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Nonlinear and multiphysics evaluation of residual stresses in coils

Daniel Weisz-Patrault

LMS, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France

Abstract

This article deals with residual stress evaluation within the framework of numerical simulation of the coiling pro-
cess of steel. Plastic deformations along with multiphase transitions are responsible for large irreversible strain
leading to major residual stress issues. A nonlinear mixed analytical/numerical approach is developed to compute
residual stresses generated by different contributions of inelastic strain occurring during the coiling process (in-
cluding both winding and cooling). In particular, transformation-induced plasticity is taken into account. Contact
stresses at the interfaces between layers are updated at each time step by a minimization procedure. The analytical
part of the proposed strategy is validated by comparison with a finite element computation. Then a coil composed
of 196 layers is considered under typical industrial conditions. Numerical results are discussed to present the
industrial application of the proposed approach.

Keywords: Residual stress, Multiphysics, Contact problem, Coiling process

1. Introduction

The current dynamic of steel manufacturing is to regularly develop new stronger grades enabling users to
reduce strip thicknesses and thus reduce produced tonnages, which results in energy efficiency by minimizing,
for instance, the total mass of vehicles. One of the major issues related to this evolution of steel production is
the forming processes (see Figure 1) that lead to serious residual stress problems, which in turn can result in
instabilities such as local buckling during the rolling process [1]. This contribution focuses on the coiling process,
which consists in winding a strip on itself for storage. Within this framework, residual stress issues can result
in local buckling or coil sagging, as demonstrated in Figure 2. Other defects are detailed in [2]. When the inner
mandrel is removed from the coil, residual stresses may be sufficiently compressive to cause buckling of some
layers. Furthermore, the overall inelastic strain due to thermal expansion and phase transitions may be responsible
for large displacements leading to coil sagging. In this article I attempt to quantify the overall inelastic strain as
well as the associated residual stress by modeling the whole coiling process. The outcomes are necessary for the
prediction of some defects such as coil sagging even though additional work is still needed.

Residual stresses generated during this process have been studied, for instance, by Quach et al. [3, 4], who
developed a closed-form analytical solution of a pure bending problem (i.e., disregarding the effect of contacts).
The contribution of several successive processes was considered by Moen et al. [5] also for a pure bending prob-
lem. However, contact pressures are heterogeneous along the coil axis, which results in significant variations of
residual stresses. Contact pressures can concentrate near the central axial position and significantly contribute to
the formation of plastic deformations and therefore to the final residual stress field. Several coiling models that
take into account contacts have been proposed. One can mention purely elastic models developed by Edwards
and Boulton [2], Hudzia et al. [6], and Kedl [7], where the radial Young’s modulus is set as a function of contact
pressure to model roughness of contacts. One can also mention a fast simplified coil winding model based on
the Airy function proposed by Hinton et al. [8, 9]. However, the coiling process consists not only in winding the
strip around a mandrel but also in cooling the coil for several hours after removal of the internal mandrel. Thus,
contact pressures are completely redistributed and thermal expansion and phase transitions occur. Previous studies
dealt only with the isothermal winding phase of the process and ignored the cooling phase. However, it will be
demonstrated here that residual stresses are significantly modified during the cooling phase.
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Figure 1: Forming processes

(a) Local buckling (b) Coil sagging

Figure 2: Instabilities

Recently developed grades undergo significant phase transitions when the coil cools down. Additional inelastic
strain occurs because of thermal expansion, phase density mismatch, and transformation-induced plasticity. Thus,
this article contributes to the development of a global numerical strategy that solves the nonlinear and coupled
problem of a strip winding on itself and then cooling by undergoing phase transitions. Couplings between thermal
sciences, metallurgy, and solid mechanics should be considered as well as several types of nonlinearity, such
as finite strain computations, elastic-plastic behavior, and contact stress evaluation during the winding phase of
the process, and temperature-dependent heat sources because of enthalpy changes and transformation-induced
plasticity when the coil cools down.

This article relies on previous contributions. Weisz-Patrault et al. [10] proposed a nonlinear isothermal elastic-
plastic model of the winding phase accounting for roughness of contacts and finite strain to consider large rotations.
This model was based on previous work by Weisz-Patrault et al. [11, 12]. Then Weisz-Patrault [13] developed
a solution for the cooling phase by coupling heat conduction and multiphase transition problems accounting for
thermal contact resistance. The present article aims to establish a numerical strategy to compute residual stresses
on the basis of the previously developed models. Each layer of the coil is subjected at each time step to an
eigenstrain increment composed of several contributions, namely:

(i) the thermometallurgical hydrostatic strain due to thermal expansion and density mismatch between different
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phases;
(ii) the transformation-induced plastic strain;

(iii) classical plastic strain due to temperature variations.

The evaluation of the eigenstrain increment necessitates the computation of temperature and phase proportion rates
that are obtained through the method proposed by Weisz-Patrault [13]. Furthermore, the macroscopic stress tensor
is also needed for the computation of the eigenstrain increment of the following time step. Thus, the residual stress
field should be computed at each time step as an input of the following time step, and one cannot jump directly
to the last time step by simply integrating the time-dependent eigenstrain. For the exact same reason, contact
stresses are also updated at each time step by use of minimization procedures as detailed in Section 7. The general
modeling structure is presented in Figure 3.

Macroscopic plasticity is not considered in this contribution; that is, that the macroscopic equivalent stress
does not reach the macroscopic yield stress. Although macroscopic yield stress is not reached, certain phases (e.g.,
austenite) can locally undergo plastic deformations. This local plasticity is taken into account in the eigenstrain
obtained from the homogenization procedure proposed by Weisz-Patrault [14]. The nonlinear part is therefore
limited in this article to the imposed eigenstrain, which should be computed incrementally, and to the contact
stress evaluation. Thus, the present work consists in computing all contributions of the overall eigenstrain. Then
an analytical solution of the elastic problem subjected to the eigenstrain is sought for each layer of the coil and at
each time step. In addition, contact stresses at each interface between layers are also updated at each time step by
use of a numerical minimization procedure relying on contact laws accounting for roughness, following the ideas
of Sutcliffe [15] or Sheu and Wilson [16].

Mathematical developments rely, on the one hand, on a series expansion with respect to a certain function
sequence and, on the other hand, on Papkovich-Neuber potential theory involving harmonic and biharmonic func-
tions as presented for, instance, by Barber [17]. One can also mention a very elegant potential theory mainly
developed by Muskhelishvili [18] applicable for plane elasticity and relying on complex potentials. An extension
in quaternionic algebra dedicated to three-dimensional elasticity was proposed by Weisz-Patrault et al. [19], but is
not used in this contribution for simplicity.
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Figure 3: General modeling structure

The main outcome of the proposed approach is the computation of residual stress and inelastic strain in the
coil. The work of Weisz-Patrault et al. [10] and Weisz-Patrault [13] and the present article contribute to the
development of an effective tool that enables users to perform parametric studies, especially for recent grades
for which residual stress issues arise frequently. To the best of my knowledge, this article presents for the first
time a complete approach enabling users to track irreversible strains and residual stresses through the whole
coiling process, including the winding phase and the cooling phase. The situation before the coiling process is
not considered in this contribution, and can be directly measured through an optical or mechanical measurement
system as reviewed by Molleda et al. [20]. An inverse method based on conformal mapping techniques was
proposed by Weisz-Patrault [21] to evaluate residual stresses by deflection of the steel strip on a hollow cylinder.

