 0, 0r0p(r,0, 0, 19)) belongs to a set where the flow ¢¢
is well defined for all +s > 0 (if 40 > 0) so that the sets 7. 5(R,V, I,¢) are well defined.

Proposition 5.3 (Transport equations). — Let O(R,V,e) be as in Theorem 5.2 and I &€
(0, +00).
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1. Form of characteristics: For all (r,0,0,9) € ©F(R,V,1,¢), 5 >0 and € € (0,1] define

(fi’ éi, piv 77?) = d)i,& (Ta 0, ar,@@e(rv 8, 0, 19)) .
Then
(72:12) = (9rope) (72,02, 0,0).
In particular,

(ap,npe,ﬁ) (f:7 é:’ (87“,9(»06)(7;?7 é:, 0, 19)) = ('F:, é:) .
2. Time integrability of b. along characteristics: For all j, o, k, 3, there exists C' indepen-
dent of € € (0, 1] such that

050505 (b7, 02, 0,0))| < Cls/r) /1717070 4 Clsfr) 21

for £5 >0 and (r,0, 0,9) € OF(R,V, I,¢).
3. Form of solutions: Assume that f. belongs to S_1_, = S_1_,(TE(R,V,1,€)) for some
w>0,ie onTE(R,V,I¢)

(5.13) 0205980} fo(r,0,9, 0)| S (r) 177,

uniformly in €. Then, given a constant C, the solution to (5.8) going to C asr — oo is given
by

+o0 F+o00 s
Cexp ( / bews,é:,g,ﬁ)ds) - [ nena e e ( RN 0>dsl) ds.
0 0 0

This solution is still defined on TX(R,V,1,€) and, if C =0, it belongs to S_,,.

(5.12)

Remark. In the asymptotically Euclidean case with global coordinates, the usual construction of
the Isozaki-Kitada phase shows that b, is a short range symbol, which implies easily its integrability
in time when evaluated along a trajectory. Here, it only follows from the asymptotics of Theorem
5.2 that
be =S_1_,+ 571(0 - 19)

which in general fails to be short range because of the second term. However, when evaluated
along a trajectory, we will recover the integrability in time (5.12) by exploiting the decay in time
of 62 — 1 (see (5.40)).

We will prove Theorem 5.2, and Proposition 5.3 likewise, only in the case ¢ = 1. Indeed, by
Lemma 3.3, if we define v(r, 0) := (v7*(r,)) by
(5.14) g (r,0) =g (0) + v (r,0),
we have pe, = p? + 1278 (0)nme + =207k (r /e, 0)n;m where v(r/e,0) is bounded in ST as
e € (0,1] (it is actually O(e”)). The analysis below for € = 1 still applies uniformly for € € (0, 1],
but only at the expense of heavier statments and notation*). Thus, for simplicity, we will drop e
and  from the notation (except on V) everywhere below.

We let p = p1,x(r, 0, p,n) and (7°,9%, 0°,7°) := ¢* be the components of ¢*(= ¢7 ,,), namely the
solution to

(5.15) 7 = (9,p)(¢%),  0° = (3p)(¢°), & =—@p)(¢°)  i® = —(3ep)(8®),
with initial condition B
(rFSa 1957 és7 ’F]S)\SZO = (T7 07 P T])

(Din the same spirit, since we don’t need to use the distinction between # and r in this part; we use the simpler
notation r though pe » must be though as a function of 7
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We will see it exists for £5 > 0 on strongly outgoing (+)/ incoming (-) areas defined, for V' C V,
R>Rpand 0 <e <1, by

TE(R,V,e) = {(r,0,p.0) | r >R, €V, £p> (1—£*)p'/?}

where p = p(r, 6, p,n). Note that the square on ¢ ensures that the condition +p > (1 — £2)p/? is
equivalent to |n|/r < e and £p > 0.

These sets are conical (i.e. invariant under (p,n) — (Ap, An) for any A > 0) and symmetric
w.r.t. eachother, i.e.

(r.0,pm) ETL(RVie) <= (n0,—p,—n) €TL(R.Vie).
This symmetry together with the property that, for any A € R and as long as the flow exists,
(fs, @S)(r, 0, \p, \n) = (st, 15)‘3)(7“, 0,p,m),
(2°,1°)(r, 0, Ap, An) = A2, 1) (r,0, p,m),

will allow us to restrict the analysis to strongly outgoing regions and times s > 0. The same
homogeneity properties hold for ¢§ which in turns implies they also hold for F*.

The reason for denoting the angular position by ¥° rather than 6° and the radial momentum
by 0° rather than p® is the following one. Let introduce

(517) (7:3193 Eaﬁ) = 5£I+noo (F - 25@ 719 , 07,1 ) = sgglood)o O¢ (7’797P777);

(5.16)

which will be shown to exist for (7,0, p,n) in a strongly outgoing area f; (the parameters of which
we omit here). The item 2 of Theorem 5.2 means that ¢ is a generating function of the Lagrangian
submanifold

(5.18) AT = {((r,0.p,m). (7,0, 0.7)) | (.0, p,m) € T},

i.e. the graph of the symplectic map F+. The existence of ¢ rests on the fact that AT can be
parametrized by (r, 6), the initial positions, and by (o, 1), the final radial momentum and angular
position. In particular, it is crucial to distinguish between the variables # and ¥ which motivates
our choice of notation.

Before starting the proof of Theorem 5.2 which will come after several preparatory results, we
introduce one more notation, for I € (0, 00),

(5.19) TE(R,V,1,e) = {(r,0,p,n) €TE(R, V,e) | p(r,0,p,n) € I}.

It allows to localize flow estimates in the energy shell p~1(I), without loss of generality by the
above homogeneity properties. Occasionally, we will also use I'f;(R, V, I, ¢) defined by

(5.20) (r0.p,6) eTH(R,V,I,e) <=  (r,0,p,76) eTL(R,V,1e).

Note that p? + ¢?*(r,0)&;&, € I on T (R, V,1,¢) so p,& (and 0) are bounded there. In particular,
all symbolic estimates on functions defined on T'J;(R, V, I, ¢) will be only with respect to r.

To start the proof we recall a result from [30].

Proposition 5.4 (Long time geodesic flow estimates). — Let Vo € V,, and Iy C (0,00).
One can choose Ry > 1 large enough and 0 < g9 < 1 such that

1. for all (r,0,p,n) € f:t(RO,VO,IO,EO), @°(r,0,p,n) is defined for all s > 0 and
(75,9%) € (Rg,0) x Vg, s>0,
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2. forall (j,a,k, B) € Z2", there exists C > 0 such that for all (r,0,p,n) € fjt(Ro, Vo, Io, €0)and
all s > 0,

e R
S r
Moreover, there exists C' > 0 such that
(5.21) (r+s)/C <7 <C(r+s),
for s >0 and (r,0,p,n) € fjt(Ro,VOJo,so).

In the rest of the chapter, we choose Ry, Vj, Iy and &g as in Proposition 5.4.

To study (5.17) it will be convenient to use asymptotics in suitable symbol classes, in the spirit

of those of Definition 5.1. Given functions a and b on I'}; (R, Vo, Io, £0), a real number z and an
integer m, we define

43 mo def UAWAN u
a=b+S,(n/r) <~ a—-b= ZCW(T’H’p’r)Tlvl with ¢, € S¥,

[v|=m

where S* = S*(T'J (Ro, Vo, Io,€0)). The relation a = b + gm (n/r)™ 4 S, (n/r)™, with my, ms
integers and p1, po € R, is defined analogously.
It is useful to record the following characterization of symbols of the form c¢(r, 8, p,n/r).

Lemma 5.5. — A function a : l:st(RO,VO,IO,EO) — C is of the form
n
0 = 797 ’ 7)
a(r,0,p,n) C(r P
for some c in S* (F;@(Ro, V07IO,50)) if and only if, for all (4,a,k,B),
(5.22) 09050500 a(r,0, p,n)| < Cjarpr 1P,
for all (r,0,p,m) € f:t(RO,VO,IO,eo). In particular, if a satisfies (5.22), then

(5.23) a(r,8, p.n) = a(r, 8, p,0) + (rV,,a)(r,0, p,0) - 2 + 5, (1/r)*.

Proof. Follows from routine computations by considering ¢(r, 0, p, &) := a(r, 0, p, r€). O

Proposition 5.6 (Asymptotics for F'*). — For all (r,0,p,n) € f;(Ro,VO,IO,Eo), the limit
(5.17) exists. Furthermore, we have the expansions

(5.24) Fo= r+581(n/r)?

(5.25) o = p+Soln/r)?

(5.26) 7 = n+Sn/r)’

and

(5.27) 9 = 0+g0) L 15, (n/r) + Soln/r)>.

rp
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Notice that p is positive on I'%(Ro, Vo, I, £0) so the second term is the right hand side of (5.27)
is well defined. To prove this proposition, we will use the easily verified fact that for s > 0 and
(T', 07 P, 0) € F:t(R(% Vba IO) 60), we have

(528) (787195758777]5)“7:0 = (T+23P797P70)7
=S qs =S =5 _ 2@(0)71 + QU(T + 28p7 9)
(529) (87]7“ 787719 787749 787777 )|77:0 - <0a (7“ + 28p)2 ,0, Infl ’

where we recall that v is defined in (5.14). We will also need the following lemma.

Lemma 5.7. — For all (j, ok, 8) € Z3", setting 07 = 01050898, there is C > 0 such that,

pYn>
Y78 ‘
(5.30) af: < Cril
(5.31) 7 (/7)< C(1+ |s/r])" 137181,
for all (r,0,p,n) € Tk (Ro, Vo, Iy, £0) and s > 0. If furthermore b € S*((Ry,00) x Vi), then
(5.32) 07 (b(7*,5%))| < C(F* fr)pri=i=F,

with a constant bounded as long as b varies in a bounded set.

Proof. The estimate (5.30) is a simple consequence of the item 2 of Proposition 5.4 and the fact
that 07 (r + 2sp) = O(r + s)r~7718. Next, by observing that

oot o
e

we see that (5.31) follows from (5.21) and (5.30). Finally, the estimate (5.32) follows from the item

2 of Proposition 5.4 for 9¢, (5.31) and the fact that 07 (b(7*,9*)) is a linear combination of

97 (r/7*) = linear comb. of with 41+ 44V =4, N < v +1,

(8585“1)) (75, 0%)M 7 - - oG R LY, LSy L
with o+ 95+ + o +95, =7 O
Proof of Proposition 5.6. We give the proofs of (5.24) and (5.27), the ones of (5.25) and (5.26)

being similar (and slightly simpler). We start with (5.27). Writing 97 = 6 + fOT ¥*ds and letting
T — +o00, we obtain

d=or2 [ (@) ol ) L

=642 [ (9() "+ o)) iy

where the integral is convergent since, for fixed (7, 8, p,n), 7° is bounded while 7° 2 r+s by (5.21).
Then, by using (5.31), (5.32) and the item 2 of Proposition 5.4 for 7°/r, we see that

(5.33)  0l05050) ((g(ﬁS)1 +v(fs,1§S)) (1)2> = O((1 + |s/r|)"2r—1—77181),
Integrating this estimate in s and using the characterization of Lemma 5.5, we find 9 = 6 + So

(see after Proposition 5.4 for this notation). Using (5.23) together with (5.28) and (5.29) we get
the improved expansion (5.27) since

+o0 = -1 +o0
_ _ In—l 9(9) / In—l >
2 ! = 2 ——=ds=5_,.
T/O g(0) i 2$p)2d8 P r ; v(r +2sp,0) t 25p)2d8 S_y

We next prove (5.24). We start by writing 77 = r + fOT 20°ds and

63y =o'~ (fi(glm(ﬁu)—i-vlm(r“,ﬁ“))_(@vlm)(r“,ﬁ“)) '
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Similarly to (5.33), the 0795050/ derivative of the integrand in (5.34) is O ((1+ lu/r|)~3r=1=3=181).
This implies on one hand that the limit of #7 — 275" exists as T — 400 and equals

Fer— 2/0+Oo (/:oo (;u(glmwu) T olm (7 gu)) — (8Tvlm)(r“719“)> ’Z?f)% du) ds

r

and on the other hand that, for any (j,a,k, ), the 8ﬁ85‘8§8§ derivative of the above double

integral is O(r'=7=#). This gives the rough bound 7 = r 4+ S; which then improves to (5.24) by
using the above expression together with (5.23), (5.28) and (5.29). O

The last intermediate result needed to prove Theorem 5.2 is the following one.

Proposition 5.8 (projecting the Lagrangian). — Let Iy € Iy and Vi € Vy with Vi convex.
Then one can find Ry > 1 and C > 1 such that for all e < 1, the map

(5.35) (r,0,p,m) = (r,0,0,9)

is a diffeomorphism from fj(Rl,Vl,IO,Cs) onto an open subset containing ©F(Ry,Vy,I1,€). On
O (Ry,V1,11,¢), the inverse of (5.35) is of the form

(r,0,0,9) — (r,0,p,n)

with
(5.36) p(r,0,0,9) = o+5_,(9—0)+ Sy —0)2
(5.37) n(r,0,0,9) = rog(0)( —0)+ S1_,(9 —0) + S1 (9 — 0)>.

Recall that the notation ©F(R,V, I,¢) is defined in (5.10). To understand informally why we
can take proportional parameters Ce and e, we recall that the condition p > (1 — Cez)pl/ 2 means
that |n|/r < e (and p > 0) which, by (5.37), is comparable to the condition |§ — | < e.

Proof of Proposition 5.8. Denote by H the map (5.35). Counsider the maps H and K defined by
H(r,0,p,6) = (r,0,p.0+p~'3(0)"'¢),  K(r,0,0,9) = (r,0,0,05(0)(V - 0)),
which are inverse to eachother (on appropriate domains given below). We also set
E(r,0,p,8) = (1,0, p,76).
It follows from (5.25) and (5.27) that

H(r.0.p,n) = H(r,0,p.0/r) + 5-,(n/r) + So(n/r)*.
thus, after composition with £ o K and using Lemma 5.5, we see that
(5.38) HoEoK =1+5_,(1—8)+ Sy —6)>

These computations make sense on the following sets. Since H is defined on f;‘t (Ro, Vo, Lo, €0),
it follows from (5.20) that (5.38) holds on any set which is mapped into I'J (Ro, Vo, Io,e0) by K.
Using (2.4) and the fact that Iy is relatively compact, one can find C' > 1 such that

K (®+(R07%a1075)) C F:t (RQ,‘/E),Io,Cf),

and thus (5.38) holds on ©T (R, Vj, Iy, €) if Ce < g¢. Since the right hand side of (5.38) is a small
perturbation of identity where r is large and 6 — ¢ is small, it follows from a routine argument
that if R is large enough and ¢ is small enough, it is a diffeomorphism on ©% (R, Vi, Iy,¢) onto
an open set containing ©% (R, Vi, I;,¢/8). Note that ©F (R, V1, Iy, €) is convex which is useful to
justify this fact, for instance to prove the injectivity of (5.38) by using the mean value theorem.
Note also that (r,0) is unchanged by the left hand side of (5.38) and that, when ¢ = 6, we have
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(H o EoK)(r,0,0,0) = (r,0, 0,0). This allows to check that the inverse mapping to (5.38) is still
of the form I+ S_, (9 — 6) + So(¥ — ). Composing E o K with this inverse diffeomorphism, we
get the existence of (p,n) and the expansions (5.36)-(5.37). O

Proof of Theorem 5.2. We choose I} = I and V; =V in Proposition 5.8 (recall that Iy and V;
were chosen arbitrarily). We prove the items 1 and 2 at the same time. By Proposition 5.6, F'" is
well defined on f;(Ro, Vo, Io,€0). Since ¢° and ¢, ° are symplectic maps so is F'™ and its graph is
Lagrangian. Together with Proposition 5.8, this implies that the differential form

p(r,0,0,9)dr +n(r,0,0,9)d0 + 7(r,0, p,n)do — 7(r, 0, p, n)dJ

is closed on ©(R,V, I, ¢) for ¢ small enough. Since this set is convex, we get the existence of a
function ¢, unique up to an additive constant, such that

(5.39) orp=0p oo =1 Do =7(r,0,p,m) 0o = —n(r,0,p,n).

To fix the constant and to define ¢ globally in g, we observe that (5.16) (for A > 0) implies that
p,n are homogeneous of degree 1 in ¢ and 7(r, 8, p,n),7(r, 0, p,n) of degree 0. We can thus find a
unique solution ¢ defined for (r,0,9) € O(R,V, 5)7aﬁd 0 > 0, which is homogeneous of degree 1 in
0. Then (5.39) and Proposition 5.8 yield the item 2. It turns out that if one considers gp(r, 8, 1,v)
with o € R, we get the expected solution for it is also a generating function of F~ for o < 0 by the
symmetry (5.16) for A = —1. To prove that ¢ satisfies the eikonal equation it suffices to observe
that

p(r,0,p,n) = o(r,0, p, ),

which is well known (see e.g. [30]) and easy to get from Proposition 5.4 and the conservation of
energy. By evaluating this equality on (r, 6, p,n), we get (5.2). For the item 3, (5.5) and (5.6) are
direct consequences of Proposition 5.8 by (5.39). The expansions (5.7) and (5.4) follow from (5.39)
combined with (5.36)-(5.37) and Proposition 5.6. O

We end up this chapter with the proof of Proposition 5.3 on transport equations (recall that
€, k have been dropped from the notation). As before, we only consider the case when s > 0 (and
0>0).

Proof of Proposition 5.3. The item 1 follows from the well known method of characteristics
(see e.g. [19]) and has nothing to do with our specific geometric context so we only give the main
lines. We let (7%, 6°) be the maximal solution to the ODE

(7,6°) = (Dpp) (7,0, D00 (P, 6%, 0,9)),  (i°,6°) = (r,0).
We also let (5°,7°) = 9,.00(7%, 0%, 0,99). By differentiating (5.2) in (r,8), one has
(0r6p)(r,0,0r.09) + (D} 40) (8pnp) (7,6, 0r.00) = 0
where D? 4 is the Hessian matrix of ¢ (seen as a function of (r,6)). By evaluating this identity
at (7%,6°, 0,9), we obtain
(0°,17) = pnp) (7, 6", " 1)
which, together with the first equation, shows that (FS, 6+, [)S,ﬁs) solves the equation (5.15) with

initial condition (7,6, d;.9¢). Thus (fs,és,ﬁs, 773) = (Fs,és, ﬁs,ﬁs) satisfies the expected properties
of the first item. To prove the second item, the main observation is that

PSD =S 1.,+ S—l('l9 — 9),
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which follows from (2.11), (5.5) and (5.6). Using (5.3) (see also (5.17)), we have
0° — 9(r,0,0r090) = 9, 5 — 4o00.