2. General equations and notation

This section details the global equation system that is solved at each time step (denoted by n). The main
notation is summarized in Figure 4. The coil is constituted of N layers. Some assumptions are needed to obtain a
convenient analytical solution. Each layer (denoted by (i), where 1 ≤ i ≤ N) is characterized at each time step n by
lower and upper surface radii denoted, respectively, by R(i)

in f ,n(z) and R(i)
sup,n(z) (where r and z denote the cylindrical

coordinates). They clearly depend on the axial position z. However, the following analytical solution relies on
z-independent lower and upper surface radii, denoted by r(i)

in f ,n and r(i)
sup,n, defined as the average values of R(i)

in f ,n(z)

and R(i)
sup,n(z) over the coil width:

r(i)
in f ,n =

1
2L

∫ L

−L
R(i)

in f ,n(z)dz and r(i)
sup,n =

1
2L

∫ L

−L
R(i)

sup,n(z)dz (1)
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where L denotes the half width. Thus, each layer is described by

Ω(i)
n =

{
(r, z) ∈

[
r(i)

in f ,n, r
(i)
sup,n

]
× [−L, L]

}
(2)

In addition, T (i)
n (r, z) denotes the temperature field in the ith layer at the current time step n. In this article

a multiphase mixture is considered. Phase proportions are denoted by X(i)
p,n (with 1 ≤ p ≤ Np, where Np is

the number of phases). Thus, Lamé’s coefficients (λ(i)
p,n(T (i)), µ(i)

p,n(T (i))) are temperature dependent and therefore
inhomogeneous along both the radial direction and the axial direction. The analytical solution relies on constant
material properties in each layer (λ(i)

p,n, µ
(i)
p,n), which are computed as follows:

λ(i)
p,n =

1

2L
(
r(i)

sup,n − r(i)
in f ,n

) ∫ r(i)
sup,n

r(i)
in f ,n

∫ L

−L
λ(i)

p,n(T (i)
n (r, z))drdz

µ(i)
p,n =

1

2L
(
r(i)

sup,n − r(i)
in f ,n

) ∫ r(i)
sup,n

r(i)
in f ,n

∫ L

−L
µ(i)

p,n(T (i)
n (r, z))drdz

(3)

In addition, Lamé’s coefficients of the multiphase mixture (λ(i)
n , µ

(i)
n ) are computed as follows:

λ(i)
n =

Np∑
p=1

X(i)
p,nλ

(i)
p,n and µ(i)

n =

N∑
p=1

X(i)
p,nµ

(i)
p,n (4)

At each time step, an additional eigenstrain increment δε∗,(i)n is imposed. Thus, an additional elastic problem should
be solved so as to update the previous mechanical state. The global additional problem is written as follows:

∀ 1 ≤ i ≤ N,


div

[
σ(i)

n

]
= 0 (equilibrium)

σ(i)
n = λ(i)

n tr
[
εe,(i)

n

]
I + 2µ(i)

n ε
e,(i)
n (isotropic behavior)

ε(i)
n =

1
2

(
∇

[
u(i)

n

]
+ ∇

[
u(i)

n

]T
)

(compatibility)

εe,(i)
n = ε(i)

n − δε
∗,(i)
n (elastic strain tensor)

(5)

where σ(i)
n , ε(i)

n , and u(i)
n denote the additional stress and strain tensors and the additional displacement vector,

respectively. The total stress accumulated from all the previous time steps is denoted by

Σ
(i)
n−1 =

n−1∑
l=0

σ(i)
l (6)

where σ(i)
0 is the initial stress tensor from previous processes as detailed in Figure 3. Furthermore, the eigenstrain

increment δε∗,(i)n depends on Σ(i)
n−1 as detailed in Section 3. It is decomposed into different contributions:

δε∗,(i)n = δεthm,(i)
n + δεtp,(i)

n + δεcp,(i)
n (7)

where δεthm,(i)
n represents the thermometallurgical strain increment, which corresponds to volume variations due

to thermal expansion and density mismatch between phases, δεtp,(i)
n is the strain increment due to transformation-

induced plasticity, and δεcp,(i)
n is the classical plastic strain increment induced by temperature variations in the

multiphase mixture. Classical plasticity induced by stress variations can also be considered but it is usually
negligible.

In addition, the boundary conditions for the additional problem (5) are

∀ 1 ≤ i ≤ N,



σ(i)
n (r(i)

sup,n, z).n(r(i)
sup,n, z) = T(i)

sup,n(z)
σ(i)

n (r(i)
in f ,n, z).n(r(i)

in f ,n, z) = T(i)
in f ,n(z)

σ(i)
n (r,±L).n(r,±L) = 0

T(i+1)
in f ,n(z) = −T(i)

sup,n(z)
T(N)

sup,n(z) = T(1)
in f ,n(z) = 0

(8)

5



where n is the unit normal vector and T(i)
sup,n(z) and T(i)

in f ,n(z) denote the additional traction (at r = r(i)
sup,n and

r = r(i)
in f ,n, respectively), decomposed as follows:

∀ 1 ≤ i ≤ N,
 T(i)

sup,n(z) = −P(i)
sup,n(z)er + S (i)

sup,n(z)ez

T(i)
in f ,n(z) = P(i)

in f ,n(z)er + S (i)
in f ,n(z)ez

(9)

where P(i)
sup,n(z) = P(i+1)

in f ,n(z) are the additional contact pressures and S (i)
sup,n(z) = −S (i+1)

in f ,n(z) are the additional contact
shear stresses that are evaluated by numerical minimization as detailed in Section 7.

Figure 4: Global system and notation

3. Eigenstrain

This section is dedicated to the computation (for each layer (i) and at the current time step n) of the eigenstrain
increment (7) that contains most of the nonlinear information (along with contact stress evaluation). In all the
following, the superscript (i) and the time step index n are omitted for readability. For instance, the displacement
vector u(i)

n is denoted by u in the rest of this article. Transformation-induced plasticity and classical plasticity
are computed following the recent theoretical work of Weisz-Patrault [14] that extends the well-known model
proposed by Leblond et al. [22]. Multiphase transitions are taken into account, and several assumptions are
relaxed. However, expressions are particularized for this study; that is, for cooling only and for the following
phase transitions: austenite to ferrite, austenite to pearlite, austenite to bainite, and austenite to martensite. In
addition, the following convention is used: p = 1 for austenite, p = 2 for ferrite, p = 3 for pearlite, p = 4 for
bainite, and p = 5 for martensite. Equations (10)–(24), extracted from [14], are recalled here for clarity. The
additional stress σ is distributed in different phases as follows:

σp =
Ẽp

Ẽ
σ (10)

where σp is the additional stress in phase p and
Ẽ =

∑
p∈E

XpEp +
∑
p∈P

Xpγpσ
Y
p

Ẽp =

{
Ep if p ∈ E
γpσ

Y
p if p ∈ P

(11)

where for each phase p, σY
p is the yield stress, Ep is the Young’s modulus, and γp is the hardening parameter.

In addition, E ⊂
{
1, · · · ,Np

}
is the index set of phases that do not reach the plastic regime and P ⊂

{
1, · · · ,Np

}
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is the index set of phases that reach the plastic regime. The same expression as (10) holds for the total stress
accumulated from all the previous time steps Σ defined by (6):

Σp =
Ẽp

Ẽ
Σ (12)

The eigenstrain increment is obtained as follows:

δε∗ = ε̇∗δt (13)

where δt is the time increment. The hydrostatic thermometallurgical strain rate is shown to be

ε̇thm =

Np∑
p=2

1
3

(
ρ1(T )
ρp(T )

− 1
)

Ẋp +

α1 +

Np∑
p=2

Xp(αp − α1)

 Ṫ (14)

where ρp and αp are, respectively, the density and the thermal expansion coefficient of phase p. Consider X̃ to be
the total product phase proportion:

X̃ = 1 − X1 =

Np∑
p=2

Xp (15)

And consider ∆σY to be the distance between the yield stress and the von Mises equivalent stress in austenite:

∆σY =

√(
σY

1

)2
−

(
Σ

eq
1

)2
(16)

where Σ
eq
p is the von Mises equivalent stress in phase p computed from Σp. Consider the following material

parameters: 
ζ =

(3λ1 + 2µ1)2µ1

λ1 + 2µ1

ξp =
2µ1(9λ1 + 14µ1)

λ1(9µ1 + 6µp) + 2µ1(7µ1 + 8µp)

(17)

If Σ
eq
1 < σY

1 , the transformation-induced plastic strain rate is

ε̇tp =

Np∑
p=2

Sp

σY
p

σY
p − Σ

eq
p

µpξp
Ẋp +



0 if
∆σY

ζ
∣∣∣̃εthm

∣∣∣ > 1

−
3
∣∣∣̃εthm

∣∣∣ S1

σY
1

ln

 ∆σY

ζ
∣∣∣̃εthm

∣∣∣
 Np∑

p=2
Ẋp>0

Ẋp if X̃ ≤
∆σY

ζ
∣∣∣̃εthm

∣∣∣ ≤ 1

−
3
∣∣∣̃εthm

∣∣∣ S1

σY
1

ln
(
X̃
) Np∑

p=2
Ẋp>0

Ẋp if X̃ >
∆σY

ζ
∣∣∣̃εthm

∣∣∣
(18)

where Sp = Σp − tr
[
Σp

]
1/3 is the total deviatoric stress tensor of phase p.

If Σ
eq
1 = σY

1 ,

ε̇tp =

Np∑
p=2

Sp

σY
p

σY
p − Σ

eq
p

µpξp
Ẋp +


0 if X̃ < X̃min

−
3
∣∣∣̃εthm

∣∣∣ S1

σY
1

ln
(
X̃
) Np∑

p=2
Ẋp>0

Ẋp if X̃ ≥ X̃min (19)

with the initial value

εtp
ini =

2ε̃thm

1 − X̃min
X̃min ln

(
X̃min

)
(20)
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where X̃min (set to 0.03 in this article) is the minimal phase proportion that can be produced from pure austenite
and where ε̃thm is the hydrostatic eigenstrain generated in all product phases because of temperature variation and
phase transitions:

ε̃thm =

Np∑
p=2

Xp

1 − X1

(
1
3

(
ρ1(T )
ρp(T )

− 1
)

+
ρ1(T )
ρp(T )

(αp − α1)(T − Tini)
)
> 0 (21)

ε̃thm given by (21) is related to the microstructure and should not be confused with the homogenized hydrostatic
strain εthm given by (14). If Σ

eq
1 < σY

1 , the classical plastic strain rate due to thermal variations is

ε̇cp =



0 if
∆σY

ζ
∣∣∣̃εthm

∣∣∣ > 1

−3α̃S1

σY
1

X̃ ln

 ∆σY

ζ
∣∣∣̃εthm

∣∣∣
 Ṫ if X̃ ≤

∆σY

ζ
∣∣∣̃εthm

∣∣∣ ≤ 1

−3α̃S1

σY
1

X̃ ln
(
X̃
)

Ṫ if X̃ >
∆σY

ζ
∣∣∣̃εthm

∣∣∣
(22)

If Σ
eq
1 = σY

1 ,

ε̇cp =
−3α̃S1

σY
1

X̃ ln
(
X̃
)

Ṫ (23)

where α̃ represents the homogenized difference between the thermal expansion coefficient in the product phases
and the thermal expansion coefficient in austenite:

α̃ =

Np∑
p=2

Xp

1 − X1

(
αp − α1

)
< 0 (24)

4. Problem decomposition for each layer

This section deals with the general scheme for establishing an analytical solution. For each layer, boundary
conditions are applied to the hollow cylinder, according to (8). The determination of Tsup(z) and Tin f (z) is done
by a minimization procedure detailed in Section 7. The additional problem (5) way be rewritten as a function of
displacements instead of the stress tensor. Then for each layer it reduces to the inhomogeneous Navier equation

µ∆ u + (λ + µ)∇div u = div
[
λtr

[
δε∗

]
I + 2µδε∗

]
(25)

such that the boundary conditions (8) are verified. The Navier equation (25) is linear. Thus, nonlinearity aspects
are related not to the equation itself but rather to the computation of the eigenstrain increment δε∗ and the deter-
mination of contact stresses Tsup(z) and Tin f (z). Therefore, a general solution of (25) may be written as the linear
combination of a particular solution ũ and a homogeneous solution û. Corresponding stress and stain tensors are
denoted accordingly: 

u = ũ + û
σ = σ̃ + σ̂
ε = ε̃ + ε̂

(26)

The decomposition is summarized in Figure 5. It should be noted that ũ may be any particular solution of (27)
without consideration of specific boundary conditions:

µ∆ ũ + (λ + µ)∇div ũ = div
[
λtr

[
δε∗

]
I + 2µδε∗

]
(27)

However, ũ is a solution of (28) verifying the boundary conditions (29), so the global boundary conditions (8) are
verified:

µ∆ û + (λ + µ)∇div û = 0 (28)

∀ 1 ≤ i ≤ N,


σ̂(rsup, z).n(rsup, z) = −σ̃(rsup, z).n(rsup, z) + Tsup(z)
σ̂(rin f , z).n(rin f , z) = −σ̃(rin f , z).n(rin f , z) + Tin f (z)
σ(r,±L).n(r,±L) = 0

(29)
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Tsup(z) and Tin f (z) are arbitrary in Sections 5 and 6. Correct values are determined by numerical minimization as
detailed in Section 7.