Thus, by integrating #° from s to 4+0o and using the flow estimates of Proposition 5.4 and Lemma
5.7 together with the estimates on ¢ given in the item 3 of Theorem 5.2, we get

(5.40) 07959805 (0% — )| < (s/r) 1.
By the same techniques we can estimate the derivatives of 7 and we get the result by routine
calculations. The third item follows from the usual method of characteristics for linear transport

equations. We only record that to prove that the solution is in S_,, (if C =0 and f € S_;_,), it
suffices to observe that

aiagalgag (f(fsvés7 0, 19))’ g <5/7">_1_N7’_1_“_j7
on TH(R,V,1,¢). .






CHAPITRE 6

THE ISOZAKI-KITADA PARAMETRIX

In this chapter, we construct a new version of the Isozaki-Kitada parametrix compared to the
ones introduced in [4, 30]. The novelty stems basically from the parametrization of the Lagrangian
(5.18) in term of the final angular position ¥ rather than the final angular momentum 7; it turns
out that it is more accurate to deal with global in time estimates.

Before displaying the parametrix, we need some notation and preliminary results for operators
on R™. For u € R, S, (R*") denotes the space of symbols defined on R?*" such that

(6.1) 0050505 a(r,0,0,9)| < C(r)*~7,  on R*".

We equip it with the standard topology. We will also need the space Sﬁ‘in(R?’”) of functions
satisfying

|690507,05 02 A(r, 0,10/, 0,9)| < C(min(r,"))* 79" on R®",

Let us consider first the semiclassical version of the operators. For a € SH(RQ") supported in
O%(R,V,I,¢) (see (5.10)), we define

T (a)u(r,0) = (2rh)~"F /// #(#1(r0.00)-s0) a(r,0, 0,9)v(z,9)dzdod?,

where ¢; is the phase constructed in Theorem 5.2 with € = 1. The operator J"(a) is well defined
on §(R™) and it is not hard to check that it maps 8(R™) into itself. Its formal adjoint (with respect
to the Lebesgue measure) is given by

J"(a) u(z,9) = (271'h)_n74rl ///e%(w_‘m(r/’el"g’ﬂ))a(r’,9',Q,ﬂ)u(r’,H’)der’dG’

and J"(a)' also maps the Schwartz space into itself. The prototype of our parametrix at high
frequency will be of the form

(6.2) JM(a)e ™07 M (b1
For the parametrix at low frequency, we will rather consider operators of the form
(6.3) D, J(ac)e < P2 T (b,) D

where J¢(a¢) is defined by
Ta)o(r.8) = (n) 5 [ [ [eilectten a1, 0.0)0e, 0)dzdodo,

i.e. is defined as J" with h = 1 and ¢; replaced by ¢.. In this case, we need to consider e
dependent amplitudes a., b which will be bounded in their classes with respect to ¢ and supported
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in ¢ independent areas of the form ©% (R, V,I,¢). Omitting the scaling operators D, and D! in
(6.3), we can write the Schwartz kernels (with respect to the Lebesgue measure) of both (6.2) and
(6.3) under the following single form

i &2t 2 .o _
(64)  (20h)" / / F(Pelr00 =T o0 000) (1 5 )b 6, 0, ) dodV.

Indeed, (6.2) corresponds to € = 1 and h € (0,1], while (6.3) corresponds to h = 1 and € € (0, 1].
The form of this kernel motivates the introduction of oscillatory integrals of the form

(6.5) IMAcs) = (2mh)™" //e%‘1’6(5”’9”"79”‘-”0%4@5(r,67r’79’,g,ﬁ)dgcw,

where &, = @ (s,r,0,1,0', 0,19) is defined as
O == (1,0, 0,9) — s0* — e (', 0, 0,9).

In the applications we will take either s = ¢/h or s = €2t (and h = 1) to fit (6.4). We will consider
amplitudes A, ; bounded in SF"(R3") with respect to (e, s) and satisfying the support condition
(6.6) supp(Ac,s) C (R, V, R, V', 1,¢,¢')
where @i(R, V,R,V' I,e,¢") is the set

{(r,0,7",0",0,9) | (r,0,9) € O(R,V,e), (+',0',9) € O(R', V' &), o> € I, +0> 0}.
We refer to (5.1) for ©(R,V,e) and, as in Theorem 5.2, we will assume that V' is convex. Note

that the above amplitudes are compactly supported with respect to (g,4). In the same spirit, to
cover both definitions of J* and J. in the next chapter, we will use

Tt (acyu(r,0) = (2mh) =5 ///e%(%(r’e’g’ﬁ)_w)ae(r,9, 0,9)v(x,9)dxdodd,

where a. is allowed to depend on € in a bounded fashion.

6.1. FIO estimates

In this section, we record properties on operators J/(a.) and oscillatory integrals I"(A, ;). All
propositions and lemmas are stated in full generality; however, for notational simplicity only, we
will prove them in the outgoing case (+ case) and will omit the dependence on € in the notation
of proofs, similarly to what we did in Section 5.

Proposition 6.1 (Non stationary phase estimates). — Let I = (0}, 02,,) with 0sup > 0ing >
0.
1. Let 6 € (0,1). If e and &' are small enough, then
(1 - 5)7" Z (T/ + 2SQSup)
or = IMA. ) = O(h>(s,r, 1) ™),
r < (1—20)(r" % 280int)

uniformly in €, provided that +s > 0 and (A.s) belongs to a bounded set of ST (R3™) such
that (6.6) holds.

2. Let ¢ € (0,1). If R is large enough and € is small enough, then
g <e? and |6 — 9| > ce on supp(Acs) = IMAcs) = O(R>(s,r,1") ™)

uniformly in €, provided that s > 0 and (A.s) belongs to a bounded set of SF™(R3™) such
that (6.6) holds.
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Proof. For both items, we consider only the outgoing case. For the first one, using the expansion
(5.4) we find that, on the support of the amplitude,
0,® = =250+ 7(1+0(e)) —r'(1 + O(e")).

Therefore, if (1 —)r > 7’ 4 2s05yp We see that

0,®

2 >5—Ce—C¢

r
where the right hand side is larger than /2 if ¢,¢” are small enough. Then, repeated integrations
by part in g show that I"(A) = O(h>r~°°) which yields the result since r’ +|s| < 7 in this regime.
On the other hand, if r < (1 — 8§)(r' + 250in¢) then
0,®
7'+ 250int
Then, as above, integrations by part in g show that I"(A,) = O(h*>(r’ + |s|)~>°) which yields the
result since r < 7’ + |s|. For the second item we observe first that by the item 1, we can assume
that C~'r <7’ + s < Cr. Then using the expansion (5.7), we have
Dy® = —ro(g(0)(9 — ) + O(R™"e) + O(e?)) + r'00(e?)

on the support of the amplitude. Thus, if |} — ] > ce, we see that for R large enough and e small
enough,

< -6+ Ce+C<.

|09 |

r
since 7/ /r is bounded thanks to the assumption 7’ + s < Cr. Then, integrating by part in 9, we
obtain I"(A,) = O(h°r~°°) which yields the full decay since we also assume that r 2 ' +s. [

>e

We next state an Egorov type theorem. It is a classical result but we quote it explicitly for we
are not in a completely standard situation and also consider ¢ dependent phases and symbols.

Proposition 6.2 (Egorov theorem). — We can choose R’ > 1 and 0 < &’ < 1 such that for
all bounded families (ac) € S, (R?™), (be) € S, (R?*™) such that
supp(a,) C OF (R, V,I1,¢'),  supp(b.) € O (R, V,1,¢")
one has
Jeh(as)Jeh(be)T = @h(ce(h))v

for some admissible c.(h) € S—or+tH'+1=n(R21) depending in a bounded fashion on € and such
that

Ce(h> ~ Z hjcgja Ce,0 = ae(ra 97 Qe ge)i)e(ra 9, Oe, ﬁe)’det dp,n (@Ea 19e)
j=>0

)

where we recall that (gc,7.) are components of F, (see the item 2 of Theorem 5.2), namely

(0,9e) = lim (2%,97), where (72,97, 02,77) = 62 .(r,0,p,m).

s—Foo

For j > 1, cc; has its support contained in the support of ccp.

In several proofs below, the following definition will be useful

A=Si™@ -0+ @—0))" £ A= 3 Aww(@—0)°(0—0)", Auar €SP
la| o’ |=k

Such expansions are of course similar to those in Definition 5.1.
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Proof. We study the kernel (6.4) with ¢ = 0 (and the dependence on e omitted). Consider the
function (p, 7)) of (r,0,r',0', 0,1) defined by

1
(h) = / (8,0, 050) (2, 0x, 0, )\
0

where 7y = ' + A(r — ') and 0y = 6’ + A(0 — ¢'). Note that by convexity of V (see after (6.6)),
(rx,0x, 0,9) belongs to OT (R, V, I,¢) if both (r,0, 0,9) and (r', 6, 0,9) do. Introduce next
2 g .
A0
r+r P

f =
so that the phase becomes

!
(6.7) P(r,0,0,0) = 1", 0',0,0) = plr — 1) + - 21

By using (5.5) and (5.6), we obtain
p=o (145 (0 - 0)+ (W —8)) + S5 (0 - 0) + (0 - 0))*),

p3(0)(0 — 8).

and

- 2r + 1’
Sf=0—-0 - —-

(683 3(r+ ")

Both expansions follow from routine computations, using that ¢ — 0y = (1 —A\)(9 —0") + A(¢ — 0)

and

(0 —0') + 5™ (0 — 6) + (9 — 6")) + SF™ (9 — 6) + (9 — 0))°.

2 ! 2r + 7!
P—0dA=9—-0 — ——(0-20").
7"—1—7"/0 " ») 3(7‘+r’)( )

All this shows that p and (the components of) é belong to S", and also that
|dp0(p,€) — In| S min(r, 7)™ + ]9 — 0] + [0 — 0|'.

Thus, if we assume that 7,7/ > R’ > 1 and & < 1, (9,9) — (ﬁ,é) is a diffeomorphism from
{|9—0] <eyn{|9—0| <e'}n{e* €I, o> 0} onto its range. If we denote by (p, &) — (g,9) the

min

inverse map (which depends also on 7,60,7',0’), the fact that f),é e Sy implies that,
(6.9) 6305 87,05 989 (6,9)| < C min(r,') =9~

on its domain of definition, hence on the support of a(r,8, s, 9)b(r",6’,5,9). Also, since p — p
is small, p must belong to a compact subset of (0, +00) (remember we prove the outgoing case).
Then, by using successively the changes of variables (o, %) — (p,£) and £ — 7 := T'ET/ pg(0)¢ (recall

(6.7)), the kernel of J"(a).J"(b)! becomes

(2rh) " / / et (=0t 0-099) o0 0, 5, D)6, 0", 3, 0)| 0 (6, 0)

where

R 2 gO)~!
9) = (0,9 0,76
(gﬂ ) (Q? ) <T7 ?r ) 7p’ T'—’—/r/ p 77
and where |, ,,(3,7)| is the corresponding Jacobian, which satisfies in particular

(6.10) 10.0(8,9)] = O((r+r")'7").

Note in addition that, restricted to r = r’ and 6 = ¢, (g,ﬁ) = (p,V) since it is the inverse of
(0,9) = Orpp(r,0,0,9). One can then rewrite the kernel with an amplitude ¢(h) independent
of (r',0") according to the usual procedure (see e.g. [44, Theorem 4.20]). That c(h) belongs to
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S—oewmti'+1=n follows from (6.9), (6.10) and the fact that a € S, b € S,r. This concludes the
proof. |

We next consider two applications of Proposition 6.2.

Proposition 6.3. — If (a.). is a bounded family in So(R?"), supported in OF(R',V,1,¢') (with
¢’ as in Proposition 6.2), then

|72 (a <C,

) | |L2(dwd19)—>L2((r)"—1drd9)

with a constant C independent of h,e € (0,1]. Similarly, if (be)e is a bounded family of S,—1
supported in ©F (R, V,I,¢'),

||J€h(be)T||L2((r)"—1drd9)ﬁL2(da:d19) =0,

with a constant C' independent of h,e € (0, 1].

Proof. The first estimate is equivalent to the fact that <r>%Jh (a)Jh(a)Wr)% is bounded on
L?(R™) equipped with the Lebesgue measure. By Proposition 6.2, J"(a)J"(a)! is of the form
Op"(c(h)) for some admissible symbol c¢(h) € S~>!=". Thus, when composed on both sides

n—1

with (r) = , Proposition 3.1 shows we get a pseudo-differential operator with admissible symbol

in §7°°0. Since such pseudo-differential operators are bounded on L?(R"), according to the

usual Calderén-Vaillancourt Theorem, the result follows. The second estimate is equivalent to the
1—n

boundedness of J"(b)T(r)"=" on L?(R") and thus follows from the first case by taking the adjoint
since b<r>% = <r>%a for some a € Sp. O

In the next proposition, to take into account the dependence on €, we introduce the sets

(6.11) TEZ (R V.L,e)={(r0,p,n) |1 >R, 0€V, pe, €I, £p> (1—*)pl/?},

(see (2.16) for pe ;). This is the convenient replacement of (5.19) at low frequency. It allows to cover
the case € = 1 used for high frequency parametrices (in which case we drop the dependence on ¢),
while the regime € € (0, 1) will be for low frequency parametrices. In this last case, ffst (R, V,I,¢)
has to be understood as a set of (¥, 60,p,1n7). We use only (6.11) in the intermediate technical
statements but, for clarity, we will use both (5.19) and (6.11) to state the main result of this
section (Theorem 6.10).

Proposition 6.4 (Factorizing YDO). — Assume we are given N bounded families (acp), - - ., (ae,N)
of symbols supported in OF(R',V,I,€") such that, for some ¢ > 0 independent of ¢,

aej € S_j(R*™), aeo >c>0 on some OF (R", V", I',").
Let I" € I'. Then there exists C > 0 such that, for all 0 < e < 1, p € R and all bounded family
(fe) of STH(R?™) such that
supp(fe) C ff)st (R", V" 1" ¢),

one can write

Op"(f)= > WM (ac;) Tl ber)t + AN Op" (fen(h),

j+ESN
with (fe,N(h))ene,1] bounded in §—o0:n=N(R21) and some be.os .., be,n such that
(6.12) (be,k)ee(o,1) bounded in Syipn—1-1(R*™),
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and
(6.13) supp(be,i) C supp(fe(-s -, Oripe, ppe)) C OF (R, V' I, Ce).
For k =0, we have explicitly
— |det(8g 90r 9@6)‘
(6 ) be,O(T797 9, 19) fe (7"9’37#’6,694,06) d570(7'797 Q,'&)

Notice that when p = 0, this proposition shows in particular that a bounded pseudo-differential
operator can be factorized (up to a nice error) as a product J"(a)J"(b)! where, according to
Proposition 6.3, J"(a) and J(b)! are bounded respectively from L?(dzdd) to L?((r)"~*drdf) and
from L2?({(r)"~tdrdf) to L*(dxzdd).

Proof of Proposition 6.4. The principle is well known. We recall it briefly to emphasize where the
support estimate in (6.13) comes from. To seek which conditions must be fulfilled by the by’s we
compute first

N—1N-1 N-1
DD WEIMag) o)t = Y0 RO (eja) + BN O (rv (h).
j=0 k=0 Jiky1=0

By Proposition 6.2, the first symbol reads cg 0,0 = ao(r, 0, 8,9)bo(r, 0, 0,7)|det(d, ,(2,7))| so the
requirement that copo = [ together with Proposition 5.8 (in particular (5.39)) show that by
must equal (6.14). This function is well defined since f(r, 0,0, 83@) is supported in the image of
supp(f) by the map (5.35) hence, using (5.25) and (5.27), in ©T(R”, V", I',Ce) if € is small enough;
in particular, ag is bounded below on such a domain. Using then that det (89719(%990) € Sp-1, we
see that by € S—°#*+n=1_ Then, the next symbol in the expansion is D jikii=1 Gkt and we
require it to be 0, which yields the equation

ag(r,0,8,9)b1(r,0, 0,0)|det(0,.(2,0)) = — > ik

jt+k+I=1,
k=0

where, by Proposition 6.2 and the form of by, the right hand side vanishes outside the support of

bo(r,0,8,79). One can thus divide by a¢ and find b;. Higher order terms are obtained by iterating
this process. 0

In the sequel, we let Up(s) = e~hD% he the semiclassical Schrodinger group on the line R, .

Proposition 6.5 (Propagation estimates for the parametrix)

Let I € (0,400). If & is small enough and R’ large enough then for all integer N > 0, all
bounded families (ac)c of So(R*™) and (be)e of Sp_1(R?™), both supported in OF (R, V,1,¢"), there
exists C' > 0 such that

(6.15) |[(r) =N T (ae)Uo(s) T2 (be) T (r £ 5)Y <C,

||L2(<T>n_1de9)"L2(<T>"'_1drd9)
for all £5 > 0 and all h,e € (0,1]. In particular, we have
|[(ry =N = N2 78 (ae) U (5) 2 (be) T (r) N

if N1, No > 0 are integers.

—N
|‘L2((r)"*ldrde)—>L2((r)"*ldrde) < Cfs)7 72,

Proof. The main observation is that 2sp + d,¢(r', 0, 0,9) Z ' + s by (5.4). We can then write

!
/ T +s /
=———(0 2
rts 8990’—&-23@( o’ +250)
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where the prime on ¢ is a shortand for the evaluation at (r/,6’,19, g). Here the fraction belongs to
So uniformly with respect to s > 0. Writing next d,¢’ + 2s0 = 9,¢(r,0, 0,9) — 0,® and setting
b=0b(r+ s)/(9,¢ + 2s0), integrating by part in ¢ shows that (r)~1J"(a)Us(s)J"(b)T(r + s) reads

Jh(<r>_189<pa)Uo(s)Jh(5)T — ih<r>_1(Jh(aga)Uo(s)Jh(B)* + Jh(a)Uo(s)Jh(agE)T)

which is bounded on L?({r)"~'drd@) uniformly in s > 0 by Proposition 6.3 since () ~'d,¢a and b
belong respectively to So(R*") and S,,_1(R?*") (uniformly in s > 0 for b). This proves the estimate
(6.15) with N = 1. For N > 2, the result is obtained by iteration of this process. ]

We next turn to the proof of dispersive estimates for the oscillatory integrals of the form (6.5).