In addition, the third boundary condition at z = ±L in (29) presents more difficulties with respect to the
analytical treatment. For simplicity, this edge condition is verified not locally but in a weaker sense; that is, the
resultant force of surface traction vanishes at the edges. Moreover, since the analytical development relies on a
potential formulation that automatically verifies the general equilibrium, it is sufficient to impose this boundary
condition at z = L, and the other condition at z = −L will be satisfied automatically. Therefore, this condition is
replaced by ∫ 2π

0

∫ rsup

rin f

σ(r, L).ezrdrdθ = 0 (30)

Figure 5: Decomposition in each layer

5. Particular solution in each layer

This section deals with the analytical determination of a particular solution ũ of the Navier equation (27),
without specifying particular boundary conditions. One obtains after basic calculations the right-side term of (27):

div
[
λtr

[
δε∗

]
I + 2µδε∗

]
= f ∗r (r, z)er + f ∗z (r, z)ez (31)

where 
f ∗r (r, z) = (λ + 2µ)

∂δε∗rr

∂r
+ λ

(
∂δε∗θθ
∂r

+
∂δε∗zz

∂r

)
+ 2µ

(
δε∗rr

r
−
δε∗θθ

r
+
∂δε∗rz

∂z

)
f ∗z (r, z) = (λ + 2µ)

∂δε∗zz

∂z
+ λ

(
∂δε∗rr

∂z
+
∂δε∗θθ
∂z

)
+ 2µ

(
∂δε∗rz

∂r
+
δε∗rz

r

) (32)

To give an analytical form to the right-side term (32), a function sequence, orthogonal with respect to the following
scalar product, is needed:

〈 f , g〉 =

∫ rsup

rin f

r f (r)g(r)dr (33)

where f and g are functions mapping [rin f , rsup] onto R. Consider the following function sequence:

Gm : r ∈
[
rin f , rsup

]
7→ J1

(
xm

r
rsup

)
Y1

(
xm

rin f

rsup

)
− J1

(
xm

rin f

rsup

)
Y1

(
xm

r
rsup

)
(34)

And consider Fm is a primitive (up to a multiplicative constant) of Gm:

Fm : r ∈
[
rin f , rsup

]
7→ J0

(
xm

r
rsup

)
Y1

(
xm

rin f

rsup

)
− J1

(
xm

rin f

rsup

)
Y0

(
xm

r
rsup

)
(35)

9



where Jη and Yη are Bessel functions of order η ∈ R of the first and second kind, respectively. In addition, xm

are successive positive roots of x 7→ J1 (x) Y1

(
x rin f

rsup

)
− J1

(
x rin f

rsup

)
Y1 (x). Gm vanishes at r = rin f and r = rsup. The

following orthogonality property is proven in Appendix A:

〈Gm,Gl〉 =

{
0 if m , l
Mm > 0 if l = m (36)

The proposed approach relies on Fourier series expansions of the right-side terms f ∗r and f ∗z , according to the axial
direction z: 

f ∗r (r, z) =

K∑
k=−K

f r
k (r) exp

(
ikπ
L

z
)

f ∗z (r, z) =

K∑
k=−K

f z
k (r) exp

(
ikπ
L

z
) (37)

where

f r
k (r) =

1
2L

∫ L

−L
f ∗r (r, z) exp

(
−ikπ

L
z
)

dz and f z
k (r) =

1
2L

∫ L

−L
f ∗z (r, z) exp

(
−ikπ

L
z
)

dz (38)

The orthogonality property (36) is used to expand the functions f r
k (r) and ∂ f z

k (r)/∂r into a series based on the
function sequence Gm. However, functions Gm vanish at r = rin f and r = rsup. Thus, the convergence can be
difficult if f r

k (r) and ∂ f z
k (r)/∂r do not vanish at these points. It is therefore convenient to use the orthogonality

property (36) not directly on f r
k (r) and ∂ f z

k (r)/∂r but on the following auxiliary functions, which vanish at r = rin f

and r = rsup: 
gr

k(r) = f r
k (r) −

(
Ar

k J1

(
r

rsup

)
+ Br

kY1

(
r

rsup

))
gz

k(r) = f z
k (r) −

(
Az

k J0

(
r

rsup

)
+ Bz

kY0

(
r

rsup

)) (39)

where (
Ar

k
Br

k

)
=

 J1

(
rin f

rsup

)
Y1

(
rin f

rsup

)
J1(1) Y1(1)


−1

.

(
f r
k (rin f )

f r
k (rsup)

)
(40)

and (
Az

k
Bz

k

)
= −rsup

 J1

(
rin f

rsup

)
Y1

(
rin f

rsup

)
J1(1) Y1(1)


−1

.

 ∂ f z
k

∂r (rin f )
∂ f z

k
∂r (rsup)

 (41)

The following series expansion is based on an approach very similar to the classic Fourier-Bessel series expansion,
detailed in [23]. The Fourier-Bessel series expansion is based on the function sequence Hm : x ∈ [0, a] 7→ Jη(y

η
mx),

where a > 0 and η ∈ R and where yηm are the successive positive zeros of x 7→ Jη(ax). An orthogonality
property similar to (36) also holds for the function sequence Hm. In addition, all continuous functions on [0, a]
can be written in the form

∑+∞
m=1 fmHm(x) (where fm ∈ R). Completeness is proven in [23] for an even more

general function space. In this article, such a Fourier-Bessel series expansion is needed on the space of continuous
functions on

[
rin f , rsup

]
instead of [0, a]. Thus, the only difference from the classic situation detailed in [23] is the

starting point of the definition set, which is not zero. To overcome this difficulty, the Bessel function of the second
kind was introduced in the function sequence Gm (34). The proof of completeness developed in [23] could likely
be adapted to the present situation, which is very similar. However, a simpler approach consists in projecting gr

k(r)
and ∂gz

k(r)/∂r onto the function space of finite dimension, generated by (Gm)1≤m≤M . Then using the orthogonality
property (36) on the auxiliary functions (39), one obtains the projection

f ∗r (r, z) ≈
K∑

k=−K

 M∑
m=1

f r
m,kGm(r) + Ar

k J1

(
r

rsup

)
+ Br

kY1

(
r

rsup

) exp
(

ikπ
L

z
)

f ∗z (r, z) ≈
K∑

k=−K

 M∑
m=1

f z
m,kFm(r) + Az

k J0

(
r

rsup

)
+ Bz

kY0

(
r

rsup

)
+ Cz

k

 exp
(

ikπ
L

z
) (42)

where

Cz
k = f z

k (rsup) −
M∑

m=1

f z
m,kFm(rsup) − Az

k J0 (1) − Bz
kY0 (1) (43)
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and where the coefficients f r
m,k and f z

m,k are evaluated numerically as follows:

f r
m,k =

〈
gr

k(r),Gm

〉
〈Gm,Gm〉

and f z
m,k = −

(
rsup

xm

) 〈
∂gz

k(r)
∂r ,Gm

〉
〈Gm,Gm〉

(44)

Furthermore, the inhomogeneous Navier equation (27) reads
(λ + 2µ)

(
∂2ũr

∂r2 +
1
r
∂ũr

∂r
−

ũr

r2

)
+ µ

∂2ũr

∂z2 + (λ + µ)
∂2ũz

∂r∂z
= f ∗r (r, z)

(λ + 2µ)
∂2ũz

∂z2 + µ

(
∂2ũz

∂r2 +
1
r
∂ũz

∂r

)
+ (λ + µ)

(
∂2ũr

∂r∂z
+

1
r
∂ũr

∂z

)
= f ∗z (r, z)

(45)

A particular solution is sought as follows:
ũr(r, z) =

K∑
k=−K

 M∑
m=1

ur
m,kGm(r) + Ur

k J1

(
r

rsup

)
+ Vr

kY1

(
r

rsup

) exp
(

ikπ
L

z
)

ũz(r, z) =

K∑
k=−K

 M∑
m=1

uz
m,kFm(r) + Uz

k J0

(
r

rsup

)
+ Vz

kY0

(
r

rsup

)
+ Wz

k(r)

 exp
(

ikπ
L

z
) (46)

where

Wz
k(r) =


Cz

kr2

4µ
if k = 0

−
Cz

k

(kπ/L)2(λ + 2µ)
if k , 0

(47)

By plugging (46) into (45) and identifying, one obtains(
Ur

k
Uz

k

)
= Sk.