Proposition 6.6 (Stationary phase estimates). — Let I € (0,+0). Ife, ' are small enough
and R, R’ large enough, then for all bounded family (A.). of Sy (R3™) satisfying (6.6), one has

1A S min (A", |hs|/2), sER, ehe(01]

Notice that, unlike the non stationary phase estimates of Proposition 6.1 and the propagation
estimates of Proposition 6.5, we do not need any sign condition on s here.
To prove Proposition 6.6 (omitting € as before), we will rewrite

#(r,0,0,0) = 9(r",0', 0,0) = (r = 1")pp + (0 = 0') - Doy
where, setting 7y =1 + A(r —7’) and 0y = 0" + (6 — 0'),

1 1
Drp = / om0, 0, 0) AN, Do = / doo(r, O, 0, 9)dA.
0 0

Lemma 6.7 (Improved asymptotic expansion). —

1 . .
Orp=0p (1 - 5(19 —0')-g(0") (9 —0")+ S —0') + S (9 — 9’)3) .

Proof. Using the notation and estimates of the proof of Proposition 5.6, we have 7° = n+ S (n/r)
and §(9°) = g(0) + So(n/r) (where the remainders So(n/r), S1(n/r) depend in a bounded fashion
on s) so by using the motion equations and letting s go to infinity, we get easily

e EMOREION

UsYl

Evaluating this identity at (p,7) = (9,9, dog) and using (5.5)-(5.6), we find
0= 0,0+ g(ﬁ —0)-G(0) NI — )+ S_y (0 — 0)> + So (9 — ).

This provides an expansion of d,¢ which yields the result after evaluation at (ry,6’,0,9) and
integration on [0,1]5. O

Lemma 6.8. — Let§ € (0,1). Ife, €' are small enough and R, R’ large enough, then
7|0 —0|>6ls|  and |s|>h — I"(A) = O(h™"(s/h)~).
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Proof of Lemma 6.8. Let us observe first that
= _ 6+ 0
Doy = or [9(9') (19 -

which follows from the expansion (5.6) and by writing 05 = 0"+ A(6 — ) + A(J — ¢’). Then, in the
integral (6.5), we use the one dimensional (linear) change of variable g — J,¢. Its inverse is of the
form

(6.16) 0 <1 + %(19 _ 0/) ~§(0’)(19 . 9/) + STli,n(ﬂ B 9/)2 + S(I)nin(ﬂ . 9/)3) 6.

) + S (9 — 0) + (9 —0")) + S (9 — 0) + (9 — 9’))2] ,

Letting ® be the expression of ® composed with this change of variable, we have

(6179 = (r = 1)g = 50° (14 (9 = 0) - §(0') (9 = 0)) + 67(6 — 0)g(¢) (19 -5 9/> °

5 +

with a remainder of the form
QO = r0-9) (ST;H((ﬁ —0) + (9 — 0)) + SR (0 — 0) + (9 — 9'))2) +
s (S™min(Y — )% + Sgm(v — 6')?) .
The interest of this change of variable is that the only term involving r — 7/, namely (r — ), is
independent of 9. Therefore, using the above expansion, we have
99® = 5g(0")r(0 — 0') + sO() + (0 — 0')(O(min(R, R') ™) + O(e) + O(')).

Hence, by using r|0 — f)’\ > 0|s| and by taking ¢,¢’ small enough as well as R, R’ large enough, we
get a lower bound |0y®| = |s| from which the result follows by integrations by part. |

Proof of Proposition 6.6. The estimate is trivial if |s|] < h. Thus we assume that |s| > h
and, according to Lemma 6.8, that |6 — 8’| < §|s| for some small enough § to be chosen below,
otherwise we use that h="|s/h|™N < h~"|s/h|~™/? = |hs|~"/? for any integer N > n/2. Using the
same change of variable as in Lemma 6.8, we find that the Hessian matrix of P reads

dZ 0 = —2s <(1) §2§0(0/)> +s(0O(e') + O(min(R, R')™")) + O(r]6 — ¢']).

We choose § small enough so that O(r|0 —0'|/s) = O(6) is sufficiently small with respect to the first
matrix on the right hand side (here we use (2.4)). This imposes to consider ¢ and ¢’ sufficiently
small too and R, R’ sufficiently large to use Lemma 6.8. Then, by possibly decreasing again ¢’ and
increasing again R, R/, we find that 8‘1d§’19(i> is a negative definite matrix uniformly with respect
to r,1’,0,0" on the support of the amplitude (and such that |6 — 6’| < §|s|). The result then
follows from the stationary phase theorem with s/h as a large parameter. O

6.2. Construction of the parametrix

In this section, we state the main result of the chapter which is Theorem 6.10 on the construction
of an Isozaki-Kitada type parametrix. Given a chart x: U, C S — V, CR" ! and V C V, as in
Theorem 5.2, we introduce the notation

JMa) :=10.J"a),  JHOB)T = Jhb)TI !
and
(6.18) Jerw(a) =D J(a),  Jenu(b):=J () DI,
where, in (6.18), the symbols will depend on € in the applications. We refer to (2.2) for II,.
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As a starting point, we observe that the general formula
t
e "PB(0) = B(t) —i / e =P (PB(1) —iB'(1)) dr,
0

leads respectively to the identities

(6.19) e~ P I a)Jh BT = JM(a)e PRI (b)T — Ry
with

Ry = % Ot e DP (T, [P (a) = T (@)h? D] € TPEIM b)) dr,
and similarly,
(6.20) e P (@) Jen(b) = Jen(a)e ™ Pi, . (b)T = Rio
with

t
Ryo = i€ / e~it=T)P (Hﬁwe [P Je(ae) — Je(a)D2] e P2, (bo)t ) dr.
0

Recall from (2.15) that PII, D, = 21, D P. .. Note also the scaling in time.
We seek a,b and a., be such that Ry; and Ry, are respectively small and such that J"(a).J"(b)t
and J. . (ac)Je(be)T can be prescribed.
We consider in detail the high frequency case. The first step is to find
a=a(h):=ag+ hay + -+ hMay,

such that k2P, J"(a(h)) — J"(a(h))h?D? is small, in an appropriate sense (here M is an arbitrary
integer order which is fixed). A simple calculation yields

(6.21) W2 Py Jn(a(h)) — Jn(a(h))h*D2 = Jy (co + -+ + BM2epr0)
where

(6.22) co = Fap

(6.23) ¢t = FEay—iTag

(6.24) ¢; = Faj—iTaj_1+ Peaj_a, 2<j<M
(6.25) cyy1 = —iTapy + Peap—1

(6.26) cm+2 = Peam

where E corresponds to the eikonal term and T to the transport operator, namely

E= pn(r7 07 87‘,090) - QQa T= (ap,np) (’I“, 97 ar,O@) : arﬁ - PK(P-

By Theorem 5.2, we can solve the equation F = 0 on ©(R, V, ¢) for any given convex subset V' &€ V
and some R > 1, ¢ < 1. Therefore, solving the system of equations

(6.27) ¢; =0, 0<j<M+1,

on subsets of O(R, V, &) amounts to solve transport equations of the form (5.8), which can thus be
done by Proposition 5.3 (third item). More precisely, given Iy € (0,+00) and Vy € V, we can find
Ro > R, 0 < g9 < € and solutions d%, el djj\[/[ to (6.27) such that

d]i S S—_] (G)i(RO7VO7IO7€0))

(see (5.10) for the definition of ©F (R, V, I,¢)) with the additional condition that, locally uniformly
with respect to (6,49, ),

(6.28) df)t(rﬂ,ﬁ, 0) = 1, T — 00.
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We use the notation &ji to make a clear difference between these symbols defined on ©F (Ro, Vo, Lo, €0)
and the final a;t defined globally on R?" in (6.30). We also point out the technical fact that, to

find solutions &;t defined on ©%(Ry, Vy, In, €0), we choose Ry and €q respectively large enough and
small enough to ensure that

(629) @i(R(%‘/OaIO;gO) C Ti(R07%aIO;€O) C Gi(Rv‘/vI()vg)

(see prior to Proposition 5.3 for T*(R,V,I,¢)). The interest is to guarantee, if (7*,9°) are the
spatial components of the Hamiltonian flow of p,, that (7*(r, 0,9, ), 9%(r, 0,0y 0¢), 0,9) belongs
to the domain of definition of ¢ for £s > 0 (see Proposition 5.3). The first inclusion in (6.29) is
trivial while the second one is a consequence of

’Fs(/ra 97 8’r,9(p) Z T, |Q§S(ra 9787‘,990) - 9‘ S mjﬁiwl 5 |’l9 - 9'

which follow from the flow estimates of Proposition 5.4, (5.28) for ¥° and the asymptotics of ¢ in
Theorem 5.2.

We next globalize the symbols. Given Ry > Ry, V1 € Vg, I1 € Iy and &1 < &y, it is easy to
construct

X+ S SO(R2H)7 X+ = 1 on @i(Rh‘/laIlaEl)a Supp(Xi) - (—)i(ROaVO)IO750)a

by choosing it of the form x1(r)x2 (6 — ¥) x3(F)xa(£0) with suitable x1, X2, x3 € C§° and x1 =1
near +o0o0. We then define

(6.30) a; = xxa; € S_;(R™).

Notice that if we compute (6.21) with a(h) = a(h)* = j a;t, we also have to take into account the

derivatives falling on the cutoff x4; we summarize the above results in the following proposition,
including the case of low frequencies which is completely similar.

Proposition 6.9 (Approximate intertwining). — Let V be a convez relatively compact subset
of Vio. Then for all Vi @ Vo € V and I € Iy € (0,+00), we can find Ry > Ry > 1 and
0 <er <eg K1 such that:

1. at high frequency: one can find symbols aji € S_;(R?"), j > 0, supported in ©F(Ry, V, In, o)
such that

a%(,mevﬂvtg) Z 1/27 on @i(Rh‘/laIl;gl)
and, if one sets a = a(jf 4.4 hMaAiw
W2 P.J" (a") — J"(a")h* D2 = M2 T (rh)) + T (a") + J" (ak)
with 77, € S_pr_o, @, al € S, all supported in ©F (R, Vo, Iy, e0), bounded with respect to h
and, mainly, such that
(6.31) supp(dh) c A0 =9 > e}, supp(a’(}) c {r < Ri}.

2. At low frequency: one can find bounded families of symbols (afj)fe(oyl] in S_;(R?*™), j >0,
supported in ©F (Ry, Vi, Io, o) such that

aio(raeaﬁa AQ) Z 1/27 on (_)i(Rla‘/h[laEl)
and, if one sets a. = afo + -+ aiM,

Pe,nJe (ae) - Je (ae)Di = Je (re,M) + Je (de) + Je (ae,c)
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with Te pr € S_pr—2, Ge, e € So, all supported in OF (R, Vo, Io, o), bounded with respect to
€ and such that

(6.32) supp(ac) C {|0 — 9| > &1}, supp(ac.c) C {r < Ri}.

We point out that the terms @, a. are the contributions of derivatives falling on the cutoff y.
The properties (6.31) and (6.32) will be useful to derive non stationary phase estimates from
Proposition 6.1. The ellipticity condition af > 1/2 (and likewise for aﬁfo) is a consequence of
(6.28).

The next step is a direct application of Proposition 6.4. Here again we only consider the
procedure in the high frequency case but summarize both high and low frequencies parametrices
in Theorem 6.10. Given a symbol Xsﬂ; supported in strongly outgoing or incoming area (see (5.19)
in which we recall that p = p.), we can factorize the corresponding pseudo-differential operator
by mean of Proposition 6.4. More precisely, if I € I; and Vo € V; are given, then for Ry large

enough, e, small enough and all Y% € §7°0(R2") supported in I'%(Ry, Vs, I, 2), one can find

symbols by, € S,,_1_4, supported in ©F (Ry, Vo, I1, Cey), such that b" := bat 44 hbe/I satisfies
T () T = Opl(xs) b + WM Op (7R s

with 7, € §=°~M(R?") houndedly in h. Recall that the cutoff ¢, is defined in (2.7). Using

Proposition 3.8, this can also be written

(6.33) T IO = Opt () + Ogp-2m_geans (WM.

—M/2 M/2

We synthetize the analysis of this section in the next theorem. Notice that, at low frequency,
we consider the e dependent areas Ffst (R,V,1,¢) introduced in (6.11).

Theorem 6.10 (Isozaki-Kitada parametrix). — Let k : U, — V,, be a chart of the atlas of
Section 2 and V € V,; be a convex open subset. For all given

VoeVoeV and Lel €ly&(0,+)

one can choose C > 0, 0 < €1 < €9 and R; > Rg such that for all N > 0 and all 0 < g5 < 1,
Ry > Ry, the following approzimations hold.
1. High frequency: there are a”, al,a" € So(R*™) supported in ©F (R, Vo, Io, €0), satisfying
supp(al) C {r < Ri},  supp(a") C {|0 — 9| > &1}
and % € S_n(R?") also supported in ©F(Ry, Vo, Io,c0), such that for all Xsit € G0
satisfying
supp(xz;) C I'5i(Ra, Va, Iz, €2)
one can find b" € So(R?") such that
supp(b") € ©F (Ry, Vi, I, Cey)
and
(6.34) e PO (G = L (a")e PO + R (1)
with

1

t
R (t) = e " Ogpan _gean (W) — = / e TP gk (gl gt 4 BN PR Y e iDL gk (b) .

0
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2. Low frequency: there are a,a..,a. € So(R*") supported in OF(Ry, Vo, Iy, €0), satisfying
supp(acc) C {r < R}, supp(ac) C {|0 — | > &1}
and 7.y € S_N(R?™) also supported in ©F(Ro, Vo, Io,e0), such that for all bounded family
(Xei,st)ee(o,l] of G—00.0 satisfying
supp(xFe) € TE(Ra, Va, T2, €2)
one can find be € So(R?™) such that
supp(be) C ©F (Ry, Vo, I1, Cey)
and
(6.35) €T Ope (i, ) (€r) = Jew(ad)e ™ P2 T (b0)T + Ren (1)
with

2

et
. 2 P .
Ren(t) = e_ltpoﬁiivN*)L%\,N (1) - z/ e it Je(aec + ae + 7“6,1\7)6_“’[)i Jer(be)Vds.
- 0
In both cases, the symbols are bounded uniformly in h and € respectively.

So far we have not justified to which extent the remainder terms in (6.34) and (6.35) are small.
We will use Theorem 6.10 in subsection 7.3 to prove L? propagation estimates for e ~#F and will see
there that the remainders decay as £¢ — oo. In Section 8, we will use Theorem 6.10 in association
with the (dual) propagation estimates of subsection 7.3 to control the remainders RR (t), Re n (t)
in L' — L* norm.

Remark. For future purposes, we record that, by using (5.5) and (5.6), g and Ry can be chosen
respectively small and large enough in such a way (depending on Vj and I) that we have

0,
(636) =Fe(1/22) and  Cllollf 9] < [0hp(r, 0, 0,9)] < Crlol]6 ~ ),

on @i(RO, Vo, 1o, €p). In particular, d,¢ and g have the same strict sign.
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PROPAGATION ESTIMATES

7.1. Finite time estimates

In this section, we prove propagation estimates, that is an Egorov type theorem, over finite
times but which depend on the spatial and frequency localization. The result is summarized in
Theorem 7.4.

We introduce first some notation. We are going to work on T*((Ram, 00) x S) which is isomorhic
to T*(Rpm,00) x T*S, so we will write its elements as (r, p,w) with (r,p) € (R, 00) X R and
w € T*S. We then let p. = p.(r, p, @) be the principal symbols of —Ag. (see (2.14)) which is
intrinsically defined on T* ((R M, 00) X S). We let ¢¢ be the associated Hamiltonian flow. Notice
that, for € = 1, p; is the principal symbol of —A¢. Note also that the flow ¢¢ is not complete on
T*((Ram,0) x S). We then set

(7%, 8¢) := component of ¢¥(r, p, @) on T* (R, 00).
For R > Ry and —1 < o < 1, we finally consider
(7.1) TH(R,0) = {(r,p,@) € T*((Rar,00) X S) | > R, +p > op!/?}.

It is an open conical subset of T*((Raq, 00) x 8) \ 0 (the strict inequality in (7.1) prevents (p, @)
from being 0). We will sometimes need refinements of such areas, namely similar sets localized
both on charts of S and in energy; if x : U, — Vj is a chart of the atlas chosen in Section 2,
V €V, and I € (0,+00), we set

(7.2)  TER,V,I,0).:={(r,0,p,n) ER™™ |+ >R, 0 €V, p.n €1, £p > opl/?},

where we recall that p. ., is defined in (2.16). We will call such regions outgoing (+)/ incoming (-) re-
gions according to a classical terminology. Note the difference with the strongly outgoing/incoming
regions defined in (5.19)-(6.11) in the case when o = 1 — &2 is close to 1.

We record first non angularly localized estimates on the flow.

Proposition 7.1. — For all 0 € (—1,1), there exists R > 1 such that
1. there exists ¢ > 0 such that, for all € € (0,1],
7> c(r+ |s|p1/2), forall £5>0 and (r,p,w) €T (R,0).

€

In particular, R can be chosen such that ¢? is defined on fei(R,O') for all £5 > 0.
2. For all 0 < e < 1, there exists T > 0 such that, for all € € (0,1],

+0° > (1 —e2)pl/? provided that + s> Trp-*/? and (r,p,w) € TX(R,0).
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3. Let0<e <1 andty>0 (as small as we want). One can find 6 > 0 such that, for all ¢ > 0
and all (r, p,w) € T'F(R, o), we have

P - 07 P
|1—/|2<1—<€2 and :i:sztorpel/2 — :|:1;2>:t<1/2—|—6>.
De Pe Pe

Remark. As in previous parts, we will give all proofs in the case e = 1 (and then drop the index e
from the notation) and, when there is a sign condition, for s > 0. This only simplifies the notation.

Proof. We choose first R; > 1 such that —% > r~1(p—p?) for r > R;. This implies that, as long
as 7™ > Ry

d2 —52_2d —S =S >4—s2 9 —5\2 >9

22T =2-(r0%) 2 4(e°)" + 2(p — (¢°)7) = 2p,
hence that

(7F)2 > r? + 2srp + 8%p > 1?2 — 2|sar|7"pl/2 +5%p>(1— |c7|)(7“2 + s2p).

By a simple bootstrap argument, using the above argument, one can see that 7° > R; for all s > 0
provided that r > (1 — |o|)~"/2R;. This completes the proof of the item 1. For the item 2, we
observe that 75 < r + 2sp'/2 hence, by integrating
& 1 1
L S N
p- @7 T s

@S p 1 2sp1/2
artanh <p1/2> > artanh (])1/2) + 5 In (1 + .

and for sp'/? /7 large enough the right hand side is greater than artanh(1 —£2), yielding the result.
For the item 3, we observe that g° is non decreasing in s so if the estimate holds at some time
before torp~1/? then it holds for all larger times. By possibly increasing R, we may assume that,
for 7 > Ry, we have |22 < 4r~'(p — p?). Therefore, using that 7* > Ry by the item 1, we have

we get

0° — p| < 4ps/r,

so by assuming sp'/2/r small enough, we have |g°/p'/?| < 1 — % Thus, for such times, the first
inequality in the proof of the item 1 yields

&> (1—(1— 52/2)2):%.

1/2

On the other hand, using once more that 7 < r + 2p*/“s, the above inequality yields

. p 2 P
s> (g2 gty — > —,
o= / )r(1+25p1/2/r) - 2r
provided sp'/?2 /r is small enough, say not greater than 44, where 6 > 0 can be chosen smaller than
£2tg/2. By integration over such times, we get 9° > p + se? 2= which yields 0° /pt/? > p/p'/? 44 if
e2sp'/? /r > 28 hence in particular if sp'/2/r > t. a

In the next proposition, we record estimates on the geodesic flow in a coordinate patch. We
consider a chart £ : U, — V,; on S from the atlas chosen in Section 2. We recall that ¢¢ . (, 8, p,n)
is the flow of p. , on (Raq,00) X Vi, the components of which we denote as in (5.11).

Proposition 7.2. — Let V €V, and I € (0,+00). There exists t1 > 0 and Ry,1 > 1 such that,
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1. for all e € (0,1], ¢¢ .(r,0,p,n) is defined for |s| < t17 and (7¢,0%) belongs to (Raq, 00) X Vie,
provided that

(73) > RV,17 0 c ‘/7 pe,ﬁ(ra eapa 77) el
2. For all (j, o, k, B) € Z3", there exists C > 0 such that, uniformly in € € (0,1],

(7.4) 3059402 (32 — 0,20 — p)| < ijfm@
(7.5) 09050+ (72 — r, 72 — )| < Cr=i=1A |r|

for all initial data satisfying (7.3) and all |s| < tir.
Proof. See [30]. O

In Theorem 7.4 below, we will propagate observables which do not remain localized in a single
chart. To handle this fact, the following coordinate invariance property will be useful.

Proposition 7.3 (Normalizing the angular supports). — Let k1 : Uy — V; be a chart on S
of the atlas chosen in Section 2 and 1., as in (2.6). Let (ar)rs1 be a bounded family in S—°°°
such that,

supp(agr) C (R,00) x K x R™, for some K €V,,.

Then, for all given N > 0, one can write

h «, (agr) Uy, = (Z:Opﬁ2 ARk, (R ))1/3,12> Jroﬂf:?VN—m?VN(hNR*N)
and

Qge K1 (aR)¢nl 67‘ <Z Q?e Ko (lR JK2,€ )Qpﬁz (67')> + OL:?VNHL?VN (R_N)7

K2

where (ar.ky (R))rn and (AR ky.e)Re belong to bounded subsets of G000 and, using the notation
(2.3) and (2.6), are supported in

(7.6) { ( 712(0). p, (d712(0)")

If ar depends in a bounded way on additional parameters, then so do the symbols ar g, (), AR ks e
and the remainder terms.

') | (.0,p.m) € supp(ar) | N[R,00) x supp(,) x R

The meaning of this proposition is twofold: it says first the natural fact that a (possibly rescaled)
pseudodifferential operator with symbol supported in (R,00) x K x R™ with a compact set K
contained in Vj, but possibly larger than the support of the angular cutoff ¢,,, can be written
as a sum of operators with symbols angularly localized in the support of ¢,,. The second point,
which is technically important, is the control of the remainder terms with respect to R. This will
be useful to prove Theorem 7.4 below.

Proof. For definiteness, we consider rescaled operators, the other case is similar. By introducing
the partition of unity (2.7), which is equal to 1 near the range of the operator since its symbol is
supported in 7 > R > 1, we have

Q)e H(QR)¢R1 GT ZU/@ €r Qje K1 (aR)wm (ET’)

K2
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where we keep only those ko such that U,, N Us, # 0 otherwise the corresponding operator
vanishes by the support properties of 1, and ar. In each term of the right hand side we write
Yy = Yry Yy + Yry (1 — i, ). The terms involving 1 — 4, are of the form

(7,70, De (o (7, 57 (0)) OB () iy (1= i), 7 (6)) ) DY = Oy ey (RY),

Indeed, since 1 — 1/;,{2 vanishes near the support of ¢,,, the composition rules of Proposition 3.1
show that the parenthese is a pseudodifferential operator with symbol O(R~°) in S~°~°° which
in turns show it is as in the right hand side (for any N) by the third item of Proposition 3.8. Next,

using the notation (2.3) for the transition maps, the terms ¥, (€r)Ope.«, (ar) (s, Vn, ) (er) can be
written

M, D (T2, (7 57 (0)) 09 (@) (D, ) (7, 7 (O))TL,, ) DT

by using that (IL,, Deu)(r) = M, D, (II -  u(¥)). We then use the third item of Proposition 3.1 to
write, for any N, the parenthese as the sum of an operator with symbol supported in (7.6) and a
remainder term with symbol O(R™") in S=°°~2¥ which produces a remainder as in (7.7). This

completes the proof. O

We are now ready to prove the main result of this section. We refer to (3.6) for the notation
which is used extensively below. We also refer to (7.2) for T (R, V, I, 0),.

In the following theorem, given a chart x : U, — V,; on S of the atlas of Section 2, as all charts
below, we let

Cy : (Rm,0) X Vg X R™ = T*((Rpq, 00) x Uy)

be the inverse of the chart on T*((Raq,00) x U,) associated to k, namely that is defined by
Cr(r,0,p,m) = pdr + 3=, m;df; € T3, 10y (Baq,00) x Uy). Notice in particular that

d)io H:Okoqsi,n
on all initial data and times such that ¢¢  (r,0, p,n) remains localized inside (Raq,00) x Vi, x R".

Theorem 7.4. — Let I € (0,00), 0 € (—1,1) and Vy € Vj,, for some given chart ky. There exists
Ro > 1 such that for all given T > 0, all N > 0 and all bounded family (b g) of S~°° (indexed
by R > Ry and € € (0,1]) and satisfying

(7.8) supp(be,r) C TE(R, Vo, I,0) 1,

the following properties hold:
1. High frequency propagation (e =1 and h € (0,1]) : as long as

R>Ry, he(0,1], 0<+—<TR,

| o+

one can write

o—itP (lf}no@’ﬁo(bl,l%)l/;no) oitP — Zw{@ﬂ; (bR(t7 h),{)gﬂ,{ + O}C:iNﬁg{?VN (hNR*N)

with (br(t, h)w)Rr,t,n bounded in 57220 and such that

Cye (supp (br(t, h)x)) C ¢ (Cry (supp(b1,£)))-
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2. Low frequency propagation (h =1 and e € (0,1]) : as long as
R > Ry, e e (0,1], 0 < +te? < TR,

one can write

€ (Vg (1) e (e, ) by (€) ) €7 = (Zwﬁ<er>0pm(be,R<t>~)¢n<er>>
+ OL‘:?VN—>L’;’VN (RiN)
with (be, r(t)x)e,r,t bounded in S§=2°0 and such that

Cre (5upp (be,r(1) 1)) C B (Crng (supp (b))

This is a quantitative version of the Egorov theorem. Its interests are to quantify (in terms of
R) the range of times on which it holds, to estimate the remainder terms in suitable topologies
and to include a rescaled/low frequency version which is not completely standard.

Proof of Theorem 7.4. For definiteness, we consider the high frequency outgoing case (for which
the notation is lighter since there is no e parameter). We use the general formula,

t
(7.9) e P A0)e T = A(t) — / e NP (AN (1) +i [P, A(T)]) €T Pdr
0
Choose t; as in Proposition 7.2 and consider first 0 < s < ¢; R so that the flow remains localized
in a single chart. We seek B(s) = A(sh), or equivalently A(t) = B(t/h), of the form

J(N)

B(0) = ¥, Oplt (bR) Wy, B(s) =Y hIOpL (b;(5))¥n, = Ui (),
=0

for some s dependent symbols b;(-) and some large enough order J(IN) to be chosen. Here and
below we set br = be g for e = 1. A simple calculation yields

(7.10)  hB'(s) + h*[P,B(s)] = (hWy(s) +i[h? P, Un(s)]) e + iV N (8)[R7P, s, ).

According to the usual procedure, we try first to make the first parentheses in the right hand side
small. This is obtained by constructing iteratively the symbols b; as solutions to

(7.11) bo(s) + {bo(s): P} = 0, bo(0) = o (r, 55 ' (6)) s
(7.12) bi(s) +{bj(s),peo} = fi(s),  b;(0)=0,
with

Fi(s) == > (Prok#tbyr ()i — (b ()#Pro b )i

where py, 0 = Dx, is the principal symbol of P in the chart associated to k¢ and py.,0 + Pr,,1 i its
full symbol, and where {a,b} = 0,a-0¢b — d¢a - Oyb is the Poisson bracket. The solutions are given
by

(7.13) bo(s) = brodis,.  by(s) = /O £, 6875 )du,

with ¢7 , the Hamiltonian flow of p,,. According to the estimates (7.4) and (7.5), the formulas
in (7.13) define symbols

bjr(s) == b;(s) bounded in S=°~I(R?") for R > Ry, |s| <t R.
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Moreover, by choosing a relatively compact open subset K¢ € V.., and R; > 1 so that

(7.14) W € Ko, Vo (1,555 1(0)) =1 mear (Ry,00) x Ko,

we can ensure, by possibly taking a smaller ¢t; > 0, that for R>1and 0 < s <t R
supp(bj,r(s)) C (R1,00) x Ko x R™.

Hence, by the last condition in (7.14), Uy (s) and [h2P,1),.,] in (7.10) have disjoint supports. More
precisely, the support of b; r(s) is contained in {r > R} so the symbol of Wy (s)[h%P,1,] is
O(h*®R™%°) in S~°~%° which implies, by the third item of Proposition 3.8, that

Uy (s)[h*P, 7]1»;0] = O}C:fVN—%(rNU_m?VNwam> (hNR*N*QV((N]» .

Here v([N]) is as in Proposition 3.11 (we will see the interest of this choice below). On the other
hand, the construction of the b;(s) ensures that, for some by g(s) bounded in S~°%~/(N) and
supported in {r 2 R},

(h\Ilg\f (S) + i[h2P7 \I]N(S)]) Izm) = hJ(N)@ZD (BN,R(S)M;NO

N p—N—2+v([N
= Og_c:vafbr(FNT)H%?VN+2W([N1) (h R (T D)

by choosing J(N) large enough and by using again the third item of Proposition 3.8. The interest
of going to the order £2(N + v([N])) in the remainder terms is that, by Proposition 3.11,

=P _ (R“/((ND) for times |t — 7| < t1hR,

H=2N Lgm2N -2 (ND)

and similarly from f]-(?VN“'Y(rND to H3N. This allows to take into account the conjugation by

propagators in the integral of (7.9) and get, for our choice of A(t) = B(t/h),
e P A0)e™ — A(t) = Oge-n 0w (WY TIRITY).

Here N is arbitrary so getting h’™¥ "' R'=" rather than A’V R~ is of course harmless. Furthermore,
one can rewrite A(t) as a sum of 1, Opl(bg(t, h). )1, by mean of Proposition 7.3, which yields the
result for |t| < t;hR. Then, by iterating this procedure a finite number (= O(T/t1)) of times, we
get the result (note that along such an iteration, the symbols remain supported in r > R + |t/h|
by Proposition 7.1).

The proof at low frequency is similar up to the replacement of pseudodifferential operators by
rescaled ones and to the different time scaling s = €2t. 0

7.2. Resolvent estimates and their consequences

In this short section, we record some a priori decay estimates for e~*F in weighted spaces,
obtained as direct consequences of resolvent estimates. We consider both high and low frequency
spectral localizations.

We recall first first well known consequences of the following Stone formula

i/efit)\f()\) ((Hf)\—i())*l —(H - /\Jrz‘O)*l) dX
R

—itH __
f(H)e = A%

valid for any arbitrary self-adjoint operator H and f € C§°(R). By integrations by part in A
together with the fact that
ON(H — XFi0)"' = kl(H — XFi0)"17F

it allows to convert estimates on powers of the resolvent into time decay estimates for f(H)e ",
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Everywhere below, we let I € (0, +00) and f € C§°(I). We consider first low frequency estimates
for P. Using the resolvent estimates of [6] namely

H(er>7k (e?P-X+ iO)_k <er>7k‘

< Cy, Arel, e€(0,1],

L2—L2 —

we obtain from the Stone formula, applied to H = P/e? and t replaced by €2t, that for any k € N
(7.15)  |[er) R F(P/E)e  (er) R L )y F teR, e (0,1].

Another estimate from [6] that will be particularly useful is

() (P =Ai0) ™ ()7

_>L2N<

(7.16)

<C, A€ (0,1),

L2—L?
for it implies (see e.g. [34, Thm XIII.25]) that

1/2
1 2
(7.17) </]R ||(r)""e tPf(P/EQ)uoHLQ dt) < Clluol| e, ec(0,1), up € L*.

Getting similar estimates at high frequency, with polynomial growth in 1/h, requires an as-
sumption, for instance a non-trapping condition. This is where the assumption (1.5) is useful since
it allows to prove the following proposition.

Proposition 7.5 (Semiclassical power resolvent estimates). — Assume (1.5). Then for all
k > 0 there exists Ny, such that
—1-k
7.18) ||(r) 71 F (n2P - A i) T )| SKN Nel he(0,1).
(718) ||+ )" | s el he (1

Proof. Tt is based on an argument in [43, Prop. 1.3]. It consists in finding an operator Py defined on
(0, 400) X S coinciding with P near infinity and satisfying nice resolvent estimates (as (7.20) below)
and then to use iterations of the resolvent identity. We explain schematically how to implement it
in our context. We let |Dg| = (—Ag)l/2 be the square root of the asymptotic Laplacian on & and

h Lj, h™L!, € {1,hd.,r *h|Ds|}
where j,m € {0,1} are the orders of the operators. Proceeding as in [6], one can find a second
order differential operator Py on (0, +00) x S which is close everywhere to exact conical Laplacian
—9? —r~?A; and equal to P near infinity in such a way that, letting Py, be the rescaled version
of Py, namely

Pon =Dy (h*Po)D;

we have, for any K € C\ 0 and k € N,
(7.19) |[(ry ™" Lj(Posn — 2) L, () F|| < C, he(0,1], z € K\R,

where for simplicity, || - || is the operator norm on L?((0,00) x S,r"~!drdvoly). Such resolvent
estimates follow from the techniques of [6] (more precisely Proposition 3.13 and Lemma 4.2 there)
which are based on a rescaling argument; they were used to prove low frequency estimates but
work equally well at high frequency (one only uses that Py j, is close to —9% —r~2A; which satisfies
a global positive commutator estimate at energy 1). Then, by unitarity of Dfl and (7.19), we find

[[(r)=*h L;j(h*Py — 2) "R L, (r) || || Dy (hr) ™ L (Pon — 2) " F Ly, (hr) ~* Dy |
|| ()~ L-(POh—z) ML (hr) |

h~ 2kH (POh*Z) kL;n k||
h2k,

IZANRZA

(7.20)
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To illustrate the starting point of the method of [43], we check rapidly (7.18) for & = 0, more
precisely that

(7.21) H<7">_1(h2P - Z)_1<7a>_1HL2(M)~>L2(M) < h_Q_Ma

whose interest is to replace the compactly supported cutoffs y in (1.5) by the weight (r)~1. By
using the cutoffs ¢, introduced in Section 2 which are equal to 1 near infinity and using the
following resolvent identity

(7:22(r)(h*P = 2)~" = ¢(r)(h* Py — 2) 7" {(r) = C(r)(B* Py — 2) " [{(r), B*P] (WP P — )~
together with (1.5) and (7.20), we find that for any x € C°(M)
Sh 2+ h M

|’<T>_1(h2p_Z)_1XHL2(M)HL2(M)

By using a second time the resolvent identity (7.22) and using the above estimate, we obtain (7.21).
This leads to (7.18) for k = 0. We get the result for higher k& by the same induction as in [43]. O

Using again the Stone formula with H = h2P and t replaced by t/h?, Proposition 7.5 yields
automatically

H —1— kf h2 ) 7th<r>717k:HL2
which in turn provides the weaker estimate

(7.23)  |[(r) " EF(REP)e ()T [ o e SEOVHE/R) TR, teR, he (0,1),

ShNe/RA TR teR, he(0,1],

—L2 ~

which we record under this form to follow the natural semiclassical time scaling. Similarly to the
estimate (7.17), we also have the following consequence of (7.18) for k = 0,

1/2
(7.24) (/ H(r)‘le_itpf(hQP)uoHiz dt) < O ||uo|| 2, he(0,1), up € L2
R

We recall that when the manifold is non-trapping, one can take Ny = 1, and the resulting h'/?
factor on the right hand side corresponds to the H'/2 smoothing effect of the Schrédinger equation.
In Section 8.4, we will also recall that, if the trapped set is sufficiently filamentary, then (1.5) holds
with e.g. M = 0 (actually AM can be replaced by A='/2log \) and that (7.24) does not hold with
h'/2 but rather with h'/2|log(h)|.

7.3. Long time estimates

In this section, we prove several L? propagation estimates on e~ *¥. They will be used in
Section 8 to control the remainder terms of the parametrices. However, their interest goes beyond
the applications to Strichartz inequalities. They generalize well known estimates (see e.g. [31, 25])
in two ways: on one hand we consider the general geometric framework of asymptotically conical
manifolds and on the other hand we include a low frequency version of such inequalities which, to
our knowledge, is an original result.

Everywhere below, we consider a fixed chart s : U; — Vj;, on S and the related polar coordinates
(2.1) on M.

We start with the following result on strongly outgoing/incoming microlocalizations (see (5.19)
and (6.11) for the related areas). This is a first application of Theorem 6.10.