(
Ar

k
Az

k

)
and

(
Vr

k
Vz

k

)
= Sk.

(
Br

k
Bz

k

)
and

(
ur

m,k
uz

m,k

)
= Sm,k.

(
f r
m,k

f z
m,k

)
(48)

where

Sk =

 −(λ + 2µ)
(

1
rsup

)2
− µ

(
kπ
L

)2
−(λ + µ) 1

rsup

ikπ
L

(λ + µ) 1
rsup

ikπ
L −µ

(
1

rsup

)2
− (λ + 2µ)

(
kπ
L

)2


−1

(49)

and

Sm,k =

 −(λ + 2µ)
(

xm
rsup

)2
− µ

(
kπ
L

)2
−(λ + µ) xm

rsup

ikπ
L

(λ + µ) xm
rsup

ikπ
L −µ

(
xm

rsup

)2
− (λ + 2µ)

(
kπ
L

)2


−1

(50)

A particular displacement field ũr, ũz, the solution of the inhomogeneous Navier equation, has been established.
Therefore, the associated stress field σ̃ can be computed as well, with use of the behavior relation in (5). More
precisely, a Fourier series expansion of σ̃ is obtained since the displacement field is known as a Fourier series
expansion, so component-wise

σ̃(..)(r, z) =

K∑
k=−K

σ̃(..)
k (r) exp

(
ikπ
L

z
)

(51)

where the symbol (..) should be replaced by rr, rz, zz.

6. Homogeneous solution

As detailed in Section 4, the problem has been split into a particular solution of the inhomogeneous Navier
equation (Section 5) and a homogeneous solution. This section is dedicated to the derivation of the homogeneous
solution of the Navier equation (28) considering boundary conditions (29). Since the whole analytical solution
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derived in this article relies on Fourier series expansion along the axial direction, one should write additional
contact pressure and shear stress as follows:

Pin f (z) =

K∑
k=−K

Pin f
k exp

(
i
kπ
L

z
)

S in f (z) =

K∑
k=−K

S in f
k exp

(
i
kπ
L

z
)

Psup(z) =

K∑
k=−K

Psup
k exp

(
i
kπ
L

z
)

S sup(z) =

K∑
k=−K

S sup
k exp

(
i
kπ
L

z
) (52)

where

Pin f
k =

1
2L

∫ L

−L
Pin f (z) exp

(
−i

kπ
L

z
)

dz S in f
k =

1
2L

∫ L

−L
S in f (z) exp

(
−i

kπ
L

z
)

dz

Psup
k =

1
2L

∫ L

−L
Psup(z) exp

(
−i

kπ
L

z
)

dz S sup
k =

1
2L

∫ L

−L
S sup(z) exp

(
−i

kπ
L

z
)

dz
(53)

Boundary conditions (29) and (9) at r = rsup and r = rin f may be rewritten as
σ̂(rsup, z).n(rsup, z) =

K∑
k=−K

[
−

(
Psup

k + σ̃rr
k (rsup)

)
er +

(
S sup

k − σ̃rz
k (rsup)

)
ez

]
exp

(
i
kπ
L

z
)

σ̂(rin f , z).n(rin f , z) =

K∑
k=−K

[(
Pin f

k + σ̃rr
k (rin f )

)
er +

(
S in f

k + σ̃rz
k (rin f )

)
ez

]
exp

(
i
kπ
L

z
) (54)

In the following, the homogeneous solution û, σ̂ verifying boundary conditions (54) and (30) is sought by use
of biharmonic and harmonic potentials [17, 19, 24]. To simplify the analytical procedure detailed in the following,
the homogeneous solution û, σ̂ is decomposed into three contributions:{

û = û(a)
+ û(b)

+ û(c)

σ̂ = σ̂(a)
+ σ̂(b)

+ σ̂(c) (55)

The contribution with superscript (a) corresponds to purely biharmonic potentials and the contributions with su-
perscripts (b) and (c) correspond to purely harmonic potentials.

6.1. Biharmonic potentials

A homogeneous solution û(a), σ̂(a) of the Navier equation (28) verifying boundary conditions (54) but not
necessarily (30) is sought. A classical formulation using purely biharmonic potentials reads [17]

2µ̂u(a)
r =

∂2Φ

∂r∂z

2µ̂u(a)
z = −

[
2(1 − ν)

(
∂2Φ

∂r2 +
1
r
∂Φ

∂r

)
+ (1 − 2ν)

∂2Φ

∂z2

] (56)

where ν = λ/(2(λ + µ)) is the Poisson ratio and where

∆∆Φ = 0 (57)

The biharmonic potential Φ is expanded into a Fourier series and modified Bessel functions as done by Weisz-
Patrault et al. [25]:

Φ(r, θ, z) =

K∑
k = −K
k , 0

(
kπ
L

)−3
Φk

(
kπ
L

r
) I′0

(
kπ
L r

)
I′0

(
kπ
L rin f

) + ϕk

I0

(
kπ
L r

)
I0

(
kπ
L rin f

) + Φ̂k

(
kπ
L

r
) K′0

(
kπ
L r

)
K′0

(
kπ
L rin f

) + ϕ̂k

K0

(
kπ
L r

)
K0

(
kπ
L rin f

)  exp
(
i
kπ
L

z
)

(58)
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where I0 and K0 are the zero-order modified Bessel functions of the first and second kind, respectively. Coefficients
Φk, ϕk, Φ̂k, and ϕ̂k are to be determined with the boundary conditions (54). The associated stress field is given by

σ̂(a)
rr =

[
−ν∆

∂

∂z
+

∂3

∂r2∂z

]
Φ

σ̂(a)
rz =

[
−(1 − ν)

(
∂3

∂r3 +
1
r
∂2

∂r2 −
1
r2

∂

∂r

)
+ ν

∂3

∂r∂z2

]
Φ

σ̂(a)
θθ =

[
−ν∆

∂

∂z
+

1
r
∂2

∂r∂z

]
Φ

σ̂(a)
zz = −

[
(2 − ν)

∂

∂z
∆ −

∂3

∂z3

]
Φ

(59)

By inserting (58) into (59), one obtains



σ̂(a)
rr (r, z) =

K∑
k = −K
k , 0

i

Φk

(1 − 2ν)
I0

(
kπr
L

)
I0

( kπrin f

L

) +

(
kπr
L

) I′0
(

kπr
L

)
I0

( kπrin f

L

)  + ϕk

 I0

(
kπr
L

)
I′0

( kπrin f

L

) − I′0
(

kπr
L

)
(

kπr
L

)
I′0

( kπrin f

L

) 
+Φ̂k

(1 − 2ν)
K0

(
kπr
L

)
K0

( kπrin f

L

) +

(
kπr
L

) K′0
(

kπr
L

)
K0

( kπrin f

L

)  + ϕ̂k

 K0

(
kπr
L

)
K′0

( kπrin f

L

) − K′0
(

kπr
L

)
(

kπr
L

)
K′0

( kπrin f

L

) 
 exp

(
i
kπ
L

z
)