Proposition 7.6. — Let k € N, f € C§°(0,+00), Iz € (0,+00) and Vo € V.. Then, if Ra > 1
and 0 < €2 K 1, we have the following estimates:
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1. High frequency: Assume (1.5). If xt € S=°0(R2") is supported in TX(Ry, Vo, I, e3),
|[(r) e ™ F(R* PYOPR (xa) 0w (1) ¥ | 1oy 1o S (E/W)7F, #t>0,  he(0,1].
2. Low frequency: if (Xei,st)e is a bounded family of G000 supported in fsit’e(Rg, Va, Is, €9),

||<€T>73k67itpf(P/EQ)@)EH(X?fSt)iLR(GT)<67‘>2k||L2*)L2 < <€2t>7k, +t >0, e € (0,1].

We point out that, in the high frequency estimate, we don’t have any loss in h, as the h=V¢ in
(7.23).

Proof of Proposition 7.6. We may assume k > 1. For definiteness, we consider the outgoing high
frequency case. We use the notation of Theorem 6.10, in particular (6.34). Note that, up to
possibly decomposing xJ; as a sum of symbols supported in balls with respect to #, we assume
that Vo € V for some convex open subset V' &€ V.. The contribution of the main term of the
Isozaki-Kitada parametrix is

()2 £ (B2 P)(r)™) () =R T2 (@h)e TP TR (6 )25,

Here the parenthese is a bounded operator on L? according to Theorem 3.9 while the second factor
provides the expected decay (t/h)~* by Proposition 6.5. We next consider the contribution of the
remainders of the parametrix. The first term of the remainder R% (¢) of (6.34) produces a term of
the form

<r>73kf(h2P)€7itPOg{:?vN_>g{?VN (hN) <7,>2k
which is O((t/h)*~2*RN~N+) in L? operator norm if N > 2k by (7.23) since one can write
(725) OU’C:?VN%}C?VN(hN) = <T>_NOL2AL2(}LN)<T>_N-

By possibly increasing N so that N > Ny, we get an estimate by (¢/h)~* (since 2k —1 > k). In
the integral term of R%(¢), we consider first the contribution of J"(h¥ry). By choosing N large
enough (N > 6k + 1 and N > Ny), Proposition 6.5 and (7.23) imply that

< ((t =) /) = )y

~

‘ ‘ <,r,>—Skf(h2P)e—i(t—T)PJ’iL(hNT,N)e—iTDi Jg(bh)T<r>2k‘

L2—1L?

After integration in 7 between 0 and t, we get an estimate by (t/h)~*. It then remains to study
the contributions of a and @". They follow as the one of A7y once observed that we have the
following estimates. By assuming R large enough, the first item of Proposition 6.1 allows to write,
for all N,

(7.26) Thal)e P Tt BM = Ogeman_gan (BN (7/B)™N), #1720,

since one has r < ' on the support of the kernel of Jh(af})e’”Da22 J"(b"). Using the second item
of Proposition 6.1 and choosing €5 small enough (hence ensuring that [ — ¥ 2 1 and ¢ — 9| < 1

on the support of the Schwartz kernel of J"(a")e=i™P% J2(b")1), we obtain similarly.
.~ —iTD? L —
(7.27) JraMye P g (pM)T = Oge-2n_503n (RN {(r/h)~N), +7>0.

Using (7.25) with AV (7/h) =" instead of k", we have the required spatial decay to use (7.23) and
to control the growing weight (r)2*. This completes the proof at high frequency. The proof is
completely similar at low frequency by using (7.15) instead of (7.23). O
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In the next result, we partially relax the assumptions of Proposition 7.6 by replacing strongly
outgoing (or incoming) microlocalizations by general outgoing (or incoming) ones, but at the
expense of a stronger weight (which will eventually be harmless). In the sequel, we denote

fi(R,‘/,I,O') = {(r,0,p,n)|r>R, 0€V, p.el, £+p> 0p,1{/2}
(7.28) TER V. Lo) = {(rnb,pn)|[r>R, 0€V, poyel, +p>opli2}.
These regions correspond to (7.2) but we now drop the index x (unless it is necessary, i.e. in
Proposition 7.9) and distinguish between the high and low frequency cases. We recall that the

difference with strongly outgoing/incoming regions considered in Proposition 7.6 is that o can be
any real number (—1,1), while 0 = 1 — 2 was close to 1 in the previous proposition.

Proposition 7.7 (Half microlocalized propagation estimates)
Let k e N, I, € (0,+), Vo € V, and 0 € (—1,1). Then, if Ry > 1, we have the following
estimates:

1. High frequency estimates: if x4 € S§=00 s supported in fi<R2, Vo, I, 0),

(7.29) ||(r) e FR2 YO (xa) B} || S @mTE k=0, he(0,1]

~

L2—L2
2. Low frequency estimates: if (xe+)e 15 a bounded family of symbols in 5§20 which are
supported in T (Ry, Vo, Iz, 0),

[(er) = e £(P)Ope (Xt Vin(er) er) |

We will use here the results of Section 7.1.

< (E2)7F, +t >0, ec(0,1].

~

L2—L?

Proof of Proposition 7.7. We consider in detail the high frequency outgoing case for ¢ > 0. We can
replace Opl'(x+)(r)*¥ by Opl:(x%) for some % € S=° supported in the same set as y; indeed,
this is only at the expense of a remainder of the form (r)=NOp2_,;2(hY) (for any fixed N) and
whose contribution to the estimate is a bound by (t/h)~* thanks to (7.23). We then use a spatial
dyadic partition of unity to split

(7.30) =Y xhe X e =x0/RXE,

R=2l
1>1g

with some x € C§°(0, +00) so that each Xi,R belongs to S~°°0 with seminorms of order R¥. For
some small enough €2 > 0 to be chosen below, we pick T} > 0, large enough such that for all
l Z lOa

(731) 6" (Culsupp(s 1)) € {p> (1= B2 r> R} for s> BT,

with ¢* = ¢ defined prior to Proposition 7.1 (in the low frequency case, we should consider ¢?).
This is possible by the item 2 of Proposition 7.1 since, using the notation (7.1) with e =1,

Cr(supp(xy z)) C TF (Rs, 0).
For each R, we then proceed as follows: }
If 0 < ¢t < T hR. We write (r)~**e="P f(h2P)Opl(x} z)¥n as

((7“) —4kf(h2P) <7“>4k) <7“> —4k (e—itPQ)Z(Xi7R)1;ReitP) e—itP,

where, as in the proof of Proposition 7.6, the first parenthese in the right hand side is bounded on
L? thanks to Theorem 3.9. The second parenthese can be computed by mean of Theorem 7.4. We



7.3. LONG TIME ESTIMATES 69

get a sum of bounded pseudo-differential operators with symbols supported where r ~ R (using
the item 1 of Proposition 7.1 and that we propagate the support of X’th over a time t/h < R)
plus a remainder which is, for any fixed N, of order hN R~ say in L? operator norm (here the
stronger H_ 2N — H2N norm is not necessary). Since (r)~%* composed with pseudo-differential
operator locahzed in 7 ~ R has norm O(R~*F) and since 0 < t/h < R, we find

[t e s PO ||, SRR
2_y7,2
(7.32) < (t/h)FRT

where the factor R* takes into account that R’kxﬁ_yR is bounded in 50
If t > T hR. In this case, we write (r}_4ke_itPf(h2P)OpZ(xﬁ_’R)zzn as

<,r>—4kf(h2p)e—i(t—T+hR)P (e—iT+hRPQ)Z(Xﬁ_7R)¢HeiT+hRP) o—iT+hRP

By (7.31), Theorem 7.4 and the seminorms estimates of Xi, R, the parenthese is a sum of pseudo-

differential operators with symbols of size R* in 5‘00’0, supported in strongly outgoing areas,

(7.33) Z @Z(Xﬁ,R(h»le}m supp(xs r(h)) C T (R/C, Vi, I, e2)

with the additional property that r ~ R on their supports, and of a remainder O}C—N S, (RN R=N)
for any fixed N. In particular, if we take N > max(k + 1, Nj) (see (7.23)), we get

‘ ‘ 4kf h2 —i(t—TJth)POj{:?VN*}:}C%VN (hNR—N)‘ Lepe
< pN—Ne p—k—1 H —k=1 (]2 pyp—ilt—=T+hR)P 71971‘
S (1) f U2 P)e [
< (t/h— T R) ™R+
(7.34) < (t/h)y"*R7L.

To get the contribution of the pseudo-differential sum (7.33), we use Theorem 6.10, which is why
we need to choose €5 small enough. For any given N, we can write

OO (W) = T (@) TEB)F + O gen (W RTY)

where, by (6.13), b% is supported in r ~ R (this allows to get the additional factor R~ in the
remainder term) and belongs to Sy with seminorms of order R¥ (uniformly k). The contribution
of the remainder is estimated as above by choosing N large enough, while the contribution of the
first term follows from Proposition 7.6 through

H =4k F(R2P —i(t—T_,_hR)PJLL(ah)J'IQz(biIL%)T‘

L2—L2
S R ||() T (2P TR @t Tl p) )|
< R3*(t/h — T, R)"*RF
(7.35) SR *(t/n)k

where the factor R¥ on the third line is the size of seminorms of b’ in Sp. Combining (7.32), (7.34)
and (7.35), we get

|- p(n2Pye it Opl(x “He/myE

which, once summed over R = 2!, provides the estimate (7.29). The low frequency case is obtained
analogously by using the low frequency part of Theorem 7.4 together with (7.15). O
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Proposition 7.7 provides time decay estimates with rate proportional to the decay rate of the
weight. In the next two propositions, we get fast decay (and O(h°°) estimates at high frequency)
for suitable microlocalizations.

Proposition 7.8 (Improved microlocal propagation estimates I)
Let I, € (0,400), Vo @ V,,, 0 € (—1,1) and Ry > 1. If Ry > 1 then for each k € N and
X+ € S=0 supported in Fi(RQ,‘/Q7IQ, o), one has

]ﬂ]l[o,m(r)f(hQP)e‘“POp’;(Xi)wr)\ SHEE/R)TF, 4t>0, he(0,1].

L2—L?

This proposition reflects the intuitive fact that the forward (resp. backward) propagation of
data localized in a far away outgoing (resp. incoming) area does not meet the region {r < R;}.
Note that we consider only the high frequency case, for which the estimate is improved by a factor
h¥ compared to the one of Proposition 7.7. At low frequency, Proposition 7.7 will be sufficient for
us.

Proof of Proposition 7.8. Here again we consider the outgoing case. We use the notation of the
proof of Proposition 7.7, in particular 7'y and the decomposition (7.30). We distinguish two cases.
If 0 <t <Ty{hR. By Proposition 7.4, we can write

Lo, (S (HE ) O ce )b = D B0 (1) F(BEP)Opr, (G0, e

+OL2—>L2(h R~ )

with symbols a’}%(t) bounded in S0 as h,t, R vary and supported in r ~ R by the first item
of Proposition 7.1. In particular, they are supported in sets where r 2 Ry > 1. Thus, using the
pseudodifferential expansion of f(h?P) in Theorem 3.9 (here the localization ((r) is implicit for
we can write f(R2P)Oph (alk(t)) = f(h2P)¢(r)Opl, (a(t))), it follows from symbolic calculus and

K1 K1
the form of the remainder terms in this theorem that

Lo, (r) f (h*P)Op}:, (af () = Opa 2 (RN R™Y)
for any V. We thus conclude that, for any given k,

(7.36)] | 10,11 () F (B2 P)e P OB ()| o o = O(RERTITF) = O(hF(t/h) " R1).
If t > T4 hR. In comparison to the proof of Proposition 7.7, it suffices to consider the terms

|| L0,y (r) f (B2 P)e T TR EIP R (g TN, 0 S

R |11 ry) (r) f(R2P)e™ E=TRRIP gl (1) g0 (o) T ()24 | L

since all the other ones are remainder terms carrying an additional A"V factor with N arbitrarily
large. To estimate the norm in the second line, we use the Isozaki-Kitada parametrix as in the
proof of Proposition 7.6. All remainders decay as (t/h— T, R)~* times h* (or even h") by pushing
the expansion to a sufficiently high order exactly as in the proof of Proposition 7.6. Thus, it
remains to consider the main term which is

—i(t— 2
(7.37) Lo 1 (r) f(R? P (a")em 1T T (bl )T () 2.
Using Theorem 3.9, one can write

Lio, gy () f(R*P) =1 g, (r) f(R*P 9,7, (r) + Or2s e (KN )(r)=N
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with R, > R;. By choosing N > 3k, the contribution of the above remainder to (7.3~7) is of the
form O(h*(t/h — T, R)~*) by Proposition 6.5. On the other hand, by choosing Ry >> Ry, the first
item of Proposition 6.1 shows that (uniformly in R)

Lo,y (r) F (W2 P) T} (@) TR DS Jh (T () = O((t/h — Ty R)~*h™).
We thus get
R [1g () f (B2 P)e™ T THIP T0 (ah) J1 (b)) W*R™*"(t/h — Ty R)™"
W*R™H(t/h) ="

Taking (7.36) into account, we conclude as in Proposition 7.7 by summing all estimates over R. O

i >
L2—L2 ~
S

In the next proposition, we use the notation (7.2) (when ¢ = 1 we do not indicate the dependence
on €). We let x= and xist be supported in an angular patch associated to a given chart « (the same
as in all previous propositions) but we allow the symbols x+ and x.  to be angularly supported
in a possibly different patch associated to another chart '

Proposition 7.9 (Improved microlocal propagation estimates II)
Let Vo € Vo € Vi, Iy € (0,400). Let also Vi € Vi, I} @ (0,+00) and o € (—1,1). Ifea >0 is
small enough and Rs > 0 is large enough, the following estimates hold for all k € N:

1. High frequency case: if x4, xst € G000 satisfy

Supp(X:F) - f:F (R27 VQI7 Iéu U)H'a Supp(Xsﬂ;) C f;& (R27 ‘/Qu IQ, 82)
then, for £t > 0 and h € (0,1],

)b OBl () PR P P O (e ()|

2. Low frequency case: if (x4 ), (Xe,st)e are bounded families of G000 satisfying

S A R

12

Supp(XE,iF) C fj: (RQv V2/a Iéa 0)#&’7 SuPP(Xe,st) - fsji’g (RQ» V27 127 52)
then, for £t > 0 and € € (0,1],

€t (1) O (e ) (P 2)e ™ O () er) ()|

We need the following lemma that provides a suitable version of the action of a pseudo-differential
operator on a Fourier integral operator. We recall that the symbol class Sy is defined at (6.1) and
the area ©F(R,V, I,¢) at (5.10).

< 2t —k
L2—r2 ™ (€0

Lemma 7.10. — Let Iy € (0,400). If g9 > 0 is small enough and Ry > 0 is large enough, then
for all a € Sy supported in OF(Ry, Vo, Iy, €0) and x € ST supported in (Ry,00) x Vo x R™ with
Ry > Ry, one can write for any N
Opi(x) I (a) = Il (an () + finite sum of BN (r)=N By, (r)=N I (rn(h))

with ||Bu||2—12 < 1, (ra(R))n bounded in S=°° and supported in ©*(Ry, Vo, Io, 2¢0), and with
(an(h))n bounded in S=°%F satisfying

supp(an (h)) C supp(x(., ., 0rp, 0pp) x a).
More precisely,

an(h) = x(r,0,0:¢,0p)a(r, 0, 0,9) + O(h)

where O(h) is a finite sum of products of derivatives of x (of order > 1) evaluated at (r, 0,0, Opp),
of derivatives of a and of rational fractions in derivatives of .
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Proof. Tt follows from the usual calculation of the action of a pseudo-differential operator on an
oscillatory integral, see e.g. [1, 40]. O

Remark. Of course, a completely parallel statement holds at low frequency but we do not quote
it for we give the proof of Proposition 7.9 only in the high frequency case. Also, the parameter
2¢o in the support of the remainder terms (coming from technical considerations due to the non
locality of Op!(x)) could be replaced by any &y > g¢ but this is irrelevant for our purposes.

Proof of Proposition 7.9. We consider again the high frequency case for ¢ > 0. Also, w.l.o.g. as in
the proof of Proposition 7.6, we may assume that 1} is convex to be in position to use the expression
of e_”POpZ(X:;)@N given by Theorem 6.10. Proceeding exactly as in the proof of Proposition 7.6,
up to the replacement of (7.23) by the new a priori estimate

()b Oplls (=) F(R2P)e ™ D () =N |y S(E=7)/W)7FY, o< <t

which follows from the adjoint estimate to (7.29) for N large enough, we see that the contribution
of the remainder R% (t) is O(h*{t/h)~*). Note that here, we do not have to care about the fact
that x and x’ may be different. It then remains to consider the contribution of

(r) e Oplty (X )* F(R2P) P (a)e= D% TR (0 () .

We consider the case when k = £’ and explain at the end of the proof how to handle the general
case. Using the expansion of Theorem 3.9 and symbolic calculus, one can write for any N,

(r) ¥ b Opli (x=)" f (h* P) = OpL (XX (h) b + O™ ) g2 (r) ™
with x* (h) € S=°k with the same support as x— and bounded with respect to h. Note that we

J(a") = . J"(a") by the localization of the support of a”. The contribution of the remainder
follows from Proposition 6.5, provided we take N > k. On the other hand, using Lemma 7.10, we
can compute

Opﬁ(x’i(h))J,ﬁL(ah)e_i“ji JhMT = J,if(aN(h))e_”Di JH(BM)T + remainder terms.

The contribution of the remainder terms follows from Proposition 6.5, using their fast decay in r and
h. On the other hand, on the support of ay(h), one must have (r,0, 0., ) € I~ (Ra, Va, I, 0)
and (7,0, 0,9) € O (Rg, Vo, I, &0). This implies in particular that

~0pp > opu(r,0,0,0,090) "/ = 0lo| and 0> 0.