σ̂(a)
rz (r, z) =

K∑
k = −K
k , 0

Φk

−
(

kπr
L

) I0

(
kπr
L

)
I0

( kπrin f

L

) + 2(ν − 1)
I′0

(
kπr
L

)
I0

( kπrin f

L

)  − ϕk

I′0
(

kπr
L

)
I′0

( kπrin f

L

)
+Φ̂k

−
(

kπr
L

) K0

(
kπr
L

)
K0

( kπrin f

L

) + 2(ν − 1)
K′0

(
kπr
L

)
K0

( kπrin f

L

)  − ϕ̂k

K′0
(

kπr
L

)
K′0

( kπrin f

L

)  exp
(
i
kπ
L

z
)

σ̂(a)
θθ (r, z) =

K∑
k = −K
k , 0

i

Φk(1 − 2ν)
I0

(
kπr
L

)
I0

( kπrin f

L

) + ϕk

I′0
(

kπr
L

)
(

kπr
L

)
I′0

( kπrin f

L

) + Φ̂k(1 − 2ν)
K0

(
kπr
L

)
K0

( kπrin f

L

) + ϕ̂k

K′0
(

kπr
L

)
(

kπr
L

)
K′0

( kπrin f

L

)  exp
(
i
kπ
L

z
)

σ̂(a)
zz (r, z) =

K∑
k = −K
k , 0

i

Φk

2(ν − 2)
I0

(
kπr
L

)
I0

( kπrin f

L

) − (
kπr
L

) I′0
(

kπr
L

)
I0

( kπrin f

L

)  − ϕk

I0

(
kπr
L

)
I′0

( kπrin f

L

)
+Φ̂k

2(ν − 2)
K0

(
kπr
L

)
K0

( kπrin f

L

) − (
kπr
L

) K′0
(

kπr
L

)
K0

( kπrin f

L

)  − ϕ̂k

K0

(
kπr
L

)
K′0

( kπrin f

L

)  exp
(
i
kπ
L

z
)

(60)

Using the boundary conditions (54) at r = rin f and r = rsup, one obtains


Φk

ϕk

Φ̂k

ϕ̂k

 = a−1
k .


−

(
Pin f

k + σ̃rr
k (rin f )

)
−

(
S in f

k + σ̃rz
k (rin f )

)
−

(
P(i+1)

k + σ̃rr
k (rsup)

)
S (i+1)

k − σ̃rz
k (rsup)

 (61)

where ak is detailed coefficient-wise in Appendix B.

6.2. Harmonic potentials

Previous biharmonic potentials were expanded into a Fourier series (58), but k = 0 was excluded from the
expansion. Thus, the term independent of z was not taken into account in the Fourier series expansion of the stress
tensor σ̂(a) (60). Therefore, boundary conditions (54) cannot be completely verified with the contribution (a) only.
In this section, a homogeneous solution û(b), σ̂(b) of the Navier equation (28) is sought such that σ̂(b)

rr and σ̂(b)
rz do

not depend on z. Purely harmonic potentials are used to this end (as detailed in [17]):
2µ̂u(b)

r =
∂φ

∂r
+ z

∂γ

∂r
2µ̂u(b)

z =
∂φ

∂z
+ z

∂γ

∂z
− (3 − 4ν)γ

(62)
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where
∆φ = ∆γ = 0 (63)

The associated stress field is given by

σ̂(b)
rr =

∂2φ

∂r2 + z
∂2γ

∂r2 − 2ν
∂γ

∂z

σ̂(b)
rz =

∂2φ

∂r∂z
+ z

∂2γ

∂r∂z
− (1 − 2ν)

∂γ

∂r
σ̂(b)
θθ =

1
r
∂φ

∂r
+

z
r
∂γ

∂r
− 2ν

∂γ

∂z

σ̂(b)
zz =

∂2φ

∂z2 + z
∂2γ

∂z2 − 2(1 − ν)
∂γ

∂z

(64)

Harmonic polynomials according to r and z are sought for φ and γ such that σ̂(b)
rr and σ̂(b)

rz do not depend on z.
Thus, 

φ = A0

(
−

r2

2
+ z2

)
+

B0

rin f

(
−

3r2z
2

+ z3
)

+ C0

(
rin f

)2
ln

(
r

rin f

)
+ D0rin f z ln

(
r

rin f

)
γ = −

3
1 + 4ν

B0

rin f

(
−

r2

2
+ z2

)
− D0rin f ln

(
r

rin f

) (65)

Therefore, by plugging (65) into (62) and (64), one obtains
2µ̂u(b)

r = −A0r −
12νB0

1 + 4ν
rz

rin f
+

C0

(
rin f

)2

r

2µ̂u(b)
z = 2A0z +

6
1 + 4ν

B0

rin f
(−r2 + z2) + 4(1 − ν)D0rin f ln

(
r

rin f

) (66)

and 

σ̂(b)
rr = −A0 −C0

( rin f

r

)2

σ̂(b)
rz =

−6(1 + ν)B0

1 + 4ν
r

rin f
+ 2(1 − ν)D0

rin f

r

σ̂(b)
θθ = −A0 + C0

( rin f

r

)2

σ̂(b)
zz = 2

(
A0 +

6(1 + ν)
1 + 4ν

B0z
rin f

)
(67)

Using the boundary conditions at r = rin f and r = rsup, one obtains(
A0
C0

)
=

 1 1

1
(

rin f

rsup

)2


−1

.

(
P0 + σ∗,rr

0 (rin f )
P(i+1)

0 + σ∗,rr
0 (rsup)

)
(68)

and (
B0
D0

)
=

 −6(1+ν)
1+4ν 2(1 − ν)

−6(1+ν)
1+4ν

rsup

rin f
2(1 − ν) rin f

rsup

−1

.

 − (
S 0 + σ∗,rz

0 (rin f )
)

S (i+1)
0 − σ∗,rz

0 (rsup)

 (69)

6.3. Edge conditions
The combination of contributions (a) and (b) satisfies boundary conditions (54) but not boundary conditions

(30). In this section, a third (and final) solution û(c), σ̂(c) of the homogeneous solution of the Navier equation (28)
is sought such that (30) is verified. Since the problem is axisymmetric, the boundary condition (30) reduces to∫ rsup

rin f

σ̂(c)
zz (r, L)rdr = −

∫ rsup

rin f

(
σ̃zz + σ̂(a)

zz + σ̂(b)
zz

)
(r, L)rdr (70)

A formulation using purely harmonic potentials is used as in Section 6.2:
φ =

E0ν

1 + ν

(
−

r2

2
+ z2

)
γ = −

zE0

2(1 + ν)

(71)
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The only nonvanishing components of the associated displacements and stresses read
2µ̂u(c)

r = −
E0ν

1 + ν
r

2µ̂u(c)
z =

E0

1 + ν
z

σ̂(c)
zz = E0

(72)

Therefore, by use of (70), the last coefficient is obtained:

E0 = −
2(

rsup

)2
−

(
rin f

)2

∫ rsup

rin f

(
σ̃zz + σ̂(a)

zz + σ̂(b)
zz

)
(r, L)rdr (73)