By (6.36), these conditions are incompatible if ¢ > 0, so ax(h) = 0 in this case. On the other
hand, if ¢ < 0, one has 0 < 8,¢ < |o|p(r, 0, drp, Dpp)'/?, hence

a?r= 29" (r,0)95, 008, > (1 — %) (9,¢)?
which, together with (6.36), implies that for some ¢, > 0
10— 9| > c, 0%
Thus, on the support of the kernel of J"(ay (h))e="P% J"(b")T, we have
10— 9| > co0® >0 210 — )

so we obtain the fast decay by mean of the item 2 of Proposition 6.1, provided e, is small enough
and Ry is large enough. This completes the proof (when x = k’). When x # «/, we may split
Oph (x=)* as Opl (x—)*xs + Op™ (x=)*(1 — x,) with x,, = 1 near the spatial projection of the
support of a®. The operator @Z, (x—)*xx can then be written in the chart x as in Proposition
7.3 (and then be treated as above), up to terms which decay fast in h and r. The contribution
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of (1 — x.)f(h2P)J"(a") also produces terms which are O(h>°) and decay fast in r. All these
decaying remainders can then be handled thanks to Proposition 6.5. ([






CHAPITRE 8

STRICHARTZ ESTIMATES

In this chapter, we prove the results stated in Chapter 1. We focus on the low frequency case
(in dimension n > 3), i.e. on ey defined in (1.3). Indeed the proof of Theorem 8.2 is slightly more
technical than the one of Theorem 1.3, for instance to handle the LY — L4 estimates of f(P/€?).
In Section 8.3, we explain the minor modifications to handle high frequencies. In Section 8.4, we
prove Theorem 1.4, by showing that the global in time Staffilani-Tataru trick, used initially for
non-trapping geodesic flows, still applies to the case of a sufficiently filamentary trapped set.

8.1. Finite time estimates

In this section, we use the well known geometric optics technique to derive propagator approx-
imations for finite times, but depending both on the frequency and spatial localizations. This
follows previous similar arguments introduced in [30] for high frequency localizations. Our main
purpose is to give such an approximation at low frequency, but we restate the high frequency case
both for completeness and for comparison with the low frequency regime.

For a given chart x : U, — V,;, on the angular manifold S, V C V., I € (0,+c0), C > 1,
e € (0,1] and R > 1, we use the notation

Qr(V,I,C) = {(r,0,p,n) €p,'(I) |7 € (R/C,CR), 6 €V}

Qr(V,1,C) = {(0,p,1) €p_+(I) | 7€ (R/C,CR), 6 €V}
Note that Qr(V,I,C) =Q; r(V,1,C)
Proposition 8.1 (Existence of phase functions). — Let V € V, be a relatively compact open
convex subset of Vi,. Let Vo € V, Cy > 1 and Iy € (0,+00). There are 0 < tg < 1 and Ry > 1
such that one can find a family of smooth functions

((pe,R)ee(O,l],RZRg

defined on (—toR,toR) X Qe r(Vo, I, Co), solving the eikonal equation

as‘ﬂe,R + pe,n(ra 97 87",9@6,1%) =0, @e,R(Ov T, 07 P 77) =rp+ 0 - m,
and satisfying the estimates
2
. 8% i
(81) ’65636585 (@R,e(s) - <;0€,R(0) + 3p€,m)| < C'YER I lﬁla

for R> Ry, e € (0,1], |s| < toR and (1,0, p,n) € Qe r(Vo, Lo, Co).
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Proof. Tt follows the usual local in time resolution of the Hamilton-Jacobi equation, by using the

flow estimates given in Proposition 7.2 which allow to show that the map (r, 0, p,n) — (75,92, p,n)
is a diffeomorphism if |s| < toR with ¢y small enough. More precisely, to prove that this is
a diffeomorphism, one can check that the map (z,0) — (R™7,92)(Rx,0,p,n) is close to the

€ €

identity on (1/2Cy,2Cy) x V provided that s/R is close enough, uniformly in €, p,n. The convexity
of V allows to check that this map is injective while standard arguments show that the range will
contain (1/Cy, Cy) x V. O

We can next consider the related Fourier integral operators

7%

(S8 (s, AJu(r,6) = (2m) " [ [ eiloanCnonm =) 4 (s, 50, 5wyt g e
and, setting or = ¢1,R,
Whis, A)u(r,0) = (27rh)_"//e'%(‘/’R(S’T’e’p’”)ﬂl’kel'77)A(s7n&p7 n)u(r’, 0" )dpdndr' d9’

which are globally well defined on R™ provided the amplitudes A and A are supported respectively
in Q¢ r(Vo, I, Co) and Q1 g (Vo, Io, Cp). Using the cutoffs ¢, (er) and ¢, (r) chosen in (2.6), we can
pull these operators back on M, i.e. define the operators

We rw (s, A)(er) := T, (DWe r(s, A)DY) I, o (er)
and

W (s, A)the(r) := ILWh(s, AL 14, (7).

Proposition 8.2. — Let V € V,, be convex. Let Vi € Vj € V, Cy > Cy > 1 and I, € Iy €
(0,+00). There are 0 < tog < 1 and Ry > 1 such that for any N € N the following approzimations
hold.

1. Low energy WKB approximation: Given a bounded family (ae r)e r of G000 supported
in Qe r(Vi,11,C1), one can find a bounded family (Ac r(e*t))ers of S™° supported in
Qe r(Vo, 1o, Co) and x € C5°(0, +00) such that

e_itpwe,ﬁ(agl%)q;m(er) = We,R,m (€2t7 Ae,R) X(GT/R)'(ZJK(GF) + OLlﬁL2 (E%R_N)

and

(8.3) |[We e (€28, Ac r) X(er/R)(er)|| e S (072
as long as
e € (0,1], R > Ry, t| < toe *R.

2. High energy WKB approximation: Given a bounded fam?;ly (ar)r of G000 supported in
Qr(V1,11,Ch), one can find a bounded family (A%(%))R,h,t of S~°°0 supported in Qr(Vy, Io, Co)
and x € C§°(0,+00) such that

e P Op(ar)u(r) = Wi (t/h, A) X(r/R)w(r) + Opa 2 (W R™T)
and
(8.4) (W o 8/, AR) X(r /R ()] 11, poe S 1E72
as long as

he(0,1, R>Ro,  |t| <tohR.

We will use the following lemma that clarifies the roles of the low frequency scaling and of the
Riemannian measure.
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Lemma 8.3. — Let K(7,0,#,0") be the kernel of an operator W on R™ with respect to the Lebesque
measure drdl. Assume that K is supported in ((RO, 00) ><V)2 for someV € V. Then, the Schwartz
kernel KCe of T1, (D£W®;1) I with respect to the Riemannian measure satisfies

|Ke(r,w,r',w")| < Ce*| K (er,8,er’,0")(er')! ", w=r"10), ' =r10),
for some constant C' depending on V' but not on K nor €.

Proof. We omit the conjugation by I, whose role is irrelevant here. Then

DWulr,6) = € / / K(er,0,#,0'yu(¥, 0")di" do'

6"//K(er,@,er’,H’)(er’)l_"(ﬂ)eu)(r’,9’)(r')"_1d7“’d9’

so that the kernel of D.W D! with respect to (r')"~tdr'df’ is €"K(er,0,er’,0")(er’)1=™. Since
(r")"=1dr'df’ is comparable to the Riemannian density (/)" 'det(g(r’,0))*/2dr'df’, we get the
result. g

Proof of Proposition 8.2. We consider the low energy case. Dropping the spatial cutoff for sim-
plicity, one has the identity

2t
(85) e_itPWe,R,n(OvAQR) = We,R,m(€2t7Ae7R) - / e_z(t_e%)PWG,R,m(Sa be,R)dS
0

where
WE,R(S7 be,R) = asWe,R(S7 Ae) + iPemWe,R(Sy Ae)
By the usual geometric optics construction, we can find, for any N, symbols A, r(s,r,6,p,n) in a

bounded set of S0 (as e € (0,1], R > Ry and |s| < toR vary), supported in Q. g(Vy, Iy, Cp) and
such that

Ac Rls=0 = Ge,R, be,r(s) in a bounded subset of G0N supp(bE,R(s)) C Qe r(V, 1o, Cy).

This follows by solving iteratively transport equations in the usual manner and by observing that,
in the iterative construction of the amplitude A, r, the symbols decay faster and faster in ; in other
words, the scale of classes §—o0—i replaces here the scale of powers h’ in the usual semiclassical
framework. The boundedness in s of the solutions to the transport equations follows from the flow
estimates of Proposition 7.2. To get the remainder estimate and (8.3), we proceed as follows. Since
ae,r is supported in a region where # ~ R, we can write

Op'(ac,r) = Op' (ac,r)X(F/R) + Op' (asce. )

with @ e = O(R™Y) in S=N.=N for any N. In particular, using Lemma 8.3, it is not hard to
check that

||Q)e(aoo,e,R)'J)n(5T) | |L1—>L2 ,SN RiNen/2~

This allows to replace e~ Opl(ag)¥, (r) by e P Opl(ar)x(er/R)t (er) and we are left with two
types of terms: the main term of the expansion W g (s, Ae r), which will produce (8.3), and the
remainder involving W, g (s, be.g)x(er/ R)i, (€r) coming from the integral in (8.5). We start with
this remainder. Using (8.2), with b, , instead of A., and using the decay in 7 together with the fact
that we integrate over a fixed bounded in region in 1/, the Schwartz kernel of W, r(s, b, r)x(7/R)
with respect to di'df is bounded by C#~N+("=1) and is supported in a region where both # and #
are of size R. Note that the power ¥"~! comes from the fact that the kernel is given by an integral
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where 1 belongs to a region of volume #"~1. Then, by Lemma 8.3, the kernel of W, g ..(s,bc r)
with respect to the Riemannian measure is bounded by

€n<er>7N/3<€7,/>7N/3R7N/3.

The corresponding operator has an L' — L? norm of order ¢”/2R~N/3 (if N/3 > n/2). Since N is
arbitrary, |€*t| < R and the propagator is unitary on L2, we get the control on the remainder of
(8.5) in L' — L? operator norm. Finally, the dispersion estimate (8.3) follow from the fact that
the L' — L norm of W, g.. (s, Ac.r) ¥ (er)x(er/R) is controled by

([ eleemtermam=omt) g g0, ponydpn) ()" )| 5 )

" sup

3 ~ ’
7,0, .07 e

where the estimate by (s)’"/ 2 follows from a standard non stationary phase argument by exploiting
that
@6(87 7\;7 9) ﬁ7 T]) = (7\: - ’F/)ij + (9 - 9/) i/ spfi,f:‘("%a 9, ﬁ’ 77) + O(SQ/R)y

(by (8.1)). Note that the weight (#)!=" is crucial to compensate that we integrate over a region
of volume O(#*~1) in 7 (recall that both # and r are of order R here). With s = €2t we find that
e (2t)~"/2 < (t)~™/2. We refer to [30] for more details on the stationary phase. The proof is
similar at high energy. Up to the scaling in time, the main differences are that we drop the scaling
operators DF and that in the iterative construction of the amplitude we gain both decay in h and
in 7. (]

8.2. Proof of Theorem 1.2
Tt suffices to prove the result for the endpoint pair (p,q) = (2,2*) = (2 2—”), the other ones

' n—2
following by interpolation with the trivial estimate for (p,q) = (o0, 2).
For ug € L?, we use the notation (1.3). The starting point is the estimate

B.6) ol |2 merzry S D (L= x(er) f(P/E)ullFagormy + [1(r) T F(P/ENull2z 1)
€2=9—k
which follows from Theorem 4.1. By the integrated L? decay estimate (7.17), we have
()~ f(P/€)ull a2y S Huol |2

where, in the right hand side, we may replace ug by f(P/e*)ug with f € C5°(0,+00) equal to 1
near the support of f. We thus only have to prove

(8.7) 11 = x(er) f(P/e*ull 22y S luollzz, € €(0,1], uo € L7
Indeed, with (8.7) (whose right hand side can be replaced by || f(P/€?)uql|12) at hand, (8.6) yields
1/2
lwowl L2, L2ty S ( > |f(P/€2)UO|%2>

€2=2—k

A

ol 1
by quasi-orthogonality in the second line, which completes the proof of Theorem 1.2 .

The rest of this section is thus devoted to the proof of (8.7).

We write (1 — x)(er)f(P/e?) = (1 — x)(er)f(P/€2) f(P/e?) with f € C5°(0,+00) equal to 1 on

the support of f. Then, using Theorem 3.9, we can decompose

(8.8) (1= )(er) f(P/®) =Y hn(er)Ope,(Xe)” + Re
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where, for some IV as large as we wish and some bounded family (Bc)cc(o,1] of bounded operators
on L?,

Re = ((er)(P/e? +1) "NV Bc(er) ™.
Each Xex = Xex(7,0,p,1) belongs to §’°°’0, has uniform bounds in € and is supported in a way
that (7,0) € supp(1 — x) x V. and p. (¥, 8, p,n) € supp(f). Furthermore, ¥, = 1 near the support
of Xe. Note that we use adjoint pseudo-differential operators Ope (Xer)* (this is possible by
(3.10)), which is not essential but will be more convenient.

Proposition 8.4. — If N >n/2+ 1, one has

1/2
(/ ||fRef(P/€2)6”PU0||2LQ*dt) <lluollzs, e (0,1], o € L.
R

Proof. Tt follows from Proposition 3.7 and (7.15) that

||Rf(P/)e O F(PIVR | oy S € {er) ™ N e TP P2 (P/EYer) ™| 1o 1
< ety
5 <t _ t/>7n/2.
The result follows then from the TT* criterion of [28] applied to R, f(P/e?)e~*F (which is bounded
on L? uniformly in € and t). O

We are left with the (rescaled) pseudodifferential terms in (8.8). For each x (which we omit in
the notation below), we split

(8.9) Xesw = Xast + Xeyint + Xesto

with stt,xe,int € §—oo0 (with uniform bounds in €) supported in strongly outgoing/incoming
areas (see (6.11)), i.e.

(8.10) supp (stt) - ffst(R, V,1,¢)

for some R > 1 and 0 < £ < 1 to be chosen below independently of €, and V € V;, I € (0, +0).
Note that to be able to choose R large, we have to assume that (1 — x)(#) is supported in # > R
which is not a restriction since, in (8.6) and Theorem 4.1, we may choose x = 1 on a set as large
as we wish. The third symbol x. in satisfies

(8.11) Supp(xe,int) C f;"(R, V,I,0)N f;(R, V,1,0)

for some o independent of € (see (7.28) for the notation of the areas). The decomposition (8.9)
follows easily by applying a partition of unity to p/pe (7,0, p,n) adapted to regions where this
quotient is either lower than —1 + &2, greater than 1 — &2 or between —1 +¢2/2 and 1 — £2/2.

Proposition 8.5. — If € is small enough and R is large enough, one has

) _ 1/2
( / |m<er>0pe,ﬁ<x§st>*f<P/e2>e”Puoniz*dﬁ <lluollzss e (01, up € L.
R

Proof. We consider the + case. We use again the TT™ criterion and show that

(812)  |[du(er)Open (i) F2(P/2)e™ " Opess X ) uler)| [ 1y e S IHT2,

for t # 0 and € € (0,1]. Upon taking the adjoint, it suffices to consider ¢ < 0 (following a trick of
[7]). For simplicity, we let

K = dm(GT)OPE,K(X:st)*fZ(P/eg)-
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We then use Theorem 6.10 to expand e*“POpE,{(XgLSt)i/jH(er) Consider first the main term
Je o(ae)e™ e D3 > Je (e N)T of this expansion. Using Proposition 6.6 (with ~ = 1 and s = €°t)
together with Proposition 3.4 to handle the contribution of the scaling operators, we find

[|Jem(ad)e™ P T (b S B et

i
5) HL1—>L°° ~
< <t>*%-
Note that no sign condition on t is required here. Observing that the support of Xj:st allows to
write Ope.x (X )™ = Open(xs)*¢(er), we see that ||[K7|[L~_r~ < 1 by Propositions 3.5 and
3.10, hence that

x _ie2tD? T n
(8.13) HKe Je,n(“s)e tD”JE’H(be)T|‘L1_>Loo S (e,
We next consider the first term of the remainder Re n(t) of (6.35), where N is as large as we wish.
It is of the form

e "0 ax_, pan (1) = e er) VB (P/e® + 1) ((er),

with || Be||r2—r2 S 1. To get the time decay, we exploit that this operator is composed to the left
with K} which we can rewrite as

(814) K= C(en)(P/e + 1)V ($uler)Open(XE)” + Bller) ™) S2(P/e)

with )Zzst € 5°°0 with the same support as X::st and B! bounded on L2. This follows simply by
expanding (P/e% + 1)N ¢, (er)Ope,r(Xds)*- Then, as in the proof of Proposition 8.4,

n

||C(e1")(P/e2 + 1)7NB£<€’I">7Nf2(P/€2) ”P<e7’> NpB (P/e +1)” NC (er ||L1 Lo < ()=
On the other hand, the adjoint estimates of Proposition 7.6 together with Proposition 3.7 yield
[[¢(er)(P/e® + 1) N e (er) Ope,w(XE) 2 (P€X)e ™" (er) N B.(P/€ + 1)V ¢(er)|| 11,
S () Open ()" F2(P/2)e™ F ler) TN | Lo, 1o S € (20) 7N/
for t < 0. Therefore, if N is large enough,
(8.15) HK* _ZtPOL‘QNaLW( )HL1—>L°° S (73, t<0.

It remains to treat the integral terms of Ry ((t), involving the operator Je ,.(aec + 7e,n + de). At
low frequency, the contribution of ac. + 7 n follows only from its spatial decay (see the slight
difference with the high frequency case in section 8.3). We thus only exploit that

Jei(@ec) + Je(reN) == <€T>7NJ67H(&6,N)a
for some bounded family of symbols (d, n). in Sy, supported in ©F (Rp, Vo, Iy, o) with Ry as large
as we wish by taking R large enough. To estimate the contribution of this term in Ry (), we use
the estimate
[K2e ™ 2P ey =N TG n)e P2 Je (b

N N
6 2

6)T||L1_>Loo S 6n<€2t - S>7

(s)”
for t <t — % < 0 and which, after integration in s, provides an upper bound by (t)~ % if N is
chosen large enough. To get the above estimate, we use on one hand that

€2 (%t — s>_%

by using the decomposition (8.14) together with the propagation estimates given by (7.15) and
(the adjoint estimates of) Proposition 7.6. On the other hand, we use

[[er) ™2 e e(en)e™ P Tew(B) | o, 1o S €¥ (s)”

HK:efi(tf‘%)P<er>—N/2

| ’L2—>L°° ~

N
2
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which comes from Proposition 6.5 for the time decay, up to the replacement of the source space
L? by L' which provides the additional €"/2 factor. This replacement is possible by writing
JE,N(bE)T = JE)N<I~)€)T(P/€2 + 1)~ N¢(er) for some b. with the same properties as b, (it is obtained
by computing J; (b)) (P/e? + 1)N = J. .(b.)!) and by using Proposition 3.7.

The last term of R, n(t) to consider is the one containing J. . (d.). Here the crucial observation
is that |# — 9| is bounded below on the support of d.. In particular, using (6.36) we see that
|Op@e|/TOxp, is bounded from below on the support of d., which implies that (¥, 6, drpc, Oppc)
must belong to an incoming area. More precisely, according to (6.32) and (6.36), we must have
Orpe < 01Pe (T, 0, T, 89@6)1/2 on the support of &, with oy = 1 —¢2/C independent o f & (i.e. of
€9 in Theorem 6.10). Thus, using Lemma 7.10 we can replace Je ,(Ge) by Ope (X2 )Je.r(Ge) with
X. supported in an incoming region, up to decaying remainders that can be treated as before. We
can then proceed as above except that now we use the adjoint a priori estimate of Proposition
7.9 (since one can choose ¢ as small as we want, without affecting the value of o; above) which
provides the estimate

—i(t—% ~— -~ —isD? n -z —
||K:€ (¢ 62)P®€7K«(X€ )ew(dc)e DIJeﬂi(be)THLl_)Loo S e'(s) 2<62t*5> N

and then the final estimate by (£)~™/? after integration in s. The result follows. O

To complete the proof of (8.7), it remains to study the contribution of x. in in (8.9). We follow
the idea of [4, 30], by adapting it to the low frequency and global in time case.

Everywhere below, we choose tg > 0 small enough as in Proposition 8.2. Also, the parameter
used in (8.10) (and hence the parameter o in (8.11)) is chosen according to Proposition 8.5. We
then choose § > 0 small enough, according to the third item of Proposition 7.1, and we split X int
as a sum

9

Xeint = Y Xejr  SUPP(Xe,5) C SUPP(Xe,int) N {j6 <4<+ 1)5} :
jedJ Pe

where J is a finite subset of Z (depending on §) and (x. ;) is a bounded family of S§=°00, Tt now
suffices to prove global in time dispersion estimates, say for ¢ > 0, for the operators

(8.16) QZ;H(ET)@)E,H(XGJ)*]‘-Z (P/E2)67itPQ76,n(Xe,j)d;n(er)7
uniformly in €. To do so, we introduce a spatial partition of unity on the support of the symbols,

1= ¢(#/R), Re=2" ¢€C0,0)

£>100
and define
Xe) (7.0, 3 m) = B/ Re)xe (7. 6. ).

Picking ¢ € C§°(0,00) equal to 1 near the support of ¢ and using that 1 — (Z;(f/Rg) vanishes near
the support of XE?, we obtain by symbolic calculus that, for any given N,

(81T (X)) P (er) = Opew (X3) s (er)dler/ Re) + (er) N Ble, Re) (P/e* + 1)V ((er),
where, uniformly in e,
HB(E, R@)”Lz_,Lz S/ RZN

The contribution of the remainder term of (8.17) can be treated as the remainders in the above
proof of Proposition 8.5 by propagation estimates and we get

| (er)Opec (xe.i)" 2 (P/e2)e ™" (er) =V Ble, R)(P/€* + 1)~V ¢(er)|[ i oo S (02BN
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for all t > 0 (actually this holds for all ¢ € R since x. ; is both incoming and outgoing by (8.11)).
These estimates can be easily summed over k. On the other hand, using the general fact that

< (sup||Ae<Z><er/Re>|L1aLw> 3 / ol
oo 14 0 %Esupw

where the last sum is bounded above by C||v||: (with C independent of € and k), we see that the
dispersion estimate for (8.16) is a consequence of the following uniform estimates.

Z Ad(er/Re)v
7

Proposition 8.6. — There exists C > 0 such that for all £ > {y, all € € (0,1] and all t > 0,
Dul€r)Open ()" 2P/ Opere (X)) duler)ter/Re) || <c)%.
Proof. For 0 < €t < toRy, the estimate follows from Proposition 8.2 together with the fact that

196(er)Ope(Xe,s) F2(P/ | mre ST, () Open(xe)" fH P/ |12 sne S €2,
the second estimate being used to treat the remainder term of the parametrix of Proposition 8.2,
which provides an L' — L* estimate by €"R," < (t)~"/2. Then, for t > e 2ty R, we use L?
propagation estimates as follows. First, we write for an arbitrary N > 0,

Opess (0 Brler)dler/ Re) = (Open(R)bler) + (er) ™ Ble, Re) ) (P/e + 1)V (er)

with || B(e, Re)||r2— 12 < R, and (XE J)) ¢ bounded in S~°°° with the same support as XEZJ) This

is obtained by expanding Ope (Xeﬁj)I/JH(eT)(;(GT/Rg)(P/GQ + 1), Then the contribution of the
term involving B(e, Ry) is similar to the one of the remainder of (8.17) and provides a L' — L

estimate by RZN <t>’”/ 2. We are thus left with the contribution of X( ). For this term, we
distinguish between two cases

(8.18) ‘

toRe < €t < TRy, 2t > TRy

with 7" > 0 large enough (independent of € and ¢) chosen according to the item 2 of Proposition

) g mapped into a stronly outgoing region by the classical

€J
flow at time TR,. Indeed, for €2t > TRy, we can write the contribution of )Zgj)

(8.18), as the one of
Feler)Opese (xe) AP (B (7P Op (1)) o) ET) e E P (P 11) N (er).

Using Proposition 7.4, we can write for any given N the parenthese as a sum (over angular charts
K2) of operators of the form

Ry N Oy (R s Vs (er) (er) 4 (er) "N O 12 (R Y)
2)

with (Xs St.rp)e,0 bounded in 520 and supported in a an outgoing region with parameter ¢’ as
close to 1 as we wish, hence in particular disjoint from the support of Xe,j- Using Propositions
7.7 and 7.9, we get a dispersion estimate of order ¢"R, ™ (¢*t — TR,)~"N < (t)~%. Finally, for

toRe < €2t < TRy, we write the contribution of X( ) to the estimate (8.18), as the one of

D) Opeus (xed)" FA(P/€2) (77 Ope (XD b er)e™™) =7 (P2 + 1)V er).
By Theorem 7.4 together with the third item Proposition 7.1 and our choice of §, the parenthese

7.1, namely such that the support of x

to the estimate

is microlocalized in a set where j/ pi/nz > (j + 1)6, hence disjoint from the support of x. ;. Thus,
only residual terms contribute and they produce a norm of order € R, > = O((t)~"/2) since €t is
of order Ry in this case. This completes the proof.
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8.3. Proof of Theorem 1.3

Here the analysis is very similar to the one of [30], the main difference being that we control
the remainder terms globally in time. The techniques are the same as those of Section 8.2, upon
the replacement of the low frequency propagations estimates of Section 7.3 by high frequency
ones, and low frequency parametrices by high frequency ones. Regarding the Littlewood-Paley
decomposition, we now use Theorem 4.6 instead of Theorem 4.1. We only record here that the
estimates of Section 7.3 are not sensitive to a possible trapping since the moderate growth in A ~
h=2in (1.5) is controlled by the large powers of h provided by the remainders in the expansions (the
a priori resolvent estimates are only used to control the remainders). We also mention the following
minor technical point in the transposition of the proof of Proposition 8.5 to high frequencies. In
the remainder R% (¢) of the high frequency Isozaki-Kitada parametrix (see after (6.34)) neither a”
nor & decay in h, so it is not clear that they will have a negligible contribution in the end. To
make sure they are negligible in the derivation of dispersion bounds, we need to observe that these
terms have a O(h™) contribution. For a’* this follows from Proposition 7.8. The contribution of
a" is handled by the propagation estimates of Proposition 7.9 which provide the fast decay in h.

8.4. Proof of Theorem 1.4

Thanks to Theorem 1.3, it suffices to prove that for any given x € C§°(M), one has the global
Strichartz estimates

(8.19) ||thi||LP(]R,L‘1(M)) S uol |z

In the non-trapping case, this follows from the well knownn techniques of [9, 36]. For hyperbolic
trapping, the analysis is detailed in [11] for local in time estimates. For the sake of completeness,
we check below that this analysis holds also globally in time. Before doing so, we point out that
are allowed to use Theorem 1.3 since, under the assumptions of Theorem 1.4, the resolvent has
high energy bounds growing at worst like A=1/2log A (see [33]).

Let K C T* M be the trapped set of the geodesic flow and 7(K) € M be its projection onto the
base space. We need the following condition on K.

Assumption 8.7. — There exists an open set My containing 7(IKC) such that My is extended to
a complete manifold (which we denote again by the same symbol M) and that My is geodesically
convez in M and has sectional curvatures bounded from above by a megative constant. Moreover,
the topological pressure P(s) of the trapped set K satisfies P(1/2) < 0.

We refer to [33] for details on the topological pressure P(s).
From now on, we work under Assumption 8.7. We shall prove the following.

Theorem 8.8. — There exists § > 0 such that, for any x € C§°(M), ¢ € C§°((1—-45,1+4))) and
any admissible pair (p,q) with p > 2, we have

Ixe™"Fo(h* Puol| o ;ray S lJuollz2, 0 <h < 1.
Moreover, if M is non-trapping and n > 3 then the same estimate with (p,q) = (2,2*) also holds.

Passing from Theorem 8.8 to (8.19) uses a Littlewood-Paley decomposition. Since we assume
here that the manifold has no boundary, we have an analogue to Theorem 4.6 where 1 — x can
be replaced by x (the point here is that the absence of boundary allows to use pseudo-differential
calculus near the support of x and thus to repeat the analysis used near infinity on the support of
(1 —x)). We omit this part.
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The proof of Theorem 8.8 is based on the method by [36] for the non-trapping case and its
modification of [11] under Assumption 8.7. We first record several known results which play
crucial roles. The following lemma concerns local smoothing effects under Assumption 8.7.

Lemma 8.9. — There exists hg > 0 such that

(8.20) Ixe(h*P)e™ " uol|2(x;z2) < (hlloghl)'/?|[uol|zz,  h € (0, hol.
Démonstration. — By Kato’s smooth perturbation theory [27], (8.20) follows from

(8.21) P Ixe(B*P)(h*P — X\ —ie) " p(h* P)x|| 212 S h™"[loghl, k€ (0, hol.

Let I € (0,00) be an interval with supp(¢) € I. When A ¢ I, one has

(8.22) sup ||X<p(h2P)(h2P — A - iz—:)*lgo(th)XHLz_,Lz < sup lp— )\\*1 <1
A¢T A¢I,pesupp(p)

uniformly in hA and € by the spectral theorem. Next, we consider the case when A € I. Under
Assumption 8.7, it was shown by Nonnenmacher-Zworski [33] and Datchev [15] that the following
semiclassical resolvent estimate with a logarithmic loss

(8.23) sup |[(r) "L (W2P — X Fie) " {r) Y |pem 2 < Crh T logh|, A€,
e>0

holds for all h € (0, ho] and A € I. Combining (8.22) and (8.23) with the bound
(8.24) sup ||x¢®(B*P)(r)l|r2sre S 1,
he(0,1]

which is standard (it follows e.g. from Theorem 3.9), we have (8.21). This completes the proof. [

It is well-known that (8.23) and, thus, (8.20) hold without the logarithmic loss |logh| in the
non-trapping case (see, e.g., [43]). We need the following microlocal improvement of this fact.

Lemma 8.10. — Let a € C§(T*M) be identically 1 near K and Ap be a pseudo-differential
operator on M with principal symbol a. Then

(8.25) Ix(1 = An)e(h* P)e™ P ug|| 2 g;r2) S h'2[uollzz, b € (0, ho)-
In particular, if K =0 i.e. M is non-trapping, then (8.25) holds with 1 — Ay, replaced by 1.

Here the form of the pseudo-differential quantization does not need to be specified for the
difference between two of them will produce corrections of size h for which the upper bound (8.25)
holds trivially.

Démonstration. — By the same argument as above, it suffices to show
(8.26) sup |[(r) 1 (1 — Ap) (AP — A Fie) (1 — Ap)(r) Moz < Crh™t, M€,
e>0
which is a consequence of [16, Theorem 1.2] and (8.23). O

We also need the following dispersive estimates.

Lemma 8.11. — (1) For any x € C§°(M), there exists ¢ = ¢(x, ) > 0 such that, for all |t| < ch
and h € (0, ho|, one has the following dispersive estimate

(8.27) xR P)e™ " x|t S [H772
(2) If x is supported in My, then (8.27) holds for all |t| < ch|logh| and h € (0, ho].
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Démonstration. — The estimate (8.27) for |t| < ch can be proved by constructing the semiclassical
WKB parametrix up to |t| = O(h) and applying the stationary phase method (see [10, Section 2]).
The latter statement was proved by [11, Proposition 3.9]. O

We are now ready to prove Theorem 8.8.

Proof of Theorem 8.8. — Taking a neighborhood My of K satisfying Mx € My and yx €
C§° (M) supported in Mx and satisfying xx = 1 on /\;l;c, we decompose x = xi1 + x2 with
x1 = xxx and x2 = (1 — xx)x. Note that supp(x2) N K = 0 and that one can take x,c = 0 and,
thus, x2 = x in the non-trapping case. To prove the theorem, it then suffices to show that

(828) ||ng0(h2p)e_itpu0|‘Lp([o,oo);L‘l) S Hu(]HL27 J = 1727 0<h ]-7

with the implicits constant being independent of h. Set @5 = p(h%P) for simplicity. Consider a
decomposition [0,00) = | ;>0 Jj, where J; are mutually disjoint intervals such that 0 ¢ J; unless
j=0and |J;| < ch|logh|/2. Let 0;(t) € C§°(R) be supported in a small neighborhood of J; and
satisfy

(8.29) 05(t) = O((h|logh|)™").

Let J; be intervals such that .J; € supp(d;) € J; and |.J;| < ch|logh|. For j = 0, by Lemma 8.11
(2) and the TT*-argument (and Keel-Tao’s theorem [28] in the endpoint case for n > 3), we have
(8.30) 165 x10ne ™" Fuol| Lo j0,00):20) S [105x100e™ 0|l 1o 7,10y S [0l L2

For j > 1, since v; = Hjxlgohe_”Puo solves the Cauchy problem

(i0; — Pyv; = itx1one™""uo + [x1, Pl0jone™ " uo;  vjli=o = 0,
it follows from Duhamel’s formula that

i(tfs)Pag_chphefisPuods

t
105 x10ne” " P uol|Lo(;500) S H/ Xie~ i
0 Lr(J;;L9)

)

t
/ Xle_l(t_s)PQj(s)[Xl,P]gohe_“Puods
0 Lr(Jj;L9)

"

where x1 € C§° (M) is chosen so that x1x1 = x1. We now take ¢ € C3° satisfying ¢ = 1 on
supp(p) and supported in a sufficiently small neighborhood of supp(¢). Since x1¢p and [x1, Plen
have h-pseudo-differential expansions with symbols supported in supp(x1¢(|¢|7)) modulo O(h™),
one has

X1¥$h = @thSDh + Rl <T>_N¢ha Rl = Og.(O—QN*)g{gN (hN)a
)

)

[X17 P]‘Ph = sz[Xh P]SDh + R2<r>_N¢ha RQ = Oj-(O_QNHj-(gN (h’

for all N > 0. Here we use the notation introduced prior Proposition 3.8 for the remainder terms
R; and Rs. Moreover, using that [x1, P] has coefficients vanishing on Mg since x; = 1 on M,
@rlx1, P] can be written in the form

&ulx1, Pl = h™'BiBy + Ra(r) ™™, Ry = Oyan_gian (A7)



86 CHAPITRE 8. STRICHARTZ ESTIMATES

with some pseudo-differential operator By, By, with symbols vanishing identically near K and sup-
ported in supp(x1) Nsupp(p(|€]2)). Now we set

t
B = [ e O gt (s)xagne Tuads,
0
t
I, = h_l/ )Zle_z(t_s)Pgb%ﬂj(S)B;Bhaphe_lspuods.
0

We then apply Lemma 8.11 and Keel-Tao’s theorem [28] to get

||Il||Lp(]j;Lq) 5 (h| IOg h|)71||>~<1§0h€7itpu0| |L1(jj;L2)
(8.31) < (hllog hl)~2[|Xaone™ " P uol| a2

using also (8.29) in the second line. This holds for all admissible pair (p, ¢), including the endpoint
case if n > 3.

To deal with the second term I, we observe first that, by Lemma 8.11 and the dual estimate
of (8.25),

(8.32) Hh—l /0 Xie = IPG20.(5) By f(s)ds

. S h_1/2||f||L2(jj;L2)
Lr(J5;L9)

for all non-endpoint admissible pair (p,¢) with p > 2. Since p > 2, Christ-Kiselev’s lemma [13]
shows that in the left hand side of (8.32) the integral over [0,00) can be replaced by an integral
over [0,¢]. This implies that

(8.33) 12l o 7,0y S P21 Brpne™ " Fuoll 2,1y

We also obtain the estimates for the error terms by Sobolev estimates

n 1_1 —N ~ —3
(8.34) SR E R log()|7 72 |[(r) ™™ Gre™ P uol| 12,12

t
/0 )Zle_i(t_s)Peg(s)Rl ()" Nope *Pugds

Lr(J53L9)

and likewise for Ry and R3. By (8.30)—(8.34) and picking N large enough, we obtain from
Minkowski’s inequality

i

HXISDhe_ tPUOHip([opo);Lq)
< S lhagne ol

j=0
< P —1))c —itP, ||2 p/2
S Mluollf + (3o (hlog b [Kaene ™ Puol2a 7 1)

jz1
_ i p/2 N p/2

4 (Zh 1||Bh90h€ ltPu()Hi?(jj;Lz)) + (ZhN/2||<r> NQOhe ZtPuOHig(jj;Lz))

j>1 j>1

< HUO||Z£2 + (h|log h|)_p/2‘|>21S0h6_itpuo‘|Z£2([0’oo);L2) + h_p/2||BhS0h€_itPUO‘|Z£2([o,oo);L2)~

Notice that we have used (7.24) to handle the contribution of the remainder terms. We now apply
Lemma 8.9 to the second term and Lemma 8.10 to the third term in the last line, respectively, to
obtain (8.28) for j = 1.
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The proof of (8.28) for j = 2 is almost the same. The only difference is that we decompose
[0,00) = U5 /; With mutually disjoint intervals J; satisfying |J;| < ch. Now, under the non-
trapping condition, we can use Lemma 8.10 with a = 0 to obtain (8.28) for j = 2. This completes
the proof. O






CHAPITRE 9

NONLINEAR EQUATIONS

In this part, we use the global Strichartz inequalities of Theorem 1.4 to study the L? critical
nonlinear Schrodinger equation

(NLS) Oy — Pu = olu|"u

where n > 3 is the space dimension and ¢ is a sign; ¢ = 1 corresponds to the defocusing case and
o = —1 to the focusing case. Here the sign will not matter since we are going to consider small
data. We will solve (NLS) in

X = L2+%(R X M) N Cscat(Rsz(M))

where
Cicat (R, L2 (M)) = {u € C(R,L*(M)) | the limits Jim e™u(t) exist in LQ(M)}
— 100

is a Banach space for the norm |[u||pez2 := supyep [|u(t)||z2(m) (it is a closed subspace of the
space of bounded uniformly continuous functions u : R — L?(M)). We then equip X with the
norm

[lullx + Lo 2,

= HUHL?-F%(RXM)
which makes it a Banach space.