7. Numerical determination of contact stresses

In previous sections, additional contact pressure Psup, Pin f and shear S sup, S in f were arbitrary. In this section,
the numerical determination of these contact stresses is detailed. It relies on the same principle as in the work of
Weisz-Patrault et al. [10]. That is, contact stresses are evaluated by a minimization procedure using explicit contact
laws defined in [10]. It consists in relating contact stresses to the position discontinuity between two successive
layers. This discontinuity of nominal surfaces at each interface is constituted of the interpenetration JrCK along
the radial direction (associated with contact pressures) and the slide JzCK along the axial direction (associated
with shear stresses), where the symbol JK denotes the jump at the interface considered. Although contact shear is
negligible in the numerical study detailed in this contribution, the determination of contact conditions is presented
in general. Consider the following contact laws:

PC = f
(
JrCK

)
and S C = g

(
JzCK

)
(74)

where f and g are simple functions defining the contact laws. In addition, PC and S C are the contact pressure
and the shear stress at the interface considered. The coil consists of many layers, so contact pressure and shear at
each interface are gathered in two vectors P and S as well as surface interpenetration JrK and slides JzK. Contact
stresses are obtained by setting trial values P̃ and S̃ and computing the corresponding interpenetration JrK and
slides JzK with use of the mechanical model detailed in previous sections. Then the contact law (74) is used for

each interface and gives another evaluation of contact stresses denoted by ˜̃P and ˜̃S. Thus, contact stresses are
determined by the solving of the following optimization problem:

P = argmin
P̃≥0

∣∣∣∣∣P̃ − ˜̃P∣∣∣∣∣ and S = argmin
S̃

∣∣∣∣∣̃S − ˜̃S∣∣∣∣∣ (75)

Contact stresses are z-dependent and should be evaluated for each time step, which leads to the solving of many
optimization problems. Therefore, the analytical solution proposed for solving the mechanical problem enables
us to obtain reasonable computation times.

8. Validation of the analytical solution

In this section, a numerical validation of the analytical solution developed in Sections 5 and 6 is proposed. Only
one layer, subjected to an arbitrary eigenstrain, is modeled for this validation. The combination of several layers
and the determination of contact stresses is not included in this section. An axisymmetric tube representing one
layer of the coil was simulated by use of the finite element software program Cast3M developed by CEA [26]. The
geometrical conditions, listed in Table 1, are chosen to be representative with respect to the application. Traction-
free boundary conditions are set at r = rin f and r = rsup, and the only load consists in imposing an eigenstrain
ε∗ as listed in Table 2. These loading conditions necessitate very fine meshes to obtain reliable numerical results,
which are presented in Figure 6. The mesh density is defined by the number of elements along the radial direction
Nr = 100 and along the axial direction Nz = 1000. The rather slow convergence of the finite element simulation
toward the analytical solution, as a function of the mesh size, is illustrated in Figure 7 (where Nr is fixed to 100).
The comparison between the analytical solution and the finite element computation (at different axial positions)
is presented in Figures 8 and 9. Good agreement is observed even though slight discrepancies are noticeable.
These discrepancies are due to the lack of accuracy of the finite element computation. It can be observed that the
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boundary conditions are not verified perfectly: σrr does not vanish at r = rin f and rsup, and σrz does not vanish
at z = 0 (as it should because of the symmetry). In addition, the traction-free boundary condition at the edges
z = ±L is not verified locally in the analytical solution. A weak condition is verified instead; that is, only the
resultant forces vanish at the edges. The region affected by the local traction-free boundary condition spreads over
a distance roughly equal to three times the thickness. Thus, this edge effect is negligible for applications where
layers are very long compared with their thickness.

Table 1: Modeling parameters

External radius Rsup (mm) 303
Internal radius Rin f (mm) 300
Half length L (mm) 50 (condition 1)

200 (condition 2)

Table 2: Loading conditions

ε∗rr ε∗θθ ε∗zz ε∗rz

Condition 1 P(r) cos
(
π
L z

)
P(r) cos

(
π
L z

)
P(r) cos

(
π
L z

)
0

Condition 2 0 0 0 sin
(
π
L z

)
P(r) = (r − Rsup)(r − Rin f )/(RsupRin f ).

Figure 6: Finite element computation (condition 1)
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Figure 7: Convergence of the finite element computation (condition 1). FEM, finite element method.

Figure 8: Validation by comparison with a finite element computation (condition 1). FEM, finite element method.
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Figure 9: Validation by comparison with a Finite Element computation (condition 2). FEM, finite element method.

9. Numerical results

In this section, numerical results are obtained by use of models developed by Weisz-Patrault et al. [10] and
Weisz-Patrault [13], on the one hand, and in the present contribution, on the other hand. The tested coiling
parameters represent classic hot rolling conditions (e.g., for dual-phase steel grades). All parameters used for the
simulation are listed in Table 3. Moreover, the Young’s modulus as a function of temperature is extracted from
[27]:

E(T ) = 2.08 × 105 − 1.90 × 102T + 1.19T 2 − 2.82 × 10−3T 3 + 1.66 × 10−6T 4 (76)

where T is given in degrees Celsius. The yield stress of each phase as a function of temperature is needed.
Grostabussiat-Petit [28] performed uniaxial tensile tests at different temperatures and identified the yield stress
of austenite and bainite between 400 ˚C and 620 ˚C and between 500 ˚C and 544 ˚C, respectively. Other ferritic
phases (ferrite and pearlite) are assumed to have the same yield stress as bainite in this example, even though
proper yield stresses for all phases could have been used instead. The martensitic yield stress has been set to
800 MPa. Grostabussiat-Petit [28] proposed the following linear interpolation:{

σY
0 (T ) = −0.147 × T + 183.14

σY
3 (T ) = −0.02 × T + 444.8 (77)

where T is given in degrees Celsius.
The winding phase of the coiling process is simulated according to [10], and then the cooling phase is simulated

according to [13]. The temperature field obtained is presented at different time steps in Figure 10. Considering the
initial temperature, ferrite cannot be produced. Pearlite, bainite, and martensite phase proportion fields are given
at different time steps in Figures 11, 12, and 13, respectively.
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When the coil is wound, the inner mandrel is removed to cool the coil more effectively. Contact pressures
before and after mandrel removal are presented in Figure 14. It is clear that before removal of the mandrel,
contact tends to concentrate more and more at the center when the number of layers increases. This is classically
due to the geometrical profile of the incoming strip, which is assumed to be quadratic with respect to the axial
direction. After removal of the mandrel, the contact pressure distribution is completely modified and tends to
decrease significantly in amplitude and to concentrate at the center in the whole coil (and not only for the last
layers). That is, removal of the internal support of the coil leads to loose contact, especially at the edges, where
contact pressures were lower than at the center.

Thermal contact resistance is maximal when contact is lost; therefore, the coil cools more rapidly at the center,
where a good contact is ensured, than at the edges, where the distance between two successive layers acts as a
significant insulation. However, the first and last layers cool more rapidly at the edges because the air gaps tend
to insulate them from the rest of the coil. In other words, the thermal capacity is much lower in these regions than
at the center. The proportions of the different phases highly depend on temperature kinetics, and thus the global
structures of the phase proportion fields are not surprisingly similar to the temperature variations.

The present contribution enables us to compute displacements and stresses when the coil cools down, consid-
ering, on the one hand, the initial state obtained at the end of the winding phase and after removal of the mandrel
[10] and, on the other hand, all nonlinear contributions gathered as a total eigenstrain. When the coil cools down
and undergoes phase transitions, contact pressures rapidly decrease, then localize and decrease again, as shown
in Figure 15. These results depend on the chosen contact law that is relatively soft in this example. Instabilities
are expected when contact pressures vanish all along an interface. In that situation adhesion between the cor-
responding layers is lost, and one should observe unwinding. It is clear that this issue is critical since contact
pressure significantly decreases during cooling of the coil. It can be seen from Figure 15 that the proposed coiling
conditions lead to this issue.

Another relevant result is the cumulative inelastic strain exhibited along the circumferential direction in Fig-
ure 16. Inelastic strain determines classic flatness defects obtained after uncoiling. For instance, one can use the
simple purely elastic uncoiling model proposed by Weisz-Patrault et al. [10] to compute residual stresses on the
basis of a flat reference. One of the most interesting ways to present the residual stress profile is in terms of residual
curvature. In Figure 17, residual curvatures along the rolling direction denoted by X and along the axial direction
denoted by Z are presented for different layers. Residual curvatures are presented before cooling (just after the
elastic-plastic winding) and at the end of the cooling process to give insight into the extent to which thermal ex-
pansion, phase transitions, and transformation-induced plasticity contribute to the final residual stress. Significant
residual stresses are produced during the coiling process and are dramatically increased and redistributed during
the cooling phase, as shown in Figure 17.
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Table 3: Coiling conditions

External mandrel’s radius Rext 381 (mm)
Internal mandrel’s radius Rint 0 (mm)
Initial temperature Tini 750 (K)
External temperature Text 300 (K)
Heat transfer coefficient H 0.4 × 10−3 (W mm−2 K−1)
Applied nominal tension σa 10 (MPa)
Initial austenite proportion Xini

1 0.4
Initial ferrite proportion Xini

2 0.3
Initial pearlite proportion Xini

3 0.3
Initial bainite proportion Xini

4 0.0
Initial martensite proportion Xini

5 0.0
Half length L 467 (mm)
Strip thickness at the center tc 3.3 (mm)
Strip thickness at the edges te 3.261 (mm)
Number of cycles Nrev 196
Enthalpy variation for p = 2, 3, 4 ∆Hp -0.4 (J mm−3)
Enthalpy variation for p = 5 ∆H5 -0.3 (J mm−3)
Ferritic transition temperature AE3 1073 (K)
Pearlitic transition temperature AE1 823 (K)
Bainitic transition temperature BS 713 (K)
Martensitic transition temperature MS 693 (K)
Avrami exponents for all phase transitions np 1.5
Avrami coefficients for ferritic transformation k2 0.00008
Avrami coefficients for pearlitic transformation k3 0.00015
Avrami coefficients for bainitic transformation k4 0.00015
Martensitic coefficient αMS 0.045

Ferritic, pearlitic, and bainitic phase transitions are described by simple Avrami equations,

∀p ∈ {2, 3, 4} , Xp(t) = 1 − exp
(
−kptnp

)
, (78)

and the martensitic phase transition is described by

X5(t) = Xra(t)
[
1 − exp (αMS (T (t) − MS ))

]
(79)

where Xra(t) is the retained austenite.
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Figure 10: Temperature evolution
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Figure 11: Pearlite proportion evolution
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Figure 12: Bainite proportion evolution
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Figure 13: Martensite proportion evolution

Figure 14: Contact pressure
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Figure 15: Contact pressure
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Figure 16: Irreversible eigenstrain (θθ component)
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(a) Rolling direction before cooling
(b) Rolling direction after cooling

(c) Width direction before cooling (d) Width direction after cooling

Figure 17: Residual curvature before and after cooling

10. Conclusion

A mixed analytical/numerical strategy has been developed to compute efficiently residual stresses induced by
plastic deformation, phase transitions, and temperature variations in a coil. The analytical part of the proposed
solution was verified by comparison with a finite element computation. The combination of previous models
and the present solution enabled us to simulate the whole coiling process, including both winding and cooling of
the coil. Parametric studies can be performed to optimize the process with respect to residual stress issues. In
addition, this work also provides a tool for estimating inelastic strain during cooling, which is a significant input
for computing coil sagging. Moreover, the example presented in this article shows that contact pressure tends to
decrease when the coil cools down, which can lead to the unwinding of the coil if contact is lost. In addition,
significant flatness defects are obtained after uncoiling.
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Appendix A. Orthogonality and function basis

The proof of orthogonality relies on several classic indefinite integrals (proven in [23]):

∫
rJ1(xr)J1(yr)dr = r

yJ1(rx)J0(ry) − xJ0(rx)J1(ry)
x2 − y2∫

rY1(xr)Y1(yr)dr = r
yY1(rx)Y0(ry) − xY0(rx)Y1(ry)

x2 − y2∫
rJ1(xr)Y1(yr)dr = r

yJ1(rx)Y0(ry) − xJ0(rx)Y1(ry)
x2 − y2

(A.1)



∫
rJ2

1(xr)dr =
r2

2

(
J2

1(rx) − J0(rx)J2(rx)
)

∫
rY2

1 (xr)dr =
r2

2

(
Y2

1 (rx) − Y0(rx)Y2(rx)
) (A.2)

Hence ∫ rsup

rin f

rGm(r)Gl(r)dr =

∫ rsup

rin f

r
(
J1

(
xm

r
rsup

)
Y1

(
xm

rin f

rsup

)
− J1

(
xm

rin f

rsup

)
Y1

(
xm

r
rsup

))
×

(
J1

(
xl

r
rsup

)
Y1

(
xl

rin f

rsup

)
− J1

(
xl

rin f

rsup

)
Y1

(
xl

r
rsup

))
dr

=

{
0 if m , l
Mm > 0 if l = m

(A.3)
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Appendix B. Matrix coefficients



a(1,1)
k = i

(1 − 2ν) +
( kπrin f

L

) I′0

(
kπrin f

L

)
I0

(
kπrin f

L

)


a(1,2)
k = i

 I0

(
kπrin f

L

)
I′0

(
kπrin f

L

) − L
kπrin f


a(1,3)

k = i

(1 − 2ν) +
( kπrin f

L

) K′0

(
kπrin f

L

)
K0

(
kπrin f

L

)


a(1,4)
k = i

K0

(
kπrin f

L

)
K′0

(
kπrin f

L

) − L
kπrin f


a(2,1)

k = −
( kπrin f

L

)
+ 2(ν − 1)

I′0

(
kπrin f

L

)
I0

(
kπrin f

L

)
a(2,2)

k = −1

a(2,3)
k = −

( kπrin f

L

)
+ 2(ν − 1)

K′0

(
kπrin f

L

)
K0

(
kπrin f

L

)
a(2,4)

k = −1

a(3,1)
k = i

(1 − 2ν)
I0

(
kπrsup

L

)
I0

(
kπrin f

L

) +
( kπrsup

L

) I′0

(
kπrsup

L

)
I0

(
kπrin f

L

)


a(3,2)
k = i
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