Theorem 9.1. — Let 0 = 1 or —1. Under the assumptions of Theorem 1.4, there exists € > 0
such that, for all ug € L*(M) satisfying ||uo||r> < €, there exists a unique u € X such that

u(0) = ug and u solves (NLS) in the distributions sense.

In particular, since it belongs to Cseat (R, L2(M)), this solution scatters ast — o0, i.e. there are
ug € L?(M) such that

[[u(t) — e~ Fuyl|2 — 0, t — +oo.

This theorem is of course similar to the well known result for (NLS) on R™. Its novelty stems in
the fact that we work on an asymptotically conical manifold and that a possible hyperbolic trapping
on M will not change the usual picture, namely the global well posedness and the existence of
scattering for small data.

The proof follows the usual scheme, the main tool being the global Strichartz estimates. We
record the main lines below to point out the where one has to be careful in the transposition of
the proof on R™.
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Proof of Theorem 9.1. The principle is to solve (NLS) in the Duhamel form
t
(Duh) u(t) = e "Pug + g/ e*i(t*S)P|u(s)|%u(s)ds,
t Jo

by a fixed point argument on a ball Bx (0, r) with » small enough. We note first that the pair (p, q)
defined by p=qg =2+ % is Schrodinger admissible, so the homogeneous Strichartz inequalities of
Theorem 1.4 show that the map

U:L*(M)2ug > [t e Pyl € X
is well defined and that one has
U (BLz(O,a)) C EX(O,Cs).

Also, since (p,q) is not an endpoint pair (i.e. p # 2), the homogeneous inequalities provide
inhomogeneous Strichartz inequalities thanks to the Christ-Kiselev lemma [13]. This means that,
if we set

(9.1) (DF)(t) = / P f(s)ds
0
we have
(92) 1D 202 ey < O 225 oo
where 27?;14 is the conjugate exponent to 2 + ﬁ. More precisely, the integral defining Df has a

clear sense if f € C(R, L?(M)) so the precise meaning of (9.2) is that it holds on the dense subset

n n+4
CR,L*(M)) N L% (R x M) and that D can then be extended by density to Lo (R x M).
The adjoint estimates to the the homogeneous Strichartz estimates also imply that

|DfHLooL2 < CHfH 2n+4 (R M)

[ e sspas

for all f € C(R,L*(M))NL T (R x M). This last inequality implies that e?*¥(Df)(t) has limits
as t — o0 hence that Df belongs to Cseat (R, L?(M)). Thus

and that

P00 = POy = <l -

L2(M) ”+4 ([, t]XM)

D: L% (R x M) —

is well defined and continuous, by taking the closure of D : C(R, L?(M)) N Lo RxM)—=X
One has however to be careful that the closure of D is no longer clearly given by the explicit
integral form (9.1).

To handle the nonlinearity u — N (u) := |u|# u, we use the estimate on complex numbers

(9:3) 272 = ¢]7¢] < Culz = ¢[(12]7 +1¢]7),

to derive the estimate

IV = MO 2ty  Coll= ol e (0 g+ 00t )

which implies in particular that

2n+4

N:X CL* (R x M) — L751 (R x M)
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is well defined and Lipschitz on balls of X. The above estimate with v = 0 also implies that

g1 1+4
N(Bx(0.7) C B zmus (0.Cr' ).

We can thus define the map F,,, : X — X by
o
Fuo(u) = U(uo) + —D(N(u))

which gives a precise sense to the right hand side of (Duh). Furthermore, for u,v € Bx(0,7) and
ug € Br2(0,¢), one has

1Fu@lx < 10 (o)l x +[[DIN())]|x < Ce+Cr'Fs
and
(9.4) 1Fun () = Fug @)1 = [[DOV (1) = N(@)||x < Crflu—v]lx,

so, if r is small enough and ¢ < r, the ball Bx(0,r) is stable by F,, on which it is a contraction.
This provides a solution to the equation u = F,, (u). To complete the proof, one has to observe that
this solution is a solution in the distributions sense and, conversely, that if we have a distributional
solution which belongs to X then it satisfies F,,(u) = u.

To prove these two facts, we will use that, if x € C§°(R) is equal to 1 near 0, then for every
given u € X

(9.5) X277 P)u — u in X as j — oo.

Here (277 P)u = [t — x (277 P)u(t)]. The convergence (9.5) follows from the strong convergence
of X(277P) to the identity on both L2(M) and L2t% (M), which can be proved as on R™ for
Fourier multipliers by using the pseudo-differential description of x (277 P). We omit the details of
the proof but only record that to prove

sup [[u(t) = X7 Pyu®)ll2a) = 0, j =00
we may replace the norm by || u(t) — x(279 P)e""u(t)|| L2y and exploit that ¢ — e u(t) is
uniformly continuous with limits at +00 to get the uniform convergence as j — co. Thus, given a
solution u to u = F,,(u) and letting u; = x(277P), one has F,,(uj) — F,,(u) = u by (9.4) and
(9.5). Since |u; %uj belongs to C(R, L?(M)) (this can be checked by using (9.3) and that x (277 P)
maps L?(M) into L>(M)), we can write

t
Fuy(u)(8) = e *Pug + = / eIy (5) |y (5)ds
t Jo
(i.e. the integral has a clear sense) and, from this expression, we easily infer that
. 4
(10y — P)F(u;) = ofu;|™u,

in the distributions sense on R x M. Letting j — oo, we conclude that u solves (NLS) in the
distributions sense.

Conversely, if u € X solves (NLS) in the distributions sense, it remains to prove that u = F, (u).
By definition, we have

(9.6) /R /M (@0, = P)o(t, 2)ult, x)dvol,dt — o /R /M ST 2 ult, )| ult, x)dvol dt
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for all ¢ € C§°(R x M) and then for all ¢ € C§°(R,8(M)) by a simple limiting argument (see
(3.5) for 8(M)). The interest of allowing ¢(t) = ¢(t,.) to belong to S(M), is that we can write
the left hand side of (9.6) as

[ G0 0(0). )

since e*F leaves S(M) stable but not C§°(M). On the other hand, by approximating u by
= x(277 P)u using (9.5), the right hand side of (9.6) reads

-/ /M o0t Dl (¢, 2)

Using that ¢ — |u;(?)

%uj(t, x)dvolgdt + 0(||U - ujHX)'

4 . . . . .
wu;(t) is continuous with values in L?(M), one can write

t
%’U,J(t) = e_itpiat (U/ eiSP|Uj(S)|i’U,j(S)dS) .
0

olu; (1) :

Then, by integration by part, (9.6) yields

/R (@0:("* T 0 (1)), €T u(t) — G(N (47))(t)) 1 g 4t = O(Ilu = w5l x),
where .
G =5 [ e s

is well defined for f € C(R,L?(M)) with values on C(R,L?(M)) but can be extended to all

f e L%(R x M) by the adjoint of homogeneous Strichartz estimates. Letting j — oo and
choosing ¢(t) = e~"Fe(t) with ¢ € C5°(R x M), we find that

// i0pp(t, z) {e"Pu(t,z) — G(N(u))(t, z)} dvolydt = 0

WPy (t, G(N(u))(t,z) is independent of t. By evaluation at ¢ = 0, we find

hence that e
et (u(t) - ZD(N(u))(t)) = o, t eR,

since e P G(N(u))(t) = 2D(N(u))(t). This proves that u = F,,(u) and completes the proof. [J
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PUTTING THE METRIC IN NORMAL FORM

Proposition A.1. — If (M, G) is asymptotically conic, G can be put in normal form.

Proof. The main steps are described in [22], but locally with respect to the angular variable. We
briefly describe here how to globalize the construction on S. It is sufficient to prove the existence
of sequences of compact subsets K, € M, real numbers R > 0 and diffeomorphisms

Qi : M\ Ki > m e (ri(m),wr(m)) € (Ri,00) X S,

with 7 /r bounded from above and below on M \ i, (so that preimages of bounded intervals by
), are relatively compact in M), through which G = Qj (Ak(rk)dr,% + 2r, By (r)dri + r,%gk(rk))
with

(A1) Ap()—1es™  Bu()yesS™ g()-geS.

If we achieve this, then in a finite number of steps we have kv > 1 and can put the metric in normal
form by using [5]. We proceed by induction by setting first Q; = Q. We seek Q) = D,;l oQg_1,
between suitable open subsets of R, x S, by constructing a diffeomorphism of the form

Dy(w,w) = (z + 2o (2, w), exp,, (Vir()))

for some symbol oy and some x dependent vector field Vi (x) on S. For Ry, large enough, we define
oy and then Vj, on (Ry,00) X S as the unique solutions in SU=k)v to

(A.2) Q(xaggak + O’k) =1-Ap_1(x), 20, Vi (z) = —g_l(dwak(m) + Bk_l(x)),

where g—! stands for the isomorphism 7*S — T'S induced by g, and d,, is the differential on S.
These objects are globally defined with respect to the angular variable on S. Note in particular
that, since V(z) — 0 as © — o0, exp,,(V(z)) is close to the identity on S. It is then not hard to
check that, for Ry large enough, Dy is a diffeomorphim between (R, 00) x & and an open subset
of (Rgx_1,00) x S which contains (Ry_1,00) x S for some Ry_; large enough. We find that

D; (Gk_l(rk_l)) = Ak(m)dri + 2ry By (rg)dry, + rzgk(rk)

with

Ar(r) 14 204 (1) + 710p 0 (r1) + (Ap_1 — 1) (1) + S~
Bi(ry) = g(rk&.k Vk(Tk)) + Bi—_1(rg) + dyog(ry) + Sk
gr(ry) = g+8S7".
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By (A.2), we see that (A.1) is satisfied. Furthermore, the form of Dy implies that ry/ri_1 is
bounded from above and below, so by the induction assumption on r;_; the same holds for r /7.
The result follows. O



APPENDICE B

WEAK TYPE (1,1) ESTIMATES

In this appendix, we explain how to reduce the proof of weak type (1,1) estimates on L'(M) for
the operators of Propositions 4.3 and 4.7 to the standard theory of Calderén-Zygmund operators
on R™ (Theorem B.2 below).

We first recall some general and elementary facts. Assume that X is a manifold equipped with
a measure j which is a positive smooth density. We recall that a linear map T on L' (X, u) (with
values on measurable functions on X) is said to be of weak type (1, 1) with bound C' if

C
n({ITf1>A}) < SNCAAE
for all A > 0 and f € L1(X, p).

Proposition B.1. — Let T be of weak type (1,1) on LY(X, u) with bound C.
1. Letb: X — [m, M], with 0 < m < M, be measurable and let py, be the measure defined by

= / bd .
B

Then T is of weak type (1,1) on L*(X, up) with bound C M /m.
2. Let ®: X — Y be a diffeomorphism between X and another manifold ).
(a) Then ®.T®* is of weak type (1,1) on LY(Y, ®.p) with bound C.
(b) If T is bounded on L?(X, 1) (but not necessarily of weak type (1,1)), then ®,T®* is
bounded on L*(Y,®.u) with the same operator norm.

In this proposition, ®,u is the usual pushforward measure (i.e. @, u(B ) (P 1(B))) and
®,,®* are respectively the pushforward and pullback operators (i.e. ®,v = vo ®~ ! and ®*f =
fo®).

We will apply Proposition B.1 to prove the weak type (1,1) bounds stated in the proofs of
Propositions 4.3 and 4.7, that is for operators of the form

Tiow (M, 1) : de ()DeILeOpi (ac)YIL ' DY, =277,
£=0

and

M
Thign (M, 1) := 00()1LxOpn (an)yT1", B> =27".
(=1
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We recall that II,; is associated to the angular chart x : U — V by (2.2), ¥ is a smooth cutoff
supported in (Rp,00) x V and that a.,ap are symbols of the form

b(r.6.0.7),
T

with b(r, 6,¢) € SO (possibly depending on € or h in a bounded fashion) supported in (Rg,c0) x
K x {c<|¢] < C} for some K €V and C > ¢ > 0 independent of € or h.

We proceed as follows. When X = M and p is the Riemannian measure |g(r, 8)|[r"~drdf, the
item 2 (a) with ® = II, allows to transfer the analysis from M to a chart (R, 00) x V equipped with
the measure |g(r,0)|r"~'drddf. The item 1 allows to drop the factor |g(r,6)|. We next introduce
the diffeomorphism

O(r,0) := (r,r0)
between R X Rg% and Ry x R?~! whose interest is that
@, (r"~'drdf) = drdz.
Then another application of the item 2 (a) shows that it suffices that
AIOW(M7 t) = q)*H,Zl (ﬂow(Ma t)) HK(I)*7 Ahigh (M7 t) = (I)*H,Zl (ﬂligh(M7 t)) HK@*7
satisfy weak type (1,1) estimates on L'(R", drdz). To prove the latter, it suffices to check they
satisfy the assumptions of the following theorem.

Theorem B.2 (Calderén-Zygmund operators). — Let (Ayr) be a sequence of operators on
R, x R2=Y with Schwartz kernel Ky such that, for some C > 0 and all M,
[[An |22 (®n drdz)— 12 (&7 drdz) < C, M >0,
and, for any j,a such that j + |a| <1,
87,08 Kar(r, 2,07, 2")| < C(Ir — o' 4 |z = 2/|) "Il (r,z,r',2') € R*", M >0.

Then Apg is of weak type (1,1) on LY (R™, drdz) with bound uniform in M.

We refer for instance to [41] for a proof of this theorem.

The uniform L?(drdz) boundedness of Ay (M, t) follows from the item 2 (b) of Proposition B.1

together with the Cotlar-Stein argument described in the proof of Proposition 4.3. For Apign(M, 1),
it suffices to observe that

M ~
> ou(t)a(h) € S°°,
(=1

uniformly in M and ¢. This follows from the form of a(h). Therefore Thign(M,t) is uniformly
bounded on L?*(M) so Apign(M,t) is uniformly bounded on L?(drdz) by the item 2 (b) of Propo-
sition B.1.
We next consider the kernel estimates. To put both cases under a single form, we compute the
Schwartz kernel of
Al =@, D.Opp, (a)y D 0

with respect to drdz, with
a(r,&,p,n):b(r,e,p,ﬁ>7 be S™.
r

The Schwartz kernel of Opp(a) with respect to drdf is of the form

_ ! _p
(2mh) b (7",9, ! h’” 7’(9h9))
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where b is the Fourier transform with respect to (p,7). After elementary calculations, we find that
the Schwartz kernel of A" reads (up to the irrelevant factor (27)~™)

n n—1 . ,
1= (5 ()b 5 099 o (0.
We want to show that Y 0,(t) K} and 3 o¢(t) K} satisfy the second assumption of Theorem B.2.

By exploiting that z’/7’ belongs to a compact set, as well and the fact that er’ is bounded below

by some R > 1, these kernel estimates follow from the following lemma which we use either with
A=horA=¢"!

Lemma B.3. — 1. For all N > 0, there exists C > 0 such that

v\ 2N -N -N
OO it Y k- 1+|Z| cofiplr=rly E27
A ) = A A

for all X >0, all r,7" >0 and all z,2" € R*~ 1.
2. Let ¢ > 0. There exists C > 0 such that, for all v, >0 and A > 0, we have

r [r — 7]
—<C(1
r = <Jr A )

provided that

ﬁ\

>|
Y
o

3. Let s € [0,1] and N >n+ 1. Then

Z}\ns(1+| s ) < |x_y|—n—s

A=2¢
LEZ

for all x,y € R™ such that x # y.
Proof. In the item 1, the left hand side is not greater than

I\ —2N o -N N —N
1 + |T T ‘ 1 + |Z T’Z | 1 + |Z |
A A r '

Writing z — 52’ = 2 — 2/ + =572’ and using the Peetre inequality for the term in the middle, we
obtain an upper bound of the form

—-N
[ A |2 = 7| r—r'| || Ed
1 1 1 1
C( + A + A T A r! T 7! ’

which in turn is bounded by

—-N
o1 = ey
A A A '

This yields the result once observed that

R Al O e A O B A
A A - A A '

The item 2 follows simply from the fact that 5 =1+ %% The item 3 is standard. ]







APPENDICE C

SOBOLEV ESTIMATE

In this appendix we provide a short proof of the homogeneous Sobolev estimate (1.2).
Using the same cutoff fy as in (1.3), we have

(1 = fo)(P)vll o amay S II(P+1)Y2(1 = fo)(P)ollrzay S P20l 20
thanks to the inhomogeneous Sobolev estimate (see e.g. [3])
(C.1) llull g2+ () S 1P+ 1)l [ 12

and the spectral theorem. Thus we have to show that

1 fo(P)vll 2= (aey S I1PY20]| 200y
To do so, we choose x € C2°(M) which is equal to 1 on a large enough compact set and observe
that
X fo(P)oll e vy S M) 0l p2vy S P20l 22
using first that x fo(P)(r) is bounded from L? to L?>" (which follows from (C.1) and a standard
commutator argument) and then the Hardy inequality (see e.g. [6, Prop. 2.2]). Using a partition
of unity >, ¢«(w) =1 on S with functions supported in coordinates patches, we can see that

10 = )en@)fol Pl oy S [V (1= 00u (@) (P0)0) | rg

using the usual proof of the Sobolev inequality on R™ since the cutoff (1 — x)p,(w) localizes in the
product of a half line and a patch. From this estimate, we then obtain

(L= x)fo(P)vlle(py S Vg f(Po)vllzmy + 11(m)~ f(Po)vll Lz
S PY20l| L2y

using again the Hardy inequality.
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